at v6.2-rc3 46 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41}; 42 43enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54}; 55 56struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59}; 60 61#ifdef CONFIG_MEMCG 62 63#define MEM_CGROUP_ID_SHIFT 16 64#define MEM_CGROUP_ID_MAX USHRT_MAX 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu; 84struct memcg_vmstats; 85 86struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90}; 91 92/* 93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 94 * shrinkers, which have elements charged to this memcg. 95 */ 96struct shrinker_info { 97 struct rcu_head rcu; 98 atomic_long_t *nr_deferred; 99 unsigned long *map; 100}; 101 102struct lruvec_stats_percpu { 103 /* Local (CPU and cgroup) state */ 104 long state[NR_VM_NODE_STAT_ITEMS]; 105 106 /* Delta calculation for lockless upward propagation */ 107 long state_prev[NR_VM_NODE_STAT_ITEMS]; 108}; 109 110struct lruvec_stats { 111 /* Aggregated (CPU and subtree) state */ 112 long state[NR_VM_NODE_STAT_ITEMS]; 113 114 /* Pending child counts during tree propagation */ 115 long state_pending[NR_VM_NODE_STAT_ITEMS]; 116}; 117 118/* 119 * per-node information in memory controller. 120 */ 121struct mem_cgroup_per_node { 122 struct lruvec lruvec; 123 124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 125 struct lruvec_stats lruvec_stats; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter; 130 131 struct shrinker_info __rcu *shrinker_info; 132 133 struct rb_node tree_node; /* RB tree node */ 134 unsigned long usage_in_excess;/* Set to the value by which */ 135 /* the soft limit is exceeded*/ 136 bool on_tree; 137 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 138 /* use container_of */ 139}; 140 141struct mem_cgroup_threshold { 142 struct eventfd_ctx *eventfd; 143 unsigned long threshold; 144}; 145 146/* For threshold */ 147struct mem_cgroup_threshold_ary { 148 /* An array index points to threshold just below or equal to usage. */ 149 int current_threshold; 150 /* Size of entries[] */ 151 unsigned int size; 152 /* Array of thresholds */ 153 struct mem_cgroup_threshold entries[]; 154}; 155 156struct mem_cgroup_thresholds { 157 /* Primary thresholds array */ 158 struct mem_cgroup_threshold_ary *primary; 159 /* 160 * Spare threshold array. 161 * This is needed to make mem_cgroup_unregister_event() "never fail". 162 * It must be able to store at least primary->size - 1 entries. 163 */ 164 struct mem_cgroup_threshold_ary *spare; 165}; 166 167/* 168 * Remember four most recent foreign writebacks with dirty pages in this 169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 170 * one in a given round, we're likely to catch it later if it keeps 171 * foreign-dirtying, so a fairly low count should be enough. 172 * 173 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 174 */ 175#define MEMCG_CGWB_FRN_CNT 4 176 177struct memcg_cgwb_frn { 178 u64 bdi_id; /* bdi->id of the foreign inode */ 179 int memcg_id; /* memcg->css.id of foreign inode */ 180 u64 at; /* jiffies_64 at the time of dirtying */ 181 struct wb_completion done; /* tracks in-flight foreign writebacks */ 182}; 183 184/* 185 * Bucket for arbitrarily byte-sized objects charged to a memory 186 * cgroup. The bucket can be reparented in one piece when the cgroup 187 * is destroyed, without having to round up the individual references 188 * of all live memory objects in the wild. 189 */ 190struct obj_cgroup { 191 struct percpu_ref refcnt; 192 struct mem_cgroup *memcg; 193 atomic_t nr_charged_bytes; 194 union { 195 struct list_head list; /* protected by objcg_lock */ 196 struct rcu_head rcu; 197 }; 198}; 199 200/* 201 * The memory controller data structure. The memory controller controls both 202 * page cache and RSS per cgroup. We would eventually like to provide 203 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 204 * to help the administrator determine what knobs to tune. 205 */ 206struct mem_cgroup { 207 struct cgroup_subsys_state css; 208 209 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 210 struct mem_cgroup_id id; 211 212 /* Accounted resources */ 213 struct page_counter memory; /* Both v1 & v2 */ 214 215 union { 216 struct page_counter swap; /* v2 only */ 217 struct page_counter memsw; /* v1 only */ 218 }; 219 220 /* Legacy consumer-oriented counters */ 221 struct page_counter kmem; /* v1 only */ 222 struct page_counter tcpmem; /* v1 only */ 223 224 /* Range enforcement for interrupt charges */ 225 struct work_struct high_work; 226 227#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 228 unsigned long zswap_max; 229#endif 230 231 unsigned long soft_limit; 232 233 /* vmpressure notifications */ 234 struct vmpressure vmpressure; 235 236 /* 237 * Should the OOM killer kill all belonging tasks, had it kill one? 238 */ 239 bool oom_group; 240 241 /* protected by memcg_oom_lock */ 242 bool oom_lock; 243 int under_oom; 244 245 int swappiness; 246 /* OOM-Killer disable */ 247 int oom_kill_disable; 248 249 /* memory.events and memory.events.local */ 250 struct cgroup_file events_file; 251 struct cgroup_file events_local_file; 252 253 /* handle for "memory.swap.events" */ 254 struct cgroup_file swap_events_file; 255 256 /* protect arrays of thresholds */ 257 struct mutex thresholds_lock; 258 259 /* thresholds for memory usage. RCU-protected */ 260 struct mem_cgroup_thresholds thresholds; 261 262 /* thresholds for mem+swap usage. RCU-protected */ 263 struct mem_cgroup_thresholds memsw_thresholds; 264 265 /* For oom notifier event fd */ 266 struct list_head oom_notify; 267 268 /* 269 * Should we move charges of a task when a task is moved into this 270 * mem_cgroup ? And what type of charges should we move ? 271 */ 272 unsigned long move_charge_at_immigrate; 273 /* taken only while moving_account > 0 */ 274 spinlock_t move_lock; 275 unsigned long move_lock_flags; 276 277 CACHELINE_PADDING(_pad1_); 278 279 /* memory.stat */ 280 struct memcg_vmstats *vmstats; 281 282 /* memory.events */ 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 285 286 unsigned long socket_pressure; 287 288 /* Legacy tcp memory accounting */ 289 bool tcpmem_active; 290 int tcpmem_pressure; 291 292#ifdef CONFIG_MEMCG_KMEM 293 int kmemcg_id; 294 struct obj_cgroup __rcu *objcg; 295 /* list of inherited objcgs, protected by objcg_lock */ 296 struct list_head objcg_list; 297#endif 298 299 CACHELINE_PADDING(_pad2_); 300 301 /* 302 * set > 0 if pages under this cgroup are moving to other cgroup. 303 */ 304 atomic_t moving_account; 305 struct task_struct *move_lock_task; 306 307 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 308 309#ifdef CONFIG_CGROUP_WRITEBACK 310 struct list_head cgwb_list; 311 struct wb_domain cgwb_domain; 312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 313#endif 314 315 /* List of events which userspace want to receive */ 316 struct list_head event_list; 317 spinlock_t event_list_lock; 318 319#ifdef CONFIG_TRANSPARENT_HUGEPAGE 320 struct deferred_split deferred_split_queue; 321#endif 322 323#ifdef CONFIG_LRU_GEN 324 /* per-memcg mm_struct list */ 325 struct lru_gen_mm_list mm_list; 326#endif 327 328 struct mem_cgroup_per_node *nodeinfo[]; 329}; 330 331/* 332 * size of first charge trial. 333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 334 * workload. 335 */ 336#define MEMCG_CHARGE_BATCH 64U 337 338extern struct mem_cgroup *root_mem_cgroup; 339 340enum page_memcg_data_flags { 341 /* page->memcg_data is a pointer to an objcgs vector */ 342 MEMCG_DATA_OBJCGS = (1UL << 0), 343 /* page has been accounted as a non-slab kernel page */ 344 MEMCG_DATA_KMEM = (1UL << 1), 345 /* the next bit after the last actual flag */ 346 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 347}; 348 349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 350 351static inline bool folio_memcg_kmem(struct folio *folio); 352 353/* 354 * After the initialization objcg->memcg is always pointing at 355 * a valid memcg, but can be atomically swapped to the parent memcg. 356 * 357 * The caller must ensure that the returned memcg won't be released: 358 * e.g. acquire the rcu_read_lock or css_set_lock. 359 */ 360static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 361{ 362 return READ_ONCE(objcg->memcg); 363} 364 365/* 366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 367 * @folio: Pointer to the folio. 368 * 369 * Returns a pointer to the memory cgroup associated with the folio, 370 * or NULL. This function assumes that the folio is known to have a 371 * proper memory cgroup pointer. It's not safe to call this function 372 * against some type of folios, e.g. slab folios or ex-slab folios or 373 * kmem folios. 374 */ 375static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 376{ 377 unsigned long memcg_data = folio->memcg_data; 378 379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 382 383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 384} 385 386/* 387 * __folio_objcg - get the object cgroup associated with a kmem folio. 388 * @folio: Pointer to the folio. 389 * 390 * Returns a pointer to the object cgroup associated with the folio, 391 * or NULL. This function assumes that the folio is known to have a 392 * proper object cgroup pointer. It's not safe to call this function 393 * against some type of folios, e.g. slab folios or ex-slab folios or 394 * LRU folios. 395 */ 396static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 397{ 398 unsigned long memcg_data = folio->memcg_data; 399 400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 403 404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 405} 406 407/* 408 * folio_memcg - Get the memory cgroup associated with a folio. 409 * @folio: Pointer to the folio. 410 * 411 * Returns a pointer to the memory cgroup associated with the folio, 412 * or NULL. This function assumes that the folio is known to have a 413 * proper memory cgroup pointer. It's not safe to call this function 414 * against some type of folios, e.g. slab folios or ex-slab folios. 415 * 416 * For a non-kmem folio any of the following ensures folio and memcg binding 417 * stability: 418 * 419 * - the folio lock 420 * - LRU isolation 421 * - lock_page_memcg() 422 * - exclusive reference 423 * - mem_cgroup_trylock_pages() 424 * 425 * For a kmem folio a caller should hold an rcu read lock to protect memcg 426 * associated with a kmem folio from being released. 427 */ 428static inline struct mem_cgroup *folio_memcg(struct folio *folio) 429{ 430 if (folio_memcg_kmem(folio)) 431 return obj_cgroup_memcg(__folio_objcg(folio)); 432 return __folio_memcg(folio); 433} 434 435static inline struct mem_cgroup *page_memcg(struct page *page) 436{ 437 return folio_memcg(page_folio(page)); 438} 439 440/** 441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 442 * @folio: Pointer to the folio. 443 * 444 * This function assumes that the folio is known to have a 445 * proper memory cgroup pointer. It's not safe to call this function 446 * against some type of folios, e.g. slab folios or ex-slab folios. 447 * 448 * Return: A pointer to the memory cgroup associated with the folio, 449 * or NULL. 450 */ 451static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 452{ 453 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 454 455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 456 WARN_ON_ONCE(!rcu_read_lock_held()); 457 458 if (memcg_data & MEMCG_DATA_KMEM) { 459 struct obj_cgroup *objcg; 460 461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 462 return obj_cgroup_memcg(objcg); 463 } 464 465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466} 467 468/* 469 * page_memcg_check - get the memory cgroup associated with a page 470 * @page: a pointer to the page struct 471 * 472 * Returns a pointer to the memory cgroup associated with the page, 473 * or NULL. This function unlike page_memcg() can take any page 474 * as an argument. It has to be used in cases when it's not known if a page 475 * has an associated memory cgroup pointer or an object cgroups vector or 476 * an object cgroup. 477 * 478 * For a non-kmem page any of the following ensures page and memcg binding 479 * stability: 480 * 481 * - the page lock 482 * - LRU isolation 483 * - lock_page_memcg() 484 * - exclusive reference 485 * - mem_cgroup_trylock_pages() 486 * 487 * For a kmem page a caller should hold an rcu read lock to protect memcg 488 * associated with a kmem page from being released. 489 */ 490static inline struct mem_cgroup *page_memcg_check(struct page *page) 491{ 492 /* 493 * Because page->memcg_data might be changed asynchronously 494 * for slab pages, READ_ONCE() should be used here. 495 */ 496 unsigned long memcg_data = READ_ONCE(page->memcg_data); 497 498 if (memcg_data & MEMCG_DATA_OBJCGS) 499 return NULL; 500 501 if (memcg_data & MEMCG_DATA_KMEM) { 502 struct obj_cgroup *objcg; 503 504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 505 return obj_cgroup_memcg(objcg); 506 } 507 508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 509} 510 511static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 512{ 513 struct mem_cgroup *memcg; 514 515 rcu_read_lock(); 516retry: 517 memcg = obj_cgroup_memcg(objcg); 518 if (unlikely(!css_tryget(&memcg->css))) 519 goto retry; 520 rcu_read_unlock(); 521 522 return memcg; 523} 524 525#ifdef CONFIG_MEMCG_KMEM 526/* 527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 528 * @folio: Pointer to the folio. 529 * 530 * Checks if the folio has MemcgKmem flag set. The caller must ensure 531 * that the folio has an associated memory cgroup. It's not safe to call 532 * this function against some types of folios, e.g. slab folios. 533 */ 534static inline bool folio_memcg_kmem(struct folio *folio) 535{ 536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 538 return folio->memcg_data & MEMCG_DATA_KMEM; 539} 540 541 542#else 543static inline bool folio_memcg_kmem(struct folio *folio) 544{ 545 return false; 546} 547 548#endif 549 550static inline bool PageMemcgKmem(struct page *page) 551{ 552 return folio_memcg_kmem(page_folio(page)); 553} 554 555static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 556{ 557 return (memcg == root_mem_cgroup); 558} 559 560static inline bool mem_cgroup_disabled(void) 561{ 562 return !cgroup_subsys_enabled(memory_cgrp_subsys); 563} 564 565static inline void mem_cgroup_protection(struct mem_cgroup *root, 566 struct mem_cgroup *memcg, 567 unsigned long *min, 568 unsigned long *low) 569{ 570 *min = *low = 0; 571 572 if (mem_cgroup_disabled()) 573 return; 574 575 /* 576 * There is no reclaim protection applied to a targeted reclaim. 577 * We are special casing this specific case here because 578 * mem_cgroup_protected calculation is not robust enough to keep 579 * the protection invariant for calculated effective values for 580 * parallel reclaimers with different reclaim target. This is 581 * especially a problem for tail memcgs (as they have pages on LRU) 582 * which would want to have effective values 0 for targeted reclaim 583 * but a different value for external reclaim. 584 * 585 * Example 586 * Let's have global and A's reclaim in parallel: 587 * | 588 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 589 * |\ 590 * | C (low = 1G, usage = 2.5G) 591 * B (low = 1G, usage = 0.5G) 592 * 593 * For the global reclaim 594 * A.elow = A.low 595 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 596 * C.elow = min(C.usage, C.low) 597 * 598 * With the effective values resetting we have A reclaim 599 * A.elow = 0 600 * B.elow = B.low 601 * C.elow = C.low 602 * 603 * If the global reclaim races with A's reclaim then 604 * B.elow = C.elow = 0 because children_low_usage > A.elow) 605 * is possible and reclaiming B would be violating the protection. 606 * 607 */ 608 if (root == memcg) 609 return; 610 611 *min = READ_ONCE(memcg->memory.emin); 612 *low = READ_ONCE(memcg->memory.elow); 613} 614 615void mem_cgroup_calculate_protection(struct mem_cgroup *root, 616 struct mem_cgroup *memcg); 617 618static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 619 struct mem_cgroup *memcg) 620{ 621 /* 622 * The root memcg doesn't account charges, and doesn't support 623 * protection. The target memcg's protection is ignored, see 624 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 625 */ 626 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 627 memcg == target; 628} 629 630static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 631 struct mem_cgroup *memcg) 632{ 633 if (mem_cgroup_unprotected(target, memcg)) 634 return false; 635 636 return READ_ONCE(memcg->memory.elow) >= 637 page_counter_read(&memcg->memory); 638} 639 640static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 641 struct mem_cgroup *memcg) 642{ 643 if (mem_cgroup_unprotected(target, memcg)) 644 return false; 645 646 return READ_ONCE(memcg->memory.emin) >= 647 page_counter_read(&memcg->memory); 648} 649 650int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 651 652/** 653 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 654 * @folio: Folio to charge. 655 * @mm: mm context of the allocating task. 656 * @gfp: Reclaim mode. 657 * 658 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 659 * pages according to @gfp if necessary. If @mm is NULL, try to 660 * charge to the active memcg. 661 * 662 * Do not use this for folios allocated for swapin. 663 * 664 * Return: 0 on success. Otherwise, an error code is returned. 665 */ 666static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 667 gfp_t gfp) 668{ 669 if (mem_cgroup_disabled()) 670 return 0; 671 return __mem_cgroup_charge(folio, mm, gfp); 672} 673 674int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 675 gfp_t gfp, swp_entry_t entry); 676void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 677 678void __mem_cgroup_uncharge(struct folio *folio); 679 680/** 681 * mem_cgroup_uncharge - Uncharge a folio. 682 * @folio: Folio to uncharge. 683 * 684 * Uncharge a folio previously charged with mem_cgroup_charge(). 685 */ 686static inline void mem_cgroup_uncharge(struct folio *folio) 687{ 688 if (mem_cgroup_disabled()) 689 return; 690 __mem_cgroup_uncharge(folio); 691} 692 693void __mem_cgroup_uncharge_list(struct list_head *page_list); 694static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 695{ 696 if (mem_cgroup_disabled()) 697 return; 698 __mem_cgroup_uncharge_list(page_list); 699} 700 701void mem_cgroup_migrate(struct folio *old, struct folio *new); 702 703/** 704 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 705 * @memcg: memcg of the wanted lruvec 706 * @pgdat: pglist_data 707 * 708 * Returns the lru list vector holding pages for a given @memcg & 709 * @pgdat combination. This can be the node lruvec, if the memory 710 * controller is disabled. 711 */ 712static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 713 struct pglist_data *pgdat) 714{ 715 struct mem_cgroup_per_node *mz; 716 struct lruvec *lruvec; 717 718 if (mem_cgroup_disabled()) { 719 lruvec = &pgdat->__lruvec; 720 goto out; 721 } 722 723 if (!memcg) 724 memcg = root_mem_cgroup; 725 726 mz = memcg->nodeinfo[pgdat->node_id]; 727 lruvec = &mz->lruvec; 728out: 729 /* 730 * Since a node can be onlined after the mem_cgroup was created, 731 * we have to be prepared to initialize lruvec->pgdat here; 732 * and if offlined then reonlined, we need to reinitialize it. 733 */ 734 if (unlikely(lruvec->pgdat != pgdat)) 735 lruvec->pgdat = pgdat; 736 return lruvec; 737} 738 739/** 740 * folio_lruvec - return lruvec for isolating/putting an LRU folio 741 * @folio: Pointer to the folio. 742 * 743 * This function relies on folio->mem_cgroup being stable. 744 */ 745static inline struct lruvec *folio_lruvec(struct folio *folio) 746{ 747 struct mem_cgroup *memcg = folio_memcg(folio); 748 749 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 750 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 751} 752 753struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 754 755struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 756 757struct lruvec *folio_lruvec_lock(struct folio *folio); 758struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 759struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 760 unsigned long *flags); 761 762#ifdef CONFIG_DEBUG_VM 763void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 764#else 765static inline 766void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 767{ 768} 769#endif 770 771static inline 772struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 773 return css ? container_of(css, struct mem_cgroup, css) : NULL; 774} 775 776static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 777{ 778 return percpu_ref_tryget(&objcg->refcnt); 779} 780 781static inline void obj_cgroup_get(struct obj_cgroup *objcg) 782{ 783 percpu_ref_get(&objcg->refcnt); 784} 785 786static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 787 unsigned long nr) 788{ 789 percpu_ref_get_many(&objcg->refcnt, nr); 790} 791 792static inline void obj_cgroup_put(struct obj_cgroup *objcg) 793{ 794 percpu_ref_put(&objcg->refcnt); 795} 796 797static inline void mem_cgroup_put(struct mem_cgroup *memcg) 798{ 799 if (memcg) 800 css_put(&memcg->css); 801} 802 803#define mem_cgroup_from_counter(counter, member) \ 804 container_of(counter, struct mem_cgroup, member) 805 806struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 807 struct mem_cgroup *, 808 struct mem_cgroup_reclaim_cookie *); 809void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 810int mem_cgroup_scan_tasks(struct mem_cgroup *, 811 int (*)(struct task_struct *, void *), void *); 812 813static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 814{ 815 if (mem_cgroup_disabled()) 816 return 0; 817 818 return memcg->id.id; 819} 820struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 821 822#ifdef CONFIG_SHRINKER_DEBUG 823static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 824{ 825 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 826} 827 828struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 829#endif 830 831static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 832{ 833 return mem_cgroup_from_css(seq_css(m)); 834} 835 836static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 837{ 838 struct mem_cgroup_per_node *mz; 839 840 if (mem_cgroup_disabled()) 841 return NULL; 842 843 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 844 return mz->memcg; 845} 846 847/** 848 * parent_mem_cgroup - find the accounting parent of a memcg 849 * @memcg: memcg whose parent to find 850 * 851 * Returns the parent memcg, or NULL if this is the root or the memory 852 * controller is in legacy no-hierarchy mode. 853 */ 854static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 855{ 856 return mem_cgroup_from_css(memcg->css.parent); 857} 858 859static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 860 struct mem_cgroup *root) 861{ 862 if (root == memcg) 863 return true; 864 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 865} 866 867static inline bool mm_match_cgroup(struct mm_struct *mm, 868 struct mem_cgroup *memcg) 869{ 870 struct mem_cgroup *task_memcg; 871 bool match = false; 872 873 rcu_read_lock(); 874 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 875 if (task_memcg) 876 match = mem_cgroup_is_descendant(task_memcg, memcg); 877 rcu_read_unlock(); 878 return match; 879} 880 881struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 882ino_t page_cgroup_ino(struct page *page); 883 884static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 885{ 886 if (mem_cgroup_disabled()) 887 return true; 888 return !!(memcg->css.flags & CSS_ONLINE); 889} 890 891void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 892 int zid, int nr_pages); 893 894static inline 895unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 896 enum lru_list lru, int zone_idx) 897{ 898 struct mem_cgroup_per_node *mz; 899 900 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 901 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 902} 903 904void mem_cgroup_handle_over_high(void); 905 906unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 907 908unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 909 910void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 911 struct task_struct *p); 912 913void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 914 915static inline void mem_cgroup_enter_user_fault(void) 916{ 917 WARN_ON(current->in_user_fault); 918 current->in_user_fault = 1; 919} 920 921static inline void mem_cgroup_exit_user_fault(void) 922{ 923 WARN_ON(!current->in_user_fault); 924 current->in_user_fault = 0; 925} 926 927static inline bool task_in_memcg_oom(struct task_struct *p) 928{ 929 return p->memcg_in_oom; 930} 931 932bool mem_cgroup_oom_synchronize(bool wait); 933struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 934 struct mem_cgroup *oom_domain); 935void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 936 937void folio_memcg_lock(struct folio *folio); 938void folio_memcg_unlock(struct folio *folio); 939void lock_page_memcg(struct page *page); 940void unlock_page_memcg(struct page *page); 941 942void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 943 944/* try to stablize folio_memcg() for all the pages in a memcg */ 945static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 946{ 947 rcu_read_lock(); 948 949 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 950 return true; 951 952 rcu_read_unlock(); 953 return false; 954} 955 956static inline void mem_cgroup_unlock_pages(void) 957{ 958 rcu_read_unlock(); 959} 960 961/* idx can be of type enum memcg_stat_item or node_stat_item */ 962static inline void mod_memcg_state(struct mem_cgroup *memcg, 963 int idx, int val) 964{ 965 unsigned long flags; 966 967 local_irq_save(flags); 968 __mod_memcg_state(memcg, idx, val); 969 local_irq_restore(flags); 970} 971 972static inline void mod_memcg_page_state(struct page *page, 973 int idx, int val) 974{ 975 struct mem_cgroup *memcg; 976 977 if (mem_cgroup_disabled()) 978 return; 979 980 rcu_read_lock(); 981 memcg = page_memcg(page); 982 if (memcg) 983 mod_memcg_state(memcg, idx, val); 984 rcu_read_unlock(); 985} 986 987unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 988 989static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 990 enum node_stat_item idx) 991{ 992 struct mem_cgroup_per_node *pn; 993 long x; 994 995 if (mem_cgroup_disabled()) 996 return node_page_state(lruvec_pgdat(lruvec), idx); 997 998 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 999 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1000#ifdef CONFIG_SMP 1001 if (x < 0) 1002 x = 0; 1003#endif 1004 return x; 1005} 1006 1007static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1008 enum node_stat_item idx) 1009{ 1010 struct mem_cgroup_per_node *pn; 1011 long x = 0; 1012 int cpu; 1013 1014 if (mem_cgroup_disabled()) 1015 return node_page_state(lruvec_pgdat(lruvec), idx); 1016 1017 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1018 for_each_possible_cpu(cpu) 1019 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1020#ifdef CONFIG_SMP 1021 if (x < 0) 1022 x = 0; 1023#endif 1024 return x; 1025} 1026 1027void mem_cgroup_flush_stats(void); 1028void mem_cgroup_flush_stats_delayed(void); 1029 1030void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1031 int val); 1032void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1033 1034static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1035 int val) 1036{ 1037 unsigned long flags; 1038 1039 local_irq_save(flags); 1040 __mod_lruvec_kmem_state(p, idx, val); 1041 local_irq_restore(flags); 1042} 1043 1044static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1045 enum node_stat_item idx, int val) 1046{ 1047 unsigned long flags; 1048 1049 local_irq_save(flags); 1050 __mod_memcg_lruvec_state(lruvec, idx, val); 1051 local_irq_restore(flags); 1052} 1053 1054void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1055 unsigned long count); 1056 1057static inline void count_memcg_events(struct mem_cgroup *memcg, 1058 enum vm_event_item idx, 1059 unsigned long count) 1060{ 1061 unsigned long flags; 1062 1063 local_irq_save(flags); 1064 __count_memcg_events(memcg, idx, count); 1065 local_irq_restore(flags); 1066} 1067 1068static inline void count_memcg_page_event(struct page *page, 1069 enum vm_event_item idx) 1070{ 1071 struct mem_cgroup *memcg = page_memcg(page); 1072 1073 if (memcg) 1074 count_memcg_events(memcg, idx, 1); 1075} 1076 1077static inline void count_memcg_folio_events(struct folio *folio, 1078 enum vm_event_item idx, unsigned long nr) 1079{ 1080 struct mem_cgroup *memcg = folio_memcg(folio); 1081 1082 if (memcg) 1083 count_memcg_events(memcg, idx, nr); 1084} 1085 1086static inline void count_memcg_event_mm(struct mm_struct *mm, 1087 enum vm_event_item idx) 1088{ 1089 struct mem_cgroup *memcg; 1090 1091 if (mem_cgroup_disabled()) 1092 return; 1093 1094 rcu_read_lock(); 1095 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1096 if (likely(memcg)) 1097 count_memcg_events(memcg, idx, 1); 1098 rcu_read_unlock(); 1099} 1100 1101static inline void memcg_memory_event(struct mem_cgroup *memcg, 1102 enum memcg_memory_event event) 1103{ 1104 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1105 event == MEMCG_SWAP_FAIL; 1106 1107 atomic_long_inc(&memcg->memory_events_local[event]); 1108 if (!swap_event) 1109 cgroup_file_notify(&memcg->events_local_file); 1110 1111 do { 1112 atomic_long_inc(&memcg->memory_events[event]); 1113 if (swap_event) 1114 cgroup_file_notify(&memcg->swap_events_file); 1115 else 1116 cgroup_file_notify(&memcg->events_file); 1117 1118 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1119 break; 1120 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1121 break; 1122 } while ((memcg = parent_mem_cgroup(memcg)) && 1123 !mem_cgroup_is_root(memcg)); 1124} 1125 1126static inline void memcg_memory_event_mm(struct mm_struct *mm, 1127 enum memcg_memory_event event) 1128{ 1129 struct mem_cgroup *memcg; 1130 1131 if (mem_cgroup_disabled()) 1132 return; 1133 1134 rcu_read_lock(); 1135 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1136 if (likely(memcg)) 1137 memcg_memory_event(memcg, event); 1138 rcu_read_unlock(); 1139} 1140 1141void split_page_memcg(struct page *head, unsigned int nr); 1142 1143unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1144 gfp_t gfp_mask, 1145 unsigned long *total_scanned); 1146 1147#else /* CONFIG_MEMCG */ 1148 1149#define MEM_CGROUP_ID_SHIFT 0 1150#define MEM_CGROUP_ID_MAX 0 1151 1152static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1153{ 1154 return NULL; 1155} 1156 1157static inline struct mem_cgroup *page_memcg(struct page *page) 1158{ 1159 return NULL; 1160} 1161 1162static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1163{ 1164 WARN_ON_ONCE(!rcu_read_lock_held()); 1165 return NULL; 1166} 1167 1168static inline struct mem_cgroup *page_memcg_check(struct page *page) 1169{ 1170 return NULL; 1171} 1172 1173static inline bool folio_memcg_kmem(struct folio *folio) 1174{ 1175 return false; 1176} 1177 1178static inline bool PageMemcgKmem(struct page *page) 1179{ 1180 return false; 1181} 1182 1183static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1184{ 1185 return true; 1186} 1187 1188static inline bool mem_cgroup_disabled(void) 1189{ 1190 return true; 1191} 1192 1193static inline void memcg_memory_event(struct mem_cgroup *memcg, 1194 enum memcg_memory_event event) 1195{ 1196} 1197 1198static inline void memcg_memory_event_mm(struct mm_struct *mm, 1199 enum memcg_memory_event event) 1200{ 1201} 1202 1203static inline void mem_cgroup_protection(struct mem_cgroup *root, 1204 struct mem_cgroup *memcg, 1205 unsigned long *min, 1206 unsigned long *low) 1207{ 1208 *min = *low = 0; 1209} 1210 1211static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1212 struct mem_cgroup *memcg) 1213{ 1214} 1215 1216static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1217 struct mem_cgroup *memcg) 1218{ 1219 return true; 1220} 1221static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1222 struct mem_cgroup *memcg) 1223{ 1224 return false; 1225} 1226 1227static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1228 struct mem_cgroup *memcg) 1229{ 1230 return false; 1231} 1232 1233static inline int mem_cgroup_charge(struct folio *folio, 1234 struct mm_struct *mm, gfp_t gfp) 1235{ 1236 return 0; 1237} 1238 1239static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1240 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1241{ 1242 return 0; 1243} 1244 1245static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1246{ 1247} 1248 1249static inline void mem_cgroup_uncharge(struct folio *folio) 1250{ 1251} 1252 1253static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1254{ 1255} 1256 1257static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1258{ 1259} 1260 1261static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1262 struct pglist_data *pgdat) 1263{ 1264 return &pgdat->__lruvec; 1265} 1266 1267static inline struct lruvec *folio_lruvec(struct folio *folio) 1268{ 1269 struct pglist_data *pgdat = folio_pgdat(folio); 1270 return &pgdat->__lruvec; 1271} 1272 1273static inline 1274void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1275{ 1276} 1277 1278static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1279{ 1280 return NULL; 1281} 1282 1283static inline bool mm_match_cgroup(struct mm_struct *mm, 1284 struct mem_cgroup *memcg) 1285{ 1286 return true; 1287} 1288 1289static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1290{ 1291 return NULL; 1292} 1293 1294static inline 1295struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1296{ 1297 return NULL; 1298} 1299 1300static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1301{ 1302} 1303 1304static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1305{ 1306} 1307 1308static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1309{ 1310 struct pglist_data *pgdat = folio_pgdat(folio); 1311 1312 spin_lock(&pgdat->__lruvec.lru_lock); 1313 return &pgdat->__lruvec; 1314} 1315 1316static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1317{ 1318 struct pglist_data *pgdat = folio_pgdat(folio); 1319 1320 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1321 return &pgdat->__lruvec; 1322} 1323 1324static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1325 unsigned long *flagsp) 1326{ 1327 struct pglist_data *pgdat = folio_pgdat(folio); 1328 1329 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1330 return &pgdat->__lruvec; 1331} 1332 1333static inline struct mem_cgroup * 1334mem_cgroup_iter(struct mem_cgroup *root, 1335 struct mem_cgroup *prev, 1336 struct mem_cgroup_reclaim_cookie *reclaim) 1337{ 1338 return NULL; 1339} 1340 1341static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1342 struct mem_cgroup *prev) 1343{ 1344} 1345 1346static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1347 int (*fn)(struct task_struct *, void *), void *arg) 1348{ 1349 return 0; 1350} 1351 1352static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1353{ 1354 return 0; 1355} 1356 1357static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1358{ 1359 WARN_ON_ONCE(id); 1360 /* XXX: This should always return root_mem_cgroup */ 1361 return NULL; 1362} 1363 1364#ifdef CONFIG_SHRINKER_DEBUG 1365static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1366{ 1367 return 0; 1368} 1369 1370static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1371{ 1372 return NULL; 1373} 1374#endif 1375 1376static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1377{ 1378 return NULL; 1379} 1380 1381static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1382{ 1383 return NULL; 1384} 1385 1386static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1387{ 1388 return true; 1389} 1390 1391static inline 1392unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1393 enum lru_list lru, int zone_idx) 1394{ 1395 return 0; 1396} 1397 1398static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1399{ 1400 return 0; 1401} 1402 1403static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1404{ 1405 return 0; 1406} 1407 1408static inline void 1409mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1410{ 1411} 1412 1413static inline void 1414mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1415{ 1416} 1417 1418static inline void lock_page_memcg(struct page *page) 1419{ 1420} 1421 1422static inline void unlock_page_memcg(struct page *page) 1423{ 1424} 1425 1426static inline void folio_memcg_lock(struct folio *folio) 1427{ 1428} 1429 1430static inline void folio_memcg_unlock(struct folio *folio) 1431{ 1432} 1433 1434static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1435{ 1436 /* to match folio_memcg_rcu() */ 1437 rcu_read_lock(); 1438 return true; 1439} 1440 1441static inline void mem_cgroup_unlock_pages(void) 1442{ 1443 rcu_read_unlock(); 1444} 1445 1446static inline void mem_cgroup_handle_over_high(void) 1447{ 1448} 1449 1450static inline void mem_cgroup_enter_user_fault(void) 1451{ 1452} 1453 1454static inline void mem_cgroup_exit_user_fault(void) 1455{ 1456} 1457 1458static inline bool task_in_memcg_oom(struct task_struct *p) 1459{ 1460 return false; 1461} 1462 1463static inline bool mem_cgroup_oom_synchronize(bool wait) 1464{ 1465 return false; 1466} 1467 1468static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1469 struct task_struct *victim, struct mem_cgroup *oom_domain) 1470{ 1471 return NULL; 1472} 1473 1474static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1475{ 1476} 1477 1478static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1479 int idx, 1480 int nr) 1481{ 1482} 1483 1484static inline void mod_memcg_state(struct mem_cgroup *memcg, 1485 int idx, 1486 int nr) 1487{ 1488} 1489 1490static inline void mod_memcg_page_state(struct page *page, 1491 int idx, int val) 1492{ 1493} 1494 1495static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1496{ 1497 return 0; 1498} 1499 1500static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1501 enum node_stat_item idx) 1502{ 1503 return node_page_state(lruvec_pgdat(lruvec), idx); 1504} 1505 1506static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1507 enum node_stat_item idx) 1508{ 1509 return node_page_state(lruvec_pgdat(lruvec), idx); 1510} 1511 1512static inline void mem_cgroup_flush_stats(void) 1513{ 1514} 1515 1516static inline void mem_cgroup_flush_stats_delayed(void) 1517{ 1518} 1519 1520static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1521 enum node_stat_item idx, int val) 1522{ 1523} 1524 1525static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1526 int val) 1527{ 1528 struct page *page = virt_to_head_page(p); 1529 1530 __mod_node_page_state(page_pgdat(page), idx, val); 1531} 1532 1533static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1534 int val) 1535{ 1536 struct page *page = virt_to_head_page(p); 1537 1538 mod_node_page_state(page_pgdat(page), idx, val); 1539} 1540 1541static inline void count_memcg_events(struct mem_cgroup *memcg, 1542 enum vm_event_item idx, 1543 unsigned long count) 1544{ 1545} 1546 1547static inline void __count_memcg_events(struct mem_cgroup *memcg, 1548 enum vm_event_item idx, 1549 unsigned long count) 1550{ 1551} 1552 1553static inline void count_memcg_page_event(struct page *page, 1554 int idx) 1555{ 1556} 1557 1558static inline void count_memcg_folio_events(struct folio *folio, 1559 enum vm_event_item idx, unsigned long nr) 1560{ 1561} 1562 1563static inline 1564void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1565{ 1566} 1567 1568static inline void split_page_memcg(struct page *head, unsigned int nr) 1569{ 1570} 1571 1572static inline 1573unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1574 gfp_t gfp_mask, 1575 unsigned long *total_scanned) 1576{ 1577 return 0; 1578} 1579#endif /* CONFIG_MEMCG */ 1580 1581static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1582{ 1583 __mod_lruvec_kmem_state(p, idx, 1); 1584} 1585 1586static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1587{ 1588 __mod_lruvec_kmem_state(p, idx, -1); 1589} 1590 1591static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1592{ 1593 struct mem_cgroup *memcg; 1594 1595 memcg = lruvec_memcg(lruvec); 1596 if (!memcg) 1597 return NULL; 1598 memcg = parent_mem_cgroup(memcg); 1599 if (!memcg) 1600 return NULL; 1601 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1602} 1603 1604static inline void unlock_page_lruvec(struct lruvec *lruvec) 1605{ 1606 spin_unlock(&lruvec->lru_lock); 1607} 1608 1609static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1610{ 1611 spin_unlock_irq(&lruvec->lru_lock); 1612} 1613 1614static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1615 unsigned long flags) 1616{ 1617 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1618} 1619 1620/* Test requires a stable page->memcg binding, see page_memcg() */ 1621static inline bool folio_matches_lruvec(struct folio *folio, 1622 struct lruvec *lruvec) 1623{ 1624 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1625 lruvec_memcg(lruvec) == folio_memcg(folio); 1626} 1627 1628/* Don't lock again iff page's lruvec locked */ 1629static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1630 struct lruvec *locked_lruvec) 1631{ 1632 if (locked_lruvec) { 1633 if (folio_matches_lruvec(folio, locked_lruvec)) 1634 return locked_lruvec; 1635 1636 unlock_page_lruvec_irq(locked_lruvec); 1637 } 1638 1639 return folio_lruvec_lock_irq(folio); 1640} 1641 1642/* Don't lock again iff page's lruvec locked */ 1643static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1644 struct lruvec *locked_lruvec, unsigned long *flags) 1645{ 1646 if (locked_lruvec) { 1647 if (folio_matches_lruvec(folio, locked_lruvec)) 1648 return locked_lruvec; 1649 1650 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1651 } 1652 1653 return folio_lruvec_lock_irqsave(folio, flags); 1654} 1655 1656#ifdef CONFIG_CGROUP_WRITEBACK 1657 1658struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1659void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1660 unsigned long *pheadroom, unsigned long *pdirty, 1661 unsigned long *pwriteback); 1662 1663void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1664 struct bdi_writeback *wb); 1665 1666static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1667 struct bdi_writeback *wb) 1668{ 1669 if (mem_cgroup_disabled()) 1670 return; 1671 1672 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css)) 1673 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1674} 1675 1676void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1677 1678#else /* CONFIG_CGROUP_WRITEBACK */ 1679 1680static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1681{ 1682 return NULL; 1683} 1684 1685static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1686 unsigned long *pfilepages, 1687 unsigned long *pheadroom, 1688 unsigned long *pdirty, 1689 unsigned long *pwriteback) 1690{ 1691} 1692 1693static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1694 struct bdi_writeback *wb) 1695{ 1696} 1697 1698static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1699{ 1700} 1701 1702#endif /* CONFIG_CGROUP_WRITEBACK */ 1703 1704struct sock; 1705bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1706 gfp_t gfp_mask); 1707void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1708#ifdef CONFIG_MEMCG 1709extern struct static_key_false memcg_sockets_enabled_key; 1710#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1711void mem_cgroup_sk_alloc(struct sock *sk); 1712void mem_cgroup_sk_free(struct sock *sk); 1713static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1714{ 1715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1716 return true; 1717 do { 1718 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1719 return true; 1720 } while ((memcg = parent_mem_cgroup(memcg))); 1721 return false; 1722} 1723 1724int alloc_shrinker_info(struct mem_cgroup *memcg); 1725void free_shrinker_info(struct mem_cgroup *memcg); 1726void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1727void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1728#else 1729#define mem_cgroup_sockets_enabled 0 1730static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1731static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1732static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1733{ 1734 return false; 1735} 1736 1737static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1738 int nid, int shrinker_id) 1739{ 1740} 1741#endif 1742 1743#ifdef CONFIG_MEMCG_KMEM 1744bool mem_cgroup_kmem_disabled(void); 1745int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1746void __memcg_kmem_uncharge_page(struct page *page, int order); 1747 1748struct obj_cgroup *get_obj_cgroup_from_current(void); 1749struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1750 1751int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1752void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1753 1754extern struct static_key_false memcg_kmem_enabled_key; 1755 1756static inline bool memcg_kmem_enabled(void) 1757{ 1758 return static_branch_likely(&memcg_kmem_enabled_key); 1759} 1760 1761static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1762 int order) 1763{ 1764 if (memcg_kmem_enabled()) 1765 return __memcg_kmem_charge_page(page, gfp, order); 1766 return 0; 1767} 1768 1769static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1770{ 1771 if (memcg_kmem_enabled()) 1772 __memcg_kmem_uncharge_page(page, order); 1773} 1774 1775/* 1776 * A helper for accessing memcg's kmem_id, used for getting 1777 * corresponding LRU lists. 1778 */ 1779static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1780{ 1781 return memcg ? memcg->kmemcg_id : -1; 1782} 1783 1784struct mem_cgroup *mem_cgroup_from_obj(void *p); 1785struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1786 1787static inline void count_objcg_event(struct obj_cgroup *objcg, 1788 enum vm_event_item idx) 1789{ 1790 struct mem_cgroup *memcg; 1791 1792 if (!memcg_kmem_enabled()) 1793 return; 1794 1795 rcu_read_lock(); 1796 memcg = obj_cgroup_memcg(objcg); 1797 count_memcg_events(memcg, idx, 1); 1798 rcu_read_unlock(); 1799} 1800 1801#else 1802static inline bool mem_cgroup_kmem_disabled(void) 1803{ 1804 return true; 1805} 1806 1807static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1808 int order) 1809{ 1810 return 0; 1811} 1812 1813static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1814{ 1815} 1816 1817static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1818 int order) 1819{ 1820 return 0; 1821} 1822 1823static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1824{ 1825} 1826 1827static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1828{ 1829 return NULL; 1830} 1831 1832static inline bool memcg_kmem_enabled(void) 1833{ 1834 return false; 1835} 1836 1837static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1838{ 1839 return -1; 1840} 1841 1842static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1843{ 1844 return NULL; 1845} 1846 1847static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1848{ 1849 return NULL; 1850} 1851 1852static inline void count_objcg_event(struct obj_cgroup *objcg, 1853 enum vm_event_item idx) 1854{ 1855} 1856 1857#endif /* CONFIG_MEMCG_KMEM */ 1858 1859#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1860bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1861void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1862void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1863#else 1864static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1865{ 1866 return true; 1867} 1868static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1869 size_t size) 1870{ 1871} 1872static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1873 size_t size) 1874{ 1875} 1876#endif 1877 1878#endif /* _LINUX_MEMCONTROL_H */