Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/dma-mapping.h>
12#include <linux/dma-map-ops.h>
13#include <linux/genalloc.h>
14#include <linux/highmem.h>
15#include <linux/vmalloc.h>
16#ifdef CONFIG_X86
17#include <asm/set_memory.h>
18#endif
19#include <sound/memalloc.h>
20#include "memalloc_local.h"
21
22#define DEFAULT_GFP \
23 (GFP_KERNEL | \
24 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
25 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
26
27static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
28
29#ifdef CONFIG_SND_DMA_SGBUF
30static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
31#endif
32
33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
34{
35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
36
37 if (WARN_ON_ONCE(!ops || !ops->alloc))
38 return NULL;
39 return ops->alloc(dmab, size);
40}
41
42/**
43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
44 * type and direction
45 * @type: the DMA buffer type
46 * @device: the device pointer
47 * @dir: DMA direction
48 * @size: the buffer size to allocate
49 * @dmab: buffer allocation record to store the allocated data
50 *
51 * Calls the memory-allocator function for the corresponding
52 * buffer type.
53 *
54 * Return: Zero if the buffer with the given size is allocated successfully,
55 * otherwise a negative value on error.
56 */
57int snd_dma_alloc_dir_pages(int type, struct device *device,
58 enum dma_data_direction dir, size_t size,
59 struct snd_dma_buffer *dmab)
60{
61 if (WARN_ON(!size))
62 return -ENXIO;
63 if (WARN_ON(!dmab))
64 return -ENXIO;
65
66 size = PAGE_ALIGN(size);
67 dmab->dev.type = type;
68 dmab->dev.dev = device;
69 dmab->dev.dir = dir;
70 dmab->bytes = 0;
71 dmab->addr = 0;
72 dmab->private_data = NULL;
73 dmab->area = __snd_dma_alloc_pages(dmab, size);
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78}
79EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
80
81/**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98{
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/* called by devres */
131static void __snd_release_pages(struct device *dev, void *res)
132{
133 snd_dma_free_pages(res);
134}
135
136/**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * Return: the snd_dma_buffer object at success, or NULL if failed
151 */
152struct snd_dma_buffer *
153snd_devm_alloc_dir_pages(struct device *dev, int type,
154 enum dma_data_direction dir, size_t size)
155{
156 struct snd_dma_buffer *dmab;
157 int err;
158
159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160 type == SNDRV_DMA_TYPE_VMALLOC))
161 return NULL;
162
163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164 if (!dmab)
165 return NULL;
166
167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168 if (err < 0) {
169 devres_free(dmab);
170 return NULL;
171 }
172
173 devres_add(dev, dmab);
174 return dmab;
175}
176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178/**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 *
183 * Return: zero if successful, or a negative error code
184 */
185int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
186 struct vm_area_struct *area)
187{
188 const struct snd_malloc_ops *ops;
189
190 if (!dmab)
191 return -ENOENT;
192 ops = snd_dma_get_ops(dmab);
193 if (ops && ops->mmap)
194 return ops->mmap(dmab, area);
195 else
196 return -ENOENT;
197}
198EXPORT_SYMBOL(snd_dma_buffer_mmap);
199
200#ifdef CONFIG_HAS_DMA
201/**
202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
203 * @dmab: buffer allocation information
204 * @mode: sync mode
205 */
206void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
207 enum snd_dma_sync_mode mode)
208{
209 const struct snd_malloc_ops *ops;
210
211 if (!dmab || !dmab->dev.need_sync)
212 return;
213 ops = snd_dma_get_ops(dmab);
214 if (ops && ops->sync)
215 ops->sync(dmab, mode);
216}
217EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
218#endif /* CONFIG_HAS_DMA */
219
220/**
221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
222 * @dmab: buffer allocation information
223 * @offset: offset in the ring buffer
224 *
225 * Return: the physical address
226 */
227dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
228{
229 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
230
231 if (ops && ops->get_addr)
232 return ops->get_addr(dmab, offset);
233 else
234 return dmab->addr + offset;
235}
236EXPORT_SYMBOL(snd_sgbuf_get_addr);
237
238/**
239 * snd_sgbuf_get_page - return the physical page at the corresponding offset
240 * @dmab: buffer allocation information
241 * @offset: offset in the ring buffer
242 *
243 * Return: the page pointer
244 */
245struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
246{
247 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
248
249 if (ops && ops->get_page)
250 return ops->get_page(dmab, offset);
251 else
252 return virt_to_page(dmab->area + offset);
253}
254EXPORT_SYMBOL(snd_sgbuf_get_page);
255
256/**
257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
258 * on sg-buffer
259 * @dmab: buffer allocation information
260 * @ofs: offset in the ring buffer
261 * @size: the requested size
262 *
263 * Return: the chunk size
264 */
265unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
266 unsigned int ofs, unsigned int size)
267{
268 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
269
270 if (ops && ops->get_chunk_size)
271 return ops->get_chunk_size(dmab, ofs, size);
272 else
273 return size;
274}
275EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
276
277/*
278 * Continuous pages allocator
279 */
280static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
281 bool wc)
282{
283 void *p;
284 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
285
286 again:
287 p = alloc_pages_exact(size, gfp);
288 if (!p)
289 return NULL;
290 *addr = page_to_phys(virt_to_page(p));
291 if (!dev)
292 return p;
293 if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
294 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
295 gfp |= GFP_DMA32;
296 goto again;
297 }
298 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
299 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
300 goto again;
301 }
302 }
303#ifdef CONFIG_X86
304 if (wc)
305 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
306#endif
307 return p;
308}
309
310static void do_free_pages(void *p, size_t size, bool wc)
311{
312#ifdef CONFIG_X86
313 if (wc)
314 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
315#endif
316 free_pages_exact(p, size);
317}
318
319
320static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
321{
322 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
323}
324
325static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
326{
327 do_free_pages(dmab->area, dmab->bytes, false);
328}
329
330static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
331 struct vm_area_struct *area)
332{
333 return remap_pfn_range(area, area->vm_start,
334 dmab->addr >> PAGE_SHIFT,
335 area->vm_end - area->vm_start,
336 area->vm_page_prot);
337}
338
339static const struct snd_malloc_ops snd_dma_continuous_ops = {
340 .alloc = snd_dma_continuous_alloc,
341 .free = snd_dma_continuous_free,
342 .mmap = snd_dma_continuous_mmap,
343};
344
345/*
346 * VMALLOC allocator
347 */
348static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
349{
350 return vmalloc(size);
351}
352
353static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
354{
355 vfree(dmab->area);
356}
357
358static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
359 struct vm_area_struct *area)
360{
361 return remap_vmalloc_range(area, dmab->area, 0);
362}
363
364#define get_vmalloc_page_addr(dmab, offset) \
365 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
366
367static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
368 size_t offset)
369{
370 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
371}
372
373static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
374 size_t offset)
375{
376 return vmalloc_to_page(dmab->area + offset);
377}
378
379static unsigned int
380snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
381 unsigned int ofs, unsigned int size)
382{
383 unsigned int start, end;
384 unsigned long addr;
385
386 start = ALIGN_DOWN(ofs, PAGE_SIZE);
387 end = ofs + size - 1; /* the last byte address */
388 /* check page continuity */
389 addr = get_vmalloc_page_addr(dmab, start);
390 for (;;) {
391 start += PAGE_SIZE;
392 if (start > end)
393 break;
394 addr += PAGE_SIZE;
395 if (get_vmalloc_page_addr(dmab, start) != addr)
396 return start - ofs;
397 }
398 /* ok, all on continuous pages */
399 return size;
400}
401
402static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
403 .alloc = snd_dma_vmalloc_alloc,
404 .free = snd_dma_vmalloc_free,
405 .mmap = snd_dma_vmalloc_mmap,
406 .get_addr = snd_dma_vmalloc_get_addr,
407 .get_page = snd_dma_vmalloc_get_page,
408 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
409};
410
411#ifdef CONFIG_HAS_DMA
412/*
413 * IRAM allocator
414 */
415#ifdef CONFIG_GENERIC_ALLOCATOR
416static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
417{
418 struct device *dev = dmab->dev.dev;
419 struct gen_pool *pool;
420 void *p;
421
422 if (dev->of_node) {
423 pool = of_gen_pool_get(dev->of_node, "iram", 0);
424 /* Assign the pool into private_data field */
425 dmab->private_data = pool;
426
427 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
428 if (p)
429 return p;
430 }
431
432 /* Internal memory might have limited size and no enough space,
433 * so if we fail to malloc, try to fetch memory traditionally.
434 */
435 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
436 return __snd_dma_alloc_pages(dmab, size);
437}
438
439static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
440{
441 struct gen_pool *pool = dmab->private_data;
442
443 if (pool && dmab->area)
444 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
445}
446
447static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
448 struct vm_area_struct *area)
449{
450 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
451 return remap_pfn_range(area, area->vm_start,
452 dmab->addr >> PAGE_SHIFT,
453 area->vm_end - area->vm_start,
454 area->vm_page_prot);
455}
456
457static const struct snd_malloc_ops snd_dma_iram_ops = {
458 .alloc = snd_dma_iram_alloc,
459 .free = snd_dma_iram_free,
460 .mmap = snd_dma_iram_mmap,
461};
462#endif /* CONFIG_GENERIC_ALLOCATOR */
463
464/*
465 * Coherent device pages allocator
466 */
467static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
468{
469 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
470}
471
472static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
473{
474 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
475}
476
477static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
478 struct vm_area_struct *area)
479{
480 return dma_mmap_coherent(dmab->dev.dev, area,
481 dmab->area, dmab->addr, dmab->bytes);
482}
483
484static const struct snd_malloc_ops snd_dma_dev_ops = {
485 .alloc = snd_dma_dev_alloc,
486 .free = snd_dma_dev_free,
487 .mmap = snd_dma_dev_mmap,
488};
489
490/*
491 * Write-combined pages
492 */
493/* x86-specific allocations */
494#ifdef CONFIG_SND_DMA_SGBUF
495static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
496{
497 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
498}
499
500static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
501{
502 do_free_pages(dmab->area, dmab->bytes, true);
503}
504
505static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
506 struct vm_area_struct *area)
507{
508 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
509 return snd_dma_continuous_mmap(dmab, area);
510}
511#else
512static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
513{
514 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
515}
516
517static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
518{
519 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
520}
521
522static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523 struct vm_area_struct *area)
524{
525 return dma_mmap_wc(dmab->dev.dev, area,
526 dmab->area, dmab->addr, dmab->bytes);
527}
528#endif /* CONFIG_SND_DMA_SGBUF */
529
530static const struct snd_malloc_ops snd_dma_wc_ops = {
531 .alloc = snd_dma_wc_alloc,
532 .free = snd_dma_wc_free,
533 .mmap = snd_dma_wc_mmap,
534};
535
536/*
537 * Non-contiguous pages allocator
538 */
539static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
540{
541 struct sg_table *sgt;
542 void *p;
543
544 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
545 DEFAULT_GFP, 0);
546#ifdef CONFIG_SND_DMA_SGBUF
547 if (!sgt && !get_dma_ops(dmab->dev.dev)) {
548 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
549 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
550 else
551 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
552 return snd_dma_sg_fallback_alloc(dmab, size);
553 }
554#endif
555 if (!sgt)
556 return NULL;
557
558 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
559 sg_dma_address(sgt->sgl));
560 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
561 if (p) {
562 dmab->private_data = sgt;
563 /* store the first page address for convenience */
564 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
565 } else {
566 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
567 }
568 return p;
569}
570
571static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
572{
573 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
574 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
575 dmab->dev.dir);
576}
577
578static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
579 struct vm_area_struct *area)
580{
581 return dma_mmap_noncontiguous(dmab->dev.dev, area,
582 dmab->bytes, dmab->private_data);
583}
584
585static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
586 enum snd_dma_sync_mode mode)
587{
588 if (mode == SNDRV_DMA_SYNC_CPU) {
589 if (dmab->dev.dir == DMA_TO_DEVICE)
590 return;
591 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
592 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
593 dmab->dev.dir);
594 } else {
595 if (dmab->dev.dir == DMA_FROM_DEVICE)
596 return;
597 flush_kernel_vmap_range(dmab->area, dmab->bytes);
598 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
599 dmab->dev.dir);
600 }
601}
602
603static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
604 struct sg_page_iter *piter,
605 size_t offset)
606{
607 struct sg_table *sgt = dmab->private_data;
608
609 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
610 offset >> PAGE_SHIFT);
611}
612
613static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
614 size_t offset)
615{
616 struct sg_dma_page_iter iter;
617
618 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
619 __sg_page_iter_dma_next(&iter);
620 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
621}
622
623static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
624 size_t offset)
625{
626 struct sg_page_iter iter;
627
628 snd_dma_noncontig_iter_set(dmab, &iter, offset);
629 __sg_page_iter_next(&iter);
630 return sg_page_iter_page(&iter);
631}
632
633static unsigned int
634snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
635 unsigned int ofs, unsigned int size)
636{
637 struct sg_dma_page_iter iter;
638 unsigned int start, end;
639 unsigned long addr;
640
641 start = ALIGN_DOWN(ofs, PAGE_SIZE);
642 end = ofs + size - 1; /* the last byte address */
643 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
644 if (!__sg_page_iter_dma_next(&iter))
645 return 0;
646 /* check page continuity */
647 addr = sg_page_iter_dma_address(&iter);
648 for (;;) {
649 start += PAGE_SIZE;
650 if (start > end)
651 break;
652 addr += PAGE_SIZE;
653 if (!__sg_page_iter_dma_next(&iter) ||
654 sg_page_iter_dma_address(&iter) != addr)
655 return start - ofs;
656 }
657 /* ok, all on continuous pages */
658 return size;
659}
660
661static const struct snd_malloc_ops snd_dma_noncontig_ops = {
662 .alloc = snd_dma_noncontig_alloc,
663 .free = snd_dma_noncontig_free,
664 .mmap = snd_dma_noncontig_mmap,
665 .sync = snd_dma_noncontig_sync,
666 .get_addr = snd_dma_noncontig_get_addr,
667 .get_page = snd_dma_noncontig_get_page,
668 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
669};
670
671/* x86-specific SG-buffer with WC pages */
672#ifdef CONFIG_SND_DMA_SGBUF
673#define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
674
675static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
676{
677 void *p = snd_dma_noncontig_alloc(dmab, size);
678 struct sg_table *sgt = dmab->private_data;
679 struct sg_page_iter iter;
680
681 if (!p)
682 return NULL;
683 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
684 return p;
685 for_each_sgtable_page(sgt, &iter, 0)
686 set_memory_wc(sg_wc_address(&iter), 1);
687 return p;
688}
689
690static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
691{
692 struct sg_table *sgt = dmab->private_data;
693 struct sg_page_iter iter;
694
695 for_each_sgtable_page(sgt, &iter, 0)
696 set_memory_wb(sg_wc_address(&iter), 1);
697 snd_dma_noncontig_free(dmab);
698}
699
700static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
701 struct vm_area_struct *area)
702{
703 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
704 return dma_mmap_noncontiguous(dmab->dev.dev, area,
705 dmab->bytes, dmab->private_data);
706}
707
708static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
709 .alloc = snd_dma_sg_wc_alloc,
710 .free = snd_dma_sg_wc_free,
711 .mmap = snd_dma_sg_wc_mmap,
712 .sync = snd_dma_noncontig_sync,
713 .get_addr = snd_dma_noncontig_get_addr,
714 .get_page = snd_dma_noncontig_get_page,
715 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
716};
717
718/* Fallback SG-buffer allocations for x86 */
719struct snd_dma_sg_fallback {
720 size_t count;
721 struct page **pages;
722};
723
724static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
725 struct snd_dma_sg_fallback *sgbuf)
726{
727 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
728 size_t i;
729
730 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++)
731 do_free_pages(page_address(sgbuf->pages[i]), PAGE_SIZE, wc);
732 kvfree(sgbuf->pages);
733 kfree(sgbuf);
734}
735
736static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
737{
738 struct snd_dma_sg_fallback *sgbuf;
739 struct page **pagep, *curp;
740 size_t chunk, npages;
741 dma_addr_t addr;
742 void *p;
743 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
744
745 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
746 if (!sgbuf)
747 return NULL;
748 size = PAGE_ALIGN(size);
749 sgbuf->count = size >> PAGE_SHIFT;
750 sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
751 if (!sgbuf->pages)
752 goto error;
753
754 pagep = sgbuf->pages;
755 chunk = size;
756 while (size > 0) {
757 chunk = min(size, chunk);
758 p = do_alloc_pages(dmab->dev.dev, chunk, &addr, wc);
759 if (!p) {
760 if (chunk <= PAGE_SIZE)
761 goto error;
762 chunk >>= 1;
763 chunk = PAGE_SIZE << get_order(chunk);
764 continue;
765 }
766
767 size -= chunk;
768 /* fill pages */
769 npages = chunk >> PAGE_SHIFT;
770 curp = virt_to_page(p);
771 while (npages--)
772 *pagep++ = curp++;
773 }
774
775 p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
776 if (!p)
777 goto error;
778 dmab->private_data = sgbuf;
779 /* store the first page address for convenience */
780 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
781 return p;
782
783 error:
784 __snd_dma_sg_fallback_free(dmab, sgbuf);
785 return NULL;
786}
787
788static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
789{
790 vunmap(dmab->area);
791 __snd_dma_sg_fallback_free(dmab, dmab->private_data);
792}
793
794static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
795 struct vm_area_struct *area)
796{
797 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
798
799 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
800 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
801 return vm_map_pages(area, sgbuf->pages, sgbuf->count);
802}
803
804static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
805 .alloc = snd_dma_sg_fallback_alloc,
806 .free = snd_dma_sg_fallback_free,
807 .mmap = snd_dma_sg_fallback_mmap,
808 /* reuse vmalloc helpers */
809 .get_addr = snd_dma_vmalloc_get_addr,
810 .get_page = snd_dma_vmalloc_get_page,
811 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
812};
813#endif /* CONFIG_SND_DMA_SGBUF */
814
815/*
816 * Non-coherent pages allocator
817 */
818static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
819{
820 void *p;
821
822 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
823 dmab->dev.dir, DEFAULT_GFP);
824 if (p)
825 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
826 return p;
827}
828
829static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
830{
831 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
832 dmab->addr, dmab->dev.dir);
833}
834
835static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
836 struct vm_area_struct *area)
837{
838 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
839 return dma_mmap_pages(dmab->dev.dev, area,
840 area->vm_end - area->vm_start,
841 virt_to_page(dmab->area));
842}
843
844static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
845 enum snd_dma_sync_mode mode)
846{
847 if (mode == SNDRV_DMA_SYNC_CPU) {
848 if (dmab->dev.dir != DMA_TO_DEVICE)
849 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
850 dmab->bytes, dmab->dev.dir);
851 } else {
852 if (dmab->dev.dir != DMA_FROM_DEVICE)
853 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
854 dmab->bytes, dmab->dev.dir);
855 }
856}
857
858static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
859 .alloc = snd_dma_noncoherent_alloc,
860 .free = snd_dma_noncoherent_free,
861 .mmap = snd_dma_noncoherent_mmap,
862 .sync = snd_dma_noncoherent_sync,
863};
864
865#endif /* CONFIG_HAS_DMA */
866
867/*
868 * Entry points
869 */
870static const struct snd_malloc_ops *snd_dma_ops[] = {
871 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
872 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
873#ifdef CONFIG_HAS_DMA
874 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
875 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
876 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
877 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
878#ifdef CONFIG_SND_DMA_SGBUF
879 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
880#endif
881#ifdef CONFIG_GENERIC_ALLOCATOR
882 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
883#endif /* CONFIG_GENERIC_ALLOCATOR */
884#ifdef CONFIG_SND_DMA_SGBUF
885 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
886 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
887#endif
888#endif /* CONFIG_HAS_DMA */
889};
890
891static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
892{
893 if (WARN_ON_ONCE(!dmab))
894 return NULL;
895 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
896 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
897 return NULL;
898 return snd_dma_ops[dmab->dev.type];
899}