Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strscpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 down_write(&devnet_rename_sem);
1167
1168 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 up_write(&devnet_rename_sem);
1170 return 0;
1171 }
1172
1173 memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175 err = dev_get_valid_name(net, dev, newname);
1176 if (err < 0) {
1177 up_write(&devnet_rename_sem);
1178 return err;
1179 }
1180
1181 if (oldname[0] && !strchr(oldname, '%'))
1182 netdev_info(dev, "renamed from %s%s\n", oldname,
1183 dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185 old_assign_type = dev->name_assign_type;
1186 dev->name_assign_type = NET_NAME_RENAMED;
1187
1188rollback:
1189 ret = device_rename(&dev->dev, dev->name);
1190 if (ret) {
1191 memcpy(dev->name, oldname, IFNAMSIZ);
1192 dev->name_assign_type = old_assign_type;
1193 up_write(&devnet_rename_sem);
1194 return ret;
1195 }
1196
1197 up_write(&devnet_rename_sem);
1198
1199 netdev_adjacent_rename_links(dev, oldname);
1200
1201 write_lock(&dev_base_lock);
1202 netdev_name_node_del(dev->name_node);
1203 write_unlock(&dev_base_lock);
1204
1205 synchronize_rcu();
1206
1207 write_lock(&dev_base_lock);
1208 netdev_name_node_add(net, dev->name_node);
1209 write_unlock(&dev_base_lock);
1210
1211 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 ret = notifier_to_errno(ret);
1213
1214 if (ret) {
1215 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216 if (err >= 0) {
1217 err = ret;
1218 down_write(&devnet_rename_sem);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 memcpy(oldname, newname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 old_assign_type = NET_NAME_RENAMED;
1223 goto rollback;
1224 } else {
1225 netdev_err(dev, "name change rollback failed: %d\n",
1226 ret);
1227 }
1228 }
1229
1230 return err;
1231}
1232
1233/**
1234 * dev_set_alias - change ifalias of a device
1235 * @dev: device
1236 * @alias: name up to IFALIASZ
1237 * @len: limit of bytes to copy from info
1238 *
1239 * Set ifalias for a device,
1240 */
1241int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242{
1243 struct dev_ifalias *new_alias = NULL;
1244
1245 if (len >= IFALIASZ)
1246 return -EINVAL;
1247
1248 if (len) {
1249 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 if (!new_alias)
1251 return -ENOMEM;
1252
1253 memcpy(new_alias->ifalias, alias, len);
1254 new_alias->ifalias[len] = 0;
1255 }
1256
1257 mutex_lock(&ifalias_mutex);
1258 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 mutex_is_locked(&ifalias_mutex));
1260 mutex_unlock(&ifalias_mutex);
1261
1262 if (new_alias)
1263 kfree_rcu(new_alias, rcuhead);
1264
1265 return len;
1266}
1267EXPORT_SYMBOL(dev_set_alias);
1268
1269/**
1270 * dev_get_alias - get ifalias of a device
1271 * @dev: device
1272 * @name: buffer to store name of ifalias
1273 * @len: size of buffer
1274 *
1275 * get ifalias for a device. Caller must make sure dev cannot go
1276 * away, e.g. rcu read lock or own a reference count to device.
1277 */
1278int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279{
1280 const struct dev_ifalias *alias;
1281 int ret = 0;
1282
1283 rcu_read_lock();
1284 alias = rcu_dereference(dev->ifalias);
1285 if (alias)
1286 ret = snprintf(name, len, "%s", alias->ifalias);
1287 rcu_read_unlock();
1288
1289 return ret;
1290}
1291
1292/**
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info = {
1316 .info.dev = dev,
1317 };
1318
1319 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 &change_info.info);
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 }
1323}
1324EXPORT_SYMBOL(netdev_state_change);
1325
1326/**
1327 * __netdev_notify_peers - notify network peers about existence of @dev,
1328 * to be called when rtnl lock is already held.
1329 * @dev: network device
1330 *
1331 * Generate traffic such that interested network peers are aware of
1332 * @dev, such as by generating a gratuitous ARP. This may be used when
1333 * a device wants to inform the rest of the network about some sort of
1334 * reconfiguration such as a failover event or virtual machine
1335 * migration.
1336 */
1337void __netdev_notify_peers(struct net_device *dev)
1338{
1339 ASSERT_RTNL();
1340 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342}
1343EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 __netdev_notify_peers(dev);
1359 rtnl_unlock();
1360}
1361EXPORT_SYMBOL(netdev_notify_peers);
1362
1363static int napi_threaded_poll(void *data);
1364
1365static int napi_kthread_create(struct napi_struct *n)
1366{
1367 int err = 0;
1368
1369 /* Create and wake up the kthread once to put it in
1370 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 * warning and work with loadavg.
1372 */
1373 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 n->dev->name, n->napi_id);
1375 if (IS_ERR(n->thread)) {
1376 err = PTR_ERR(n->thread);
1377 pr_err("kthread_run failed with err %d\n", err);
1378 n->thread = NULL;
1379 }
1380
1381 return err;
1382}
1383
1384static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385{
1386 const struct net_device_ops *ops = dev->netdev_ops;
1387 int ret;
1388
1389 ASSERT_RTNL();
1390 dev_addr_check(dev);
1391
1392 if (!netif_device_present(dev)) {
1393 /* may be detached because parent is runtime-suspended */
1394 if (dev->dev.parent)
1395 pm_runtime_resume(dev->dev.parent);
1396 if (!netif_device_present(dev))
1397 return -ENODEV;
1398 }
1399
1400 /* Block netpoll from trying to do any rx path servicing.
1401 * If we don't do this there is a chance ndo_poll_controller
1402 * or ndo_poll may be running while we open the device
1403 */
1404 netpoll_poll_disable(dev);
1405
1406 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 ret = notifier_to_errno(ret);
1408 if (ret)
1409 return ret;
1410
1411 set_bit(__LINK_STATE_START, &dev->state);
1412
1413 if (ops->ndo_validate_addr)
1414 ret = ops->ndo_validate_addr(dev);
1415
1416 if (!ret && ops->ndo_open)
1417 ret = ops->ndo_open(dev);
1418
1419 netpoll_poll_enable(dev);
1420
1421 if (ret)
1422 clear_bit(__LINK_STATE_START, &dev->state);
1423 else {
1424 dev->flags |= IFF_UP;
1425 dev_set_rx_mode(dev);
1426 dev_activate(dev);
1427 add_device_randomness(dev->dev_addr, dev->addr_len);
1428 }
1429
1430 return ret;
1431}
1432
1433/**
1434 * dev_open - prepare an interface for use.
1435 * @dev: device to open
1436 * @extack: netlink extended ack
1437 *
1438 * Takes a device from down to up state. The device's private open
1439 * function is invoked and then the multicast lists are loaded. Finally
1440 * the device is moved into the up state and a %NETDEV_UP message is
1441 * sent to the netdev notifier chain.
1442 *
1443 * Calling this function on an active interface is a nop. On a failure
1444 * a negative errno code is returned.
1445 */
1446int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447{
1448 int ret;
1449
1450 if (dev->flags & IFF_UP)
1451 return 0;
1452
1453 ret = __dev_open(dev, extack);
1454 if (ret < 0)
1455 return ret;
1456
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460 return ret;
1461}
1462EXPORT_SYMBOL(dev_open);
1463
1464static void __dev_close_many(struct list_head *head)
1465{
1466 struct net_device *dev;
1467
1468 ASSERT_RTNL();
1469 might_sleep();
1470
1471 list_for_each_entry(dev, head, close_list) {
1472 /* Temporarily disable netpoll until the interface is down */
1473 netpoll_poll_disable(dev);
1474
1475 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480 * can be even on different cpu. So just clear netif_running().
1481 *
1482 * dev->stop() will invoke napi_disable() on all of it's
1483 * napi_struct instances on this device.
1484 */
1485 smp_mb__after_atomic(); /* Commit netif_running(). */
1486 }
1487
1488 dev_deactivate_many(head);
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493 /*
1494 * Call the device specific close. This cannot fail.
1495 * Only if device is UP
1496 *
1497 * We allow it to be called even after a DETACH hot-plug
1498 * event.
1499 */
1500 if (ops->ndo_stop)
1501 ops->ndo_stop(dev);
1502
1503 dev->flags &= ~IFF_UP;
1504 netpoll_poll_enable(dev);
1505 }
1506}
1507
1508static void __dev_close(struct net_device *dev)
1509{
1510 LIST_HEAD(single);
1511
1512 list_add(&dev->close_list, &single);
1513 __dev_close_many(&single);
1514 list_del(&single);
1515}
1516
1517void dev_close_many(struct list_head *head, bool unlink)
1518{
1519 struct net_device *dev, *tmp;
1520
1521 /* Remove the devices that don't need to be closed */
1522 list_for_each_entry_safe(dev, tmp, head, close_list)
1523 if (!(dev->flags & IFF_UP))
1524 list_del_init(&dev->close_list);
1525
1526 __dev_close_many(head);
1527
1528 list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 if (unlink)
1532 list_del_init(&dev->close_list);
1533 }
1534}
1535EXPORT_SYMBOL(dev_close_many);
1536
1537/**
1538 * dev_close - shutdown an interface.
1539 * @dev: device to shutdown
1540 *
1541 * This function moves an active device into down state. A
1542 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544 * chain.
1545 */
1546void dev_close(struct net_device *dev)
1547{
1548 if (dev->flags & IFF_UP) {
1549 LIST_HEAD(single);
1550
1551 list_add(&dev->close_list, &single);
1552 dev_close_many(&single, true);
1553 list_del(&single);
1554 }
1555}
1556EXPORT_SYMBOL(dev_close);
1557
1558
1559/**
1560 * dev_disable_lro - disable Large Receive Offload on a device
1561 * @dev: device
1562 *
1563 * Disable Large Receive Offload (LRO) on a net device. Must be
1564 * called under RTNL. This is needed if received packets may be
1565 * forwarded to another interface.
1566 */
1567void dev_disable_lro(struct net_device *dev)
1568{
1569 struct net_device *lower_dev;
1570 struct list_head *iter;
1571
1572 dev->wanted_features &= ~NETIF_F_LRO;
1573 netdev_update_features(dev);
1574
1575 if (unlikely(dev->features & NETIF_F_LRO))
1576 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578 netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 dev_disable_lro(lower_dev);
1580}
1581EXPORT_SYMBOL(dev_disable_lro);
1582
1583/**
1584 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585 * @dev: device
1586 *
1587 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1588 * called under RTNL. This is needed if Generic XDP is installed on
1589 * the device.
1590 */
1591static void dev_disable_gro_hw(struct net_device *dev)
1592{
1593 dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 netdev_update_features(dev);
1595
1596 if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598}
1599
1600const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601{
1602#define N(val) \
1603 case NETDEV_##val: \
1604 return "NETDEV_" __stringify(val);
1605 switch (cmd) {
1606 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 }
1618#undef N
1619 return "UNKNOWN_NETDEV_EVENT";
1620}
1621EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1622
1623static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624 struct net_device *dev)
1625{
1626 struct netdev_notifier_info info = {
1627 .dev = dev,
1628 };
1629
1630 return nb->notifier_call(nb, val, &info);
1631}
1632
1633static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634 struct net_device *dev)
1635{
1636 int err;
1637
1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 err = notifier_to_errno(err);
1640 if (err)
1641 return err;
1642
1643 if (!(dev->flags & IFF_UP))
1644 return 0;
1645
1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 return 0;
1648}
1649
1650static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651 struct net_device *dev)
1652{
1653 if (dev->flags & IFF_UP) {
1654 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1655 dev);
1656 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1657 }
1658 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659}
1660
1661static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1662 struct net *net)
1663{
1664 struct net_device *dev;
1665 int err;
1666
1667 for_each_netdev(net, dev) {
1668 err = call_netdevice_register_notifiers(nb, dev);
1669 if (err)
1670 goto rollback;
1671 }
1672 return 0;
1673
1674rollback:
1675 for_each_netdev_continue_reverse(net, dev)
1676 call_netdevice_unregister_notifiers(nb, dev);
1677 return err;
1678}
1679
1680static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1681 struct net *net)
1682{
1683 struct net_device *dev;
1684
1685 for_each_netdev(net, dev)
1686 call_netdevice_unregister_notifiers(nb, dev);
1687}
1688
1689static int dev_boot_phase = 1;
1690
1691/**
1692 * register_netdevice_notifier - register a network notifier block
1693 * @nb: notifier
1694 *
1695 * Register a notifier to be called when network device events occur.
1696 * The notifier passed is linked into the kernel structures and must
1697 * not be reused until it has been unregistered. A negative errno code
1698 * is returned on a failure.
1699 *
1700 * When registered all registration and up events are replayed
1701 * to the new notifier to allow device to have a race free
1702 * view of the network device list.
1703 */
1704
1705int register_netdevice_notifier(struct notifier_block *nb)
1706{
1707 struct net *net;
1708 int err;
1709
1710 /* Close race with setup_net() and cleanup_net() */
1711 down_write(&pernet_ops_rwsem);
1712 rtnl_lock();
1713 err = raw_notifier_chain_register(&netdev_chain, nb);
1714 if (err)
1715 goto unlock;
1716 if (dev_boot_phase)
1717 goto unlock;
1718 for_each_net(net) {
1719 err = call_netdevice_register_net_notifiers(nb, net);
1720 if (err)
1721 goto rollback;
1722 }
1723
1724unlock:
1725 rtnl_unlock();
1726 up_write(&pernet_ops_rwsem);
1727 return err;
1728
1729rollback:
1730 for_each_net_continue_reverse(net)
1731 call_netdevice_unregister_net_notifiers(nb, net);
1732
1733 raw_notifier_chain_unregister(&netdev_chain, nb);
1734 goto unlock;
1735}
1736EXPORT_SYMBOL(register_netdevice_notifier);
1737
1738/**
1739 * unregister_netdevice_notifier - unregister a network notifier block
1740 * @nb: notifier
1741 *
1742 * Unregister a notifier previously registered by
1743 * register_netdevice_notifier(). The notifier is unlinked into the
1744 * kernel structures and may then be reused. A negative errno code
1745 * is returned on a failure.
1746 *
1747 * After unregistering unregister and down device events are synthesized
1748 * for all devices on the device list to the removed notifier to remove
1749 * the need for special case cleanup code.
1750 */
1751
1752int unregister_netdevice_notifier(struct notifier_block *nb)
1753{
1754 struct net *net;
1755 int err;
1756
1757 /* Close race with setup_net() and cleanup_net() */
1758 down_write(&pernet_ops_rwsem);
1759 rtnl_lock();
1760 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1761 if (err)
1762 goto unlock;
1763
1764 for_each_net(net)
1765 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767unlock:
1768 rtnl_unlock();
1769 up_write(&pernet_ops_rwsem);
1770 return err;
1771}
1772EXPORT_SYMBOL(unregister_netdevice_notifier);
1773
1774static int __register_netdevice_notifier_net(struct net *net,
1775 struct notifier_block *nb,
1776 bool ignore_call_fail)
1777{
1778 int err;
1779
1780 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1781 if (err)
1782 return err;
1783 if (dev_boot_phase)
1784 return 0;
1785
1786 err = call_netdevice_register_net_notifiers(nb, net);
1787 if (err && !ignore_call_fail)
1788 goto chain_unregister;
1789
1790 return 0;
1791
1792chain_unregister:
1793 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1794 return err;
1795}
1796
1797static int __unregister_netdevice_notifier_net(struct net *net,
1798 struct notifier_block *nb)
1799{
1800 int err;
1801
1802 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803 if (err)
1804 return err;
1805
1806 call_netdevice_unregister_net_notifiers(nb, net);
1807 return 0;
1808}
1809
1810/**
1811 * register_netdevice_notifier_net - register a per-netns network notifier block
1812 * @net: network namespace
1813 * @nb: notifier
1814 *
1815 * Register a notifier to be called when network device events occur.
1816 * The notifier passed is linked into the kernel structures and must
1817 * not be reused until it has been unregistered. A negative errno code
1818 * is returned on a failure.
1819 *
1820 * When registered all registration and up events are replayed
1821 * to the new notifier to allow device to have a race free
1822 * view of the network device list.
1823 */
1824
1825int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1826{
1827 int err;
1828
1829 rtnl_lock();
1830 err = __register_netdevice_notifier_net(net, nb, false);
1831 rtnl_unlock();
1832 return err;
1833}
1834EXPORT_SYMBOL(register_netdevice_notifier_net);
1835
1836/**
1837 * unregister_netdevice_notifier_net - unregister a per-netns
1838 * network notifier block
1839 * @net: network namespace
1840 * @nb: notifier
1841 *
1842 * Unregister a notifier previously registered by
1843 * register_netdevice_notifier(). The notifier is unlinked into the
1844 * kernel structures and may then be reused. A negative errno code
1845 * is returned on a failure.
1846 *
1847 * After unregistering unregister and down device events are synthesized
1848 * for all devices on the device list to the removed notifier to remove
1849 * the need for special case cleanup code.
1850 */
1851
1852int unregister_netdevice_notifier_net(struct net *net,
1853 struct notifier_block *nb)
1854{
1855 int err;
1856
1857 rtnl_lock();
1858 err = __unregister_netdevice_notifier_net(net, nb);
1859 rtnl_unlock();
1860 return err;
1861}
1862EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1863
1864static void __move_netdevice_notifier_net(struct net *src_net,
1865 struct net *dst_net,
1866 struct notifier_block *nb)
1867{
1868 __unregister_netdevice_notifier_net(src_net, nb);
1869 __register_netdevice_notifier_net(dst_net, nb, true);
1870}
1871
1872void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
1873 struct notifier_block *nb)
1874{
1875 rtnl_lock();
1876 __move_netdevice_notifier_net(src_net, dst_net, nb);
1877 rtnl_unlock();
1878}
1879
1880int register_netdevice_notifier_dev_net(struct net_device *dev,
1881 struct notifier_block *nb,
1882 struct netdev_net_notifier *nn)
1883{
1884 int err;
1885
1886 rtnl_lock();
1887 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1888 if (!err) {
1889 nn->nb = nb;
1890 list_add(&nn->list, &dev->net_notifier_list);
1891 }
1892 rtnl_unlock();
1893 return err;
1894}
1895EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1896
1897int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1898 struct notifier_block *nb,
1899 struct netdev_net_notifier *nn)
1900{
1901 int err;
1902
1903 rtnl_lock();
1904 list_del(&nn->list);
1905 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1906 rtnl_unlock();
1907 return err;
1908}
1909EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1910
1911static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1912 struct net *net)
1913{
1914 struct netdev_net_notifier *nn;
1915
1916 list_for_each_entry(nn, &dev->net_notifier_list, list)
1917 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1918}
1919
1920/**
1921 * call_netdevice_notifiers_info - call all network notifier blocks
1922 * @val: value passed unmodified to notifier function
1923 * @info: notifier information data
1924 *
1925 * Call all network notifier blocks. Parameters and return value
1926 * are as for raw_notifier_call_chain().
1927 */
1928
1929static int call_netdevice_notifiers_info(unsigned long val,
1930 struct netdev_notifier_info *info)
1931{
1932 struct net *net = dev_net(info->dev);
1933 int ret;
1934
1935 ASSERT_RTNL();
1936
1937 /* Run per-netns notifier block chain first, then run the global one.
1938 * Hopefully, one day, the global one is going to be removed after
1939 * all notifier block registrators get converted to be per-netns.
1940 */
1941 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1942 if (ret & NOTIFY_STOP_MASK)
1943 return ret;
1944 return raw_notifier_call_chain(&netdev_chain, val, info);
1945}
1946
1947/**
1948 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1949 * for and rollback on error
1950 * @val_up: value passed unmodified to notifier function
1951 * @val_down: value passed unmodified to the notifier function when
1952 * recovering from an error on @val_up
1953 * @info: notifier information data
1954 *
1955 * Call all per-netns network notifier blocks, but not notifier blocks on
1956 * the global notifier chain. Parameters and return value are as for
1957 * raw_notifier_call_chain_robust().
1958 */
1959
1960static int
1961call_netdevice_notifiers_info_robust(unsigned long val_up,
1962 unsigned long val_down,
1963 struct netdev_notifier_info *info)
1964{
1965 struct net *net = dev_net(info->dev);
1966
1967 ASSERT_RTNL();
1968
1969 return raw_notifier_call_chain_robust(&net->netdev_chain,
1970 val_up, val_down, info);
1971}
1972
1973static int call_netdevice_notifiers_extack(unsigned long val,
1974 struct net_device *dev,
1975 struct netlink_ext_ack *extack)
1976{
1977 struct netdev_notifier_info info = {
1978 .dev = dev,
1979 .extack = extack,
1980 };
1981
1982 return call_netdevice_notifiers_info(val, &info);
1983}
1984
1985/**
1986 * call_netdevice_notifiers - call all network notifier blocks
1987 * @val: value passed unmodified to notifier function
1988 * @dev: net_device pointer passed unmodified to notifier function
1989 *
1990 * Call all network notifier blocks. Parameters and return value
1991 * are as for raw_notifier_call_chain().
1992 */
1993
1994int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1995{
1996 return call_netdevice_notifiers_extack(val, dev, NULL);
1997}
1998EXPORT_SYMBOL(call_netdevice_notifiers);
1999
2000/**
2001 * call_netdevice_notifiers_mtu - call all network notifier blocks
2002 * @val: value passed unmodified to notifier function
2003 * @dev: net_device pointer passed unmodified to notifier function
2004 * @arg: additional u32 argument passed to the notifier function
2005 *
2006 * Call all network notifier blocks. Parameters and return value
2007 * are as for raw_notifier_call_chain().
2008 */
2009static int call_netdevice_notifiers_mtu(unsigned long val,
2010 struct net_device *dev, u32 arg)
2011{
2012 struct netdev_notifier_info_ext info = {
2013 .info.dev = dev,
2014 .ext.mtu = arg,
2015 };
2016
2017 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2018
2019 return call_netdevice_notifiers_info(val, &info.info);
2020}
2021
2022#ifdef CONFIG_NET_INGRESS
2023static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2024
2025void net_inc_ingress_queue(void)
2026{
2027 static_branch_inc(&ingress_needed_key);
2028}
2029EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2030
2031void net_dec_ingress_queue(void)
2032{
2033 static_branch_dec(&ingress_needed_key);
2034}
2035EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2036#endif
2037
2038#ifdef CONFIG_NET_EGRESS
2039static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2040
2041void net_inc_egress_queue(void)
2042{
2043 static_branch_inc(&egress_needed_key);
2044}
2045EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2046
2047void net_dec_egress_queue(void)
2048{
2049 static_branch_dec(&egress_needed_key);
2050}
2051EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2052#endif
2053
2054DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2055EXPORT_SYMBOL(netstamp_needed_key);
2056#ifdef CONFIG_JUMP_LABEL
2057static atomic_t netstamp_needed_deferred;
2058static atomic_t netstamp_wanted;
2059static void netstamp_clear(struct work_struct *work)
2060{
2061 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2062 int wanted;
2063
2064 wanted = atomic_add_return(deferred, &netstamp_wanted);
2065 if (wanted > 0)
2066 static_branch_enable(&netstamp_needed_key);
2067 else
2068 static_branch_disable(&netstamp_needed_key);
2069}
2070static DECLARE_WORK(netstamp_work, netstamp_clear);
2071#endif
2072
2073void net_enable_timestamp(void)
2074{
2075#ifdef CONFIG_JUMP_LABEL
2076 int wanted = atomic_read(&netstamp_wanted);
2077
2078 while (wanted > 0) {
2079 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2080 return;
2081 }
2082 atomic_inc(&netstamp_needed_deferred);
2083 schedule_work(&netstamp_work);
2084#else
2085 static_branch_inc(&netstamp_needed_key);
2086#endif
2087}
2088EXPORT_SYMBOL(net_enable_timestamp);
2089
2090void net_disable_timestamp(void)
2091{
2092#ifdef CONFIG_JUMP_LABEL
2093 int wanted = atomic_read(&netstamp_wanted);
2094
2095 while (wanted > 1) {
2096 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2097 return;
2098 }
2099 atomic_dec(&netstamp_needed_deferred);
2100 schedule_work(&netstamp_work);
2101#else
2102 static_branch_dec(&netstamp_needed_key);
2103#endif
2104}
2105EXPORT_SYMBOL(net_disable_timestamp);
2106
2107static inline void net_timestamp_set(struct sk_buff *skb)
2108{
2109 skb->tstamp = 0;
2110 skb->mono_delivery_time = 0;
2111 if (static_branch_unlikely(&netstamp_needed_key))
2112 skb->tstamp = ktime_get_real();
2113}
2114
2115#define net_timestamp_check(COND, SKB) \
2116 if (static_branch_unlikely(&netstamp_needed_key)) { \
2117 if ((COND) && !(SKB)->tstamp) \
2118 (SKB)->tstamp = ktime_get_real(); \
2119 } \
2120
2121bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122{
2123 return __is_skb_forwardable(dev, skb, true);
2124}
2125EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126
2127static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128 bool check_mtu)
2129{
2130 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131
2132 if (likely(!ret)) {
2133 skb->protocol = eth_type_trans(skb, dev);
2134 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 }
2136
2137 return ret;
2138}
2139
2140int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141{
2142 return __dev_forward_skb2(dev, skb, true);
2143}
2144EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145
2146/**
2147 * dev_forward_skb - loopback an skb to another netif
2148 *
2149 * @dev: destination network device
2150 * @skb: buffer to forward
2151 *
2152 * return values:
2153 * NET_RX_SUCCESS (no congestion)
2154 * NET_RX_DROP (packet was dropped, but freed)
2155 *
2156 * dev_forward_skb can be used for injecting an skb from the
2157 * start_xmit function of one device into the receive queue
2158 * of another device.
2159 *
2160 * The receiving device may be in another namespace, so
2161 * we have to clear all information in the skb that could
2162 * impact namespace isolation.
2163 */
2164int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165{
2166 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167}
2168EXPORT_SYMBOL_GPL(dev_forward_skb);
2169
2170int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171{
2172 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173}
2174
2175static inline int deliver_skb(struct sk_buff *skb,
2176 struct packet_type *pt_prev,
2177 struct net_device *orig_dev)
2178{
2179 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180 return -ENOMEM;
2181 refcount_inc(&skb->users);
2182 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183}
2184
2185static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 struct packet_type **pt,
2187 struct net_device *orig_dev,
2188 __be16 type,
2189 struct list_head *ptype_list)
2190{
2191 struct packet_type *ptype, *pt_prev = *pt;
2192
2193 list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 if (ptype->type != type)
2195 continue;
2196 if (pt_prev)
2197 deliver_skb(skb, pt_prev, orig_dev);
2198 pt_prev = ptype;
2199 }
2200 *pt = pt_prev;
2201}
2202
2203static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204{
2205 if (!ptype->af_packet_priv || !skb->sk)
2206 return false;
2207
2208 if (ptype->id_match)
2209 return ptype->id_match(ptype, skb->sk);
2210 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211 return true;
2212
2213 return false;
2214}
2215
2216/**
2217 * dev_nit_active - return true if any network interface taps are in use
2218 *
2219 * @dev: network device to check for the presence of taps
2220 */
2221bool dev_nit_active(struct net_device *dev)
2222{
2223 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224}
2225EXPORT_SYMBOL_GPL(dev_nit_active);
2226
2227/*
2228 * Support routine. Sends outgoing frames to any network
2229 * taps currently in use.
2230 */
2231
2232void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233{
2234 struct packet_type *ptype;
2235 struct sk_buff *skb2 = NULL;
2236 struct packet_type *pt_prev = NULL;
2237 struct list_head *ptype_list = &ptype_all;
2238
2239 rcu_read_lock();
2240again:
2241 list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 if (ptype->ignore_outgoing)
2243 continue;
2244
2245 /* Never send packets back to the socket
2246 * they originated from - MvS (miquels@drinkel.ow.org)
2247 */
2248 if (skb_loop_sk(ptype, skb))
2249 continue;
2250
2251 if (pt_prev) {
2252 deliver_skb(skb2, pt_prev, skb->dev);
2253 pt_prev = ptype;
2254 continue;
2255 }
2256
2257 /* need to clone skb, done only once */
2258 skb2 = skb_clone(skb, GFP_ATOMIC);
2259 if (!skb2)
2260 goto out_unlock;
2261
2262 net_timestamp_set(skb2);
2263
2264 /* skb->nh should be correctly
2265 * set by sender, so that the second statement is
2266 * just protection against buggy protocols.
2267 */
2268 skb_reset_mac_header(skb2);
2269
2270 if (skb_network_header(skb2) < skb2->data ||
2271 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 ntohs(skb2->protocol),
2274 dev->name);
2275 skb_reset_network_header(skb2);
2276 }
2277
2278 skb2->transport_header = skb2->network_header;
2279 skb2->pkt_type = PACKET_OUTGOING;
2280 pt_prev = ptype;
2281 }
2282
2283 if (ptype_list == &ptype_all) {
2284 ptype_list = &dev->ptype_all;
2285 goto again;
2286 }
2287out_unlock:
2288 if (pt_prev) {
2289 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291 else
2292 kfree_skb(skb2);
2293 }
2294 rcu_read_unlock();
2295}
2296EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297
2298/**
2299 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300 * @dev: Network device
2301 * @txq: number of queues available
2302 *
2303 * If real_num_tx_queues is changed the tc mappings may no longer be
2304 * valid. To resolve this verify the tc mapping remains valid and if
2305 * not NULL the mapping. With no priorities mapping to this
2306 * offset/count pair it will no longer be used. In the worst case TC0
2307 * is invalid nothing can be done so disable priority mappings. If is
2308 * expected that drivers will fix this mapping if they can before
2309 * calling netif_set_real_num_tx_queues.
2310 */
2311static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312{
2313 int i;
2314 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315
2316 /* If TC0 is invalidated disable TC mapping */
2317 if (tc->offset + tc->count > txq) {
2318 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319 dev->num_tc = 0;
2320 return;
2321 }
2322
2323 /* Invalidated prio to tc mappings set to TC0 */
2324 for (i = 1; i < TC_BITMASK + 1; i++) {
2325 int q = netdev_get_prio_tc_map(dev, i);
2326
2327 tc = &dev->tc_to_txq[q];
2328 if (tc->offset + tc->count > txq) {
2329 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330 i, q);
2331 netdev_set_prio_tc_map(dev, i, 0);
2332 }
2333 }
2334}
2335
2336int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337{
2338 if (dev->num_tc) {
2339 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340 int i;
2341
2342 /* walk through the TCs and see if it falls into any of them */
2343 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 if ((txq - tc->offset) < tc->count)
2345 return i;
2346 }
2347
2348 /* didn't find it, just return -1 to indicate no match */
2349 return -1;
2350 }
2351
2352 return 0;
2353}
2354EXPORT_SYMBOL(netdev_txq_to_tc);
2355
2356#ifdef CONFIG_XPS
2357static struct static_key xps_needed __read_mostly;
2358static struct static_key xps_rxqs_needed __read_mostly;
2359static DEFINE_MUTEX(xps_map_mutex);
2360#define xmap_dereference(P) \
2361 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362
2363static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 struct xps_dev_maps *old_maps, int tci, u16 index)
2365{
2366 struct xps_map *map = NULL;
2367 int pos;
2368
2369 if (dev_maps)
2370 map = xmap_dereference(dev_maps->attr_map[tci]);
2371 if (!map)
2372 return false;
2373
2374 for (pos = map->len; pos--;) {
2375 if (map->queues[pos] != index)
2376 continue;
2377
2378 if (map->len > 1) {
2379 map->queues[pos] = map->queues[--map->len];
2380 break;
2381 }
2382
2383 if (old_maps)
2384 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 kfree_rcu(map, rcu);
2387 return false;
2388 }
2389
2390 return true;
2391}
2392
2393static bool remove_xps_queue_cpu(struct net_device *dev,
2394 struct xps_dev_maps *dev_maps,
2395 int cpu, u16 offset, u16 count)
2396{
2397 int num_tc = dev_maps->num_tc;
2398 bool active = false;
2399 int tci;
2400
2401 for (tci = cpu * num_tc; num_tc--; tci++) {
2402 int i, j;
2403
2404 for (i = count, j = offset; i--; j++) {
2405 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406 break;
2407 }
2408
2409 active |= i < 0;
2410 }
2411
2412 return active;
2413}
2414
2415static void reset_xps_maps(struct net_device *dev,
2416 struct xps_dev_maps *dev_maps,
2417 enum xps_map_type type)
2418{
2419 static_key_slow_dec_cpuslocked(&xps_needed);
2420 if (type == XPS_RXQS)
2421 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422
2423 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424
2425 kfree_rcu(dev_maps, rcu);
2426}
2427
2428static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 u16 offset, u16 count)
2430{
2431 struct xps_dev_maps *dev_maps;
2432 bool active = false;
2433 int i, j;
2434
2435 dev_maps = xmap_dereference(dev->xps_maps[type]);
2436 if (!dev_maps)
2437 return;
2438
2439 for (j = 0; j < dev_maps->nr_ids; j++)
2440 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441 if (!active)
2442 reset_xps_maps(dev, dev_maps, type);
2443
2444 if (type == XPS_CPUS) {
2445 for (i = offset + (count - 1); count--; i--)
2446 netdev_queue_numa_node_write(
2447 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448 }
2449}
2450
2451static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452 u16 count)
2453{
2454 if (!static_key_false(&xps_needed))
2455 return;
2456
2457 cpus_read_lock();
2458 mutex_lock(&xps_map_mutex);
2459
2460 if (static_key_false(&xps_rxqs_needed))
2461 clean_xps_maps(dev, XPS_RXQS, offset, count);
2462
2463 clean_xps_maps(dev, XPS_CPUS, offset, count);
2464
2465 mutex_unlock(&xps_map_mutex);
2466 cpus_read_unlock();
2467}
2468
2469static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470{
2471 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472}
2473
2474static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 u16 index, bool is_rxqs_map)
2476{
2477 struct xps_map *new_map;
2478 int alloc_len = XPS_MIN_MAP_ALLOC;
2479 int i, pos;
2480
2481 for (pos = 0; map && pos < map->len; pos++) {
2482 if (map->queues[pos] != index)
2483 continue;
2484 return map;
2485 }
2486
2487 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488 if (map) {
2489 if (pos < map->alloc_len)
2490 return map;
2491
2492 alloc_len = map->alloc_len * 2;
2493 }
2494
2495 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496 * map
2497 */
2498 if (is_rxqs_map)
2499 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500 else
2501 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 cpu_to_node(attr_index));
2503 if (!new_map)
2504 return NULL;
2505
2506 for (i = 0; i < pos; i++)
2507 new_map->queues[i] = map->queues[i];
2508 new_map->alloc_len = alloc_len;
2509 new_map->len = pos;
2510
2511 return new_map;
2512}
2513
2514/* Copy xps maps at a given index */
2515static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 struct xps_dev_maps *new_dev_maps, int index,
2517 int tc, bool skip_tc)
2518{
2519 int i, tci = index * dev_maps->num_tc;
2520 struct xps_map *map;
2521
2522 /* copy maps belonging to foreign traffic classes */
2523 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 if (i == tc && skip_tc)
2525 continue;
2526
2527 /* fill in the new device map from the old device map */
2528 map = xmap_dereference(dev_maps->attr_map[tci]);
2529 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 }
2531}
2532
2533/* Must be called under cpus_read_lock */
2534int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 u16 index, enum xps_map_type type)
2536{
2537 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 const unsigned long *online_mask = NULL;
2539 bool active = false, copy = false;
2540 int i, j, tci, numa_node_id = -2;
2541 int maps_sz, num_tc = 1, tc = 0;
2542 struct xps_map *map, *new_map;
2543 unsigned int nr_ids;
2544
2545 if (dev->num_tc) {
2546 /* Do not allow XPS on subordinate device directly */
2547 num_tc = dev->num_tc;
2548 if (num_tc < 0)
2549 return -EINVAL;
2550
2551 /* If queue belongs to subordinate dev use its map */
2552 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553
2554 tc = netdev_txq_to_tc(dev, index);
2555 if (tc < 0)
2556 return -EINVAL;
2557 }
2558
2559 mutex_lock(&xps_map_mutex);
2560
2561 dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 if (type == XPS_RXQS) {
2563 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 nr_ids = dev->num_rx_queues;
2565 } else {
2566 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 if (num_possible_cpus() > 1)
2568 online_mask = cpumask_bits(cpu_online_mask);
2569 nr_ids = nr_cpu_ids;
2570 }
2571
2572 if (maps_sz < L1_CACHE_BYTES)
2573 maps_sz = L1_CACHE_BYTES;
2574
2575 /* The old dev_maps could be larger or smaller than the one we're
2576 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 * between. We could try to be smart, but let's be safe instead and only
2578 * copy foreign traffic classes if the two map sizes match.
2579 */
2580 if (dev_maps &&
2581 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582 copy = true;
2583
2584 /* allocate memory for queue storage */
2585 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586 j < nr_ids;) {
2587 if (!new_dev_maps) {
2588 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 if (!new_dev_maps) {
2590 mutex_unlock(&xps_map_mutex);
2591 return -ENOMEM;
2592 }
2593
2594 new_dev_maps->nr_ids = nr_ids;
2595 new_dev_maps->num_tc = num_tc;
2596 }
2597
2598 tci = j * num_tc + tc;
2599 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600
2601 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602 if (!map)
2603 goto error;
2604
2605 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606 }
2607
2608 if (!new_dev_maps)
2609 goto out_no_new_maps;
2610
2611 if (!dev_maps) {
2612 /* Increment static keys at most once per type */
2613 static_key_slow_inc_cpuslocked(&xps_needed);
2614 if (type == XPS_RXQS)
2615 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616 }
2617
2618 for (j = 0; j < nr_ids; j++) {
2619 bool skip_tc = false;
2620
2621 tci = j * num_tc + tc;
2622 if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 netif_attr_test_online(j, online_mask, nr_ids)) {
2624 /* add tx-queue to CPU/rx-queue maps */
2625 int pos = 0;
2626
2627 skip_tc = true;
2628
2629 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 while ((pos < map->len) && (map->queues[pos] != index))
2631 pos++;
2632
2633 if (pos == map->len)
2634 map->queues[map->len++] = index;
2635#ifdef CONFIG_NUMA
2636 if (type == XPS_CPUS) {
2637 if (numa_node_id == -2)
2638 numa_node_id = cpu_to_node(j);
2639 else if (numa_node_id != cpu_to_node(j))
2640 numa_node_id = -1;
2641 }
2642#endif
2643 }
2644
2645 if (copy)
2646 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647 skip_tc);
2648 }
2649
2650 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651
2652 /* Cleanup old maps */
2653 if (!dev_maps)
2654 goto out_no_old_maps;
2655
2656 for (j = 0; j < dev_maps->nr_ids; j++) {
2657 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 map = xmap_dereference(dev_maps->attr_map[tci]);
2659 if (!map)
2660 continue;
2661
2662 if (copy) {
2663 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664 if (map == new_map)
2665 continue;
2666 }
2667
2668 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 kfree_rcu(map, rcu);
2670 }
2671 }
2672
2673 old_dev_maps = dev_maps;
2674
2675out_no_old_maps:
2676 dev_maps = new_dev_maps;
2677 active = true;
2678
2679out_no_new_maps:
2680 if (type == XPS_CPUS)
2681 /* update Tx queue numa node */
2682 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 (numa_node_id >= 0) ?
2684 numa_node_id : NUMA_NO_NODE);
2685
2686 if (!dev_maps)
2687 goto out_no_maps;
2688
2689 /* removes tx-queue from unused CPUs/rx-queues */
2690 for (j = 0; j < dev_maps->nr_ids; j++) {
2691 tci = j * dev_maps->num_tc;
2692
2693 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694 if (i == tc &&
2695 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697 continue;
2698
2699 active |= remove_xps_queue(dev_maps,
2700 copy ? old_dev_maps : NULL,
2701 tci, index);
2702 }
2703 }
2704
2705 if (old_dev_maps)
2706 kfree_rcu(old_dev_maps, rcu);
2707
2708 /* free map if not active */
2709 if (!active)
2710 reset_xps_maps(dev, dev_maps, type);
2711
2712out_no_maps:
2713 mutex_unlock(&xps_map_mutex);
2714
2715 return 0;
2716error:
2717 /* remove any maps that we added */
2718 for (j = 0; j < nr_ids; j++) {
2719 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 map = copy ?
2722 xmap_dereference(dev_maps->attr_map[tci]) :
2723 NULL;
2724 if (new_map && new_map != map)
2725 kfree(new_map);
2726 }
2727 }
2728
2729 mutex_unlock(&xps_map_mutex);
2730
2731 kfree(new_dev_maps);
2732 return -ENOMEM;
2733}
2734EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735
2736int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737 u16 index)
2738{
2739 int ret;
2740
2741 cpus_read_lock();
2742 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743 cpus_read_unlock();
2744
2745 return ret;
2746}
2747EXPORT_SYMBOL(netif_set_xps_queue);
2748
2749#endif
2750static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751{
2752 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753
2754 /* Unbind any subordinate channels */
2755 while (txq-- != &dev->_tx[0]) {
2756 if (txq->sb_dev)
2757 netdev_unbind_sb_channel(dev, txq->sb_dev);
2758 }
2759}
2760
2761void netdev_reset_tc(struct net_device *dev)
2762{
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues_gt(dev, 0);
2765#endif
2766 netdev_unbind_all_sb_channels(dev);
2767
2768 /* Reset TC configuration of device */
2769 dev->num_tc = 0;
2770 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772}
2773EXPORT_SYMBOL(netdev_reset_tc);
2774
2775int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776{
2777 if (tc >= dev->num_tc)
2778 return -EINVAL;
2779
2780#ifdef CONFIG_XPS
2781 netif_reset_xps_queues(dev, offset, count);
2782#endif
2783 dev->tc_to_txq[tc].count = count;
2784 dev->tc_to_txq[tc].offset = offset;
2785 return 0;
2786}
2787EXPORT_SYMBOL(netdev_set_tc_queue);
2788
2789int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790{
2791 if (num_tc > TC_MAX_QUEUE)
2792 return -EINVAL;
2793
2794#ifdef CONFIG_XPS
2795 netif_reset_xps_queues_gt(dev, 0);
2796#endif
2797 netdev_unbind_all_sb_channels(dev);
2798
2799 dev->num_tc = num_tc;
2800 return 0;
2801}
2802EXPORT_SYMBOL(netdev_set_num_tc);
2803
2804void netdev_unbind_sb_channel(struct net_device *dev,
2805 struct net_device *sb_dev)
2806{
2807 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808
2809#ifdef CONFIG_XPS
2810 netif_reset_xps_queues_gt(sb_dev, 0);
2811#endif
2812 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814
2815 while (txq-- != &dev->_tx[0]) {
2816 if (txq->sb_dev == sb_dev)
2817 txq->sb_dev = NULL;
2818 }
2819}
2820EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821
2822int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 struct net_device *sb_dev,
2824 u8 tc, u16 count, u16 offset)
2825{
2826 /* Make certain the sb_dev and dev are already configured */
2827 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828 return -EINVAL;
2829
2830 /* We cannot hand out queues we don't have */
2831 if ((offset + count) > dev->real_num_tx_queues)
2832 return -EINVAL;
2833
2834 /* Record the mapping */
2835 sb_dev->tc_to_txq[tc].count = count;
2836 sb_dev->tc_to_txq[tc].offset = offset;
2837
2838 /* Provide a way for Tx queue to find the tc_to_txq map or
2839 * XPS map for itself.
2840 */
2841 while (count--)
2842 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843
2844 return 0;
2845}
2846EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847
2848int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849{
2850 /* Do not use a multiqueue device to represent a subordinate channel */
2851 if (netif_is_multiqueue(dev))
2852 return -ENODEV;
2853
2854 /* We allow channels 1 - 32767 to be used for subordinate channels.
2855 * Channel 0 is meant to be "native" mode and used only to represent
2856 * the main root device. We allow writing 0 to reset the device back
2857 * to normal mode after being used as a subordinate channel.
2858 */
2859 if (channel > S16_MAX)
2860 return -EINVAL;
2861
2862 dev->num_tc = -channel;
2863
2864 return 0;
2865}
2866EXPORT_SYMBOL(netdev_set_sb_channel);
2867
2868/*
2869 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871 */
2872int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873{
2874 bool disabling;
2875 int rc;
2876
2877 disabling = txq < dev->real_num_tx_queues;
2878
2879 if (txq < 1 || txq > dev->num_tx_queues)
2880 return -EINVAL;
2881
2882 if (dev->reg_state == NETREG_REGISTERED ||
2883 dev->reg_state == NETREG_UNREGISTERING) {
2884 ASSERT_RTNL();
2885
2886 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887 txq);
2888 if (rc)
2889 return rc;
2890
2891 if (dev->num_tc)
2892 netif_setup_tc(dev, txq);
2893
2894 dev_qdisc_change_real_num_tx(dev, txq);
2895
2896 dev->real_num_tx_queues = txq;
2897
2898 if (disabling) {
2899 synchronize_net();
2900 qdisc_reset_all_tx_gt(dev, txq);
2901#ifdef CONFIG_XPS
2902 netif_reset_xps_queues_gt(dev, txq);
2903#endif
2904 }
2905 } else {
2906 dev->real_num_tx_queues = txq;
2907 }
2908
2909 return 0;
2910}
2911EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912
2913#ifdef CONFIG_SYSFS
2914/**
2915 * netif_set_real_num_rx_queues - set actual number of RX queues used
2916 * @dev: Network device
2917 * @rxq: Actual number of RX queues
2918 *
2919 * This must be called either with the rtnl_lock held or before
2920 * registration of the net device. Returns 0 on success, or a
2921 * negative error code. If called before registration, it always
2922 * succeeds.
2923 */
2924int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925{
2926 int rc;
2927
2928 if (rxq < 1 || rxq > dev->num_rx_queues)
2929 return -EINVAL;
2930
2931 if (dev->reg_state == NETREG_REGISTERED) {
2932 ASSERT_RTNL();
2933
2934 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935 rxq);
2936 if (rc)
2937 return rc;
2938 }
2939
2940 dev->real_num_rx_queues = rxq;
2941 return 0;
2942}
2943EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944#endif
2945
2946/**
2947 * netif_set_real_num_queues - set actual number of RX and TX queues used
2948 * @dev: Network device
2949 * @txq: Actual number of TX queues
2950 * @rxq: Actual number of RX queues
2951 *
2952 * Set the real number of both TX and RX queues.
2953 * Does nothing if the number of queues is already correct.
2954 */
2955int netif_set_real_num_queues(struct net_device *dev,
2956 unsigned int txq, unsigned int rxq)
2957{
2958 unsigned int old_rxq = dev->real_num_rx_queues;
2959 int err;
2960
2961 if (txq < 1 || txq > dev->num_tx_queues ||
2962 rxq < 1 || rxq > dev->num_rx_queues)
2963 return -EINVAL;
2964
2965 /* Start from increases, so the error path only does decreases -
2966 * decreases can't fail.
2967 */
2968 if (rxq > dev->real_num_rx_queues) {
2969 err = netif_set_real_num_rx_queues(dev, rxq);
2970 if (err)
2971 return err;
2972 }
2973 if (txq > dev->real_num_tx_queues) {
2974 err = netif_set_real_num_tx_queues(dev, txq);
2975 if (err)
2976 goto undo_rx;
2977 }
2978 if (rxq < dev->real_num_rx_queues)
2979 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 if (txq < dev->real_num_tx_queues)
2981 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982
2983 return 0;
2984undo_rx:
2985 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986 return err;
2987}
2988EXPORT_SYMBOL(netif_set_real_num_queues);
2989
2990/**
2991 * netif_set_tso_max_size() - set the max size of TSO frames supported
2992 * @dev: netdev to update
2993 * @size: max skb->len of a TSO frame
2994 *
2995 * Set the limit on the size of TSO super-frames the device can handle.
2996 * Unless explicitly set the stack will assume the value of
2997 * %GSO_LEGACY_MAX_SIZE.
2998 */
2999void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3000{
3001 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3002 if (size < READ_ONCE(dev->gso_max_size))
3003 netif_set_gso_max_size(dev, size);
3004}
3005EXPORT_SYMBOL(netif_set_tso_max_size);
3006
3007/**
3008 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3009 * @dev: netdev to update
3010 * @segs: max number of TCP segments
3011 *
3012 * Set the limit on the number of TCP segments the device can generate from
3013 * a single TSO super-frame.
3014 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3015 */
3016void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3017{
3018 dev->tso_max_segs = segs;
3019 if (segs < READ_ONCE(dev->gso_max_segs))
3020 netif_set_gso_max_segs(dev, segs);
3021}
3022EXPORT_SYMBOL(netif_set_tso_max_segs);
3023
3024/**
3025 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3026 * @to: netdev to update
3027 * @from: netdev from which to copy the limits
3028 */
3029void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3030{
3031 netif_set_tso_max_size(to, from->tso_max_size);
3032 netif_set_tso_max_segs(to, from->tso_max_segs);
3033}
3034EXPORT_SYMBOL(netif_inherit_tso_max);
3035
3036/**
3037 * netif_get_num_default_rss_queues - default number of RSS queues
3038 *
3039 * Default value is the number of physical cores if there are only 1 or 2, or
3040 * divided by 2 if there are more.
3041 */
3042int netif_get_num_default_rss_queues(void)
3043{
3044 cpumask_var_t cpus;
3045 int cpu, count = 0;
3046
3047 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3048 return 1;
3049
3050 cpumask_copy(cpus, cpu_online_mask);
3051 for_each_cpu(cpu, cpus) {
3052 ++count;
3053 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3054 }
3055 free_cpumask_var(cpus);
3056
3057 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3058}
3059EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3060
3061static void __netif_reschedule(struct Qdisc *q)
3062{
3063 struct softnet_data *sd;
3064 unsigned long flags;
3065
3066 local_irq_save(flags);
3067 sd = this_cpu_ptr(&softnet_data);
3068 q->next_sched = NULL;
3069 *sd->output_queue_tailp = q;
3070 sd->output_queue_tailp = &q->next_sched;
3071 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3072 local_irq_restore(flags);
3073}
3074
3075void __netif_schedule(struct Qdisc *q)
3076{
3077 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3078 __netif_reschedule(q);
3079}
3080EXPORT_SYMBOL(__netif_schedule);
3081
3082struct dev_kfree_skb_cb {
3083 enum skb_free_reason reason;
3084};
3085
3086static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3087{
3088 return (struct dev_kfree_skb_cb *)skb->cb;
3089}
3090
3091void netif_schedule_queue(struct netdev_queue *txq)
3092{
3093 rcu_read_lock();
3094 if (!netif_xmit_stopped(txq)) {
3095 struct Qdisc *q = rcu_dereference(txq->qdisc);
3096
3097 __netif_schedule(q);
3098 }
3099 rcu_read_unlock();
3100}
3101EXPORT_SYMBOL(netif_schedule_queue);
3102
3103void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3104{
3105 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3106 struct Qdisc *q;
3107
3108 rcu_read_lock();
3109 q = rcu_dereference(dev_queue->qdisc);
3110 __netif_schedule(q);
3111 rcu_read_unlock();
3112 }
3113}
3114EXPORT_SYMBOL(netif_tx_wake_queue);
3115
3116void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3117{
3118 unsigned long flags;
3119
3120 if (unlikely(!skb))
3121 return;
3122
3123 if (likely(refcount_read(&skb->users) == 1)) {
3124 smp_rmb();
3125 refcount_set(&skb->users, 0);
3126 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3127 return;
3128 }
3129 get_kfree_skb_cb(skb)->reason = reason;
3130 local_irq_save(flags);
3131 skb->next = __this_cpu_read(softnet_data.completion_queue);
3132 __this_cpu_write(softnet_data.completion_queue, skb);
3133 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 local_irq_restore(flags);
3135}
3136EXPORT_SYMBOL(__dev_kfree_skb_irq);
3137
3138void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3139{
3140 if (in_hardirq() || irqs_disabled())
3141 __dev_kfree_skb_irq(skb, reason);
3142 else
3143 dev_kfree_skb(skb);
3144}
3145EXPORT_SYMBOL(__dev_kfree_skb_any);
3146
3147
3148/**
3149 * netif_device_detach - mark device as removed
3150 * @dev: network device
3151 *
3152 * Mark device as removed from system and therefore no longer available.
3153 */
3154void netif_device_detach(struct net_device *dev)
3155{
3156 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3157 netif_running(dev)) {
3158 netif_tx_stop_all_queues(dev);
3159 }
3160}
3161EXPORT_SYMBOL(netif_device_detach);
3162
3163/**
3164 * netif_device_attach - mark device as attached
3165 * @dev: network device
3166 *
3167 * Mark device as attached from system and restart if needed.
3168 */
3169void netif_device_attach(struct net_device *dev)
3170{
3171 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3172 netif_running(dev)) {
3173 netif_tx_wake_all_queues(dev);
3174 __netdev_watchdog_up(dev);
3175 }
3176}
3177EXPORT_SYMBOL(netif_device_attach);
3178
3179/*
3180 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3181 * to be used as a distribution range.
3182 */
3183static u16 skb_tx_hash(const struct net_device *dev,
3184 const struct net_device *sb_dev,
3185 struct sk_buff *skb)
3186{
3187 u32 hash;
3188 u16 qoffset = 0;
3189 u16 qcount = dev->real_num_tx_queues;
3190
3191 if (dev->num_tc) {
3192 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3193
3194 qoffset = sb_dev->tc_to_txq[tc].offset;
3195 qcount = sb_dev->tc_to_txq[tc].count;
3196 if (unlikely(!qcount)) {
3197 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3198 sb_dev->name, qoffset, tc);
3199 qoffset = 0;
3200 qcount = dev->real_num_tx_queues;
3201 }
3202 }
3203
3204 if (skb_rx_queue_recorded(skb)) {
3205 hash = skb_get_rx_queue(skb);
3206 if (hash >= qoffset)
3207 hash -= qoffset;
3208 while (unlikely(hash >= qcount))
3209 hash -= qcount;
3210 return hash + qoffset;
3211 }
3212
3213 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3214}
3215
3216static void skb_warn_bad_offload(const struct sk_buff *skb)
3217{
3218 static const netdev_features_t null_features;
3219 struct net_device *dev = skb->dev;
3220 const char *name = "";
3221
3222 if (!net_ratelimit())
3223 return;
3224
3225 if (dev) {
3226 if (dev->dev.parent)
3227 name = dev_driver_string(dev->dev.parent);
3228 else
3229 name = netdev_name(dev);
3230 }
3231 skb_dump(KERN_WARNING, skb, false);
3232 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3233 name, dev ? &dev->features : &null_features,
3234 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3235}
3236
3237/*
3238 * Invalidate hardware checksum when packet is to be mangled, and
3239 * complete checksum manually on outgoing path.
3240 */
3241int skb_checksum_help(struct sk_buff *skb)
3242{
3243 __wsum csum;
3244 int ret = 0, offset;
3245
3246 if (skb->ip_summed == CHECKSUM_COMPLETE)
3247 goto out_set_summed;
3248
3249 if (unlikely(skb_is_gso(skb))) {
3250 skb_warn_bad_offload(skb);
3251 return -EINVAL;
3252 }
3253
3254 /* Before computing a checksum, we should make sure no frag could
3255 * be modified by an external entity : checksum could be wrong.
3256 */
3257 if (skb_has_shared_frag(skb)) {
3258 ret = __skb_linearize(skb);
3259 if (ret)
3260 goto out;
3261 }
3262
3263 offset = skb_checksum_start_offset(skb);
3264 ret = -EINVAL;
3265 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3266 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3267 goto out;
3268 }
3269 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3270
3271 offset += skb->csum_offset;
3272 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3273 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 goto out;
3275 }
3276 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3277 if (ret)
3278 goto out;
3279
3280 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3281out_set_summed:
3282 skb->ip_summed = CHECKSUM_NONE;
3283out:
3284 return ret;
3285}
3286EXPORT_SYMBOL(skb_checksum_help);
3287
3288int skb_crc32c_csum_help(struct sk_buff *skb)
3289{
3290 __le32 crc32c_csum;
3291 int ret = 0, offset, start;
3292
3293 if (skb->ip_summed != CHECKSUM_PARTIAL)
3294 goto out;
3295
3296 if (unlikely(skb_is_gso(skb)))
3297 goto out;
3298
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3301 */
3302 if (unlikely(skb_has_shared_frag(skb))) {
3303 ret = __skb_linearize(skb);
3304 if (ret)
3305 goto out;
3306 }
3307 start = skb_checksum_start_offset(skb);
3308 offset = start + offsetof(struct sctphdr, checksum);
3309 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3310 ret = -EINVAL;
3311 goto out;
3312 }
3313
3314 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3315 if (ret)
3316 goto out;
3317
3318 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3319 skb->len - start, ~(__u32)0,
3320 crc32c_csum_stub));
3321 *(__le32 *)(skb->data + offset) = crc32c_csum;
3322 skb->ip_summed = CHECKSUM_NONE;
3323 skb->csum_not_inet = 0;
3324out:
3325 return ret;
3326}
3327
3328__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3329{
3330 __be16 type = skb->protocol;
3331
3332 /* Tunnel gso handlers can set protocol to ethernet. */
3333 if (type == htons(ETH_P_TEB)) {
3334 struct ethhdr *eth;
3335
3336 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3337 return 0;
3338
3339 eth = (struct ethhdr *)skb->data;
3340 type = eth->h_proto;
3341 }
3342
3343 return __vlan_get_protocol(skb, type, depth);
3344}
3345
3346/* openvswitch calls this on rx path, so we need a different check.
3347 */
3348static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349{
3350 if (tx_path)
3351 return skb->ip_summed != CHECKSUM_PARTIAL &&
3352 skb->ip_summed != CHECKSUM_UNNECESSARY;
3353
3354 return skb->ip_summed == CHECKSUM_NONE;
3355}
3356
3357/**
3358 * __skb_gso_segment - Perform segmentation on skb.
3359 * @skb: buffer to segment
3360 * @features: features for the output path (see dev->features)
3361 * @tx_path: whether it is called in TX path
3362 *
3363 * This function segments the given skb and returns a list of segments.
3364 *
3365 * It may return NULL if the skb requires no segmentation. This is
3366 * only possible when GSO is used for verifying header integrity.
3367 *
3368 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369 */
3370struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371 netdev_features_t features, bool tx_path)
3372{
3373 struct sk_buff *segs;
3374
3375 if (unlikely(skb_needs_check(skb, tx_path))) {
3376 int err;
3377
3378 /* We're going to init ->check field in TCP or UDP header */
3379 err = skb_cow_head(skb, 0);
3380 if (err < 0)
3381 return ERR_PTR(err);
3382 }
3383
3384 /* Only report GSO partial support if it will enable us to
3385 * support segmentation on this frame without needing additional
3386 * work.
3387 */
3388 if (features & NETIF_F_GSO_PARTIAL) {
3389 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390 struct net_device *dev = skb->dev;
3391
3392 partial_features |= dev->features & dev->gso_partial_features;
3393 if (!skb_gso_ok(skb, features | partial_features))
3394 features &= ~NETIF_F_GSO_PARTIAL;
3395 }
3396
3397 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399
3400 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401 SKB_GSO_CB(skb)->encap_level = 0;
3402
3403 skb_reset_mac_header(skb);
3404 skb_reset_mac_len(skb);
3405
3406 segs = skb_mac_gso_segment(skb, features);
3407
3408 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409 skb_warn_bad_offload(skb);
3410
3411 return segs;
3412}
3413EXPORT_SYMBOL(__skb_gso_segment);
3414
3415/* Take action when hardware reception checksum errors are detected. */
3416#ifdef CONFIG_BUG
3417static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418{
3419 netdev_err(dev, "hw csum failure\n");
3420 skb_dump(KERN_ERR, skb, true);
3421 dump_stack();
3422}
3423
3424void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425{
3426 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427}
3428EXPORT_SYMBOL(netdev_rx_csum_fault);
3429#endif
3430
3431/* XXX: check that highmem exists at all on the given machine. */
3432static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433{
3434#ifdef CONFIG_HIGHMEM
3435 int i;
3436
3437 if (!(dev->features & NETIF_F_HIGHDMA)) {
3438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440
3441 if (PageHighMem(skb_frag_page(frag)))
3442 return 1;
3443 }
3444 }
3445#endif
3446 return 0;
3447}
3448
3449/* If MPLS offload request, verify we are testing hardware MPLS features
3450 * instead of standard features for the netdev.
3451 */
3452#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456{
3457 if (eth_p_mpls(type))
3458 features &= skb->dev->mpls_features;
3459
3460 return features;
3461}
3462#else
3463static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464 netdev_features_t features,
3465 __be16 type)
3466{
3467 return features;
3468}
3469#endif
3470
3471static netdev_features_t harmonize_features(struct sk_buff *skb,
3472 netdev_features_t features)
3473{
3474 __be16 type;
3475
3476 type = skb_network_protocol(skb, NULL);
3477 features = net_mpls_features(skb, features, type);
3478
3479 if (skb->ip_summed != CHECKSUM_NONE &&
3480 !can_checksum_protocol(features, type)) {
3481 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482 }
3483 if (illegal_highdma(skb->dev, skb))
3484 features &= ~NETIF_F_SG;
3485
3486 return features;
3487}
3488
3489netdev_features_t passthru_features_check(struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492{
3493 return features;
3494}
3495EXPORT_SYMBOL(passthru_features_check);
3496
3497static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498 struct net_device *dev,
3499 netdev_features_t features)
3500{
3501 return vlan_features_check(skb, features);
3502}
3503
3504static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505 struct net_device *dev,
3506 netdev_features_t features)
3507{
3508 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509
3510 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3511 return features & ~NETIF_F_GSO_MASK;
3512
3513 if (!skb_shinfo(skb)->gso_type) {
3514 skb_warn_bad_offload(skb);
3515 return features & ~NETIF_F_GSO_MASK;
3516 }
3517
3518 /* Support for GSO partial features requires software
3519 * intervention before we can actually process the packets
3520 * so we need to strip support for any partial features now
3521 * and we can pull them back in after we have partially
3522 * segmented the frame.
3523 */
3524 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 features &= ~dev->gso_partial_features;
3526
3527 /* Make sure to clear the IPv4 ID mangling feature if the
3528 * IPv4 header has the potential to be fragmented.
3529 */
3530 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 struct iphdr *iph = skb->encapsulation ?
3532 inner_ip_hdr(skb) : ip_hdr(skb);
3533
3534 if (!(iph->frag_off & htons(IP_DF)))
3535 features &= ~NETIF_F_TSO_MANGLEID;
3536 }
3537
3538 return features;
3539}
3540
3541netdev_features_t netif_skb_features(struct sk_buff *skb)
3542{
3543 struct net_device *dev = skb->dev;
3544 netdev_features_t features = dev->features;
3545
3546 if (skb_is_gso(skb))
3547 features = gso_features_check(skb, dev, features);
3548
3549 /* If encapsulation offload request, verify we are testing
3550 * hardware encapsulation features instead of standard
3551 * features for the netdev
3552 */
3553 if (skb->encapsulation)
3554 features &= dev->hw_enc_features;
3555
3556 if (skb_vlan_tagged(skb))
3557 features = netdev_intersect_features(features,
3558 dev->vlan_features |
3559 NETIF_F_HW_VLAN_CTAG_TX |
3560 NETIF_F_HW_VLAN_STAG_TX);
3561
3562 if (dev->netdev_ops->ndo_features_check)
3563 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564 features);
3565 else
3566 features &= dflt_features_check(skb, dev, features);
3567
3568 return harmonize_features(skb, features);
3569}
3570EXPORT_SYMBOL(netif_skb_features);
3571
3572static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 struct netdev_queue *txq, bool more)
3574{
3575 unsigned int len;
3576 int rc;
3577
3578 if (dev_nit_active(dev))
3579 dev_queue_xmit_nit(skb, dev);
3580
3581 len = skb->len;
3582 trace_net_dev_start_xmit(skb, dev);
3583 rc = netdev_start_xmit(skb, dev, txq, more);
3584 trace_net_dev_xmit(skb, rc, dev, len);
3585
3586 return rc;
3587}
3588
3589struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3590 struct netdev_queue *txq, int *ret)
3591{
3592 struct sk_buff *skb = first;
3593 int rc = NETDEV_TX_OK;
3594
3595 while (skb) {
3596 struct sk_buff *next = skb->next;
3597
3598 skb_mark_not_on_list(skb);
3599 rc = xmit_one(skb, dev, txq, next != NULL);
3600 if (unlikely(!dev_xmit_complete(rc))) {
3601 skb->next = next;
3602 goto out;
3603 }
3604
3605 skb = next;
3606 if (netif_tx_queue_stopped(txq) && skb) {
3607 rc = NETDEV_TX_BUSY;
3608 break;
3609 }
3610 }
3611
3612out:
3613 *ret = rc;
3614 return skb;
3615}
3616
3617static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3618 netdev_features_t features)
3619{
3620 if (skb_vlan_tag_present(skb) &&
3621 !vlan_hw_offload_capable(features, skb->vlan_proto))
3622 skb = __vlan_hwaccel_push_inside(skb);
3623 return skb;
3624}
3625
3626int skb_csum_hwoffload_help(struct sk_buff *skb,
3627 const netdev_features_t features)
3628{
3629 if (unlikely(skb_csum_is_sctp(skb)))
3630 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3631 skb_crc32c_csum_help(skb);
3632
3633 if (features & NETIF_F_HW_CSUM)
3634 return 0;
3635
3636 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3637 switch (skb->csum_offset) {
3638 case offsetof(struct tcphdr, check):
3639 case offsetof(struct udphdr, check):
3640 return 0;
3641 }
3642 }
3643
3644 return skb_checksum_help(skb);
3645}
3646EXPORT_SYMBOL(skb_csum_hwoffload_help);
3647
3648static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3649{
3650 netdev_features_t features;
3651
3652 features = netif_skb_features(skb);
3653 skb = validate_xmit_vlan(skb, features);
3654 if (unlikely(!skb))
3655 goto out_null;
3656
3657 skb = sk_validate_xmit_skb(skb, dev);
3658 if (unlikely(!skb))
3659 goto out_null;
3660
3661 if (netif_needs_gso(skb, features)) {
3662 struct sk_buff *segs;
3663
3664 segs = skb_gso_segment(skb, features);
3665 if (IS_ERR(segs)) {
3666 goto out_kfree_skb;
3667 } else if (segs) {
3668 consume_skb(skb);
3669 skb = segs;
3670 }
3671 } else {
3672 if (skb_needs_linearize(skb, features) &&
3673 __skb_linearize(skb))
3674 goto out_kfree_skb;
3675
3676 /* If packet is not checksummed and device does not
3677 * support checksumming for this protocol, complete
3678 * checksumming here.
3679 */
3680 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3681 if (skb->encapsulation)
3682 skb_set_inner_transport_header(skb,
3683 skb_checksum_start_offset(skb));
3684 else
3685 skb_set_transport_header(skb,
3686 skb_checksum_start_offset(skb));
3687 if (skb_csum_hwoffload_help(skb, features))
3688 goto out_kfree_skb;
3689 }
3690 }
3691
3692 skb = validate_xmit_xfrm(skb, features, again);
3693
3694 return skb;
3695
3696out_kfree_skb:
3697 kfree_skb(skb);
3698out_null:
3699 dev_core_stats_tx_dropped_inc(dev);
3700 return NULL;
3701}
3702
3703struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3704{
3705 struct sk_buff *next, *head = NULL, *tail;
3706
3707 for (; skb != NULL; skb = next) {
3708 next = skb->next;
3709 skb_mark_not_on_list(skb);
3710
3711 /* in case skb wont be segmented, point to itself */
3712 skb->prev = skb;
3713
3714 skb = validate_xmit_skb(skb, dev, again);
3715 if (!skb)
3716 continue;
3717
3718 if (!head)
3719 head = skb;
3720 else
3721 tail->next = skb;
3722 /* If skb was segmented, skb->prev points to
3723 * the last segment. If not, it still contains skb.
3724 */
3725 tail = skb->prev;
3726 }
3727 return head;
3728}
3729EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3730
3731static void qdisc_pkt_len_init(struct sk_buff *skb)
3732{
3733 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3734
3735 qdisc_skb_cb(skb)->pkt_len = skb->len;
3736
3737 /* To get more precise estimation of bytes sent on wire,
3738 * we add to pkt_len the headers size of all segments
3739 */
3740 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3741 unsigned int hdr_len;
3742 u16 gso_segs = shinfo->gso_segs;
3743
3744 /* mac layer + network layer */
3745 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3746
3747 /* + transport layer */
3748 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3749 const struct tcphdr *th;
3750 struct tcphdr _tcphdr;
3751
3752 th = skb_header_pointer(skb, skb_transport_offset(skb),
3753 sizeof(_tcphdr), &_tcphdr);
3754 if (likely(th))
3755 hdr_len += __tcp_hdrlen(th);
3756 } else {
3757 struct udphdr _udphdr;
3758
3759 if (skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_udphdr), &_udphdr))
3761 hdr_len += sizeof(struct udphdr);
3762 }
3763
3764 if (shinfo->gso_type & SKB_GSO_DODGY)
3765 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3766 shinfo->gso_size);
3767
3768 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3769 }
3770}
3771
3772static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3773 struct sk_buff **to_free,
3774 struct netdev_queue *txq)
3775{
3776 int rc;
3777
3778 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3779 if (rc == NET_XMIT_SUCCESS)
3780 trace_qdisc_enqueue(q, txq, skb);
3781 return rc;
3782}
3783
3784static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3785 struct net_device *dev,
3786 struct netdev_queue *txq)
3787{
3788 spinlock_t *root_lock = qdisc_lock(q);
3789 struct sk_buff *to_free = NULL;
3790 bool contended;
3791 int rc;
3792
3793 qdisc_calculate_pkt_len(skb, q);
3794
3795 if (q->flags & TCQ_F_NOLOCK) {
3796 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3797 qdisc_run_begin(q)) {
3798 /* Retest nolock_qdisc_is_empty() within the protection
3799 * of q->seqlock to protect from racing with requeuing.
3800 */
3801 if (unlikely(!nolock_qdisc_is_empty(q))) {
3802 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3803 __qdisc_run(q);
3804 qdisc_run_end(q);
3805
3806 goto no_lock_out;
3807 }
3808
3809 qdisc_bstats_cpu_update(q, skb);
3810 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3811 !nolock_qdisc_is_empty(q))
3812 __qdisc_run(q);
3813
3814 qdisc_run_end(q);
3815 return NET_XMIT_SUCCESS;
3816 }
3817
3818 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3819 qdisc_run(q);
3820
3821no_lock_out:
3822 if (unlikely(to_free))
3823 kfree_skb_list_reason(to_free,
3824 SKB_DROP_REASON_QDISC_DROP);
3825 return rc;
3826 }
3827
3828 /*
3829 * Heuristic to force contended enqueues to serialize on a
3830 * separate lock before trying to get qdisc main lock.
3831 * This permits qdisc->running owner to get the lock more
3832 * often and dequeue packets faster.
3833 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3834 * and then other tasks will only enqueue packets. The packets will be
3835 * sent after the qdisc owner is scheduled again. To prevent this
3836 * scenario the task always serialize on the lock.
3837 */
3838 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3839 if (unlikely(contended))
3840 spin_lock(&q->busylock);
3841
3842 spin_lock(root_lock);
3843 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3844 __qdisc_drop(skb, &to_free);
3845 rc = NET_XMIT_DROP;
3846 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3847 qdisc_run_begin(q)) {
3848 /*
3849 * This is a work-conserving queue; there are no old skbs
3850 * waiting to be sent out; and the qdisc is not running -
3851 * xmit the skb directly.
3852 */
3853
3854 qdisc_bstats_update(q, skb);
3855
3856 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3857 if (unlikely(contended)) {
3858 spin_unlock(&q->busylock);
3859 contended = false;
3860 }
3861 __qdisc_run(q);
3862 }
3863
3864 qdisc_run_end(q);
3865 rc = NET_XMIT_SUCCESS;
3866 } else {
3867 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3868 if (qdisc_run_begin(q)) {
3869 if (unlikely(contended)) {
3870 spin_unlock(&q->busylock);
3871 contended = false;
3872 }
3873 __qdisc_run(q);
3874 qdisc_run_end(q);
3875 }
3876 }
3877 spin_unlock(root_lock);
3878 if (unlikely(to_free))
3879 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3880 if (unlikely(contended))
3881 spin_unlock(&q->busylock);
3882 return rc;
3883}
3884
3885#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3886static void skb_update_prio(struct sk_buff *skb)
3887{
3888 const struct netprio_map *map;
3889 const struct sock *sk;
3890 unsigned int prioidx;
3891
3892 if (skb->priority)
3893 return;
3894 map = rcu_dereference_bh(skb->dev->priomap);
3895 if (!map)
3896 return;
3897 sk = skb_to_full_sk(skb);
3898 if (!sk)
3899 return;
3900
3901 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3902
3903 if (prioidx < map->priomap_len)
3904 skb->priority = map->priomap[prioidx];
3905}
3906#else
3907#define skb_update_prio(skb)
3908#endif
3909
3910/**
3911 * dev_loopback_xmit - loop back @skb
3912 * @net: network namespace this loopback is happening in
3913 * @sk: sk needed to be a netfilter okfn
3914 * @skb: buffer to transmit
3915 */
3916int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3917{
3918 skb_reset_mac_header(skb);
3919 __skb_pull(skb, skb_network_offset(skb));
3920 skb->pkt_type = PACKET_LOOPBACK;
3921 if (skb->ip_summed == CHECKSUM_NONE)
3922 skb->ip_summed = CHECKSUM_UNNECESSARY;
3923 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3924 skb_dst_force(skb);
3925 netif_rx(skb);
3926 return 0;
3927}
3928EXPORT_SYMBOL(dev_loopback_xmit);
3929
3930#ifdef CONFIG_NET_EGRESS
3931static struct sk_buff *
3932sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3933{
3934#ifdef CONFIG_NET_CLS_ACT
3935 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3936 struct tcf_result cl_res;
3937
3938 if (!miniq)
3939 return skb;
3940
3941 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3942 tc_skb_cb(skb)->mru = 0;
3943 tc_skb_cb(skb)->post_ct = false;
3944 mini_qdisc_bstats_cpu_update(miniq, skb);
3945
3946 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3947 case TC_ACT_OK:
3948 case TC_ACT_RECLASSIFY:
3949 skb->tc_index = TC_H_MIN(cl_res.classid);
3950 break;
3951 case TC_ACT_SHOT:
3952 mini_qdisc_qstats_cpu_drop(miniq);
3953 *ret = NET_XMIT_DROP;
3954 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3955 return NULL;
3956 case TC_ACT_STOLEN:
3957 case TC_ACT_QUEUED:
3958 case TC_ACT_TRAP:
3959 *ret = NET_XMIT_SUCCESS;
3960 consume_skb(skb);
3961 return NULL;
3962 case TC_ACT_REDIRECT:
3963 /* No need to push/pop skb's mac_header here on egress! */
3964 skb_do_redirect(skb);
3965 *ret = NET_XMIT_SUCCESS;
3966 return NULL;
3967 default:
3968 break;
3969 }
3970#endif /* CONFIG_NET_CLS_ACT */
3971
3972 return skb;
3973}
3974
3975static struct netdev_queue *
3976netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3977{
3978 int qm = skb_get_queue_mapping(skb);
3979
3980 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3981}
3982
3983static bool netdev_xmit_txqueue_skipped(void)
3984{
3985 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3986}
3987
3988void netdev_xmit_skip_txqueue(bool skip)
3989{
3990 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3991}
3992EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3993#endif /* CONFIG_NET_EGRESS */
3994
3995#ifdef CONFIG_XPS
3996static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3997 struct xps_dev_maps *dev_maps, unsigned int tci)
3998{
3999 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4000 struct xps_map *map;
4001 int queue_index = -1;
4002
4003 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4004 return queue_index;
4005
4006 tci *= dev_maps->num_tc;
4007 tci += tc;
4008
4009 map = rcu_dereference(dev_maps->attr_map[tci]);
4010 if (map) {
4011 if (map->len == 1)
4012 queue_index = map->queues[0];
4013 else
4014 queue_index = map->queues[reciprocal_scale(
4015 skb_get_hash(skb), map->len)];
4016 if (unlikely(queue_index >= dev->real_num_tx_queues))
4017 queue_index = -1;
4018 }
4019 return queue_index;
4020}
4021#endif
4022
4023static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4024 struct sk_buff *skb)
4025{
4026#ifdef CONFIG_XPS
4027 struct xps_dev_maps *dev_maps;
4028 struct sock *sk = skb->sk;
4029 int queue_index = -1;
4030
4031 if (!static_key_false(&xps_needed))
4032 return -1;
4033
4034 rcu_read_lock();
4035 if (!static_key_false(&xps_rxqs_needed))
4036 goto get_cpus_map;
4037
4038 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4039 if (dev_maps) {
4040 int tci = sk_rx_queue_get(sk);
4041
4042 if (tci >= 0)
4043 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4044 tci);
4045 }
4046
4047get_cpus_map:
4048 if (queue_index < 0) {
4049 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4050 if (dev_maps) {
4051 unsigned int tci = skb->sender_cpu - 1;
4052
4053 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054 tci);
4055 }
4056 }
4057 rcu_read_unlock();
4058
4059 return queue_index;
4060#else
4061 return -1;
4062#endif
4063}
4064
4065u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4066 struct net_device *sb_dev)
4067{
4068 return 0;
4069}
4070EXPORT_SYMBOL(dev_pick_tx_zero);
4071
4072u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4073 struct net_device *sb_dev)
4074{
4075 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4076}
4077EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4078
4079u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4080 struct net_device *sb_dev)
4081{
4082 struct sock *sk = skb->sk;
4083 int queue_index = sk_tx_queue_get(sk);
4084
4085 sb_dev = sb_dev ? : dev;
4086
4087 if (queue_index < 0 || skb->ooo_okay ||
4088 queue_index >= dev->real_num_tx_queues) {
4089 int new_index = get_xps_queue(dev, sb_dev, skb);
4090
4091 if (new_index < 0)
4092 new_index = skb_tx_hash(dev, sb_dev, skb);
4093
4094 if (queue_index != new_index && sk &&
4095 sk_fullsock(sk) &&
4096 rcu_access_pointer(sk->sk_dst_cache))
4097 sk_tx_queue_set(sk, new_index);
4098
4099 queue_index = new_index;
4100 }
4101
4102 return queue_index;
4103}
4104EXPORT_SYMBOL(netdev_pick_tx);
4105
4106struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4107 struct sk_buff *skb,
4108 struct net_device *sb_dev)
4109{
4110 int queue_index = 0;
4111
4112#ifdef CONFIG_XPS
4113 u32 sender_cpu = skb->sender_cpu - 1;
4114
4115 if (sender_cpu >= (u32)NR_CPUS)
4116 skb->sender_cpu = raw_smp_processor_id() + 1;
4117#endif
4118
4119 if (dev->real_num_tx_queues != 1) {
4120 const struct net_device_ops *ops = dev->netdev_ops;
4121
4122 if (ops->ndo_select_queue)
4123 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4124 else
4125 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4126
4127 queue_index = netdev_cap_txqueue(dev, queue_index);
4128 }
4129
4130 skb_set_queue_mapping(skb, queue_index);
4131 return netdev_get_tx_queue(dev, queue_index);
4132}
4133
4134/**
4135 * __dev_queue_xmit() - transmit a buffer
4136 * @skb: buffer to transmit
4137 * @sb_dev: suboordinate device used for L2 forwarding offload
4138 *
4139 * Queue a buffer for transmission to a network device. The caller must
4140 * have set the device and priority and built the buffer before calling
4141 * this function. The function can be called from an interrupt.
4142 *
4143 * When calling this method, interrupts MUST be enabled. This is because
4144 * the BH enable code must have IRQs enabled so that it will not deadlock.
4145 *
4146 * Regardless of the return value, the skb is consumed, so it is currently
4147 * difficult to retry a send to this method. (You can bump the ref count
4148 * before sending to hold a reference for retry if you are careful.)
4149 *
4150 * Return:
4151 * * 0 - buffer successfully transmitted
4152 * * positive qdisc return code - NET_XMIT_DROP etc.
4153 * * negative errno - other errors
4154 */
4155int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4156{
4157 struct net_device *dev = skb->dev;
4158 struct netdev_queue *txq = NULL;
4159 struct Qdisc *q;
4160 int rc = -ENOMEM;
4161 bool again = false;
4162
4163 skb_reset_mac_header(skb);
4164 skb_assert_len(skb);
4165
4166 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4167 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4168
4169 /* Disable soft irqs for various locks below. Also
4170 * stops preemption for RCU.
4171 */
4172 rcu_read_lock_bh();
4173
4174 skb_update_prio(skb);
4175
4176 qdisc_pkt_len_init(skb);
4177#ifdef CONFIG_NET_CLS_ACT
4178 skb->tc_at_ingress = 0;
4179#endif
4180#ifdef CONFIG_NET_EGRESS
4181 if (static_branch_unlikely(&egress_needed_key)) {
4182 if (nf_hook_egress_active()) {
4183 skb = nf_hook_egress(skb, &rc, dev);
4184 if (!skb)
4185 goto out;
4186 }
4187
4188 netdev_xmit_skip_txqueue(false);
4189
4190 nf_skip_egress(skb, true);
4191 skb = sch_handle_egress(skb, &rc, dev);
4192 if (!skb)
4193 goto out;
4194 nf_skip_egress(skb, false);
4195
4196 if (netdev_xmit_txqueue_skipped())
4197 txq = netdev_tx_queue_mapping(dev, skb);
4198 }
4199#endif
4200 /* If device/qdisc don't need skb->dst, release it right now while
4201 * its hot in this cpu cache.
4202 */
4203 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204 skb_dst_drop(skb);
4205 else
4206 skb_dst_force(skb);
4207
4208 if (!txq)
4209 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210
4211 q = rcu_dereference_bh(txq->qdisc);
4212
4213 trace_net_dev_queue(skb);
4214 if (q->enqueue) {
4215 rc = __dev_xmit_skb(skb, q, dev, txq);
4216 goto out;
4217 }
4218
4219 /* The device has no queue. Common case for software devices:
4220 * loopback, all the sorts of tunnels...
4221
4222 * Really, it is unlikely that netif_tx_lock protection is necessary
4223 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4224 * counters.)
4225 * However, it is possible, that they rely on protection
4226 * made by us here.
4227
4228 * Check this and shot the lock. It is not prone from deadlocks.
4229 *Either shot noqueue qdisc, it is even simpler 8)
4230 */
4231 if (dev->flags & IFF_UP) {
4232 int cpu = smp_processor_id(); /* ok because BHs are off */
4233
4234 /* Other cpus might concurrently change txq->xmit_lock_owner
4235 * to -1 or to their cpu id, but not to our id.
4236 */
4237 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4238 if (dev_xmit_recursion())
4239 goto recursion_alert;
4240
4241 skb = validate_xmit_skb(skb, dev, &again);
4242 if (!skb)
4243 goto out;
4244
4245 HARD_TX_LOCK(dev, txq, cpu);
4246
4247 if (!netif_xmit_stopped(txq)) {
4248 dev_xmit_recursion_inc();
4249 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4250 dev_xmit_recursion_dec();
4251 if (dev_xmit_complete(rc)) {
4252 HARD_TX_UNLOCK(dev, txq);
4253 goto out;
4254 }
4255 }
4256 HARD_TX_UNLOCK(dev, txq);
4257 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4258 dev->name);
4259 } else {
4260 /* Recursion is detected! It is possible,
4261 * unfortunately
4262 */
4263recursion_alert:
4264 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4265 dev->name);
4266 }
4267 }
4268
4269 rc = -ENETDOWN;
4270 rcu_read_unlock_bh();
4271
4272 dev_core_stats_tx_dropped_inc(dev);
4273 kfree_skb_list(skb);
4274 return rc;
4275out:
4276 rcu_read_unlock_bh();
4277 return rc;
4278}
4279EXPORT_SYMBOL(__dev_queue_xmit);
4280
4281int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4282{
4283 struct net_device *dev = skb->dev;
4284 struct sk_buff *orig_skb = skb;
4285 struct netdev_queue *txq;
4286 int ret = NETDEV_TX_BUSY;
4287 bool again = false;
4288
4289 if (unlikely(!netif_running(dev) ||
4290 !netif_carrier_ok(dev)))
4291 goto drop;
4292
4293 skb = validate_xmit_skb_list(skb, dev, &again);
4294 if (skb != orig_skb)
4295 goto drop;
4296
4297 skb_set_queue_mapping(skb, queue_id);
4298 txq = skb_get_tx_queue(dev, skb);
4299
4300 local_bh_disable();
4301
4302 dev_xmit_recursion_inc();
4303 HARD_TX_LOCK(dev, txq, smp_processor_id());
4304 if (!netif_xmit_frozen_or_drv_stopped(txq))
4305 ret = netdev_start_xmit(skb, dev, txq, false);
4306 HARD_TX_UNLOCK(dev, txq);
4307 dev_xmit_recursion_dec();
4308
4309 local_bh_enable();
4310 return ret;
4311drop:
4312 dev_core_stats_tx_dropped_inc(dev);
4313 kfree_skb_list(skb);
4314 return NET_XMIT_DROP;
4315}
4316EXPORT_SYMBOL(__dev_direct_xmit);
4317
4318/*************************************************************************
4319 * Receiver routines
4320 *************************************************************************/
4321
4322int netdev_max_backlog __read_mostly = 1000;
4323EXPORT_SYMBOL(netdev_max_backlog);
4324
4325int netdev_tstamp_prequeue __read_mostly = 1;
4326unsigned int sysctl_skb_defer_max __read_mostly = 64;
4327int netdev_budget __read_mostly = 300;
4328/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4329unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4330int weight_p __read_mostly = 64; /* old backlog weight */
4331int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4332int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4333int dev_rx_weight __read_mostly = 64;
4334int dev_tx_weight __read_mostly = 64;
4335
4336/* Called with irq disabled */
4337static inline void ____napi_schedule(struct softnet_data *sd,
4338 struct napi_struct *napi)
4339{
4340 struct task_struct *thread;
4341
4342 lockdep_assert_irqs_disabled();
4343
4344 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4345 /* Paired with smp_mb__before_atomic() in
4346 * napi_enable()/dev_set_threaded().
4347 * Use READ_ONCE() to guarantee a complete
4348 * read on napi->thread. Only call
4349 * wake_up_process() when it's not NULL.
4350 */
4351 thread = READ_ONCE(napi->thread);
4352 if (thread) {
4353 /* Avoid doing set_bit() if the thread is in
4354 * INTERRUPTIBLE state, cause napi_thread_wait()
4355 * makes sure to proceed with napi polling
4356 * if the thread is explicitly woken from here.
4357 */
4358 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4359 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4360 wake_up_process(thread);
4361 return;
4362 }
4363 }
4364
4365 list_add_tail(&napi->poll_list, &sd->poll_list);
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367}
4368
4369#ifdef CONFIG_RPS
4370
4371/* One global table that all flow-based protocols share. */
4372struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373EXPORT_SYMBOL(rps_sock_flow_table);
4374u32 rps_cpu_mask __read_mostly;
4375EXPORT_SYMBOL(rps_cpu_mask);
4376
4377struct static_key_false rps_needed __read_mostly;
4378EXPORT_SYMBOL(rps_needed);
4379struct static_key_false rfs_needed __read_mostly;
4380EXPORT_SYMBOL(rfs_needed);
4381
4382static struct rps_dev_flow *
4383set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384 struct rps_dev_flow *rflow, u16 next_cpu)
4385{
4386 if (next_cpu < nr_cpu_ids) {
4387#ifdef CONFIG_RFS_ACCEL
4388 struct netdev_rx_queue *rxqueue;
4389 struct rps_dev_flow_table *flow_table;
4390 struct rps_dev_flow *old_rflow;
4391 u32 flow_id;
4392 u16 rxq_index;
4393 int rc;
4394
4395 /* Should we steer this flow to a different hardware queue? */
4396 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397 !(dev->features & NETIF_F_NTUPLE))
4398 goto out;
4399 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400 if (rxq_index == skb_get_rx_queue(skb))
4401 goto out;
4402
4403 rxqueue = dev->_rx + rxq_index;
4404 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4405 if (!flow_table)
4406 goto out;
4407 flow_id = skb_get_hash(skb) & flow_table->mask;
4408 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409 rxq_index, flow_id);
4410 if (rc < 0)
4411 goto out;
4412 old_rflow = rflow;
4413 rflow = &flow_table->flows[flow_id];
4414 rflow->filter = rc;
4415 if (old_rflow->filter == rflow->filter)
4416 old_rflow->filter = RPS_NO_FILTER;
4417 out:
4418#endif
4419 rflow->last_qtail =
4420 per_cpu(softnet_data, next_cpu).input_queue_head;
4421 }
4422
4423 rflow->cpu = next_cpu;
4424 return rflow;
4425}
4426
4427/*
4428 * get_rps_cpu is called from netif_receive_skb and returns the target
4429 * CPU from the RPS map of the receiving queue for a given skb.
4430 * rcu_read_lock must be held on entry.
4431 */
4432static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433 struct rps_dev_flow **rflowp)
4434{
4435 const struct rps_sock_flow_table *sock_flow_table;
4436 struct netdev_rx_queue *rxqueue = dev->_rx;
4437 struct rps_dev_flow_table *flow_table;
4438 struct rps_map *map;
4439 int cpu = -1;
4440 u32 tcpu;
4441 u32 hash;
4442
4443 if (skb_rx_queue_recorded(skb)) {
4444 u16 index = skb_get_rx_queue(skb);
4445
4446 if (unlikely(index >= dev->real_num_rx_queues)) {
4447 WARN_ONCE(dev->real_num_rx_queues > 1,
4448 "%s received packet on queue %u, but number "
4449 "of RX queues is %u\n",
4450 dev->name, index, dev->real_num_rx_queues);
4451 goto done;
4452 }
4453 rxqueue += index;
4454 }
4455
4456 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4457
4458 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459 map = rcu_dereference(rxqueue->rps_map);
4460 if (!flow_table && !map)
4461 goto done;
4462
4463 skb_reset_network_header(skb);
4464 hash = skb_get_hash(skb);
4465 if (!hash)
4466 goto done;
4467
4468 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469 if (flow_table && sock_flow_table) {
4470 struct rps_dev_flow *rflow;
4471 u32 next_cpu;
4472 u32 ident;
4473
4474 /* First check into global flow table if there is a match */
4475 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4476 if ((ident ^ hash) & ~rps_cpu_mask)
4477 goto try_rps;
4478
4479 next_cpu = ident & rps_cpu_mask;
4480
4481 /* OK, now we know there is a match,
4482 * we can look at the local (per receive queue) flow table
4483 */
4484 rflow = &flow_table->flows[hash & flow_table->mask];
4485 tcpu = rflow->cpu;
4486
4487 /*
4488 * If the desired CPU (where last recvmsg was done) is
4489 * different from current CPU (one in the rx-queue flow
4490 * table entry), switch if one of the following holds:
4491 * - Current CPU is unset (>= nr_cpu_ids).
4492 * - Current CPU is offline.
4493 * - The current CPU's queue tail has advanced beyond the
4494 * last packet that was enqueued using this table entry.
4495 * This guarantees that all previous packets for the flow
4496 * have been dequeued, thus preserving in order delivery.
4497 */
4498 if (unlikely(tcpu != next_cpu) &&
4499 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4500 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4501 rflow->last_qtail)) >= 0)) {
4502 tcpu = next_cpu;
4503 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4504 }
4505
4506 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4507 *rflowp = rflow;
4508 cpu = tcpu;
4509 goto done;
4510 }
4511 }
4512
4513try_rps:
4514
4515 if (map) {
4516 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4517 if (cpu_online(tcpu)) {
4518 cpu = tcpu;
4519 goto done;
4520 }
4521 }
4522
4523done:
4524 return cpu;
4525}
4526
4527#ifdef CONFIG_RFS_ACCEL
4528
4529/**
4530 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4531 * @dev: Device on which the filter was set
4532 * @rxq_index: RX queue index
4533 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4534 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4535 *
4536 * Drivers that implement ndo_rx_flow_steer() should periodically call
4537 * this function for each installed filter and remove the filters for
4538 * which it returns %true.
4539 */
4540bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4541 u32 flow_id, u16 filter_id)
4542{
4543 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4544 struct rps_dev_flow_table *flow_table;
4545 struct rps_dev_flow *rflow;
4546 bool expire = true;
4547 unsigned int cpu;
4548
4549 rcu_read_lock();
4550 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4551 if (flow_table && flow_id <= flow_table->mask) {
4552 rflow = &flow_table->flows[flow_id];
4553 cpu = READ_ONCE(rflow->cpu);
4554 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4555 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4556 rflow->last_qtail) <
4557 (int)(10 * flow_table->mask)))
4558 expire = false;
4559 }
4560 rcu_read_unlock();
4561 return expire;
4562}
4563EXPORT_SYMBOL(rps_may_expire_flow);
4564
4565#endif /* CONFIG_RFS_ACCEL */
4566
4567/* Called from hardirq (IPI) context */
4568static void rps_trigger_softirq(void *data)
4569{
4570 struct softnet_data *sd = data;
4571
4572 ____napi_schedule(sd, &sd->backlog);
4573 sd->received_rps++;
4574}
4575
4576#endif /* CONFIG_RPS */
4577
4578/* Called from hardirq (IPI) context */
4579static void trigger_rx_softirq(void *data)
4580{
4581 struct softnet_data *sd = data;
4582
4583 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 smp_store_release(&sd->defer_ipi_scheduled, 0);
4585}
4586
4587/*
4588 * Check if this softnet_data structure is another cpu one
4589 * If yes, queue it to our IPI list and return 1
4590 * If no, return 0
4591 */
4592static int napi_schedule_rps(struct softnet_data *sd)
4593{
4594 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596#ifdef CONFIG_RPS
4597 if (sd != mysd) {
4598 sd->rps_ipi_next = mysd->rps_ipi_list;
4599 mysd->rps_ipi_list = sd;
4600
4601 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4602 return 1;
4603 }
4604#endif /* CONFIG_RPS */
4605 __napi_schedule_irqoff(&mysd->backlog);
4606 return 0;
4607}
4608
4609#ifdef CONFIG_NET_FLOW_LIMIT
4610int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4611#endif
4612
4613static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4614{
4615#ifdef CONFIG_NET_FLOW_LIMIT
4616 struct sd_flow_limit *fl;
4617 struct softnet_data *sd;
4618 unsigned int old_flow, new_flow;
4619
4620 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4621 return false;
4622
4623 sd = this_cpu_ptr(&softnet_data);
4624
4625 rcu_read_lock();
4626 fl = rcu_dereference(sd->flow_limit);
4627 if (fl) {
4628 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4629 old_flow = fl->history[fl->history_head];
4630 fl->history[fl->history_head] = new_flow;
4631
4632 fl->history_head++;
4633 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4634
4635 if (likely(fl->buckets[old_flow]))
4636 fl->buckets[old_flow]--;
4637
4638 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4639 fl->count++;
4640 rcu_read_unlock();
4641 return true;
4642 }
4643 }
4644 rcu_read_unlock();
4645#endif
4646 return false;
4647}
4648
4649/*
4650 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4651 * queue (may be a remote CPU queue).
4652 */
4653static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4654 unsigned int *qtail)
4655{
4656 enum skb_drop_reason reason;
4657 struct softnet_data *sd;
4658 unsigned long flags;
4659 unsigned int qlen;
4660
4661 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4662 sd = &per_cpu(softnet_data, cpu);
4663
4664 rps_lock_irqsave(sd, &flags);
4665 if (!netif_running(skb->dev))
4666 goto drop;
4667 qlen = skb_queue_len(&sd->input_pkt_queue);
4668 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4669 if (qlen) {
4670enqueue:
4671 __skb_queue_tail(&sd->input_pkt_queue, skb);
4672 input_queue_tail_incr_save(sd, qtail);
4673 rps_unlock_irq_restore(sd, &flags);
4674 return NET_RX_SUCCESS;
4675 }
4676
4677 /* Schedule NAPI for backlog device
4678 * We can use non atomic operation since we own the queue lock
4679 */
4680 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4681 napi_schedule_rps(sd);
4682 goto enqueue;
4683 }
4684 reason = SKB_DROP_REASON_CPU_BACKLOG;
4685
4686drop:
4687 sd->dropped++;
4688 rps_unlock_irq_restore(sd, &flags);
4689
4690 dev_core_stats_rx_dropped_inc(skb->dev);
4691 kfree_skb_reason(skb, reason);
4692 return NET_RX_DROP;
4693}
4694
4695static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4696{
4697 struct net_device *dev = skb->dev;
4698 struct netdev_rx_queue *rxqueue;
4699
4700 rxqueue = dev->_rx;
4701
4702 if (skb_rx_queue_recorded(skb)) {
4703 u16 index = skb_get_rx_queue(skb);
4704
4705 if (unlikely(index >= dev->real_num_rx_queues)) {
4706 WARN_ONCE(dev->real_num_rx_queues > 1,
4707 "%s received packet on queue %u, but number "
4708 "of RX queues is %u\n",
4709 dev->name, index, dev->real_num_rx_queues);
4710
4711 return rxqueue; /* Return first rxqueue */
4712 }
4713 rxqueue += index;
4714 }
4715 return rxqueue;
4716}
4717
4718u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4719 struct bpf_prog *xdp_prog)
4720{
4721 void *orig_data, *orig_data_end, *hard_start;
4722 struct netdev_rx_queue *rxqueue;
4723 bool orig_bcast, orig_host;
4724 u32 mac_len, frame_sz;
4725 __be16 orig_eth_type;
4726 struct ethhdr *eth;
4727 u32 metalen, act;
4728 int off;
4729
4730 /* The XDP program wants to see the packet starting at the MAC
4731 * header.
4732 */
4733 mac_len = skb->data - skb_mac_header(skb);
4734 hard_start = skb->data - skb_headroom(skb);
4735
4736 /* SKB "head" area always have tailroom for skb_shared_info */
4737 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4738 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4739
4740 rxqueue = netif_get_rxqueue(skb);
4741 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4742 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4743 skb_headlen(skb) + mac_len, true);
4744
4745 orig_data_end = xdp->data_end;
4746 orig_data = xdp->data;
4747 eth = (struct ethhdr *)xdp->data;
4748 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4749 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4750 orig_eth_type = eth->h_proto;
4751
4752 act = bpf_prog_run_xdp(xdp_prog, xdp);
4753
4754 /* check if bpf_xdp_adjust_head was used */
4755 off = xdp->data - orig_data;
4756 if (off) {
4757 if (off > 0)
4758 __skb_pull(skb, off);
4759 else if (off < 0)
4760 __skb_push(skb, -off);
4761
4762 skb->mac_header += off;
4763 skb_reset_network_header(skb);
4764 }
4765
4766 /* check if bpf_xdp_adjust_tail was used */
4767 off = xdp->data_end - orig_data_end;
4768 if (off != 0) {
4769 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4770 skb->len += off; /* positive on grow, negative on shrink */
4771 }
4772
4773 /* check if XDP changed eth hdr such SKB needs update */
4774 eth = (struct ethhdr *)xdp->data;
4775 if ((orig_eth_type != eth->h_proto) ||
4776 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4777 skb->dev->dev_addr)) ||
4778 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4779 __skb_push(skb, ETH_HLEN);
4780 skb->pkt_type = PACKET_HOST;
4781 skb->protocol = eth_type_trans(skb, skb->dev);
4782 }
4783
4784 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4785 * before calling us again on redirect path. We do not call do_redirect
4786 * as we leave that up to the caller.
4787 *
4788 * Caller is responsible for managing lifetime of skb (i.e. calling
4789 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4790 */
4791 switch (act) {
4792 case XDP_REDIRECT:
4793 case XDP_TX:
4794 __skb_push(skb, mac_len);
4795 break;
4796 case XDP_PASS:
4797 metalen = xdp->data - xdp->data_meta;
4798 if (metalen)
4799 skb_metadata_set(skb, metalen);
4800 break;
4801 }
4802
4803 return act;
4804}
4805
4806static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4807 struct xdp_buff *xdp,
4808 struct bpf_prog *xdp_prog)
4809{
4810 u32 act = XDP_DROP;
4811
4812 /* Reinjected packets coming from act_mirred or similar should
4813 * not get XDP generic processing.
4814 */
4815 if (skb_is_redirected(skb))
4816 return XDP_PASS;
4817
4818 /* XDP packets must be linear and must have sufficient headroom
4819 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4820 * native XDP provides, thus we need to do it here as well.
4821 */
4822 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4823 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4824 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4825 int troom = skb->tail + skb->data_len - skb->end;
4826
4827 /* In case we have to go down the path and also linearize,
4828 * then lets do the pskb_expand_head() work just once here.
4829 */
4830 if (pskb_expand_head(skb,
4831 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4832 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4833 goto do_drop;
4834 if (skb_linearize(skb))
4835 goto do_drop;
4836 }
4837
4838 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4839 switch (act) {
4840 case XDP_REDIRECT:
4841 case XDP_TX:
4842 case XDP_PASS:
4843 break;
4844 default:
4845 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4846 fallthrough;
4847 case XDP_ABORTED:
4848 trace_xdp_exception(skb->dev, xdp_prog, act);
4849 fallthrough;
4850 case XDP_DROP:
4851 do_drop:
4852 kfree_skb(skb);
4853 break;
4854 }
4855
4856 return act;
4857}
4858
4859/* When doing generic XDP we have to bypass the qdisc layer and the
4860 * network taps in order to match in-driver-XDP behavior. This also means
4861 * that XDP packets are able to starve other packets going through a qdisc,
4862 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4863 * queues, so they do not have this starvation issue.
4864 */
4865void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4866{
4867 struct net_device *dev = skb->dev;
4868 struct netdev_queue *txq;
4869 bool free_skb = true;
4870 int cpu, rc;
4871
4872 txq = netdev_core_pick_tx(dev, skb, NULL);
4873 cpu = smp_processor_id();
4874 HARD_TX_LOCK(dev, txq, cpu);
4875 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4876 rc = netdev_start_xmit(skb, dev, txq, 0);
4877 if (dev_xmit_complete(rc))
4878 free_skb = false;
4879 }
4880 HARD_TX_UNLOCK(dev, txq);
4881 if (free_skb) {
4882 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4883 dev_core_stats_tx_dropped_inc(dev);
4884 kfree_skb(skb);
4885 }
4886}
4887
4888static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4889
4890int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4891{
4892 if (xdp_prog) {
4893 struct xdp_buff xdp;
4894 u32 act;
4895 int err;
4896
4897 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4898 if (act != XDP_PASS) {
4899 switch (act) {
4900 case XDP_REDIRECT:
4901 err = xdp_do_generic_redirect(skb->dev, skb,
4902 &xdp, xdp_prog);
4903 if (err)
4904 goto out_redir;
4905 break;
4906 case XDP_TX:
4907 generic_xdp_tx(skb, xdp_prog);
4908 break;
4909 }
4910 return XDP_DROP;
4911 }
4912 }
4913 return XDP_PASS;
4914out_redir:
4915 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4916 return XDP_DROP;
4917}
4918EXPORT_SYMBOL_GPL(do_xdp_generic);
4919
4920static int netif_rx_internal(struct sk_buff *skb)
4921{
4922 int ret;
4923
4924 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4925
4926 trace_netif_rx(skb);
4927
4928#ifdef CONFIG_RPS
4929 if (static_branch_unlikely(&rps_needed)) {
4930 struct rps_dev_flow voidflow, *rflow = &voidflow;
4931 int cpu;
4932
4933 rcu_read_lock();
4934
4935 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4936 if (cpu < 0)
4937 cpu = smp_processor_id();
4938
4939 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4940
4941 rcu_read_unlock();
4942 } else
4943#endif
4944 {
4945 unsigned int qtail;
4946
4947 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4948 }
4949 return ret;
4950}
4951
4952/**
4953 * __netif_rx - Slightly optimized version of netif_rx
4954 * @skb: buffer to post
4955 *
4956 * This behaves as netif_rx except that it does not disable bottom halves.
4957 * As a result this function may only be invoked from the interrupt context
4958 * (either hard or soft interrupt).
4959 */
4960int __netif_rx(struct sk_buff *skb)
4961{
4962 int ret;
4963
4964 lockdep_assert_once(hardirq_count() | softirq_count());
4965
4966 trace_netif_rx_entry(skb);
4967 ret = netif_rx_internal(skb);
4968 trace_netif_rx_exit(ret);
4969 return ret;
4970}
4971EXPORT_SYMBOL(__netif_rx);
4972
4973/**
4974 * netif_rx - post buffer to the network code
4975 * @skb: buffer to post
4976 *
4977 * This function receives a packet from a device driver and queues it for
4978 * the upper (protocol) levels to process via the backlog NAPI device. It
4979 * always succeeds. The buffer may be dropped during processing for
4980 * congestion control or by the protocol layers.
4981 * The network buffer is passed via the backlog NAPI device. Modern NIC
4982 * driver should use NAPI and GRO.
4983 * This function can used from interrupt and from process context. The
4984 * caller from process context must not disable interrupts before invoking
4985 * this function.
4986 *
4987 * return values:
4988 * NET_RX_SUCCESS (no congestion)
4989 * NET_RX_DROP (packet was dropped)
4990 *
4991 */
4992int netif_rx(struct sk_buff *skb)
4993{
4994 bool need_bh_off = !(hardirq_count() | softirq_count());
4995 int ret;
4996
4997 if (need_bh_off)
4998 local_bh_disable();
4999 trace_netif_rx_entry(skb);
5000 ret = netif_rx_internal(skb);
5001 trace_netif_rx_exit(ret);
5002 if (need_bh_off)
5003 local_bh_enable();
5004 return ret;
5005}
5006EXPORT_SYMBOL(netif_rx);
5007
5008static __latent_entropy void net_tx_action(struct softirq_action *h)
5009{
5010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5011
5012 if (sd->completion_queue) {
5013 struct sk_buff *clist;
5014
5015 local_irq_disable();
5016 clist = sd->completion_queue;
5017 sd->completion_queue = NULL;
5018 local_irq_enable();
5019
5020 while (clist) {
5021 struct sk_buff *skb = clist;
5022
5023 clist = clist->next;
5024
5025 WARN_ON(refcount_read(&skb->users));
5026 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5027 trace_consume_skb(skb);
5028 else
5029 trace_kfree_skb(skb, net_tx_action,
5030 SKB_DROP_REASON_NOT_SPECIFIED);
5031
5032 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5033 __kfree_skb(skb);
5034 else
5035 __kfree_skb_defer(skb);
5036 }
5037 }
5038
5039 if (sd->output_queue) {
5040 struct Qdisc *head;
5041
5042 local_irq_disable();
5043 head = sd->output_queue;
5044 sd->output_queue = NULL;
5045 sd->output_queue_tailp = &sd->output_queue;
5046 local_irq_enable();
5047
5048 rcu_read_lock();
5049
5050 while (head) {
5051 struct Qdisc *q = head;
5052 spinlock_t *root_lock = NULL;
5053
5054 head = head->next_sched;
5055
5056 /* We need to make sure head->next_sched is read
5057 * before clearing __QDISC_STATE_SCHED
5058 */
5059 smp_mb__before_atomic();
5060
5061 if (!(q->flags & TCQ_F_NOLOCK)) {
5062 root_lock = qdisc_lock(q);
5063 spin_lock(root_lock);
5064 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5065 &q->state))) {
5066 /* There is a synchronize_net() between
5067 * STATE_DEACTIVATED flag being set and
5068 * qdisc_reset()/some_qdisc_is_busy() in
5069 * dev_deactivate(), so we can safely bail out
5070 * early here to avoid data race between
5071 * qdisc_deactivate() and some_qdisc_is_busy()
5072 * for lockless qdisc.
5073 */
5074 clear_bit(__QDISC_STATE_SCHED, &q->state);
5075 continue;
5076 }
5077
5078 clear_bit(__QDISC_STATE_SCHED, &q->state);
5079 qdisc_run(q);
5080 if (root_lock)
5081 spin_unlock(root_lock);
5082 }
5083
5084 rcu_read_unlock();
5085 }
5086
5087 xfrm_dev_backlog(sd);
5088}
5089
5090#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5091/* This hook is defined here for ATM LANE */
5092int (*br_fdb_test_addr_hook)(struct net_device *dev,
5093 unsigned char *addr) __read_mostly;
5094EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5095#endif
5096
5097static inline struct sk_buff *
5098sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5099 struct net_device *orig_dev, bool *another)
5100{
5101#ifdef CONFIG_NET_CLS_ACT
5102 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5103 struct tcf_result cl_res;
5104
5105 /* If there's at least one ingress present somewhere (so
5106 * we get here via enabled static key), remaining devices
5107 * that are not configured with an ingress qdisc will bail
5108 * out here.
5109 */
5110 if (!miniq)
5111 return skb;
5112
5113 if (*pt_prev) {
5114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5115 *pt_prev = NULL;
5116 }
5117
5118 qdisc_skb_cb(skb)->pkt_len = skb->len;
5119 tc_skb_cb(skb)->mru = 0;
5120 tc_skb_cb(skb)->post_ct = false;
5121 skb->tc_at_ingress = 1;
5122 mini_qdisc_bstats_cpu_update(miniq, skb);
5123
5124 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5125 case TC_ACT_OK:
5126 case TC_ACT_RECLASSIFY:
5127 skb->tc_index = TC_H_MIN(cl_res.classid);
5128 break;
5129 case TC_ACT_SHOT:
5130 mini_qdisc_qstats_cpu_drop(miniq);
5131 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5132 *ret = NET_RX_DROP;
5133 return NULL;
5134 case TC_ACT_STOLEN:
5135 case TC_ACT_QUEUED:
5136 case TC_ACT_TRAP:
5137 consume_skb(skb);
5138 *ret = NET_RX_SUCCESS;
5139 return NULL;
5140 case TC_ACT_REDIRECT:
5141 /* skb_mac_header check was done by cls/act_bpf, so
5142 * we can safely push the L2 header back before
5143 * redirecting to another netdev
5144 */
5145 __skb_push(skb, skb->mac_len);
5146 if (skb_do_redirect(skb) == -EAGAIN) {
5147 __skb_pull(skb, skb->mac_len);
5148 *another = true;
5149 break;
5150 }
5151 *ret = NET_RX_SUCCESS;
5152 return NULL;
5153 case TC_ACT_CONSUMED:
5154 *ret = NET_RX_SUCCESS;
5155 return NULL;
5156 default:
5157 break;
5158 }
5159#endif /* CONFIG_NET_CLS_ACT */
5160 return skb;
5161}
5162
5163/**
5164 * netdev_is_rx_handler_busy - check if receive handler is registered
5165 * @dev: device to check
5166 *
5167 * Check if a receive handler is already registered for a given device.
5168 * Return true if there one.
5169 *
5170 * The caller must hold the rtnl_mutex.
5171 */
5172bool netdev_is_rx_handler_busy(struct net_device *dev)
5173{
5174 ASSERT_RTNL();
5175 return dev && rtnl_dereference(dev->rx_handler);
5176}
5177EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5178
5179/**
5180 * netdev_rx_handler_register - register receive handler
5181 * @dev: device to register a handler for
5182 * @rx_handler: receive handler to register
5183 * @rx_handler_data: data pointer that is used by rx handler
5184 *
5185 * Register a receive handler for a device. This handler will then be
5186 * called from __netif_receive_skb. A negative errno code is returned
5187 * on a failure.
5188 *
5189 * The caller must hold the rtnl_mutex.
5190 *
5191 * For a general description of rx_handler, see enum rx_handler_result.
5192 */
5193int netdev_rx_handler_register(struct net_device *dev,
5194 rx_handler_func_t *rx_handler,
5195 void *rx_handler_data)
5196{
5197 if (netdev_is_rx_handler_busy(dev))
5198 return -EBUSY;
5199
5200 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5201 return -EINVAL;
5202
5203 /* Note: rx_handler_data must be set before rx_handler */
5204 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5205 rcu_assign_pointer(dev->rx_handler, rx_handler);
5206
5207 return 0;
5208}
5209EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5210
5211/**
5212 * netdev_rx_handler_unregister - unregister receive handler
5213 * @dev: device to unregister a handler from
5214 *
5215 * Unregister a receive handler from a device.
5216 *
5217 * The caller must hold the rtnl_mutex.
5218 */
5219void netdev_rx_handler_unregister(struct net_device *dev)
5220{
5221
5222 ASSERT_RTNL();
5223 RCU_INIT_POINTER(dev->rx_handler, NULL);
5224 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5225 * section has a guarantee to see a non NULL rx_handler_data
5226 * as well.
5227 */
5228 synchronize_net();
5229 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5230}
5231EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5232
5233/*
5234 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5235 * the special handling of PFMEMALLOC skbs.
5236 */
5237static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5238{
5239 switch (skb->protocol) {
5240 case htons(ETH_P_ARP):
5241 case htons(ETH_P_IP):
5242 case htons(ETH_P_IPV6):
5243 case htons(ETH_P_8021Q):
5244 case htons(ETH_P_8021AD):
5245 return true;
5246 default:
5247 return false;
5248 }
5249}
5250
5251static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5252 int *ret, struct net_device *orig_dev)
5253{
5254 if (nf_hook_ingress_active(skb)) {
5255 int ingress_retval;
5256
5257 if (*pt_prev) {
5258 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5259 *pt_prev = NULL;
5260 }
5261
5262 rcu_read_lock();
5263 ingress_retval = nf_hook_ingress(skb);
5264 rcu_read_unlock();
5265 return ingress_retval;
5266 }
5267 return 0;
5268}
5269
5270static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5271 struct packet_type **ppt_prev)
5272{
5273 struct packet_type *ptype, *pt_prev;
5274 rx_handler_func_t *rx_handler;
5275 struct sk_buff *skb = *pskb;
5276 struct net_device *orig_dev;
5277 bool deliver_exact = false;
5278 int ret = NET_RX_DROP;
5279 __be16 type;
5280
5281 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5282
5283 trace_netif_receive_skb(skb);
5284
5285 orig_dev = skb->dev;
5286
5287 skb_reset_network_header(skb);
5288 if (!skb_transport_header_was_set(skb))
5289 skb_reset_transport_header(skb);
5290 skb_reset_mac_len(skb);
5291
5292 pt_prev = NULL;
5293
5294another_round:
5295 skb->skb_iif = skb->dev->ifindex;
5296
5297 __this_cpu_inc(softnet_data.processed);
5298
5299 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5300 int ret2;
5301
5302 migrate_disable();
5303 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5304 migrate_enable();
5305
5306 if (ret2 != XDP_PASS) {
5307 ret = NET_RX_DROP;
5308 goto out;
5309 }
5310 }
5311
5312 if (eth_type_vlan(skb->protocol)) {
5313 skb = skb_vlan_untag(skb);
5314 if (unlikely(!skb))
5315 goto out;
5316 }
5317
5318 if (skb_skip_tc_classify(skb))
5319 goto skip_classify;
5320
5321 if (pfmemalloc)
5322 goto skip_taps;
5323
5324 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5325 if (pt_prev)
5326 ret = deliver_skb(skb, pt_prev, orig_dev);
5327 pt_prev = ptype;
5328 }
5329
5330 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5331 if (pt_prev)
5332 ret = deliver_skb(skb, pt_prev, orig_dev);
5333 pt_prev = ptype;
5334 }
5335
5336skip_taps:
5337#ifdef CONFIG_NET_INGRESS
5338 if (static_branch_unlikely(&ingress_needed_key)) {
5339 bool another = false;
5340
5341 nf_skip_egress(skb, true);
5342 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5343 &another);
5344 if (another)
5345 goto another_round;
5346 if (!skb)
5347 goto out;
5348
5349 nf_skip_egress(skb, false);
5350 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5351 goto out;
5352 }
5353#endif
5354 skb_reset_redirect(skb);
5355skip_classify:
5356 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5357 goto drop;
5358
5359 if (skb_vlan_tag_present(skb)) {
5360 if (pt_prev) {
5361 ret = deliver_skb(skb, pt_prev, orig_dev);
5362 pt_prev = NULL;
5363 }
5364 if (vlan_do_receive(&skb))
5365 goto another_round;
5366 else if (unlikely(!skb))
5367 goto out;
5368 }
5369
5370 rx_handler = rcu_dereference(skb->dev->rx_handler);
5371 if (rx_handler) {
5372 if (pt_prev) {
5373 ret = deliver_skb(skb, pt_prev, orig_dev);
5374 pt_prev = NULL;
5375 }
5376 switch (rx_handler(&skb)) {
5377 case RX_HANDLER_CONSUMED:
5378 ret = NET_RX_SUCCESS;
5379 goto out;
5380 case RX_HANDLER_ANOTHER:
5381 goto another_round;
5382 case RX_HANDLER_EXACT:
5383 deliver_exact = true;
5384 break;
5385 case RX_HANDLER_PASS:
5386 break;
5387 default:
5388 BUG();
5389 }
5390 }
5391
5392 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5393check_vlan_id:
5394 if (skb_vlan_tag_get_id(skb)) {
5395 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5396 * find vlan device.
5397 */
5398 skb->pkt_type = PACKET_OTHERHOST;
5399 } else if (eth_type_vlan(skb->protocol)) {
5400 /* Outer header is 802.1P with vlan 0, inner header is
5401 * 802.1Q or 802.1AD and vlan_do_receive() above could
5402 * not find vlan dev for vlan id 0.
5403 */
5404 __vlan_hwaccel_clear_tag(skb);
5405 skb = skb_vlan_untag(skb);
5406 if (unlikely(!skb))
5407 goto out;
5408 if (vlan_do_receive(&skb))
5409 /* After stripping off 802.1P header with vlan 0
5410 * vlan dev is found for inner header.
5411 */
5412 goto another_round;
5413 else if (unlikely(!skb))
5414 goto out;
5415 else
5416 /* We have stripped outer 802.1P vlan 0 header.
5417 * But could not find vlan dev.
5418 * check again for vlan id to set OTHERHOST.
5419 */
5420 goto check_vlan_id;
5421 }
5422 /* Note: we might in the future use prio bits
5423 * and set skb->priority like in vlan_do_receive()
5424 * For the time being, just ignore Priority Code Point
5425 */
5426 __vlan_hwaccel_clear_tag(skb);
5427 }
5428
5429 type = skb->protocol;
5430
5431 /* deliver only exact match when indicated */
5432 if (likely(!deliver_exact)) {
5433 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434 &ptype_base[ntohs(type) &
5435 PTYPE_HASH_MASK]);
5436 }
5437
5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 &orig_dev->ptype_specific);
5440
5441 if (unlikely(skb->dev != orig_dev)) {
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &skb->dev->ptype_specific);
5444 }
5445
5446 if (pt_prev) {
5447 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5448 goto drop;
5449 *ppt_prev = pt_prev;
5450 } else {
5451drop:
5452 if (!deliver_exact)
5453 dev_core_stats_rx_dropped_inc(skb->dev);
5454 else
5455 dev_core_stats_rx_nohandler_inc(skb->dev);
5456 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5457 /* Jamal, now you will not able to escape explaining
5458 * me how you were going to use this. :-)
5459 */
5460 ret = NET_RX_DROP;
5461 }
5462
5463out:
5464 /* The invariant here is that if *ppt_prev is not NULL
5465 * then skb should also be non-NULL.
5466 *
5467 * Apparently *ppt_prev assignment above holds this invariant due to
5468 * skb dereferencing near it.
5469 */
5470 *pskb = skb;
5471 return ret;
5472}
5473
5474static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5475{
5476 struct net_device *orig_dev = skb->dev;
5477 struct packet_type *pt_prev = NULL;
5478 int ret;
5479
5480 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5481 if (pt_prev)
5482 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483 skb->dev, pt_prev, orig_dev);
5484 return ret;
5485}
5486
5487/**
5488 * netif_receive_skb_core - special purpose version of netif_receive_skb
5489 * @skb: buffer to process
5490 *
5491 * More direct receive version of netif_receive_skb(). It should
5492 * only be used by callers that have a need to skip RPS and Generic XDP.
5493 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5494 *
5495 * This function may only be called from softirq context and interrupts
5496 * should be enabled.
5497 *
5498 * Return values (usually ignored):
5499 * NET_RX_SUCCESS: no congestion
5500 * NET_RX_DROP: packet was dropped
5501 */
5502int netif_receive_skb_core(struct sk_buff *skb)
5503{
5504 int ret;
5505
5506 rcu_read_lock();
5507 ret = __netif_receive_skb_one_core(skb, false);
5508 rcu_read_unlock();
5509
5510 return ret;
5511}
5512EXPORT_SYMBOL(netif_receive_skb_core);
5513
5514static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515 struct packet_type *pt_prev,
5516 struct net_device *orig_dev)
5517{
5518 struct sk_buff *skb, *next;
5519
5520 if (!pt_prev)
5521 return;
5522 if (list_empty(head))
5523 return;
5524 if (pt_prev->list_func != NULL)
5525 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526 ip_list_rcv, head, pt_prev, orig_dev);
5527 else
5528 list_for_each_entry_safe(skb, next, head, list) {
5529 skb_list_del_init(skb);
5530 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5531 }
5532}
5533
5534static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5535{
5536 /* Fast-path assumptions:
5537 * - There is no RX handler.
5538 * - Only one packet_type matches.
5539 * If either of these fails, we will end up doing some per-packet
5540 * processing in-line, then handling the 'last ptype' for the whole
5541 * sublist. This can't cause out-of-order delivery to any single ptype,
5542 * because the 'last ptype' must be constant across the sublist, and all
5543 * other ptypes are handled per-packet.
5544 */
5545 /* Current (common) ptype of sublist */
5546 struct packet_type *pt_curr = NULL;
5547 /* Current (common) orig_dev of sublist */
5548 struct net_device *od_curr = NULL;
5549 struct list_head sublist;
5550 struct sk_buff *skb, *next;
5551
5552 INIT_LIST_HEAD(&sublist);
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 struct net_device *orig_dev = skb->dev;
5555 struct packet_type *pt_prev = NULL;
5556
5557 skb_list_del_init(skb);
5558 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5559 if (!pt_prev)
5560 continue;
5561 if (pt_curr != pt_prev || od_curr != orig_dev) {
5562 /* dispatch old sublist */
5563 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564 /* start new sublist */
5565 INIT_LIST_HEAD(&sublist);
5566 pt_curr = pt_prev;
5567 od_curr = orig_dev;
5568 }
5569 list_add_tail(&skb->list, &sublist);
5570 }
5571
5572 /* dispatch final sublist */
5573 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574}
5575
5576static int __netif_receive_skb(struct sk_buff *skb)
5577{
5578 int ret;
5579
5580 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5581 unsigned int noreclaim_flag;
5582
5583 /*
5584 * PFMEMALLOC skbs are special, they should
5585 * - be delivered to SOCK_MEMALLOC sockets only
5586 * - stay away from userspace
5587 * - have bounded memory usage
5588 *
5589 * Use PF_MEMALLOC as this saves us from propagating the allocation
5590 * context down to all allocation sites.
5591 */
5592 noreclaim_flag = memalloc_noreclaim_save();
5593 ret = __netif_receive_skb_one_core(skb, true);
5594 memalloc_noreclaim_restore(noreclaim_flag);
5595 } else
5596 ret = __netif_receive_skb_one_core(skb, false);
5597
5598 return ret;
5599}
5600
5601static void __netif_receive_skb_list(struct list_head *head)
5602{
5603 unsigned long noreclaim_flag = 0;
5604 struct sk_buff *skb, *next;
5605 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5606
5607 list_for_each_entry_safe(skb, next, head, list) {
5608 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609 struct list_head sublist;
5610
5611 /* Handle the previous sublist */
5612 list_cut_before(&sublist, head, &skb->list);
5613 if (!list_empty(&sublist))
5614 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5615 pfmemalloc = !pfmemalloc;
5616 /* See comments in __netif_receive_skb */
5617 if (pfmemalloc)
5618 noreclaim_flag = memalloc_noreclaim_save();
5619 else
5620 memalloc_noreclaim_restore(noreclaim_flag);
5621 }
5622 }
5623 /* Handle the remaining sublist */
5624 if (!list_empty(head))
5625 __netif_receive_skb_list_core(head, pfmemalloc);
5626 /* Restore pflags */
5627 if (pfmemalloc)
5628 memalloc_noreclaim_restore(noreclaim_flag);
5629}
5630
5631static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5632{
5633 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5634 struct bpf_prog *new = xdp->prog;
5635 int ret = 0;
5636
5637 switch (xdp->command) {
5638 case XDP_SETUP_PROG:
5639 rcu_assign_pointer(dev->xdp_prog, new);
5640 if (old)
5641 bpf_prog_put(old);
5642
5643 if (old && !new) {
5644 static_branch_dec(&generic_xdp_needed_key);
5645 } else if (new && !old) {
5646 static_branch_inc(&generic_xdp_needed_key);
5647 dev_disable_lro(dev);
5648 dev_disable_gro_hw(dev);
5649 }
5650 break;
5651
5652 default:
5653 ret = -EINVAL;
5654 break;
5655 }
5656
5657 return ret;
5658}
5659
5660static int netif_receive_skb_internal(struct sk_buff *skb)
5661{
5662 int ret;
5663
5664 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5665
5666 if (skb_defer_rx_timestamp(skb))
5667 return NET_RX_SUCCESS;
5668
5669 rcu_read_lock();
5670#ifdef CONFIG_RPS
5671 if (static_branch_unlikely(&rps_needed)) {
5672 struct rps_dev_flow voidflow, *rflow = &voidflow;
5673 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5674
5675 if (cpu >= 0) {
5676 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5677 rcu_read_unlock();
5678 return ret;
5679 }
5680 }
5681#endif
5682 ret = __netif_receive_skb(skb);
5683 rcu_read_unlock();
5684 return ret;
5685}
5686
5687void netif_receive_skb_list_internal(struct list_head *head)
5688{
5689 struct sk_buff *skb, *next;
5690 struct list_head sublist;
5691
5692 INIT_LIST_HEAD(&sublist);
5693 list_for_each_entry_safe(skb, next, head, list) {
5694 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5695 skb_list_del_init(skb);
5696 if (!skb_defer_rx_timestamp(skb))
5697 list_add_tail(&skb->list, &sublist);
5698 }
5699 list_splice_init(&sublist, head);
5700
5701 rcu_read_lock();
5702#ifdef CONFIG_RPS
5703 if (static_branch_unlikely(&rps_needed)) {
5704 list_for_each_entry_safe(skb, next, head, list) {
5705 struct rps_dev_flow voidflow, *rflow = &voidflow;
5706 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5707
5708 if (cpu >= 0) {
5709 /* Will be handled, remove from list */
5710 skb_list_del_init(skb);
5711 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712 }
5713 }
5714 }
5715#endif
5716 __netif_receive_skb_list(head);
5717 rcu_read_unlock();
5718}
5719
5720/**
5721 * netif_receive_skb - process receive buffer from network
5722 * @skb: buffer to process
5723 *
5724 * netif_receive_skb() is the main receive data processing function.
5725 * It always succeeds. The buffer may be dropped during processing
5726 * for congestion control or by the protocol layers.
5727 *
5728 * This function may only be called from softirq context and interrupts
5729 * should be enabled.
5730 *
5731 * Return values (usually ignored):
5732 * NET_RX_SUCCESS: no congestion
5733 * NET_RX_DROP: packet was dropped
5734 */
5735int netif_receive_skb(struct sk_buff *skb)
5736{
5737 int ret;
5738
5739 trace_netif_receive_skb_entry(skb);
5740
5741 ret = netif_receive_skb_internal(skb);
5742 trace_netif_receive_skb_exit(ret);
5743
5744 return ret;
5745}
5746EXPORT_SYMBOL(netif_receive_skb);
5747
5748/**
5749 * netif_receive_skb_list - process many receive buffers from network
5750 * @head: list of skbs to process.
5751 *
5752 * Since return value of netif_receive_skb() is normally ignored, and
5753 * wouldn't be meaningful for a list, this function returns void.
5754 *
5755 * This function may only be called from softirq context and interrupts
5756 * should be enabled.
5757 */
5758void netif_receive_skb_list(struct list_head *head)
5759{
5760 struct sk_buff *skb;
5761
5762 if (list_empty(head))
5763 return;
5764 if (trace_netif_receive_skb_list_entry_enabled()) {
5765 list_for_each_entry(skb, head, list)
5766 trace_netif_receive_skb_list_entry(skb);
5767 }
5768 netif_receive_skb_list_internal(head);
5769 trace_netif_receive_skb_list_exit(0);
5770}
5771EXPORT_SYMBOL(netif_receive_skb_list);
5772
5773static DEFINE_PER_CPU(struct work_struct, flush_works);
5774
5775/* Network device is going away, flush any packets still pending */
5776static void flush_backlog(struct work_struct *work)
5777{
5778 struct sk_buff *skb, *tmp;
5779 struct softnet_data *sd;
5780
5781 local_bh_disable();
5782 sd = this_cpu_ptr(&softnet_data);
5783
5784 rps_lock_irq_disable(sd);
5785 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5786 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5787 __skb_unlink(skb, &sd->input_pkt_queue);
5788 dev_kfree_skb_irq(skb);
5789 input_queue_head_incr(sd);
5790 }
5791 }
5792 rps_unlock_irq_enable(sd);
5793
5794 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5795 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796 __skb_unlink(skb, &sd->process_queue);
5797 kfree_skb(skb);
5798 input_queue_head_incr(sd);
5799 }
5800 }
5801 local_bh_enable();
5802}
5803
5804static bool flush_required(int cpu)
5805{
5806#if IS_ENABLED(CONFIG_RPS)
5807 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5808 bool do_flush;
5809
5810 rps_lock_irq_disable(sd);
5811
5812 /* as insertion into process_queue happens with the rps lock held,
5813 * process_queue access may race only with dequeue
5814 */
5815 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5816 !skb_queue_empty_lockless(&sd->process_queue);
5817 rps_unlock_irq_enable(sd);
5818
5819 return do_flush;
5820#endif
5821 /* without RPS we can't safely check input_pkt_queue: during a
5822 * concurrent remote skb_queue_splice() we can detect as empty both
5823 * input_pkt_queue and process_queue even if the latter could end-up
5824 * containing a lot of packets.
5825 */
5826 return true;
5827}
5828
5829static void flush_all_backlogs(void)
5830{
5831 static cpumask_t flush_cpus;
5832 unsigned int cpu;
5833
5834 /* since we are under rtnl lock protection we can use static data
5835 * for the cpumask and avoid allocating on stack the possibly
5836 * large mask
5837 */
5838 ASSERT_RTNL();
5839
5840 cpus_read_lock();
5841
5842 cpumask_clear(&flush_cpus);
5843 for_each_online_cpu(cpu) {
5844 if (flush_required(cpu)) {
5845 queue_work_on(cpu, system_highpri_wq,
5846 per_cpu_ptr(&flush_works, cpu));
5847 cpumask_set_cpu(cpu, &flush_cpus);
5848 }
5849 }
5850
5851 /* we can have in flight packet[s] on the cpus we are not flushing,
5852 * synchronize_net() in unregister_netdevice_many() will take care of
5853 * them
5854 */
5855 for_each_cpu(cpu, &flush_cpus)
5856 flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858 cpus_read_unlock();
5859}
5860
5861static void net_rps_send_ipi(struct softnet_data *remsd)
5862{
5863#ifdef CONFIG_RPS
5864 while (remsd) {
5865 struct softnet_data *next = remsd->rps_ipi_next;
5866
5867 if (cpu_online(remsd->cpu))
5868 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5869 remsd = next;
5870 }
5871#endif
5872}
5873
5874/*
5875 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5876 * Note: called with local irq disabled, but exits with local irq enabled.
5877 */
5878static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5879{
5880#ifdef CONFIG_RPS
5881 struct softnet_data *remsd = sd->rps_ipi_list;
5882
5883 if (remsd) {
5884 sd->rps_ipi_list = NULL;
5885
5886 local_irq_enable();
5887
5888 /* Send pending IPI's to kick RPS processing on remote cpus. */
5889 net_rps_send_ipi(remsd);
5890 } else
5891#endif
5892 local_irq_enable();
5893}
5894
5895static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5896{
5897#ifdef CONFIG_RPS
5898 return sd->rps_ipi_list != NULL;
5899#else
5900 return false;
5901#endif
5902}
5903
5904static int process_backlog(struct napi_struct *napi, int quota)
5905{
5906 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5907 bool again = true;
5908 int work = 0;
5909
5910 /* Check if we have pending ipi, its better to send them now,
5911 * not waiting net_rx_action() end.
5912 */
5913 if (sd_has_rps_ipi_waiting(sd)) {
5914 local_irq_disable();
5915 net_rps_action_and_irq_enable(sd);
5916 }
5917
5918 napi->weight = READ_ONCE(dev_rx_weight);
5919 while (again) {
5920 struct sk_buff *skb;
5921
5922 while ((skb = __skb_dequeue(&sd->process_queue))) {
5923 rcu_read_lock();
5924 __netif_receive_skb(skb);
5925 rcu_read_unlock();
5926 input_queue_head_incr(sd);
5927 if (++work >= quota)
5928 return work;
5929
5930 }
5931
5932 rps_lock_irq_disable(sd);
5933 if (skb_queue_empty(&sd->input_pkt_queue)) {
5934 /*
5935 * Inline a custom version of __napi_complete().
5936 * only current cpu owns and manipulates this napi,
5937 * and NAPI_STATE_SCHED is the only possible flag set
5938 * on backlog.
5939 * We can use a plain write instead of clear_bit(),
5940 * and we dont need an smp_mb() memory barrier.
5941 */
5942 napi->state = 0;
5943 again = false;
5944 } else {
5945 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946 &sd->process_queue);
5947 }
5948 rps_unlock_irq_enable(sd);
5949 }
5950
5951 return work;
5952}
5953
5954/**
5955 * __napi_schedule - schedule for receive
5956 * @n: entry to schedule
5957 *
5958 * The entry's receive function will be scheduled to run.
5959 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5960 */
5961void __napi_schedule(struct napi_struct *n)
5962{
5963 unsigned long flags;
5964
5965 local_irq_save(flags);
5966 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5967 local_irq_restore(flags);
5968}
5969EXPORT_SYMBOL(__napi_schedule);
5970
5971/**
5972 * napi_schedule_prep - check if napi can be scheduled
5973 * @n: napi context
5974 *
5975 * Test if NAPI routine is already running, and if not mark
5976 * it as running. This is used as a condition variable to
5977 * insure only one NAPI poll instance runs. We also make
5978 * sure there is no pending NAPI disable.
5979 */
5980bool napi_schedule_prep(struct napi_struct *n)
5981{
5982 unsigned long new, val = READ_ONCE(n->state);
5983
5984 do {
5985 if (unlikely(val & NAPIF_STATE_DISABLE))
5986 return false;
5987 new = val | NAPIF_STATE_SCHED;
5988
5989 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5990 * This was suggested by Alexander Duyck, as compiler
5991 * emits better code than :
5992 * if (val & NAPIF_STATE_SCHED)
5993 * new |= NAPIF_STATE_MISSED;
5994 */
5995 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5996 NAPIF_STATE_MISSED;
5997 } while (!try_cmpxchg(&n->state, &val, new));
5998
5999 return !(val & NAPIF_STATE_SCHED);
6000}
6001EXPORT_SYMBOL(napi_schedule_prep);
6002
6003/**
6004 * __napi_schedule_irqoff - schedule for receive
6005 * @n: entry to schedule
6006 *
6007 * Variant of __napi_schedule() assuming hard irqs are masked.
6008 *
6009 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6010 * because the interrupt disabled assumption might not be true
6011 * due to force-threaded interrupts and spinlock substitution.
6012 */
6013void __napi_schedule_irqoff(struct napi_struct *n)
6014{
6015 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6016 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 else
6018 __napi_schedule(n);
6019}
6020EXPORT_SYMBOL(__napi_schedule_irqoff);
6021
6022bool napi_complete_done(struct napi_struct *n, int work_done)
6023{
6024 unsigned long flags, val, new, timeout = 0;
6025 bool ret = true;
6026
6027 /*
6028 * 1) Don't let napi dequeue from the cpu poll list
6029 * just in case its running on a different cpu.
6030 * 2) If we are busy polling, do nothing here, we have
6031 * the guarantee we will be called later.
6032 */
6033 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034 NAPIF_STATE_IN_BUSY_POLL)))
6035 return false;
6036
6037 if (work_done) {
6038 if (n->gro_bitmask)
6039 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6040 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6041 }
6042 if (n->defer_hard_irqs_count > 0) {
6043 n->defer_hard_irqs_count--;
6044 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6045 if (timeout)
6046 ret = false;
6047 }
6048 if (n->gro_bitmask) {
6049 /* When the NAPI instance uses a timeout and keeps postponing
6050 * it, we need to bound somehow the time packets are kept in
6051 * the GRO layer
6052 */
6053 napi_gro_flush(n, !!timeout);
6054 }
6055
6056 gro_normal_list(n);
6057
6058 if (unlikely(!list_empty(&n->poll_list))) {
6059 /* If n->poll_list is not empty, we need to mask irqs */
6060 local_irq_save(flags);
6061 list_del_init(&n->poll_list);
6062 local_irq_restore(flags);
6063 }
6064
6065 val = READ_ONCE(n->state);
6066 do {
6067 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6068
6069 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6070 NAPIF_STATE_SCHED_THREADED |
6071 NAPIF_STATE_PREFER_BUSY_POLL);
6072
6073 /* If STATE_MISSED was set, leave STATE_SCHED set,
6074 * because we will call napi->poll() one more time.
6075 * This C code was suggested by Alexander Duyck to help gcc.
6076 */
6077 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6078 NAPIF_STATE_SCHED;
6079 } while (!try_cmpxchg(&n->state, &val, new));
6080
6081 if (unlikely(val & NAPIF_STATE_MISSED)) {
6082 __napi_schedule(n);
6083 return false;
6084 }
6085
6086 if (timeout)
6087 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6088 HRTIMER_MODE_REL_PINNED);
6089 return ret;
6090}
6091EXPORT_SYMBOL(napi_complete_done);
6092
6093/* must be called under rcu_read_lock(), as we dont take a reference */
6094static struct napi_struct *napi_by_id(unsigned int napi_id)
6095{
6096 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6097 struct napi_struct *napi;
6098
6099 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6100 if (napi->napi_id == napi_id)
6101 return napi;
6102
6103 return NULL;
6104}
6105
6106#if defined(CONFIG_NET_RX_BUSY_POLL)
6107
6108static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6109{
6110 if (!skip_schedule) {
6111 gro_normal_list(napi);
6112 __napi_schedule(napi);
6113 return;
6114 }
6115
6116 if (napi->gro_bitmask) {
6117 /* flush too old packets
6118 * If HZ < 1000, flush all packets.
6119 */
6120 napi_gro_flush(napi, HZ >= 1000);
6121 }
6122
6123 gro_normal_list(napi);
6124 clear_bit(NAPI_STATE_SCHED, &napi->state);
6125}
6126
6127static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6128 u16 budget)
6129{
6130 bool skip_schedule = false;
6131 unsigned long timeout;
6132 int rc;
6133
6134 /* Busy polling means there is a high chance device driver hard irq
6135 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6136 * set in napi_schedule_prep().
6137 * Since we are about to call napi->poll() once more, we can safely
6138 * clear NAPI_STATE_MISSED.
6139 *
6140 * Note: x86 could use a single "lock and ..." instruction
6141 * to perform these two clear_bit()
6142 */
6143 clear_bit(NAPI_STATE_MISSED, &napi->state);
6144 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6145
6146 local_bh_disable();
6147
6148 if (prefer_busy_poll) {
6149 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6150 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6151 if (napi->defer_hard_irqs_count && timeout) {
6152 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6153 skip_schedule = true;
6154 }
6155 }
6156
6157 /* All we really want here is to re-enable device interrupts.
6158 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6159 */
6160 rc = napi->poll(napi, budget);
6161 /* We can't gro_normal_list() here, because napi->poll() might have
6162 * rearmed the napi (napi_complete_done()) in which case it could
6163 * already be running on another CPU.
6164 */
6165 trace_napi_poll(napi, rc, budget);
6166 netpoll_poll_unlock(have_poll_lock);
6167 if (rc == budget)
6168 __busy_poll_stop(napi, skip_schedule);
6169 local_bh_enable();
6170}
6171
6172void napi_busy_loop(unsigned int napi_id,
6173 bool (*loop_end)(void *, unsigned long),
6174 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6175{
6176 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6177 int (*napi_poll)(struct napi_struct *napi, int budget);
6178 void *have_poll_lock = NULL;
6179 struct napi_struct *napi;
6180
6181restart:
6182 napi_poll = NULL;
6183
6184 rcu_read_lock();
6185
6186 napi = napi_by_id(napi_id);
6187 if (!napi)
6188 goto out;
6189
6190 preempt_disable();
6191 for (;;) {
6192 int work = 0;
6193
6194 local_bh_disable();
6195 if (!napi_poll) {
6196 unsigned long val = READ_ONCE(napi->state);
6197
6198 /* If multiple threads are competing for this napi,
6199 * we avoid dirtying napi->state as much as we can.
6200 */
6201 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6202 NAPIF_STATE_IN_BUSY_POLL)) {
6203 if (prefer_busy_poll)
6204 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6205 goto count;
6206 }
6207 if (cmpxchg(&napi->state, val,
6208 val | NAPIF_STATE_IN_BUSY_POLL |
6209 NAPIF_STATE_SCHED) != val) {
6210 if (prefer_busy_poll)
6211 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6212 goto count;
6213 }
6214 have_poll_lock = netpoll_poll_lock(napi);
6215 napi_poll = napi->poll;
6216 }
6217 work = napi_poll(napi, budget);
6218 trace_napi_poll(napi, work, budget);
6219 gro_normal_list(napi);
6220count:
6221 if (work > 0)
6222 __NET_ADD_STATS(dev_net(napi->dev),
6223 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6224 local_bh_enable();
6225
6226 if (!loop_end || loop_end(loop_end_arg, start_time))
6227 break;
6228
6229 if (unlikely(need_resched())) {
6230 if (napi_poll)
6231 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6232 preempt_enable();
6233 rcu_read_unlock();
6234 cond_resched();
6235 if (loop_end(loop_end_arg, start_time))
6236 return;
6237 goto restart;
6238 }
6239 cpu_relax();
6240 }
6241 if (napi_poll)
6242 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6243 preempt_enable();
6244out:
6245 rcu_read_unlock();
6246}
6247EXPORT_SYMBOL(napi_busy_loop);
6248
6249#endif /* CONFIG_NET_RX_BUSY_POLL */
6250
6251static void napi_hash_add(struct napi_struct *napi)
6252{
6253 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6254 return;
6255
6256 spin_lock(&napi_hash_lock);
6257
6258 /* 0..NR_CPUS range is reserved for sender_cpu use */
6259 do {
6260 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6261 napi_gen_id = MIN_NAPI_ID;
6262 } while (napi_by_id(napi_gen_id));
6263 napi->napi_id = napi_gen_id;
6264
6265 hlist_add_head_rcu(&napi->napi_hash_node,
6266 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6267
6268 spin_unlock(&napi_hash_lock);
6269}
6270
6271/* Warning : caller is responsible to make sure rcu grace period
6272 * is respected before freeing memory containing @napi
6273 */
6274static void napi_hash_del(struct napi_struct *napi)
6275{
6276 spin_lock(&napi_hash_lock);
6277
6278 hlist_del_init_rcu(&napi->napi_hash_node);
6279
6280 spin_unlock(&napi_hash_lock);
6281}
6282
6283static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6284{
6285 struct napi_struct *napi;
6286
6287 napi = container_of(timer, struct napi_struct, timer);
6288
6289 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6290 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6291 */
6292 if (!napi_disable_pending(napi) &&
6293 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6294 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295 __napi_schedule_irqoff(napi);
6296 }
6297
6298 return HRTIMER_NORESTART;
6299}
6300
6301static void init_gro_hash(struct napi_struct *napi)
6302{
6303 int i;
6304
6305 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6307 napi->gro_hash[i].count = 0;
6308 }
6309 napi->gro_bitmask = 0;
6310}
6311
6312int dev_set_threaded(struct net_device *dev, bool threaded)
6313{
6314 struct napi_struct *napi;
6315 int err = 0;
6316
6317 if (dev->threaded == threaded)
6318 return 0;
6319
6320 if (threaded) {
6321 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6322 if (!napi->thread) {
6323 err = napi_kthread_create(napi);
6324 if (err) {
6325 threaded = false;
6326 break;
6327 }
6328 }
6329 }
6330 }
6331
6332 dev->threaded = threaded;
6333
6334 /* Make sure kthread is created before THREADED bit
6335 * is set.
6336 */
6337 smp_mb__before_atomic();
6338
6339 /* Setting/unsetting threaded mode on a napi might not immediately
6340 * take effect, if the current napi instance is actively being
6341 * polled. In this case, the switch between threaded mode and
6342 * softirq mode will happen in the next round of napi_schedule().
6343 * This should not cause hiccups/stalls to the live traffic.
6344 */
6345 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6346 if (threaded)
6347 set_bit(NAPI_STATE_THREADED, &napi->state);
6348 else
6349 clear_bit(NAPI_STATE_THREADED, &napi->state);
6350 }
6351
6352 return err;
6353}
6354EXPORT_SYMBOL(dev_set_threaded);
6355
6356void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6357 int (*poll)(struct napi_struct *, int), int weight)
6358{
6359 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6360 return;
6361
6362 INIT_LIST_HEAD(&napi->poll_list);
6363 INIT_HLIST_NODE(&napi->napi_hash_node);
6364 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6365 napi->timer.function = napi_watchdog;
6366 init_gro_hash(napi);
6367 napi->skb = NULL;
6368 INIT_LIST_HEAD(&napi->rx_list);
6369 napi->rx_count = 0;
6370 napi->poll = poll;
6371 if (weight > NAPI_POLL_WEIGHT)
6372 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6373 weight);
6374 napi->weight = weight;
6375 napi->dev = dev;
6376#ifdef CONFIG_NETPOLL
6377 napi->poll_owner = -1;
6378#endif
6379 set_bit(NAPI_STATE_SCHED, &napi->state);
6380 set_bit(NAPI_STATE_NPSVC, &napi->state);
6381 list_add_rcu(&napi->dev_list, &dev->napi_list);
6382 napi_hash_add(napi);
6383 napi_get_frags_check(napi);
6384 /* Create kthread for this napi if dev->threaded is set.
6385 * Clear dev->threaded if kthread creation failed so that
6386 * threaded mode will not be enabled in napi_enable().
6387 */
6388 if (dev->threaded && napi_kthread_create(napi))
6389 dev->threaded = 0;
6390}
6391EXPORT_SYMBOL(netif_napi_add_weight);
6392
6393void napi_disable(struct napi_struct *n)
6394{
6395 unsigned long val, new;
6396
6397 might_sleep();
6398 set_bit(NAPI_STATE_DISABLE, &n->state);
6399
6400 val = READ_ONCE(n->state);
6401 do {
6402 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6403 usleep_range(20, 200);
6404 val = READ_ONCE(n->state);
6405 }
6406
6407 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6408 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6409 } while (!try_cmpxchg(&n->state, &val, new));
6410
6411 hrtimer_cancel(&n->timer);
6412
6413 clear_bit(NAPI_STATE_DISABLE, &n->state);
6414}
6415EXPORT_SYMBOL(napi_disable);
6416
6417/**
6418 * napi_enable - enable NAPI scheduling
6419 * @n: NAPI context
6420 *
6421 * Resume NAPI from being scheduled on this context.
6422 * Must be paired with napi_disable.
6423 */
6424void napi_enable(struct napi_struct *n)
6425{
6426 unsigned long new, val = READ_ONCE(n->state);
6427
6428 do {
6429 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6430
6431 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6432 if (n->dev->threaded && n->thread)
6433 new |= NAPIF_STATE_THREADED;
6434 } while (!try_cmpxchg(&n->state, &val, new));
6435}
6436EXPORT_SYMBOL(napi_enable);
6437
6438static void flush_gro_hash(struct napi_struct *napi)
6439{
6440 int i;
6441
6442 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6443 struct sk_buff *skb, *n;
6444
6445 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6446 kfree_skb(skb);
6447 napi->gro_hash[i].count = 0;
6448 }
6449}
6450
6451/* Must be called in process context */
6452void __netif_napi_del(struct napi_struct *napi)
6453{
6454 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6455 return;
6456
6457 napi_hash_del(napi);
6458 list_del_rcu(&napi->dev_list);
6459 napi_free_frags(napi);
6460
6461 flush_gro_hash(napi);
6462 napi->gro_bitmask = 0;
6463
6464 if (napi->thread) {
6465 kthread_stop(napi->thread);
6466 napi->thread = NULL;
6467 }
6468}
6469EXPORT_SYMBOL(__netif_napi_del);
6470
6471static int __napi_poll(struct napi_struct *n, bool *repoll)
6472{
6473 int work, weight;
6474
6475 weight = n->weight;
6476
6477 /* This NAPI_STATE_SCHED test is for avoiding a race
6478 * with netpoll's poll_napi(). Only the entity which
6479 * obtains the lock and sees NAPI_STATE_SCHED set will
6480 * actually make the ->poll() call. Therefore we avoid
6481 * accidentally calling ->poll() when NAPI is not scheduled.
6482 */
6483 work = 0;
6484 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6485 work = n->poll(n, weight);
6486 trace_napi_poll(n, work, weight);
6487 }
6488
6489 if (unlikely(work > weight))
6490 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6491 n->poll, work, weight);
6492
6493 if (likely(work < weight))
6494 return work;
6495
6496 /* Drivers must not modify the NAPI state if they
6497 * consume the entire weight. In such cases this code
6498 * still "owns" the NAPI instance and therefore can
6499 * move the instance around on the list at-will.
6500 */
6501 if (unlikely(napi_disable_pending(n))) {
6502 napi_complete(n);
6503 return work;
6504 }
6505
6506 /* The NAPI context has more processing work, but busy-polling
6507 * is preferred. Exit early.
6508 */
6509 if (napi_prefer_busy_poll(n)) {
6510 if (napi_complete_done(n, work)) {
6511 /* If timeout is not set, we need to make sure
6512 * that the NAPI is re-scheduled.
6513 */
6514 napi_schedule(n);
6515 }
6516 return work;
6517 }
6518
6519 if (n->gro_bitmask) {
6520 /* flush too old packets
6521 * If HZ < 1000, flush all packets.
6522 */
6523 napi_gro_flush(n, HZ >= 1000);
6524 }
6525
6526 gro_normal_list(n);
6527
6528 /* Some drivers may have called napi_schedule
6529 * prior to exhausting their budget.
6530 */
6531 if (unlikely(!list_empty(&n->poll_list))) {
6532 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6533 n->dev ? n->dev->name : "backlog");
6534 return work;
6535 }
6536
6537 *repoll = true;
6538
6539 return work;
6540}
6541
6542static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6543{
6544 bool do_repoll = false;
6545 void *have;
6546 int work;
6547
6548 list_del_init(&n->poll_list);
6549
6550 have = netpoll_poll_lock(n);
6551
6552 work = __napi_poll(n, &do_repoll);
6553
6554 if (do_repoll)
6555 list_add_tail(&n->poll_list, repoll);
6556
6557 netpoll_poll_unlock(have);
6558
6559 return work;
6560}
6561
6562static int napi_thread_wait(struct napi_struct *napi)
6563{
6564 bool woken = false;
6565
6566 set_current_state(TASK_INTERRUPTIBLE);
6567
6568 while (!kthread_should_stop()) {
6569 /* Testing SCHED_THREADED bit here to make sure the current
6570 * kthread owns this napi and could poll on this napi.
6571 * Testing SCHED bit is not enough because SCHED bit might be
6572 * set by some other busy poll thread or by napi_disable().
6573 */
6574 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6575 WARN_ON(!list_empty(&napi->poll_list));
6576 __set_current_state(TASK_RUNNING);
6577 return 0;
6578 }
6579
6580 schedule();
6581 /* woken being true indicates this thread owns this napi. */
6582 woken = true;
6583 set_current_state(TASK_INTERRUPTIBLE);
6584 }
6585 __set_current_state(TASK_RUNNING);
6586
6587 return -1;
6588}
6589
6590static int napi_threaded_poll(void *data)
6591{
6592 struct napi_struct *napi = data;
6593 void *have;
6594
6595 while (!napi_thread_wait(napi)) {
6596 for (;;) {
6597 bool repoll = false;
6598
6599 local_bh_disable();
6600
6601 have = netpoll_poll_lock(napi);
6602 __napi_poll(napi, &repoll);
6603 netpoll_poll_unlock(have);
6604
6605 local_bh_enable();
6606
6607 if (!repoll)
6608 break;
6609
6610 cond_resched();
6611 }
6612 }
6613 return 0;
6614}
6615
6616static void skb_defer_free_flush(struct softnet_data *sd)
6617{
6618 struct sk_buff *skb, *next;
6619 unsigned long flags;
6620
6621 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6622 if (!READ_ONCE(sd->defer_list))
6623 return;
6624
6625 spin_lock_irqsave(&sd->defer_lock, flags);
6626 skb = sd->defer_list;
6627 sd->defer_list = NULL;
6628 sd->defer_count = 0;
6629 spin_unlock_irqrestore(&sd->defer_lock, flags);
6630
6631 while (skb != NULL) {
6632 next = skb->next;
6633 napi_consume_skb(skb, 1);
6634 skb = next;
6635 }
6636}
6637
6638static __latent_entropy void net_rx_action(struct softirq_action *h)
6639{
6640 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6641 unsigned long time_limit = jiffies +
6642 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6643 int budget = READ_ONCE(netdev_budget);
6644 LIST_HEAD(list);
6645 LIST_HEAD(repoll);
6646
6647 local_irq_disable();
6648 list_splice_init(&sd->poll_list, &list);
6649 local_irq_enable();
6650
6651 for (;;) {
6652 struct napi_struct *n;
6653
6654 skb_defer_free_flush(sd);
6655
6656 if (list_empty(&list)) {
6657 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6658 goto end;
6659 break;
6660 }
6661
6662 n = list_first_entry(&list, struct napi_struct, poll_list);
6663 budget -= napi_poll(n, &repoll);
6664
6665 /* If softirq window is exhausted then punt.
6666 * Allow this to run for 2 jiffies since which will allow
6667 * an average latency of 1.5/HZ.
6668 */
6669 if (unlikely(budget <= 0 ||
6670 time_after_eq(jiffies, time_limit))) {
6671 sd->time_squeeze++;
6672 break;
6673 }
6674 }
6675
6676 local_irq_disable();
6677
6678 list_splice_tail_init(&sd->poll_list, &list);
6679 list_splice_tail(&repoll, &list);
6680 list_splice(&list, &sd->poll_list);
6681 if (!list_empty(&sd->poll_list))
6682 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6683
6684 net_rps_action_and_irq_enable(sd);
6685end:;
6686}
6687
6688struct netdev_adjacent {
6689 struct net_device *dev;
6690 netdevice_tracker dev_tracker;
6691
6692 /* upper master flag, there can only be one master device per list */
6693 bool master;
6694
6695 /* lookup ignore flag */
6696 bool ignore;
6697
6698 /* counter for the number of times this device was added to us */
6699 u16 ref_nr;
6700
6701 /* private field for the users */
6702 void *private;
6703
6704 struct list_head list;
6705 struct rcu_head rcu;
6706};
6707
6708static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6709 struct list_head *adj_list)
6710{
6711 struct netdev_adjacent *adj;
6712
6713 list_for_each_entry(adj, adj_list, list) {
6714 if (adj->dev == adj_dev)
6715 return adj;
6716 }
6717 return NULL;
6718}
6719
6720static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6721 struct netdev_nested_priv *priv)
6722{
6723 struct net_device *dev = (struct net_device *)priv->data;
6724
6725 return upper_dev == dev;
6726}
6727
6728/**
6729 * netdev_has_upper_dev - Check if device is linked to an upper device
6730 * @dev: device
6731 * @upper_dev: upper device to check
6732 *
6733 * Find out if a device is linked to specified upper device and return true
6734 * in case it is. Note that this checks only immediate upper device,
6735 * not through a complete stack of devices. The caller must hold the RTNL lock.
6736 */
6737bool netdev_has_upper_dev(struct net_device *dev,
6738 struct net_device *upper_dev)
6739{
6740 struct netdev_nested_priv priv = {
6741 .data = (void *)upper_dev,
6742 };
6743
6744 ASSERT_RTNL();
6745
6746 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6747 &priv);
6748}
6749EXPORT_SYMBOL(netdev_has_upper_dev);
6750
6751/**
6752 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6753 * @dev: device
6754 * @upper_dev: upper device to check
6755 *
6756 * Find out if a device is linked to specified upper device and return true
6757 * in case it is. Note that this checks the entire upper device chain.
6758 * The caller must hold rcu lock.
6759 */
6760
6761bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6762 struct net_device *upper_dev)
6763{
6764 struct netdev_nested_priv priv = {
6765 .data = (void *)upper_dev,
6766 };
6767
6768 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6769 &priv);
6770}
6771EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6772
6773/**
6774 * netdev_has_any_upper_dev - Check if device is linked to some device
6775 * @dev: device
6776 *
6777 * Find out if a device is linked to an upper device and return true in case
6778 * it is. The caller must hold the RTNL lock.
6779 */
6780bool netdev_has_any_upper_dev(struct net_device *dev)
6781{
6782 ASSERT_RTNL();
6783
6784 return !list_empty(&dev->adj_list.upper);
6785}
6786EXPORT_SYMBOL(netdev_has_any_upper_dev);
6787
6788/**
6789 * netdev_master_upper_dev_get - Get master upper device
6790 * @dev: device
6791 *
6792 * Find a master upper device and return pointer to it or NULL in case
6793 * it's not there. The caller must hold the RTNL lock.
6794 */
6795struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6796{
6797 struct netdev_adjacent *upper;
6798
6799 ASSERT_RTNL();
6800
6801 if (list_empty(&dev->adj_list.upper))
6802 return NULL;
6803
6804 upper = list_first_entry(&dev->adj_list.upper,
6805 struct netdev_adjacent, list);
6806 if (likely(upper->master))
6807 return upper->dev;
6808 return NULL;
6809}
6810EXPORT_SYMBOL(netdev_master_upper_dev_get);
6811
6812static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6813{
6814 struct netdev_adjacent *upper;
6815
6816 ASSERT_RTNL();
6817
6818 if (list_empty(&dev->adj_list.upper))
6819 return NULL;
6820
6821 upper = list_first_entry(&dev->adj_list.upper,
6822 struct netdev_adjacent, list);
6823 if (likely(upper->master) && !upper->ignore)
6824 return upper->dev;
6825 return NULL;
6826}
6827
6828/**
6829 * netdev_has_any_lower_dev - Check if device is linked to some device
6830 * @dev: device
6831 *
6832 * Find out if a device is linked to a lower device and return true in case
6833 * it is. The caller must hold the RTNL lock.
6834 */
6835static bool netdev_has_any_lower_dev(struct net_device *dev)
6836{
6837 ASSERT_RTNL();
6838
6839 return !list_empty(&dev->adj_list.lower);
6840}
6841
6842void *netdev_adjacent_get_private(struct list_head *adj_list)
6843{
6844 struct netdev_adjacent *adj;
6845
6846 adj = list_entry(adj_list, struct netdev_adjacent, list);
6847
6848 return adj->private;
6849}
6850EXPORT_SYMBOL(netdev_adjacent_get_private);
6851
6852/**
6853 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6854 * @dev: device
6855 * @iter: list_head ** of the current position
6856 *
6857 * Gets the next device from the dev's upper list, starting from iter
6858 * position. The caller must hold RCU read lock.
6859 */
6860struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6861 struct list_head **iter)
6862{
6863 struct netdev_adjacent *upper;
6864
6865 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6866
6867 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6868
6869 if (&upper->list == &dev->adj_list.upper)
6870 return NULL;
6871
6872 *iter = &upper->list;
6873
6874 return upper->dev;
6875}
6876EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6877
6878static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6879 struct list_head **iter,
6880 bool *ignore)
6881{
6882 struct netdev_adjacent *upper;
6883
6884 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6885
6886 if (&upper->list == &dev->adj_list.upper)
6887 return NULL;
6888
6889 *iter = &upper->list;
6890 *ignore = upper->ignore;
6891
6892 return upper->dev;
6893}
6894
6895static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6896 struct list_head **iter)
6897{
6898 struct netdev_adjacent *upper;
6899
6900 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6901
6902 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6903
6904 if (&upper->list == &dev->adj_list.upper)
6905 return NULL;
6906
6907 *iter = &upper->list;
6908
6909 return upper->dev;
6910}
6911
6912static int __netdev_walk_all_upper_dev(struct net_device *dev,
6913 int (*fn)(struct net_device *dev,
6914 struct netdev_nested_priv *priv),
6915 struct netdev_nested_priv *priv)
6916{
6917 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6918 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6919 int ret, cur = 0;
6920 bool ignore;
6921
6922 now = dev;
6923 iter = &dev->adj_list.upper;
6924
6925 while (1) {
6926 if (now != dev) {
6927 ret = fn(now, priv);
6928 if (ret)
6929 return ret;
6930 }
6931
6932 next = NULL;
6933 while (1) {
6934 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6935 if (!udev)
6936 break;
6937 if (ignore)
6938 continue;
6939
6940 next = udev;
6941 niter = &udev->adj_list.upper;
6942 dev_stack[cur] = now;
6943 iter_stack[cur++] = iter;
6944 break;
6945 }
6946
6947 if (!next) {
6948 if (!cur)
6949 return 0;
6950 next = dev_stack[--cur];
6951 niter = iter_stack[cur];
6952 }
6953
6954 now = next;
6955 iter = niter;
6956 }
6957
6958 return 0;
6959}
6960
6961int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6962 int (*fn)(struct net_device *dev,
6963 struct netdev_nested_priv *priv),
6964 struct netdev_nested_priv *priv)
6965{
6966 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6967 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6968 int ret, cur = 0;
6969
6970 now = dev;
6971 iter = &dev->adj_list.upper;
6972
6973 while (1) {
6974 if (now != dev) {
6975 ret = fn(now, priv);
6976 if (ret)
6977 return ret;
6978 }
6979
6980 next = NULL;
6981 while (1) {
6982 udev = netdev_next_upper_dev_rcu(now, &iter);
6983 if (!udev)
6984 break;
6985
6986 next = udev;
6987 niter = &udev->adj_list.upper;
6988 dev_stack[cur] = now;
6989 iter_stack[cur++] = iter;
6990 break;
6991 }
6992
6993 if (!next) {
6994 if (!cur)
6995 return 0;
6996 next = dev_stack[--cur];
6997 niter = iter_stack[cur];
6998 }
6999
7000 now = next;
7001 iter = niter;
7002 }
7003
7004 return 0;
7005}
7006EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7007
7008static bool __netdev_has_upper_dev(struct net_device *dev,
7009 struct net_device *upper_dev)
7010{
7011 struct netdev_nested_priv priv = {
7012 .flags = 0,
7013 .data = (void *)upper_dev,
7014 };
7015
7016 ASSERT_RTNL();
7017
7018 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7019 &priv);
7020}
7021
7022/**
7023 * netdev_lower_get_next_private - Get the next ->private from the
7024 * lower neighbour list
7025 * @dev: device
7026 * @iter: list_head ** of the current position
7027 *
7028 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7029 * list, starting from iter position. The caller must hold either hold the
7030 * RTNL lock or its own locking that guarantees that the neighbour lower
7031 * list will remain unchanged.
7032 */
7033void *netdev_lower_get_next_private(struct net_device *dev,
7034 struct list_head **iter)
7035{
7036 struct netdev_adjacent *lower;
7037
7038 lower = list_entry(*iter, struct netdev_adjacent, list);
7039
7040 if (&lower->list == &dev->adj_list.lower)
7041 return NULL;
7042
7043 *iter = lower->list.next;
7044
7045 return lower->private;
7046}
7047EXPORT_SYMBOL(netdev_lower_get_next_private);
7048
7049/**
7050 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7051 * lower neighbour list, RCU
7052 * variant
7053 * @dev: device
7054 * @iter: list_head ** of the current position
7055 *
7056 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7057 * list, starting from iter position. The caller must hold RCU read lock.
7058 */
7059void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7060 struct list_head **iter)
7061{
7062 struct netdev_adjacent *lower;
7063
7064 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7065
7066 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7067
7068 if (&lower->list == &dev->adj_list.lower)
7069 return NULL;
7070
7071 *iter = &lower->list;
7072
7073 return lower->private;
7074}
7075EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7076
7077/**
7078 * netdev_lower_get_next - Get the next device from the lower neighbour
7079 * list
7080 * @dev: device
7081 * @iter: list_head ** of the current position
7082 *
7083 * Gets the next netdev_adjacent from the dev's lower neighbour
7084 * list, starting from iter position. The caller must hold RTNL lock or
7085 * its own locking that guarantees that the neighbour lower
7086 * list will remain unchanged.
7087 */
7088void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7089{
7090 struct netdev_adjacent *lower;
7091
7092 lower = list_entry(*iter, struct netdev_adjacent, list);
7093
7094 if (&lower->list == &dev->adj_list.lower)
7095 return NULL;
7096
7097 *iter = lower->list.next;
7098
7099 return lower->dev;
7100}
7101EXPORT_SYMBOL(netdev_lower_get_next);
7102
7103static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7104 struct list_head **iter)
7105{
7106 struct netdev_adjacent *lower;
7107
7108 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7109
7110 if (&lower->list == &dev->adj_list.lower)
7111 return NULL;
7112
7113 *iter = &lower->list;
7114
7115 return lower->dev;
7116}
7117
7118static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7119 struct list_head **iter,
7120 bool *ignore)
7121{
7122 struct netdev_adjacent *lower;
7123
7124 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7125
7126 if (&lower->list == &dev->adj_list.lower)
7127 return NULL;
7128
7129 *iter = &lower->list;
7130 *ignore = lower->ignore;
7131
7132 return lower->dev;
7133}
7134
7135int netdev_walk_all_lower_dev(struct net_device *dev,
7136 int (*fn)(struct net_device *dev,
7137 struct netdev_nested_priv *priv),
7138 struct netdev_nested_priv *priv)
7139{
7140 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7141 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7142 int ret, cur = 0;
7143
7144 now = dev;
7145 iter = &dev->adj_list.lower;
7146
7147 while (1) {
7148 if (now != dev) {
7149 ret = fn(now, priv);
7150 if (ret)
7151 return ret;
7152 }
7153
7154 next = NULL;
7155 while (1) {
7156 ldev = netdev_next_lower_dev(now, &iter);
7157 if (!ldev)
7158 break;
7159
7160 next = ldev;
7161 niter = &ldev->adj_list.lower;
7162 dev_stack[cur] = now;
7163 iter_stack[cur++] = iter;
7164 break;
7165 }
7166
7167 if (!next) {
7168 if (!cur)
7169 return 0;
7170 next = dev_stack[--cur];
7171 niter = iter_stack[cur];
7172 }
7173
7174 now = next;
7175 iter = niter;
7176 }
7177
7178 return 0;
7179}
7180EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7181
7182static int __netdev_walk_all_lower_dev(struct net_device *dev,
7183 int (*fn)(struct net_device *dev,
7184 struct netdev_nested_priv *priv),
7185 struct netdev_nested_priv *priv)
7186{
7187 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7188 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7189 int ret, cur = 0;
7190 bool ignore;
7191
7192 now = dev;
7193 iter = &dev->adj_list.lower;
7194
7195 while (1) {
7196 if (now != dev) {
7197 ret = fn(now, priv);
7198 if (ret)
7199 return ret;
7200 }
7201
7202 next = NULL;
7203 while (1) {
7204 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7205 if (!ldev)
7206 break;
7207 if (ignore)
7208 continue;
7209
7210 next = ldev;
7211 niter = &ldev->adj_list.lower;
7212 dev_stack[cur] = now;
7213 iter_stack[cur++] = iter;
7214 break;
7215 }
7216
7217 if (!next) {
7218 if (!cur)
7219 return 0;
7220 next = dev_stack[--cur];
7221 niter = iter_stack[cur];
7222 }
7223
7224 now = next;
7225 iter = niter;
7226 }
7227
7228 return 0;
7229}
7230
7231struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7232 struct list_head **iter)
7233{
7234 struct netdev_adjacent *lower;
7235
7236 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7237 if (&lower->list == &dev->adj_list.lower)
7238 return NULL;
7239
7240 *iter = &lower->list;
7241
7242 return lower->dev;
7243}
7244EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7245
7246static u8 __netdev_upper_depth(struct net_device *dev)
7247{
7248 struct net_device *udev;
7249 struct list_head *iter;
7250 u8 max_depth = 0;
7251 bool ignore;
7252
7253 for (iter = &dev->adj_list.upper,
7254 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7255 udev;
7256 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7257 if (ignore)
7258 continue;
7259 if (max_depth < udev->upper_level)
7260 max_depth = udev->upper_level;
7261 }
7262
7263 return max_depth;
7264}
7265
7266static u8 __netdev_lower_depth(struct net_device *dev)
7267{
7268 struct net_device *ldev;
7269 struct list_head *iter;
7270 u8 max_depth = 0;
7271 bool ignore;
7272
7273 for (iter = &dev->adj_list.lower,
7274 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7275 ldev;
7276 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7277 if (ignore)
7278 continue;
7279 if (max_depth < ldev->lower_level)
7280 max_depth = ldev->lower_level;
7281 }
7282
7283 return max_depth;
7284}
7285
7286static int __netdev_update_upper_level(struct net_device *dev,
7287 struct netdev_nested_priv *__unused)
7288{
7289 dev->upper_level = __netdev_upper_depth(dev) + 1;
7290 return 0;
7291}
7292
7293#ifdef CONFIG_LOCKDEP
7294static LIST_HEAD(net_unlink_list);
7295
7296static void net_unlink_todo(struct net_device *dev)
7297{
7298 if (list_empty(&dev->unlink_list))
7299 list_add_tail(&dev->unlink_list, &net_unlink_list);
7300}
7301#endif
7302
7303static int __netdev_update_lower_level(struct net_device *dev,
7304 struct netdev_nested_priv *priv)
7305{
7306 dev->lower_level = __netdev_lower_depth(dev) + 1;
7307
7308#ifdef CONFIG_LOCKDEP
7309 if (!priv)
7310 return 0;
7311
7312 if (priv->flags & NESTED_SYNC_IMM)
7313 dev->nested_level = dev->lower_level - 1;
7314 if (priv->flags & NESTED_SYNC_TODO)
7315 net_unlink_todo(dev);
7316#endif
7317 return 0;
7318}
7319
7320int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7321 int (*fn)(struct net_device *dev,
7322 struct netdev_nested_priv *priv),
7323 struct netdev_nested_priv *priv)
7324{
7325 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7326 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7327 int ret, cur = 0;
7328
7329 now = dev;
7330 iter = &dev->adj_list.lower;
7331
7332 while (1) {
7333 if (now != dev) {
7334 ret = fn(now, priv);
7335 if (ret)
7336 return ret;
7337 }
7338
7339 next = NULL;
7340 while (1) {
7341 ldev = netdev_next_lower_dev_rcu(now, &iter);
7342 if (!ldev)
7343 break;
7344
7345 next = ldev;
7346 niter = &ldev->adj_list.lower;
7347 dev_stack[cur] = now;
7348 iter_stack[cur++] = iter;
7349 break;
7350 }
7351
7352 if (!next) {
7353 if (!cur)
7354 return 0;
7355 next = dev_stack[--cur];
7356 niter = iter_stack[cur];
7357 }
7358
7359 now = next;
7360 iter = niter;
7361 }
7362
7363 return 0;
7364}
7365EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7366
7367/**
7368 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7369 * lower neighbour list, RCU
7370 * variant
7371 * @dev: device
7372 *
7373 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7374 * list. The caller must hold RCU read lock.
7375 */
7376void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7377{
7378 struct netdev_adjacent *lower;
7379
7380 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7381 struct netdev_adjacent, list);
7382 if (lower)
7383 return lower->private;
7384 return NULL;
7385}
7386EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7387
7388/**
7389 * netdev_master_upper_dev_get_rcu - Get master upper device
7390 * @dev: device
7391 *
7392 * Find a master upper device and return pointer to it or NULL in case
7393 * it's not there. The caller must hold the RCU read lock.
7394 */
7395struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7396{
7397 struct netdev_adjacent *upper;
7398
7399 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7400 struct netdev_adjacent, list);
7401 if (upper && likely(upper->master))
7402 return upper->dev;
7403 return NULL;
7404}
7405EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7406
7407static int netdev_adjacent_sysfs_add(struct net_device *dev,
7408 struct net_device *adj_dev,
7409 struct list_head *dev_list)
7410{
7411 char linkname[IFNAMSIZ+7];
7412
7413 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7414 "upper_%s" : "lower_%s", adj_dev->name);
7415 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7416 linkname);
7417}
7418static void netdev_adjacent_sysfs_del(struct net_device *dev,
7419 char *name,
7420 struct list_head *dev_list)
7421{
7422 char linkname[IFNAMSIZ+7];
7423
7424 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7425 "upper_%s" : "lower_%s", name);
7426 sysfs_remove_link(&(dev->dev.kobj), linkname);
7427}
7428
7429static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7430 struct net_device *adj_dev,
7431 struct list_head *dev_list)
7432{
7433 return (dev_list == &dev->adj_list.upper ||
7434 dev_list == &dev->adj_list.lower) &&
7435 net_eq(dev_net(dev), dev_net(adj_dev));
7436}
7437
7438static int __netdev_adjacent_dev_insert(struct net_device *dev,
7439 struct net_device *adj_dev,
7440 struct list_head *dev_list,
7441 void *private, bool master)
7442{
7443 struct netdev_adjacent *adj;
7444 int ret;
7445
7446 adj = __netdev_find_adj(adj_dev, dev_list);
7447
7448 if (adj) {
7449 adj->ref_nr += 1;
7450 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7451 dev->name, adj_dev->name, adj->ref_nr);
7452
7453 return 0;
7454 }
7455
7456 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7457 if (!adj)
7458 return -ENOMEM;
7459
7460 adj->dev = adj_dev;
7461 adj->master = master;
7462 adj->ref_nr = 1;
7463 adj->private = private;
7464 adj->ignore = false;
7465 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7466
7467 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7468 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7469
7470 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7471 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7472 if (ret)
7473 goto free_adj;
7474 }
7475
7476 /* Ensure that master link is always the first item in list. */
7477 if (master) {
7478 ret = sysfs_create_link(&(dev->dev.kobj),
7479 &(adj_dev->dev.kobj), "master");
7480 if (ret)
7481 goto remove_symlinks;
7482
7483 list_add_rcu(&adj->list, dev_list);
7484 } else {
7485 list_add_tail_rcu(&adj->list, dev_list);
7486 }
7487
7488 return 0;
7489
7490remove_symlinks:
7491 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7492 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7493free_adj:
7494 netdev_put(adj_dev, &adj->dev_tracker);
7495 kfree(adj);
7496
7497 return ret;
7498}
7499
7500static void __netdev_adjacent_dev_remove(struct net_device *dev,
7501 struct net_device *adj_dev,
7502 u16 ref_nr,
7503 struct list_head *dev_list)
7504{
7505 struct netdev_adjacent *adj;
7506
7507 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7508 dev->name, adj_dev->name, ref_nr);
7509
7510 adj = __netdev_find_adj(adj_dev, dev_list);
7511
7512 if (!adj) {
7513 pr_err("Adjacency does not exist for device %s from %s\n",
7514 dev->name, adj_dev->name);
7515 WARN_ON(1);
7516 return;
7517 }
7518
7519 if (adj->ref_nr > ref_nr) {
7520 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7521 dev->name, adj_dev->name, ref_nr,
7522 adj->ref_nr - ref_nr);
7523 adj->ref_nr -= ref_nr;
7524 return;
7525 }
7526
7527 if (adj->master)
7528 sysfs_remove_link(&(dev->dev.kobj), "master");
7529
7530 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7531 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7532
7533 list_del_rcu(&adj->list);
7534 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7535 adj_dev->name, dev->name, adj_dev->name);
7536 netdev_put(adj_dev, &adj->dev_tracker);
7537 kfree_rcu(adj, rcu);
7538}
7539
7540static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7541 struct net_device *upper_dev,
7542 struct list_head *up_list,
7543 struct list_head *down_list,
7544 void *private, bool master)
7545{
7546 int ret;
7547
7548 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7549 private, master);
7550 if (ret)
7551 return ret;
7552
7553 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7554 private, false);
7555 if (ret) {
7556 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7557 return ret;
7558 }
7559
7560 return 0;
7561}
7562
7563static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7564 struct net_device *upper_dev,
7565 u16 ref_nr,
7566 struct list_head *up_list,
7567 struct list_head *down_list)
7568{
7569 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7570 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7571}
7572
7573static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7574 struct net_device *upper_dev,
7575 void *private, bool master)
7576{
7577 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7578 &dev->adj_list.upper,
7579 &upper_dev->adj_list.lower,
7580 private, master);
7581}
7582
7583static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7584 struct net_device *upper_dev)
7585{
7586 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7587 &dev->adj_list.upper,
7588 &upper_dev->adj_list.lower);
7589}
7590
7591static int __netdev_upper_dev_link(struct net_device *dev,
7592 struct net_device *upper_dev, bool master,
7593 void *upper_priv, void *upper_info,
7594 struct netdev_nested_priv *priv,
7595 struct netlink_ext_ack *extack)
7596{
7597 struct netdev_notifier_changeupper_info changeupper_info = {
7598 .info = {
7599 .dev = dev,
7600 .extack = extack,
7601 },
7602 .upper_dev = upper_dev,
7603 .master = master,
7604 .linking = true,
7605 .upper_info = upper_info,
7606 };
7607 struct net_device *master_dev;
7608 int ret = 0;
7609
7610 ASSERT_RTNL();
7611
7612 if (dev == upper_dev)
7613 return -EBUSY;
7614
7615 /* To prevent loops, check if dev is not upper device to upper_dev. */
7616 if (__netdev_has_upper_dev(upper_dev, dev))
7617 return -EBUSY;
7618
7619 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7620 return -EMLINK;
7621
7622 if (!master) {
7623 if (__netdev_has_upper_dev(dev, upper_dev))
7624 return -EEXIST;
7625 } else {
7626 master_dev = __netdev_master_upper_dev_get(dev);
7627 if (master_dev)
7628 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7629 }
7630
7631 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7632 &changeupper_info.info);
7633 ret = notifier_to_errno(ret);
7634 if (ret)
7635 return ret;
7636
7637 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7638 master);
7639 if (ret)
7640 return ret;
7641
7642 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7643 &changeupper_info.info);
7644 ret = notifier_to_errno(ret);
7645 if (ret)
7646 goto rollback;
7647
7648 __netdev_update_upper_level(dev, NULL);
7649 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7650
7651 __netdev_update_lower_level(upper_dev, priv);
7652 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7653 priv);
7654
7655 return 0;
7656
7657rollback:
7658 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7659
7660 return ret;
7661}
7662
7663/**
7664 * netdev_upper_dev_link - Add a link to the upper device
7665 * @dev: device
7666 * @upper_dev: new upper device
7667 * @extack: netlink extended ack
7668 *
7669 * Adds a link to device which is upper to this one. The caller must hold
7670 * the RTNL lock. On a failure a negative errno code is returned.
7671 * On success the reference counts are adjusted and the function
7672 * returns zero.
7673 */
7674int netdev_upper_dev_link(struct net_device *dev,
7675 struct net_device *upper_dev,
7676 struct netlink_ext_ack *extack)
7677{
7678 struct netdev_nested_priv priv = {
7679 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7680 .data = NULL,
7681 };
7682
7683 return __netdev_upper_dev_link(dev, upper_dev, false,
7684 NULL, NULL, &priv, extack);
7685}
7686EXPORT_SYMBOL(netdev_upper_dev_link);
7687
7688/**
7689 * netdev_master_upper_dev_link - Add a master link to the upper device
7690 * @dev: device
7691 * @upper_dev: new upper device
7692 * @upper_priv: upper device private
7693 * @upper_info: upper info to be passed down via notifier
7694 * @extack: netlink extended ack
7695 *
7696 * Adds a link to device which is upper to this one. In this case, only
7697 * one master upper device can be linked, although other non-master devices
7698 * might be linked as well. The caller must hold the RTNL lock.
7699 * On a failure a negative errno code is returned. On success the reference
7700 * counts are adjusted and the function returns zero.
7701 */
7702int netdev_master_upper_dev_link(struct net_device *dev,
7703 struct net_device *upper_dev,
7704 void *upper_priv, void *upper_info,
7705 struct netlink_ext_ack *extack)
7706{
7707 struct netdev_nested_priv priv = {
7708 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7709 .data = NULL,
7710 };
7711
7712 return __netdev_upper_dev_link(dev, upper_dev, true,
7713 upper_priv, upper_info, &priv, extack);
7714}
7715EXPORT_SYMBOL(netdev_master_upper_dev_link);
7716
7717static void __netdev_upper_dev_unlink(struct net_device *dev,
7718 struct net_device *upper_dev,
7719 struct netdev_nested_priv *priv)
7720{
7721 struct netdev_notifier_changeupper_info changeupper_info = {
7722 .info = {
7723 .dev = dev,
7724 },
7725 .upper_dev = upper_dev,
7726 .linking = false,
7727 };
7728
7729 ASSERT_RTNL();
7730
7731 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7732
7733 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7734 &changeupper_info.info);
7735
7736 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7737
7738 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7739 &changeupper_info.info);
7740
7741 __netdev_update_upper_level(dev, NULL);
7742 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7743
7744 __netdev_update_lower_level(upper_dev, priv);
7745 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7746 priv);
7747}
7748
7749/**
7750 * netdev_upper_dev_unlink - Removes a link to upper device
7751 * @dev: device
7752 * @upper_dev: new upper device
7753 *
7754 * Removes a link to device which is upper to this one. The caller must hold
7755 * the RTNL lock.
7756 */
7757void netdev_upper_dev_unlink(struct net_device *dev,
7758 struct net_device *upper_dev)
7759{
7760 struct netdev_nested_priv priv = {
7761 .flags = NESTED_SYNC_TODO,
7762 .data = NULL,
7763 };
7764
7765 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7766}
7767EXPORT_SYMBOL(netdev_upper_dev_unlink);
7768
7769static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7770 struct net_device *lower_dev,
7771 bool val)
7772{
7773 struct netdev_adjacent *adj;
7774
7775 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7776 if (adj)
7777 adj->ignore = val;
7778
7779 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7780 if (adj)
7781 adj->ignore = val;
7782}
7783
7784static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7785 struct net_device *lower_dev)
7786{
7787 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7788}
7789
7790static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7791 struct net_device *lower_dev)
7792{
7793 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7794}
7795
7796int netdev_adjacent_change_prepare(struct net_device *old_dev,
7797 struct net_device *new_dev,
7798 struct net_device *dev,
7799 struct netlink_ext_ack *extack)
7800{
7801 struct netdev_nested_priv priv = {
7802 .flags = 0,
7803 .data = NULL,
7804 };
7805 int err;
7806
7807 if (!new_dev)
7808 return 0;
7809
7810 if (old_dev && new_dev != old_dev)
7811 netdev_adjacent_dev_disable(dev, old_dev);
7812 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7813 extack);
7814 if (err) {
7815 if (old_dev && new_dev != old_dev)
7816 netdev_adjacent_dev_enable(dev, old_dev);
7817 return err;
7818 }
7819
7820 return 0;
7821}
7822EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7823
7824void netdev_adjacent_change_commit(struct net_device *old_dev,
7825 struct net_device *new_dev,
7826 struct net_device *dev)
7827{
7828 struct netdev_nested_priv priv = {
7829 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7830 .data = NULL,
7831 };
7832
7833 if (!new_dev || !old_dev)
7834 return;
7835
7836 if (new_dev == old_dev)
7837 return;
7838
7839 netdev_adjacent_dev_enable(dev, old_dev);
7840 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7841}
7842EXPORT_SYMBOL(netdev_adjacent_change_commit);
7843
7844void netdev_adjacent_change_abort(struct net_device *old_dev,
7845 struct net_device *new_dev,
7846 struct net_device *dev)
7847{
7848 struct netdev_nested_priv priv = {
7849 .flags = 0,
7850 .data = NULL,
7851 };
7852
7853 if (!new_dev)
7854 return;
7855
7856 if (old_dev && new_dev != old_dev)
7857 netdev_adjacent_dev_enable(dev, old_dev);
7858
7859 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7860}
7861EXPORT_SYMBOL(netdev_adjacent_change_abort);
7862
7863/**
7864 * netdev_bonding_info_change - Dispatch event about slave change
7865 * @dev: device
7866 * @bonding_info: info to dispatch
7867 *
7868 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7869 * The caller must hold the RTNL lock.
7870 */
7871void netdev_bonding_info_change(struct net_device *dev,
7872 struct netdev_bonding_info *bonding_info)
7873{
7874 struct netdev_notifier_bonding_info info = {
7875 .info.dev = dev,
7876 };
7877
7878 memcpy(&info.bonding_info, bonding_info,
7879 sizeof(struct netdev_bonding_info));
7880 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7881 &info.info);
7882}
7883EXPORT_SYMBOL(netdev_bonding_info_change);
7884
7885static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7886 struct netlink_ext_ack *extack)
7887{
7888 struct netdev_notifier_offload_xstats_info info = {
7889 .info.dev = dev,
7890 .info.extack = extack,
7891 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7892 };
7893 int err;
7894 int rc;
7895
7896 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7897 GFP_KERNEL);
7898 if (!dev->offload_xstats_l3)
7899 return -ENOMEM;
7900
7901 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7902 NETDEV_OFFLOAD_XSTATS_DISABLE,
7903 &info.info);
7904 err = notifier_to_errno(rc);
7905 if (err)
7906 goto free_stats;
7907
7908 return 0;
7909
7910free_stats:
7911 kfree(dev->offload_xstats_l3);
7912 dev->offload_xstats_l3 = NULL;
7913 return err;
7914}
7915
7916int netdev_offload_xstats_enable(struct net_device *dev,
7917 enum netdev_offload_xstats_type type,
7918 struct netlink_ext_ack *extack)
7919{
7920 ASSERT_RTNL();
7921
7922 if (netdev_offload_xstats_enabled(dev, type))
7923 return -EALREADY;
7924
7925 switch (type) {
7926 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7927 return netdev_offload_xstats_enable_l3(dev, extack);
7928 }
7929
7930 WARN_ON(1);
7931 return -EINVAL;
7932}
7933EXPORT_SYMBOL(netdev_offload_xstats_enable);
7934
7935static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7936{
7937 struct netdev_notifier_offload_xstats_info info = {
7938 .info.dev = dev,
7939 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7940 };
7941
7942 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7943 &info.info);
7944 kfree(dev->offload_xstats_l3);
7945 dev->offload_xstats_l3 = NULL;
7946}
7947
7948int netdev_offload_xstats_disable(struct net_device *dev,
7949 enum netdev_offload_xstats_type type)
7950{
7951 ASSERT_RTNL();
7952
7953 if (!netdev_offload_xstats_enabled(dev, type))
7954 return -EALREADY;
7955
7956 switch (type) {
7957 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7958 netdev_offload_xstats_disable_l3(dev);
7959 return 0;
7960 }
7961
7962 WARN_ON(1);
7963 return -EINVAL;
7964}
7965EXPORT_SYMBOL(netdev_offload_xstats_disable);
7966
7967static void netdev_offload_xstats_disable_all(struct net_device *dev)
7968{
7969 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7970}
7971
7972static struct rtnl_hw_stats64 *
7973netdev_offload_xstats_get_ptr(const struct net_device *dev,
7974 enum netdev_offload_xstats_type type)
7975{
7976 switch (type) {
7977 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7978 return dev->offload_xstats_l3;
7979 }
7980
7981 WARN_ON(1);
7982 return NULL;
7983}
7984
7985bool netdev_offload_xstats_enabled(const struct net_device *dev,
7986 enum netdev_offload_xstats_type type)
7987{
7988 ASSERT_RTNL();
7989
7990 return netdev_offload_xstats_get_ptr(dev, type);
7991}
7992EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7993
7994struct netdev_notifier_offload_xstats_ru {
7995 bool used;
7996};
7997
7998struct netdev_notifier_offload_xstats_rd {
7999 struct rtnl_hw_stats64 stats;
8000 bool used;
8001};
8002
8003static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8004 const struct rtnl_hw_stats64 *src)
8005{
8006 dest->rx_packets += src->rx_packets;
8007 dest->tx_packets += src->tx_packets;
8008 dest->rx_bytes += src->rx_bytes;
8009 dest->tx_bytes += src->tx_bytes;
8010 dest->rx_errors += src->rx_errors;
8011 dest->tx_errors += src->tx_errors;
8012 dest->rx_dropped += src->rx_dropped;
8013 dest->tx_dropped += src->tx_dropped;
8014 dest->multicast += src->multicast;
8015}
8016
8017static int netdev_offload_xstats_get_used(struct net_device *dev,
8018 enum netdev_offload_xstats_type type,
8019 bool *p_used,
8020 struct netlink_ext_ack *extack)
8021{
8022 struct netdev_notifier_offload_xstats_ru report_used = {};
8023 struct netdev_notifier_offload_xstats_info info = {
8024 .info.dev = dev,
8025 .info.extack = extack,
8026 .type = type,
8027 .report_used = &report_used,
8028 };
8029 int rc;
8030
8031 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8032 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8033 &info.info);
8034 *p_used = report_used.used;
8035 return notifier_to_errno(rc);
8036}
8037
8038static int netdev_offload_xstats_get_stats(struct net_device *dev,
8039 enum netdev_offload_xstats_type type,
8040 struct rtnl_hw_stats64 *p_stats,
8041 bool *p_used,
8042 struct netlink_ext_ack *extack)
8043{
8044 struct netdev_notifier_offload_xstats_rd report_delta = {};
8045 struct netdev_notifier_offload_xstats_info info = {
8046 .info.dev = dev,
8047 .info.extack = extack,
8048 .type = type,
8049 .report_delta = &report_delta,
8050 };
8051 struct rtnl_hw_stats64 *stats;
8052 int rc;
8053
8054 stats = netdev_offload_xstats_get_ptr(dev, type);
8055 if (WARN_ON(!stats))
8056 return -EINVAL;
8057
8058 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8059 &info.info);
8060
8061 /* Cache whatever we got, even if there was an error, otherwise the
8062 * successful stats retrievals would get lost.
8063 */
8064 netdev_hw_stats64_add(stats, &report_delta.stats);
8065
8066 if (p_stats)
8067 *p_stats = *stats;
8068 *p_used = report_delta.used;
8069
8070 return notifier_to_errno(rc);
8071}
8072
8073int netdev_offload_xstats_get(struct net_device *dev,
8074 enum netdev_offload_xstats_type type,
8075 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8076 struct netlink_ext_ack *extack)
8077{
8078 ASSERT_RTNL();
8079
8080 if (p_stats)
8081 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8082 p_used, extack);
8083 else
8084 return netdev_offload_xstats_get_used(dev, type, p_used,
8085 extack);
8086}
8087EXPORT_SYMBOL(netdev_offload_xstats_get);
8088
8089void
8090netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8091 const struct rtnl_hw_stats64 *stats)
8092{
8093 report_delta->used = true;
8094 netdev_hw_stats64_add(&report_delta->stats, stats);
8095}
8096EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8097
8098void
8099netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8100{
8101 report_used->used = true;
8102}
8103EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8104
8105void netdev_offload_xstats_push_delta(struct net_device *dev,
8106 enum netdev_offload_xstats_type type,
8107 const struct rtnl_hw_stats64 *p_stats)
8108{
8109 struct rtnl_hw_stats64 *stats;
8110
8111 ASSERT_RTNL();
8112
8113 stats = netdev_offload_xstats_get_ptr(dev, type);
8114 if (WARN_ON(!stats))
8115 return;
8116
8117 netdev_hw_stats64_add(stats, p_stats);
8118}
8119EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8120
8121/**
8122 * netdev_get_xmit_slave - Get the xmit slave of master device
8123 * @dev: device
8124 * @skb: The packet
8125 * @all_slaves: assume all the slaves are active
8126 *
8127 * The reference counters are not incremented so the caller must be
8128 * careful with locks. The caller must hold RCU lock.
8129 * %NULL is returned if no slave is found.
8130 */
8131
8132struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8133 struct sk_buff *skb,
8134 bool all_slaves)
8135{
8136 const struct net_device_ops *ops = dev->netdev_ops;
8137
8138 if (!ops->ndo_get_xmit_slave)
8139 return NULL;
8140 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8141}
8142EXPORT_SYMBOL(netdev_get_xmit_slave);
8143
8144static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8145 struct sock *sk)
8146{
8147 const struct net_device_ops *ops = dev->netdev_ops;
8148
8149 if (!ops->ndo_sk_get_lower_dev)
8150 return NULL;
8151 return ops->ndo_sk_get_lower_dev(dev, sk);
8152}
8153
8154/**
8155 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8156 * @dev: device
8157 * @sk: the socket
8158 *
8159 * %NULL is returned if no lower device is found.
8160 */
8161
8162struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8163 struct sock *sk)
8164{
8165 struct net_device *lower;
8166
8167 lower = netdev_sk_get_lower_dev(dev, sk);
8168 while (lower) {
8169 dev = lower;
8170 lower = netdev_sk_get_lower_dev(dev, sk);
8171 }
8172
8173 return dev;
8174}
8175EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8176
8177static void netdev_adjacent_add_links(struct net_device *dev)
8178{
8179 struct netdev_adjacent *iter;
8180
8181 struct net *net = dev_net(dev);
8182
8183 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8184 if (!net_eq(net, dev_net(iter->dev)))
8185 continue;
8186 netdev_adjacent_sysfs_add(iter->dev, dev,
8187 &iter->dev->adj_list.lower);
8188 netdev_adjacent_sysfs_add(dev, iter->dev,
8189 &dev->adj_list.upper);
8190 }
8191
8192 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8193 if (!net_eq(net, dev_net(iter->dev)))
8194 continue;
8195 netdev_adjacent_sysfs_add(iter->dev, dev,
8196 &iter->dev->adj_list.upper);
8197 netdev_adjacent_sysfs_add(dev, iter->dev,
8198 &dev->adj_list.lower);
8199 }
8200}
8201
8202static void netdev_adjacent_del_links(struct net_device *dev)
8203{
8204 struct netdev_adjacent *iter;
8205
8206 struct net *net = dev_net(dev);
8207
8208 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8209 if (!net_eq(net, dev_net(iter->dev)))
8210 continue;
8211 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8212 &iter->dev->adj_list.lower);
8213 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8214 &dev->adj_list.upper);
8215 }
8216
8217 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8218 if (!net_eq(net, dev_net(iter->dev)))
8219 continue;
8220 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8221 &iter->dev->adj_list.upper);
8222 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8223 &dev->adj_list.lower);
8224 }
8225}
8226
8227void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8228{
8229 struct netdev_adjacent *iter;
8230
8231 struct net *net = dev_net(dev);
8232
8233 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8234 if (!net_eq(net, dev_net(iter->dev)))
8235 continue;
8236 netdev_adjacent_sysfs_del(iter->dev, oldname,
8237 &iter->dev->adj_list.lower);
8238 netdev_adjacent_sysfs_add(iter->dev, dev,
8239 &iter->dev->adj_list.lower);
8240 }
8241
8242 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8243 if (!net_eq(net, dev_net(iter->dev)))
8244 continue;
8245 netdev_adjacent_sysfs_del(iter->dev, oldname,
8246 &iter->dev->adj_list.upper);
8247 netdev_adjacent_sysfs_add(iter->dev, dev,
8248 &iter->dev->adj_list.upper);
8249 }
8250}
8251
8252void *netdev_lower_dev_get_private(struct net_device *dev,
8253 struct net_device *lower_dev)
8254{
8255 struct netdev_adjacent *lower;
8256
8257 if (!lower_dev)
8258 return NULL;
8259 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8260 if (!lower)
8261 return NULL;
8262
8263 return lower->private;
8264}
8265EXPORT_SYMBOL(netdev_lower_dev_get_private);
8266
8267
8268/**
8269 * netdev_lower_state_changed - Dispatch event about lower device state change
8270 * @lower_dev: device
8271 * @lower_state_info: state to dispatch
8272 *
8273 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8274 * The caller must hold the RTNL lock.
8275 */
8276void netdev_lower_state_changed(struct net_device *lower_dev,
8277 void *lower_state_info)
8278{
8279 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8280 .info.dev = lower_dev,
8281 };
8282
8283 ASSERT_RTNL();
8284 changelowerstate_info.lower_state_info = lower_state_info;
8285 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8286 &changelowerstate_info.info);
8287}
8288EXPORT_SYMBOL(netdev_lower_state_changed);
8289
8290static void dev_change_rx_flags(struct net_device *dev, int flags)
8291{
8292 const struct net_device_ops *ops = dev->netdev_ops;
8293
8294 if (ops->ndo_change_rx_flags)
8295 ops->ndo_change_rx_flags(dev, flags);
8296}
8297
8298static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8299{
8300 unsigned int old_flags = dev->flags;
8301 kuid_t uid;
8302 kgid_t gid;
8303
8304 ASSERT_RTNL();
8305
8306 dev->flags |= IFF_PROMISC;
8307 dev->promiscuity += inc;
8308 if (dev->promiscuity == 0) {
8309 /*
8310 * Avoid overflow.
8311 * If inc causes overflow, untouch promisc and return error.
8312 */
8313 if (inc < 0)
8314 dev->flags &= ~IFF_PROMISC;
8315 else {
8316 dev->promiscuity -= inc;
8317 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8318 return -EOVERFLOW;
8319 }
8320 }
8321 if (dev->flags != old_flags) {
8322 pr_info("device %s %s promiscuous mode\n",
8323 dev->name,
8324 dev->flags & IFF_PROMISC ? "entered" : "left");
8325 if (audit_enabled) {
8326 current_uid_gid(&uid, &gid);
8327 audit_log(audit_context(), GFP_ATOMIC,
8328 AUDIT_ANOM_PROMISCUOUS,
8329 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8330 dev->name, (dev->flags & IFF_PROMISC),
8331 (old_flags & IFF_PROMISC),
8332 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8333 from_kuid(&init_user_ns, uid),
8334 from_kgid(&init_user_ns, gid),
8335 audit_get_sessionid(current));
8336 }
8337
8338 dev_change_rx_flags(dev, IFF_PROMISC);
8339 }
8340 if (notify)
8341 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8342 return 0;
8343}
8344
8345/**
8346 * dev_set_promiscuity - update promiscuity count on a device
8347 * @dev: device
8348 * @inc: modifier
8349 *
8350 * Add or remove promiscuity from a device. While the count in the device
8351 * remains above zero the interface remains promiscuous. Once it hits zero
8352 * the device reverts back to normal filtering operation. A negative inc
8353 * value is used to drop promiscuity on the device.
8354 * Return 0 if successful or a negative errno code on error.
8355 */
8356int dev_set_promiscuity(struct net_device *dev, int inc)
8357{
8358 unsigned int old_flags = dev->flags;
8359 int err;
8360
8361 err = __dev_set_promiscuity(dev, inc, true);
8362 if (err < 0)
8363 return err;
8364 if (dev->flags != old_flags)
8365 dev_set_rx_mode(dev);
8366 return err;
8367}
8368EXPORT_SYMBOL(dev_set_promiscuity);
8369
8370static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8371{
8372 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8373
8374 ASSERT_RTNL();
8375
8376 dev->flags |= IFF_ALLMULTI;
8377 dev->allmulti += inc;
8378 if (dev->allmulti == 0) {
8379 /*
8380 * Avoid overflow.
8381 * If inc causes overflow, untouch allmulti and return error.
8382 */
8383 if (inc < 0)
8384 dev->flags &= ~IFF_ALLMULTI;
8385 else {
8386 dev->allmulti -= inc;
8387 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8388 return -EOVERFLOW;
8389 }
8390 }
8391 if (dev->flags ^ old_flags) {
8392 dev_change_rx_flags(dev, IFF_ALLMULTI);
8393 dev_set_rx_mode(dev);
8394 if (notify)
8395 __dev_notify_flags(dev, old_flags,
8396 dev->gflags ^ old_gflags, 0, NULL);
8397 }
8398 return 0;
8399}
8400
8401/**
8402 * dev_set_allmulti - update allmulti count on a device
8403 * @dev: device
8404 * @inc: modifier
8405 *
8406 * Add or remove reception of all multicast frames to a device. While the
8407 * count in the device remains above zero the interface remains listening
8408 * to all interfaces. Once it hits zero the device reverts back to normal
8409 * filtering operation. A negative @inc value is used to drop the counter
8410 * when releasing a resource needing all multicasts.
8411 * Return 0 if successful or a negative errno code on error.
8412 */
8413
8414int dev_set_allmulti(struct net_device *dev, int inc)
8415{
8416 return __dev_set_allmulti(dev, inc, true);
8417}
8418EXPORT_SYMBOL(dev_set_allmulti);
8419
8420/*
8421 * Upload unicast and multicast address lists to device and
8422 * configure RX filtering. When the device doesn't support unicast
8423 * filtering it is put in promiscuous mode while unicast addresses
8424 * are present.
8425 */
8426void __dev_set_rx_mode(struct net_device *dev)
8427{
8428 const struct net_device_ops *ops = dev->netdev_ops;
8429
8430 /* dev_open will call this function so the list will stay sane. */
8431 if (!(dev->flags&IFF_UP))
8432 return;
8433
8434 if (!netif_device_present(dev))
8435 return;
8436
8437 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8438 /* Unicast addresses changes may only happen under the rtnl,
8439 * therefore calling __dev_set_promiscuity here is safe.
8440 */
8441 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8442 __dev_set_promiscuity(dev, 1, false);
8443 dev->uc_promisc = true;
8444 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8445 __dev_set_promiscuity(dev, -1, false);
8446 dev->uc_promisc = false;
8447 }
8448 }
8449
8450 if (ops->ndo_set_rx_mode)
8451 ops->ndo_set_rx_mode(dev);
8452}
8453
8454void dev_set_rx_mode(struct net_device *dev)
8455{
8456 netif_addr_lock_bh(dev);
8457 __dev_set_rx_mode(dev);
8458 netif_addr_unlock_bh(dev);
8459}
8460
8461/**
8462 * dev_get_flags - get flags reported to userspace
8463 * @dev: device
8464 *
8465 * Get the combination of flag bits exported through APIs to userspace.
8466 */
8467unsigned int dev_get_flags(const struct net_device *dev)
8468{
8469 unsigned int flags;
8470
8471 flags = (dev->flags & ~(IFF_PROMISC |
8472 IFF_ALLMULTI |
8473 IFF_RUNNING |
8474 IFF_LOWER_UP |
8475 IFF_DORMANT)) |
8476 (dev->gflags & (IFF_PROMISC |
8477 IFF_ALLMULTI));
8478
8479 if (netif_running(dev)) {
8480 if (netif_oper_up(dev))
8481 flags |= IFF_RUNNING;
8482 if (netif_carrier_ok(dev))
8483 flags |= IFF_LOWER_UP;
8484 if (netif_dormant(dev))
8485 flags |= IFF_DORMANT;
8486 }
8487
8488 return flags;
8489}
8490EXPORT_SYMBOL(dev_get_flags);
8491
8492int __dev_change_flags(struct net_device *dev, unsigned int flags,
8493 struct netlink_ext_ack *extack)
8494{
8495 unsigned int old_flags = dev->flags;
8496 int ret;
8497
8498 ASSERT_RTNL();
8499
8500 /*
8501 * Set the flags on our device.
8502 */
8503
8504 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8505 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8506 IFF_AUTOMEDIA)) |
8507 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8508 IFF_ALLMULTI));
8509
8510 /*
8511 * Load in the correct multicast list now the flags have changed.
8512 */
8513
8514 if ((old_flags ^ flags) & IFF_MULTICAST)
8515 dev_change_rx_flags(dev, IFF_MULTICAST);
8516
8517 dev_set_rx_mode(dev);
8518
8519 /*
8520 * Have we downed the interface. We handle IFF_UP ourselves
8521 * according to user attempts to set it, rather than blindly
8522 * setting it.
8523 */
8524
8525 ret = 0;
8526 if ((old_flags ^ flags) & IFF_UP) {
8527 if (old_flags & IFF_UP)
8528 __dev_close(dev);
8529 else
8530 ret = __dev_open(dev, extack);
8531 }
8532
8533 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8534 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8535 unsigned int old_flags = dev->flags;
8536
8537 dev->gflags ^= IFF_PROMISC;
8538
8539 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8540 if (dev->flags != old_flags)
8541 dev_set_rx_mode(dev);
8542 }
8543
8544 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8545 * is important. Some (broken) drivers set IFF_PROMISC, when
8546 * IFF_ALLMULTI is requested not asking us and not reporting.
8547 */
8548 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8549 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8550
8551 dev->gflags ^= IFF_ALLMULTI;
8552 __dev_set_allmulti(dev, inc, false);
8553 }
8554
8555 return ret;
8556}
8557
8558void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8559 unsigned int gchanges, u32 portid,
8560 const struct nlmsghdr *nlh)
8561{
8562 unsigned int changes = dev->flags ^ old_flags;
8563
8564 if (gchanges)
8565 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8566
8567 if (changes & IFF_UP) {
8568 if (dev->flags & IFF_UP)
8569 call_netdevice_notifiers(NETDEV_UP, dev);
8570 else
8571 call_netdevice_notifiers(NETDEV_DOWN, dev);
8572 }
8573
8574 if (dev->flags & IFF_UP &&
8575 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8576 struct netdev_notifier_change_info change_info = {
8577 .info = {
8578 .dev = dev,
8579 },
8580 .flags_changed = changes,
8581 };
8582
8583 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8584 }
8585}
8586
8587/**
8588 * dev_change_flags - change device settings
8589 * @dev: device
8590 * @flags: device state flags
8591 * @extack: netlink extended ack
8592 *
8593 * Change settings on device based state flags. The flags are
8594 * in the userspace exported format.
8595 */
8596int dev_change_flags(struct net_device *dev, unsigned int flags,
8597 struct netlink_ext_ack *extack)
8598{
8599 int ret;
8600 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8601
8602 ret = __dev_change_flags(dev, flags, extack);
8603 if (ret < 0)
8604 return ret;
8605
8606 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8607 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8608 return ret;
8609}
8610EXPORT_SYMBOL(dev_change_flags);
8611
8612int __dev_set_mtu(struct net_device *dev, int new_mtu)
8613{
8614 const struct net_device_ops *ops = dev->netdev_ops;
8615
8616 if (ops->ndo_change_mtu)
8617 return ops->ndo_change_mtu(dev, new_mtu);
8618
8619 /* Pairs with all the lockless reads of dev->mtu in the stack */
8620 WRITE_ONCE(dev->mtu, new_mtu);
8621 return 0;
8622}
8623EXPORT_SYMBOL(__dev_set_mtu);
8624
8625int dev_validate_mtu(struct net_device *dev, int new_mtu,
8626 struct netlink_ext_ack *extack)
8627{
8628 /* MTU must be positive, and in range */
8629 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8630 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8631 return -EINVAL;
8632 }
8633
8634 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8635 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8636 return -EINVAL;
8637 }
8638 return 0;
8639}
8640
8641/**
8642 * dev_set_mtu_ext - Change maximum transfer unit
8643 * @dev: device
8644 * @new_mtu: new transfer unit
8645 * @extack: netlink extended ack
8646 *
8647 * Change the maximum transfer size of the network device.
8648 */
8649int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8650 struct netlink_ext_ack *extack)
8651{
8652 int err, orig_mtu;
8653
8654 if (new_mtu == dev->mtu)
8655 return 0;
8656
8657 err = dev_validate_mtu(dev, new_mtu, extack);
8658 if (err)
8659 return err;
8660
8661 if (!netif_device_present(dev))
8662 return -ENODEV;
8663
8664 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8665 err = notifier_to_errno(err);
8666 if (err)
8667 return err;
8668
8669 orig_mtu = dev->mtu;
8670 err = __dev_set_mtu(dev, new_mtu);
8671
8672 if (!err) {
8673 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8674 orig_mtu);
8675 err = notifier_to_errno(err);
8676 if (err) {
8677 /* setting mtu back and notifying everyone again,
8678 * so that they have a chance to revert changes.
8679 */
8680 __dev_set_mtu(dev, orig_mtu);
8681 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8682 new_mtu);
8683 }
8684 }
8685 return err;
8686}
8687
8688int dev_set_mtu(struct net_device *dev, int new_mtu)
8689{
8690 struct netlink_ext_ack extack;
8691 int err;
8692
8693 memset(&extack, 0, sizeof(extack));
8694 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8695 if (err && extack._msg)
8696 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8697 return err;
8698}
8699EXPORT_SYMBOL(dev_set_mtu);
8700
8701/**
8702 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8703 * @dev: device
8704 * @new_len: new tx queue length
8705 */
8706int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8707{
8708 unsigned int orig_len = dev->tx_queue_len;
8709 int res;
8710
8711 if (new_len != (unsigned int)new_len)
8712 return -ERANGE;
8713
8714 if (new_len != orig_len) {
8715 dev->tx_queue_len = new_len;
8716 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8717 res = notifier_to_errno(res);
8718 if (res)
8719 goto err_rollback;
8720 res = dev_qdisc_change_tx_queue_len(dev);
8721 if (res)
8722 goto err_rollback;
8723 }
8724
8725 return 0;
8726
8727err_rollback:
8728 netdev_err(dev, "refused to change device tx_queue_len\n");
8729 dev->tx_queue_len = orig_len;
8730 return res;
8731}
8732
8733/**
8734 * dev_set_group - Change group this device belongs to
8735 * @dev: device
8736 * @new_group: group this device should belong to
8737 */
8738void dev_set_group(struct net_device *dev, int new_group)
8739{
8740 dev->group = new_group;
8741}
8742
8743/**
8744 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8745 * @dev: device
8746 * @addr: new address
8747 * @extack: netlink extended ack
8748 */
8749int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8750 struct netlink_ext_ack *extack)
8751{
8752 struct netdev_notifier_pre_changeaddr_info info = {
8753 .info.dev = dev,
8754 .info.extack = extack,
8755 .dev_addr = addr,
8756 };
8757 int rc;
8758
8759 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8760 return notifier_to_errno(rc);
8761}
8762EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8763
8764/**
8765 * dev_set_mac_address - Change Media Access Control Address
8766 * @dev: device
8767 * @sa: new address
8768 * @extack: netlink extended ack
8769 *
8770 * Change the hardware (MAC) address of the device
8771 */
8772int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8773 struct netlink_ext_ack *extack)
8774{
8775 const struct net_device_ops *ops = dev->netdev_ops;
8776 int err;
8777
8778 if (!ops->ndo_set_mac_address)
8779 return -EOPNOTSUPP;
8780 if (sa->sa_family != dev->type)
8781 return -EINVAL;
8782 if (!netif_device_present(dev))
8783 return -ENODEV;
8784 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8785 if (err)
8786 return err;
8787 err = ops->ndo_set_mac_address(dev, sa);
8788 if (err)
8789 return err;
8790 dev->addr_assign_type = NET_ADDR_SET;
8791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8792 add_device_randomness(dev->dev_addr, dev->addr_len);
8793 return 0;
8794}
8795EXPORT_SYMBOL(dev_set_mac_address);
8796
8797static DECLARE_RWSEM(dev_addr_sem);
8798
8799int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8800 struct netlink_ext_ack *extack)
8801{
8802 int ret;
8803
8804 down_write(&dev_addr_sem);
8805 ret = dev_set_mac_address(dev, sa, extack);
8806 up_write(&dev_addr_sem);
8807 return ret;
8808}
8809EXPORT_SYMBOL(dev_set_mac_address_user);
8810
8811int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8812{
8813 size_t size = sizeof(sa->sa_data_min);
8814 struct net_device *dev;
8815 int ret = 0;
8816
8817 down_read(&dev_addr_sem);
8818 rcu_read_lock();
8819
8820 dev = dev_get_by_name_rcu(net, dev_name);
8821 if (!dev) {
8822 ret = -ENODEV;
8823 goto unlock;
8824 }
8825 if (!dev->addr_len)
8826 memset(sa->sa_data, 0, size);
8827 else
8828 memcpy(sa->sa_data, dev->dev_addr,
8829 min_t(size_t, size, dev->addr_len));
8830 sa->sa_family = dev->type;
8831
8832unlock:
8833 rcu_read_unlock();
8834 up_read(&dev_addr_sem);
8835 return ret;
8836}
8837EXPORT_SYMBOL(dev_get_mac_address);
8838
8839/**
8840 * dev_change_carrier - Change device carrier
8841 * @dev: device
8842 * @new_carrier: new value
8843 *
8844 * Change device carrier
8845 */
8846int dev_change_carrier(struct net_device *dev, bool new_carrier)
8847{
8848 const struct net_device_ops *ops = dev->netdev_ops;
8849
8850 if (!ops->ndo_change_carrier)
8851 return -EOPNOTSUPP;
8852 if (!netif_device_present(dev))
8853 return -ENODEV;
8854 return ops->ndo_change_carrier(dev, new_carrier);
8855}
8856
8857/**
8858 * dev_get_phys_port_id - Get device physical port ID
8859 * @dev: device
8860 * @ppid: port ID
8861 *
8862 * Get device physical port ID
8863 */
8864int dev_get_phys_port_id(struct net_device *dev,
8865 struct netdev_phys_item_id *ppid)
8866{
8867 const struct net_device_ops *ops = dev->netdev_ops;
8868
8869 if (!ops->ndo_get_phys_port_id)
8870 return -EOPNOTSUPP;
8871 return ops->ndo_get_phys_port_id(dev, ppid);
8872}
8873
8874/**
8875 * dev_get_phys_port_name - Get device physical port name
8876 * @dev: device
8877 * @name: port name
8878 * @len: limit of bytes to copy to name
8879 *
8880 * Get device physical port name
8881 */
8882int dev_get_phys_port_name(struct net_device *dev,
8883 char *name, size_t len)
8884{
8885 const struct net_device_ops *ops = dev->netdev_ops;
8886 int err;
8887
8888 if (ops->ndo_get_phys_port_name) {
8889 err = ops->ndo_get_phys_port_name(dev, name, len);
8890 if (err != -EOPNOTSUPP)
8891 return err;
8892 }
8893 return devlink_compat_phys_port_name_get(dev, name, len);
8894}
8895
8896/**
8897 * dev_get_port_parent_id - Get the device's port parent identifier
8898 * @dev: network device
8899 * @ppid: pointer to a storage for the port's parent identifier
8900 * @recurse: allow/disallow recursion to lower devices
8901 *
8902 * Get the devices's port parent identifier
8903 */
8904int dev_get_port_parent_id(struct net_device *dev,
8905 struct netdev_phys_item_id *ppid,
8906 bool recurse)
8907{
8908 const struct net_device_ops *ops = dev->netdev_ops;
8909 struct netdev_phys_item_id first = { };
8910 struct net_device *lower_dev;
8911 struct list_head *iter;
8912 int err;
8913
8914 if (ops->ndo_get_port_parent_id) {
8915 err = ops->ndo_get_port_parent_id(dev, ppid);
8916 if (err != -EOPNOTSUPP)
8917 return err;
8918 }
8919
8920 err = devlink_compat_switch_id_get(dev, ppid);
8921 if (!recurse || err != -EOPNOTSUPP)
8922 return err;
8923
8924 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8925 err = dev_get_port_parent_id(lower_dev, ppid, true);
8926 if (err)
8927 break;
8928 if (!first.id_len)
8929 first = *ppid;
8930 else if (memcmp(&first, ppid, sizeof(*ppid)))
8931 return -EOPNOTSUPP;
8932 }
8933
8934 return err;
8935}
8936EXPORT_SYMBOL(dev_get_port_parent_id);
8937
8938/**
8939 * netdev_port_same_parent_id - Indicate if two network devices have
8940 * the same port parent identifier
8941 * @a: first network device
8942 * @b: second network device
8943 */
8944bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8945{
8946 struct netdev_phys_item_id a_id = { };
8947 struct netdev_phys_item_id b_id = { };
8948
8949 if (dev_get_port_parent_id(a, &a_id, true) ||
8950 dev_get_port_parent_id(b, &b_id, true))
8951 return false;
8952
8953 return netdev_phys_item_id_same(&a_id, &b_id);
8954}
8955EXPORT_SYMBOL(netdev_port_same_parent_id);
8956
8957/**
8958 * dev_change_proto_down - set carrier according to proto_down.
8959 *
8960 * @dev: device
8961 * @proto_down: new value
8962 */
8963int dev_change_proto_down(struct net_device *dev, bool proto_down)
8964{
8965 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8966 return -EOPNOTSUPP;
8967 if (!netif_device_present(dev))
8968 return -ENODEV;
8969 if (proto_down)
8970 netif_carrier_off(dev);
8971 else
8972 netif_carrier_on(dev);
8973 dev->proto_down = proto_down;
8974 return 0;
8975}
8976
8977/**
8978 * dev_change_proto_down_reason - proto down reason
8979 *
8980 * @dev: device
8981 * @mask: proto down mask
8982 * @value: proto down value
8983 */
8984void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8985 u32 value)
8986{
8987 int b;
8988
8989 if (!mask) {
8990 dev->proto_down_reason = value;
8991 } else {
8992 for_each_set_bit(b, &mask, 32) {
8993 if (value & (1 << b))
8994 dev->proto_down_reason |= BIT(b);
8995 else
8996 dev->proto_down_reason &= ~BIT(b);
8997 }
8998 }
8999}
9000
9001struct bpf_xdp_link {
9002 struct bpf_link link;
9003 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9004 int flags;
9005};
9006
9007static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9008{
9009 if (flags & XDP_FLAGS_HW_MODE)
9010 return XDP_MODE_HW;
9011 if (flags & XDP_FLAGS_DRV_MODE)
9012 return XDP_MODE_DRV;
9013 if (flags & XDP_FLAGS_SKB_MODE)
9014 return XDP_MODE_SKB;
9015 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9016}
9017
9018static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9019{
9020 switch (mode) {
9021 case XDP_MODE_SKB:
9022 return generic_xdp_install;
9023 case XDP_MODE_DRV:
9024 case XDP_MODE_HW:
9025 return dev->netdev_ops->ndo_bpf;
9026 default:
9027 return NULL;
9028 }
9029}
9030
9031static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9032 enum bpf_xdp_mode mode)
9033{
9034 return dev->xdp_state[mode].link;
9035}
9036
9037static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9038 enum bpf_xdp_mode mode)
9039{
9040 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9041
9042 if (link)
9043 return link->link.prog;
9044 return dev->xdp_state[mode].prog;
9045}
9046
9047u8 dev_xdp_prog_count(struct net_device *dev)
9048{
9049 u8 count = 0;
9050 int i;
9051
9052 for (i = 0; i < __MAX_XDP_MODE; i++)
9053 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9054 count++;
9055 return count;
9056}
9057EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9058
9059u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9060{
9061 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9062
9063 return prog ? prog->aux->id : 0;
9064}
9065
9066static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9067 struct bpf_xdp_link *link)
9068{
9069 dev->xdp_state[mode].link = link;
9070 dev->xdp_state[mode].prog = NULL;
9071}
9072
9073static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9074 struct bpf_prog *prog)
9075{
9076 dev->xdp_state[mode].link = NULL;
9077 dev->xdp_state[mode].prog = prog;
9078}
9079
9080static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9081 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9082 u32 flags, struct bpf_prog *prog)
9083{
9084 struct netdev_bpf xdp;
9085 int err;
9086
9087 memset(&xdp, 0, sizeof(xdp));
9088 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9089 xdp.extack = extack;
9090 xdp.flags = flags;
9091 xdp.prog = prog;
9092
9093 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9094 * "moved" into driver), so they don't increment it on their own, but
9095 * they do decrement refcnt when program is detached or replaced.
9096 * Given net_device also owns link/prog, we need to bump refcnt here
9097 * to prevent drivers from underflowing it.
9098 */
9099 if (prog)
9100 bpf_prog_inc(prog);
9101 err = bpf_op(dev, &xdp);
9102 if (err) {
9103 if (prog)
9104 bpf_prog_put(prog);
9105 return err;
9106 }
9107
9108 if (mode != XDP_MODE_HW)
9109 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9110
9111 return 0;
9112}
9113
9114static void dev_xdp_uninstall(struct net_device *dev)
9115{
9116 struct bpf_xdp_link *link;
9117 struct bpf_prog *prog;
9118 enum bpf_xdp_mode mode;
9119 bpf_op_t bpf_op;
9120
9121 ASSERT_RTNL();
9122
9123 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9124 prog = dev_xdp_prog(dev, mode);
9125 if (!prog)
9126 continue;
9127
9128 bpf_op = dev_xdp_bpf_op(dev, mode);
9129 if (!bpf_op)
9130 continue;
9131
9132 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9133
9134 /* auto-detach link from net device */
9135 link = dev_xdp_link(dev, mode);
9136 if (link)
9137 link->dev = NULL;
9138 else
9139 bpf_prog_put(prog);
9140
9141 dev_xdp_set_link(dev, mode, NULL);
9142 }
9143}
9144
9145static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9146 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9147 struct bpf_prog *old_prog, u32 flags)
9148{
9149 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9150 struct bpf_prog *cur_prog;
9151 struct net_device *upper;
9152 struct list_head *iter;
9153 enum bpf_xdp_mode mode;
9154 bpf_op_t bpf_op;
9155 int err;
9156
9157 ASSERT_RTNL();
9158
9159 /* either link or prog attachment, never both */
9160 if (link && (new_prog || old_prog))
9161 return -EINVAL;
9162 /* link supports only XDP mode flags */
9163 if (link && (flags & ~XDP_FLAGS_MODES)) {
9164 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9165 return -EINVAL;
9166 }
9167 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9168 if (num_modes > 1) {
9169 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9170 return -EINVAL;
9171 }
9172 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9173 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9174 NL_SET_ERR_MSG(extack,
9175 "More than one program loaded, unset mode is ambiguous");
9176 return -EINVAL;
9177 }
9178 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9179 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9180 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9181 return -EINVAL;
9182 }
9183
9184 mode = dev_xdp_mode(dev, flags);
9185 /* can't replace attached link */
9186 if (dev_xdp_link(dev, mode)) {
9187 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9188 return -EBUSY;
9189 }
9190
9191 /* don't allow if an upper device already has a program */
9192 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9193 if (dev_xdp_prog_count(upper) > 0) {
9194 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9195 return -EEXIST;
9196 }
9197 }
9198
9199 cur_prog = dev_xdp_prog(dev, mode);
9200 /* can't replace attached prog with link */
9201 if (link && cur_prog) {
9202 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9203 return -EBUSY;
9204 }
9205 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9206 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9207 return -EEXIST;
9208 }
9209
9210 /* put effective new program into new_prog */
9211 if (link)
9212 new_prog = link->link.prog;
9213
9214 if (new_prog) {
9215 bool offload = mode == XDP_MODE_HW;
9216 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9217 ? XDP_MODE_DRV : XDP_MODE_SKB;
9218
9219 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9220 NL_SET_ERR_MSG(extack, "XDP program already attached");
9221 return -EBUSY;
9222 }
9223 if (!offload && dev_xdp_prog(dev, other_mode)) {
9224 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9225 return -EEXIST;
9226 }
9227 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9228 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9229 return -EINVAL;
9230 }
9231 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9232 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9233 return -EINVAL;
9234 }
9235 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9236 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9237 return -EINVAL;
9238 }
9239 }
9240
9241 /* don't call drivers if the effective program didn't change */
9242 if (new_prog != cur_prog) {
9243 bpf_op = dev_xdp_bpf_op(dev, mode);
9244 if (!bpf_op) {
9245 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9246 return -EOPNOTSUPP;
9247 }
9248
9249 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9250 if (err)
9251 return err;
9252 }
9253
9254 if (link)
9255 dev_xdp_set_link(dev, mode, link);
9256 else
9257 dev_xdp_set_prog(dev, mode, new_prog);
9258 if (cur_prog)
9259 bpf_prog_put(cur_prog);
9260
9261 return 0;
9262}
9263
9264static int dev_xdp_attach_link(struct net_device *dev,
9265 struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link)
9267{
9268 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9269}
9270
9271static int dev_xdp_detach_link(struct net_device *dev,
9272 struct netlink_ext_ack *extack,
9273 struct bpf_xdp_link *link)
9274{
9275 enum bpf_xdp_mode mode;
9276 bpf_op_t bpf_op;
9277
9278 ASSERT_RTNL();
9279
9280 mode = dev_xdp_mode(dev, link->flags);
9281 if (dev_xdp_link(dev, mode) != link)
9282 return -EINVAL;
9283
9284 bpf_op = dev_xdp_bpf_op(dev, mode);
9285 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 dev_xdp_set_link(dev, mode, NULL);
9287 return 0;
9288}
9289
9290static void bpf_xdp_link_release(struct bpf_link *link)
9291{
9292 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9293
9294 rtnl_lock();
9295
9296 /* if racing with net_device's tear down, xdp_link->dev might be
9297 * already NULL, in which case link was already auto-detached
9298 */
9299 if (xdp_link->dev) {
9300 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9301 xdp_link->dev = NULL;
9302 }
9303
9304 rtnl_unlock();
9305}
9306
9307static int bpf_xdp_link_detach(struct bpf_link *link)
9308{
9309 bpf_xdp_link_release(link);
9310 return 0;
9311}
9312
9313static void bpf_xdp_link_dealloc(struct bpf_link *link)
9314{
9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9316
9317 kfree(xdp_link);
9318}
9319
9320static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9321 struct seq_file *seq)
9322{
9323 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9324 u32 ifindex = 0;
9325
9326 rtnl_lock();
9327 if (xdp_link->dev)
9328 ifindex = xdp_link->dev->ifindex;
9329 rtnl_unlock();
9330
9331 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9332}
9333
9334static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9335 struct bpf_link_info *info)
9336{
9337 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9338 u32 ifindex = 0;
9339
9340 rtnl_lock();
9341 if (xdp_link->dev)
9342 ifindex = xdp_link->dev->ifindex;
9343 rtnl_unlock();
9344
9345 info->xdp.ifindex = ifindex;
9346 return 0;
9347}
9348
9349static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9350 struct bpf_prog *old_prog)
9351{
9352 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9353 enum bpf_xdp_mode mode;
9354 bpf_op_t bpf_op;
9355 int err = 0;
9356
9357 rtnl_lock();
9358
9359 /* link might have been auto-released already, so fail */
9360 if (!xdp_link->dev) {
9361 err = -ENOLINK;
9362 goto out_unlock;
9363 }
9364
9365 if (old_prog && link->prog != old_prog) {
9366 err = -EPERM;
9367 goto out_unlock;
9368 }
9369 old_prog = link->prog;
9370 if (old_prog->type != new_prog->type ||
9371 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9372 err = -EINVAL;
9373 goto out_unlock;
9374 }
9375
9376 if (old_prog == new_prog) {
9377 /* no-op, don't disturb drivers */
9378 bpf_prog_put(new_prog);
9379 goto out_unlock;
9380 }
9381
9382 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9383 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9384 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9385 xdp_link->flags, new_prog);
9386 if (err)
9387 goto out_unlock;
9388
9389 old_prog = xchg(&link->prog, new_prog);
9390 bpf_prog_put(old_prog);
9391
9392out_unlock:
9393 rtnl_unlock();
9394 return err;
9395}
9396
9397static const struct bpf_link_ops bpf_xdp_link_lops = {
9398 .release = bpf_xdp_link_release,
9399 .dealloc = bpf_xdp_link_dealloc,
9400 .detach = bpf_xdp_link_detach,
9401 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9402 .fill_link_info = bpf_xdp_link_fill_link_info,
9403 .update_prog = bpf_xdp_link_update,
9404};
9405
9406int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9407{
9408 struct net *net = current->nsproxy->net_ns;
9409 struct bpf_link_primer link_primer;
9410 struct bpf_xdp_link *link;
9411 struct net_device *dev;
9412 int err, fd;
9413
9414 rtnl_lock();
9415 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9416 if (!dev) {
9417 rtnl_unlock();
9418 return -EINVAL;
9419 }
9420
9421 link = kzalloc(sizeof(*link), GFP_USER);
9422 if (!link) {
9423 err = -ENOMEM;
9424 goto unlock;
9425 }
9426
9427 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9428 link->dev = dev;
9429 link->flags = attr->link_create.flags;
9430
9431 err = bpf_link_prime(&link->link, &link_primer);
9432 if (err) {
9433 kfree(link);
9434 goto unlock;
9435 }
9436
9437 err = dev_xdp_attach_link(dev, NULL, link);
9438 rtnl_unlock();
9439
9440 if (err) {
9441 link->dev = NULL;
9442 bpf_link_cleanup(&link_primer);
9443 goto out_put_dev;
9444 }
9445
9446 fd = bpf_link_settle(&link_primer);
9447 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9448 dev_put(dev);
9449 return fd;
9450
9451unlock:
9452 rtnl_unlock();
9453
9454out_put_dev:
9455 dev_put(dev);
9456 return err;
9457}
9458
9459/**
9460 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9461 * @dev: device
9462 * @extack: netlink extended ack
9463 * @fd: new program fd or negative value to clear
9464 * @expected_fd: old program fd that userspace expects to replace or clear
9465 * @flags: xdp-related flags
9466 *
9467 * Set or clear a bpf program for a device
9468 */
9469int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9470 int fd, int expected_fd, u32 flags)
9471{
9472 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9473 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9474 int err;
9475
9476 ASSERT_RTNL();
9477
9478 if (fd >= 0) {
9479 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9480 mode != XDP_MODE_SKB);
9481 if (IS_ERR(new_prog))
9482 return PTR_ERR(new_prog);
9483 }
9484
9485 if (expected_fd >= 0) {
9486 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9487 mode != XDP_MODE_SKB);
9488 if (IS_ERR(old_prog)) {
9489 err = PTR_ERR(old_prog);
9490 old_prog = NULL;
9491 goto err_out;
9492 }
9493 }
9494
9495 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9496
9497err_out:
9498 if (err && new_prog)
9499 bpf_prog_put(new_prog);
9500 if (old_prog)
9501 bpf_prog_put(old_prog);
9502 return err;
9503}
9504
9505/**
9506 * dev_new_index - allocate an ifindex
9507 * @net: the applicable net namespace
9508 *
9509 * Returns a suitable unique value for a new device interface
9510 * number. The caller must hold the rtnl semaphore or the
9511 * dev_base_lock to be sure it remains unique.
9512 */
9513static int dev_new_index(struct net *net)
9514{
9515 int ifindex = net->ifindex;
9516
9517 for (;;) {
9518 if (++ifindex <= 0)
9519 ifindex = 1;
9520 if (!__dev_get_by_index(net, ifindex))
9521 return net->ifindex = ifindex;
9522 }
9523}
9524
9525/* Delayed registration/unregisteration */
9526LIST_HEAD(net_todo_list);
9527DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9528
9529static void net_set_todo(struct net_device *dev)
9530{
9531 list_add_tail(&dev->todo_list, &net_todo_list);
9532 atomic_inc(&dev_net(dev)->dev_unreg_count);
9533}
9534
9535static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9536 struct net_device *upper, netdev_features_t features)
9537{
9538 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9539 netdev_features_t feature;
9540 int feature_bit;
9541
9542 for_each_netdev_feature(upper_disables, feature_bit) {
9543 feature = __NETIF_F_BIT(feature_bit);
9544 if (!(upper->wanted_features & feature)
9545 && (features & feature)) {
9546 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9547 &feature, upper->name);
9548 features &= ~feature;
9549 }
9550 }
9551
9552 return features;
9553}
9554
9555static void netdev_sync_lower_features(struct net_device *upper,
9556 struct net_device *lower, netdev_features_t features)
9557{
9558 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9559 netdev_features_t feature;
9560 int feature_bit;
9561
9562 for_each_netdev_feature(upper_disables, feature_bit) {
9563 feature = __NETIF_F_BIT(feature_bit);
9564 if (!(features & feature) && (lower->features & feature)) {
9565 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9566 &feature, lower->name);
9567 lower->wanted_features &= ~feature;
9568 __netdev_update_features(lower);
9569
9570 if (unlikely(lower->features & feature))
9571 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9572 &feature, lower->name);
9573 else
9574 netdev_features_change(lower);
9575 }
9576 }
9577}
9578
9579static netdev_features_t netdev_fix_features(struct net_device *dev,
9580 netdev_features_t features)
9581{
9582 /* Fix illegal checksum combinations */
9583 if ((features & NETIF_F_HW_CSUM) &&
9584 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9585 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9586 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9587 }
9588
9589 /* TSO requires that SG is present as well. */
9590 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9591 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9592 features &= ~NETIF_F_ALL_TSO;
9593 }
9594
9595 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9596 !(features & NETIF_F_IP_CSUM)) {
9597 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9598 features &= ~NETIF_F_TSO;
9599 features &= ~NETIF_F_TSO_ECN;
9600 }
9601
9602 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9603 !(features & NETIF_F_IPV6_CSUM)) {
9604 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9605 features &= ~NETIF_F_TSO6;
9606 }
9607
9608 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9609 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9610 features &= ~NETIF_F_TSO_MANGLEID;
9611
9612 /* TSO ECN requires that TSO is present as well. */
9613 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9614 features &= ~NETIF_F_TSO_ECN;
9615
9616 /* Software GSO depends on SG. */
9617 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9618 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9619 features &= ~NETIF_F_GSO;
9620 }
9621
9622 /* GSO partial features require GSO partial be set */
9623 if ((features & dev->gso_partial_features) &&
9624 !(features & NETIF_F_GSO_PARTIAL)) {
9625 netdev_dbg(dev,
9626 "Dropping partially supported GSO features since no GSO partial.\n");
9627 features &= ~dev->gso_partial_features;
9628 }
9629
9630 if (!(features & NETIF_F_RXCSUM)) {
9631 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9632 * successfully merged by hardware must also have the
9633 * checksum verified by hardware. If the user does not
9634 * want to enable RXCSUM, logically, we should disable GRO_HW.
9635 */
9636 if (features & NETIF_F_GRO_HW) {
9637 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9638 features &= ~NETIF_F_GRO_HW;
9639 }
9640 }
9641
9642 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9643 if (features & NETIF_F_RXFCS) {
9644 if (features & NETIF_F_LRO) {
9645 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9646 features &= ~NETIF_F_LRO;
9647 }
9648
9649 if (features & NETIF_F_GRO_HW) {
9650 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9651 features &= ~NETIF_F_GRO_HW;
9652 }
9653 }
9654
9655 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9656 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9657 features &= ~NETIF_F_LRO;
9658 }
9659
9660 if (features & NETIF_F_HW_TLS_TX) {
9661 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9662 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9663 bool hw_csum = features & NETIF_F_HW_CSUM;
9664
9665 if (!ip_csum && !hw_csum) {
9666 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9667 features &= ~NETIF_F_HW_TLS_TX;
9668 }
9669 }
9670
9671 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9672 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9673 features &= ~NETIF_F_HW_TLS_RX;
9674 }
9675
9676 return features;
9677}
9678
9679int __netdev_update_features(struct net_device *dev)
9680{
9681 struct net_device *upper, *lower;
9682 netdev_features_t features;
9683 struct list_head *iter;
9684 int err = -1;
9685
9686 ASSERT_RTNL();
9687
9688 features = netdev_get_wanted_features(dev);
9689
9690 if (dev->netdev_ops->ndo_fix_features)
9691 features = dev->netdev_ops->ndo_fix_features(dev, features);
9692
9693 /* driver might be less strict about feature dependencies */
9694 features = netdev_fix_features(dev, features);
9695
9696 /* some features can't be enabled if they're off on an upper device */
9697 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9698 features = netdev_sync_upper_features(dev, upper, features);
9699
9700 if (dev->features == features)
9701 goto sync_lower;
9702
9703 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9704 &dev->features, &features);
9705
9706 if (dev->netdev_ops->ndo_set_features)
9707 err = dev->netdev_ops->ndo_set_features(dev, features);
9708 else
9709 err = 0;
9710
9711 if (unlikely(err < 0)) {
9712 netdev_err(dev,
9713 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9714 err, &features, &dev->features);
9715 /* return non-0 since some features might have changed and
9716 * it's better to fire a spurious notification than miss it
9717 */
9718 return -1;
9719 }
9720
9721sync_lower:
9722 /* some features must be disabled on lower devices when disabled
9723 * on an upper device (think: bonding master or bridge)
9724 */
9725 netdev_for_each_lower_dev(dev, lower, iter)
9726 netdev_sync_lower_features(dev, lower, features);
9727
9728 if (!err) {
9729 netdev_features_t diff = features ^ dev->features;
9730
9731 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9732 /* udp_tunnel_{get,drop}_rx_info both need
9733 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9734 * device, or they won't do anything.
9735 * Thus we need to update dev->features
9736 * *before* calling udp_tunnel_get_rx_info,
9737 * but *after* calling udp_tunnel_drop_rx_info.
9738 */
9739 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740 dev->features = features;
9741 udp_tunnel_get_rx_info(dev);
9742 } else {
9743 udp_tunnel_drop_rx_info(dev);
9744 }
9745 }
9746
9747 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9748 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 dev->features = features;
9750 err |= vlan_get_rx_ctag_filter_info(dev);
9751 } else {
9752 vlan_drop_rx_ctag_filter_info(dev);
9753 }
9754 }
9755
9756 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9757 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 dev->features = features;
9759 err |= vlan_get_rx_stag_filter_info(dev);
9760 } else {
9761 vlan_drop_rx_stag_filter_info(dev);
9762 }
9763 }
9764
9765 dev->features = features;
9766 }
9767
9768 return err < 0 ? 0 : 1;
9769}
9770
9771/**
9772 * netdev_update_features - recalculate device features
9773 * @dev: the device to check
9774 *
9775 * Recalculate dev->features set and send notifications if it
9776 * has changed. Should be called after driver or hardware dependent
9777 * conditions might have changed that influence the features.
9778 */
9779void netdev_update_features(struct net_device *dev)
9780{
9781 if (__netdev_update_features(dev))
9782 netdev_features_change(dev);
9783}
9784EXPORT_SYMBOL(netdev_update_features);
9785
9786/**
9787 * netdev_change_features - recalculate device features
9788 * @dev: the device to check
9789 *
9790 * Recalculate dev->features set and send notifications even
9791 * if they have not changed. Should be called instead of
9792 * netdev_update_features() if also dev->vlan_features might
9793 * have changed to allow the changes to be propagated to stacked
9794 * VLAN devices.
9795 */
9796void netdev_change_features(struct net_device *dev)
9797{
9798 __netdev_update_features(dev);
9799 netdev_features_change(dev);
9800}
9801EXPORT_SYMBOL(netdev_change_features);
9802
9803/**
9804 * netif_stacked_transfer_operstate - transfer operstate
9805 * @rootdev: the root or lower level device to transfer state from
9806 * @dev: the device to transfer operstate to
9807 *
9808 * Transfer operational state from root to device. This is normally
9809 * called when a stacking relationship exists between the root
9810 * device and the device(a leaf device).
9811 */
9812void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9813 struct net_device *dev)
9814{
9815 if (rootdev->operstate == IF_OPER_DORMANT)
9816 netif_dormant_on(dev);
9817 else
9818 netif_dormant_off(dev);
9819
9820 if (rootdev->operstate == IF_OPER_TESTING)
9821 netif_testing_on(dev);
9822 else
9823 netif_testing_off(dev);
9824
9825 if (netif_carrier_ok(rootdev))
9826 netif_carrier_on(dev);
9827 else
9828 netif_carrier_off(dev);
9829}
9830EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9831
9832static int netif_alloc_rx_queues(struct net_device *dev)
9833{
9834 unsigned int i, count = dev->num_rx_queues;
9835 struct netdev_rx_queue *rx;
9836 size_t sz = count * sizeof(*rx);
9837 int err = 0;
9838
9839 BUG_ON(count < 1);
9840
9841 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9842 if (!rx)
9843 return -ENOMEM;
9844
9845 dev->_rx = rx;
9846
9847 for (i = 0; i < count; i++) {
9848 rx[i].dev = dev;
9849
9850 /* XDP RX-queue setup */
9851 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9852 if (err < 0)
9853 goto err_rxq_info;
9854 }
9855 return 0;
9856
9857err_rxq_info:
9858 /* Rollback successful reg's and free other resources */
9859 while (i--)
9860 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9861 kvfree(dev->_rx);
9862 dev->_rx = NULL;
9863 return err;
9864}
9865
9866static void netif_free_rx_queues(struct net_device *dev)
9867{
9868 unsigned int i, count = dev->num_rx_queues;
9869
9870 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9871 if (!dev->_rx)
9872 return;
9873
9874 for (i = 0; i < count; i++)
9875 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9876
9877 kvfree(dev->_rx);
9878}
9879
9880static void netdev_init_one_queue(struct net_device *dev,
9881 struct netdev_queue *queue, void *_unused)
9882{
9883 /* Initialize queue lock */
9884 spin_lock_init(&queue->_xmit_lock);
9885 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9886 queue->xmit_lock_owner = -1;
9887 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9888 queue->dev = dev;
9889#ifdef CONFIG_BQL
9890 dql_init(&queue->dql, HZ);
9891#endif
9892}
9893
9894static void netif_free_tx_queues(struct net_device *dev)
9895{
9896 kvfree(dev->_tx);
9897}
9898
9899static int netif_alloc_netdev_queues(struct net_device *dev)
9900{
9901 unsigned int count = dev->num_tx_queues;
9902 struct netdev_queue *tx;
9903 size_t sz = count * sizeof(*tx);
9904
9905 if (count < 1 || count > 0xffff)
9906 return -EINVAL;
9907
9908 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9909 if (!tx)
9910 return -ENOMEM;
9911
9912 dev->_tx = tx;
9913
9914 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9915 spin_lock_init(&dev->tx_global_lock);
9916
9917 return 0;
9918}
9919
9920void netif_tx_stop_all_queues(struct net_device *dev)
9921{
9922 unsigned int i;
9923
9924 for (i = 0; i < dev->num_tx_queues; i++) {
9925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9926
9927 netif_tx_stop_queue(txq);
9928 }
9929}
9930EXPORT_SYMBOL(netif_tx_stop_all_queues);
9931
9932/**
9933 * register_netdevice() - register a network device
9934 * @dev: device to register
9935 *
9936 * Take a prepared network device structure and make it externally accessible.
9937 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9938 * Callers must hold the rtnl lock - you may want register_netdev()
9939 * instead of this.
9940 */
9941int register_netdevice(struct net_device *dev)
9942{
9943 int ret;
9944 struct net *net = dev_net(dev);
9945
9946 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9947 NETDEV_FEATURE_COUNT);
9948 BUG_ON(dev_boot_phase);
9949 ASSERT_RTNL();
9950
9951 might_sleep();
9952
9953 /* When net_device's are persistent, this will be fatal. */
9954 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9955 BUG_ON(!net);
9956
9957 ret = ethtool_check_ops(dev->ethtool_ops);
9958 if (ret)
9959 return ret;
9960
9961 spin_lock_init(&dev->addr_list_lock);
9962 netdev_set_addr_lockdep_class(dev);
9963
9964 ret = dev_get_valid_name(net, dev, dev->name);
9965 if (ret < 0)
9966 goto out;
9967
9968 ret = -ENOMEM;
9969 dev->name_node = netdev_name_node_head_alloc(dev);
9970 if (!dev->name_node)
9971 goto out;
9972
9973 /* Init, if this function is available */
9974 if (dev->netdev_ops->ndo_init) {
9975 ret = dev->netdev_ops->ndo_init(dev);
9976 if (ret) {
9977 if (ret > 0)
9978 ret = -EIO;
9979 goto err_free_name;
9980 }
9981 }
9982
9983 if (((dev->hw_features | dev->features) &
9984 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9985 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9986 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9987 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9988 ret = -EINVAL;
9989 goto err_uninit;
9990 }
9991
9992 ret = -EBUSY;
9993 if (!dev->ifindex)
9994 dev->ifindex = dev_new_index(net);
9995 else if (__dev_get_by_index(net, dev->ifindex))
9996 goto err_uninit;
9997
9998 /* Transfer changeable features to wanted_features and enable
9999 * software offloads (GSO and GRO).
10000 */
10001 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10002 dev->features |= NETIF_F_SOFT_FEATURES;
10003
10004 if (dev->udp_tunnel_nic_info) {
10005 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10006 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007 }
10008
10009 dev->wanted_features = dev->features & dev->hw_features;
10010
10011 if (!(dev->flags & IFF_LOOPBACK))
10012 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10013
10014 /* If IPv4 TCP segmentation offload is supported we should also
10015 * allow the device to enable segmenting the frame with the option
10016 * of ignoring a static IP ID value. This doesn't enable the
10017 * feature itself but allows the user to enable it later.
10018 */
10019 if (dev->hw_features & NETIF_F_TSO)
10020 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10021 if (dev->vlan_features & NETIF_F_TSO)
10022 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10023 if (dev->mpls_features & NETIF_F_TSO)
10024 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10025 if (dev->hw_enc_features & NETIF_F_TSO)
10026 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10027
10028 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10029 */
10030 dev->vlan_features |= NETIF_F_HIGHDMA;
10031
10032 /* Make NETIF_F_SG inheritable to tunnel devices.
10033 */
10034 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10035
10036 /* Make NETIF_F_SG inheritable to MPLS.
10037 */
10038 dev->mpls_features |= NETIF_F_SG;
10039
10040 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10041 ret = notifier_to_errno(ret);
10042 if (ret)
10043 goto err_uninit;
10044
10045 ret = netdev_register_kobject(dev);
10046 write_lock(&dev_base_lock);
10047 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10048 write_unlock(&dev_base_lock);
10049 if (ret)
10050 goto err_uninit_notify;
10051
10052 __netdev_update_features(dev);
10053
10054 /*
10055 * Default initial state at registry is that the
10056 * device is present.
10057 */
10058
10059 set_bit(__LINK_STATE_PRESENT, &dev->state);
10060
10061 linkwatch_init_dev(dev);
10062
10063 dev_init_scheduler(dev);
10064
10065 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10066 list_netdevice(dev);
10067
10068 add_device_randomness(dev->dev_addr, dev->addr_len);
10069
10070 /* If the device has permanent device address, driver should
10071 * set dev_addr and also addr_assign_type should be set to
10072 * NET_ADDR_PERM (default value).
10073 */
10074 if (dev->addr_assign_type == NET_ADDR_PERM)
10075 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10076
10077 /* Notify protocols, that a new device appeared. */
10078 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10079 ret = notifier_to_errno(ret);
10080 if (ret) {
10081 /* Expect explicit free_netdev() on failure */
10082 dev->needs_free_netdev = false;
10083 unregister_netdevice_queue(dev, NULL);
10084 goto out;
10085 }
10086 /*
10087 * Prevent userspace races by waiting until the network
10088 * device is fully setup before sending notifications.
10089 */
10090 if (!dev->rtnl_link_ops ||
10091 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10092 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10093
10094out:
10095 return ret;
10096
10097err_uninit_notify:
10098 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10099err_uninit:
10100 if (dev->netdev_ops->ndo_uninit)
10101 dev->netdev_ops->ndo_uninit(dev);
10102 if (dev->priv_destructor)
10103 dev->priv_destructor(dev);
10104err_free_name:
10105 netdev_name_node_free(dev->name_node);
10106 goto out;
10107}
10108EXPORT_SYMBOL(register_netdevice);
10109
10110/**
10111 * init_dummy_netdev - init a dummy network device for NAPI
10112 * @dev: device to init
10113 *
10114 * This takes a network device structure and initialize the minimum
10115 * amount of fields so it can be used to schedule NAPI polls without
10116 * registering a full blown interface. This is to be used by drivers
10117 * that need to tie several hardware interfaces to a single NAPI
10118 * poll scheduler due to HW limitations.
10119 */
10120int init_dummy_netdev(struct net_device *dev)
10121{
10122 /* Clear everything. Note we don't initialize spinlocks
10123 * are they aren't supposed to be taken by any of the
10124 * NAPI code and this dummy netdev is supposed to be
10125 * only ever used for NAPI polls
10126 */
10127 memset(dev, 0, sizeof(struct net_device));
10128
10129 /* make sure we BUG if trying to hit standard
10130 * register/unregister code path
10131 */
10132 dev->reg_state = NETREG_DUMMY;
10133
10134 /* NAPI wants this */
10135 INIT_LIST_HEAD(&dev->napi_list);
10136
10137 /* a dummy interface is started by default */
10138 set_bit(__LINK_STATE_PRESENT, &dev->state);
10139 set_bit(__LINK_STATE_START, &dev->state);
10140
10141 /* napi_busy_loop stats accounting wants this */
10142 dev_net_set(dev, &init_net);
10143
10144 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10145 * because users of this 'device' dont need to change
10146 * its refcount.
10147 */
10148
10149 return 0;
10150}
10151EXPORT_SYMBOL_GPL(init_dummy_netdev);
10152
10153
10154/**
10155 * register_netdev - register a network device
10156 * @dev: device to register
10157 *
10158 * Take a completed network device structure and add it to the kernel
10159 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10160 * chain. 0 is returned on success. A negative errno code is returned
10161 * on a failure to set up the device, or if the name is a duplicate.
10162 *
10163 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10164 * and expands the device name if you passed a format string to
10165 * alloc_netdev.
10166 */
10167int register_netdev(struct net_device *dev)
10168{
10169 int err;
10170
10171 if (rtnl_lock_killable())
10172 return -EINTR;
10173 err = register_netdevice(dev);
10174 rtnl_unlock();
10175 return err;
10176}
10177EXPORT_SYMBOL(register_netdev);
10178
10179int netdev_refcnt_read(const struct net_device *dev)
10180{
10181#ifdef CONFIG_PCPU_DEV_REFCNT
10182 int i, refcnt = 0;
10183
10184 for_each_possible_cpu(i)
10185 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10186 return refcnt;
10187#else
10188 return refcount_read(&dev->dev_refcnt);
10189#endif
10190}
10191EXPORT_SYMBOL(netdev_refcnt_read);
10192
10193int netdev_unregister_timeout_secs __read_mostly = 10;
10194
10195#define WAIT_REFS_MIN_MSECS 1
10196#define WAIT_REFS_MAX_MSECS 250
10197/**
10198 * netdev_wait_allrefs_any - wait until all references are gone.
10199 * @list: list of net_devices to wait on
10200 *
10201 * This is called when unregistering network devices.
10202 *
10203 * Any protocol or device that holds a reference should register
10204 * for netdevice notification, and cleanup and put back the
10205 * reference if they receive an UNREGISTER event.
10206 * We can get stuck here if buggy protocols don't correctly
10207 * call dev_put.
10208 */
10209static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10210{
10211 unsigned long rebroadcast_time, warning_time;
10212 struct net_device *dev;
10213 int wait = 0;
10214
10215 rebroadcast_time = warning_time = jiffies;
10216
10217 list_for_each_entry(dev, list, todo_list)
10218 if (netdev_refcnt_read(dev) == 1)
10219 return dev;
10220
10221 while (true) {
10222 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10223 rtnl_lock();
10224
10225 /* Rebroadcast unregister notification */
10226 list_for_each_entry(dev, list, todo_list)
10227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10228
10229 __rtnl_unlock();
10230 rcu_barrier();
10231 rtnl_lock();
10232
10233 list_for_each_entry(dev, list, todo_list)
10234 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10235 &dev->state)) {
10236 /* We must not have linkwatch events
10237 * pending on unregister. If this
10238 * happens, we simply run the queue
10239 * unscheduled, resulting in a noop
10240 * for this device.
10241 */
10242 linkwatch_run_queue();
10243 break;
10244 }
10245
10246 __rtnl_unlock();
10247
10248 rebroadcast_time = jiffies;
10249 }
10250
10251 if (!wait) {
10252 rcu_barrier();
10253 wait = WAIT_REFS_MIN_MSECS;
10254 } else {
10255 msleep(wait);
10256 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10257 }
10258
10259 list_for_each_entry(dev, list, todo_list)
10260 if (netdev_refcnt_read(dev) == 1)
10261 return dev;
10262
10263 if (time_after(jiffies, warning_time +
10264 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10265 list_for_each_entry(dev, list, todo_list) {
10266 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10267 dev->name, netdev_refcnt_read(dev));
10268 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10269 }
10270
10271 warning_time = jiffies;
10272 }
10273 }
10274}
10275
10276/* The sequence is:
10277 *
10278 * rtnl_lock();
10279 * ...
10280 * register_netdevice(x1);
10281 * register_netdevice(x2);
10282 * ...
10283 * unregister_netdevice(y1);
10284 * unregister_netdevice(y2);
10285 * ...
10286 * rtnl_unlock();
10287 * free_netdev(y1);
10288 * free_netdev(y2);
10289 *
10290 * We are invoked by rtnl_unlock().
10291 * This allows us to deal with problems:
10292 * 1) We can delete sysfs objects which invoke hotplug
10293 * without deadlocking with linkwatch via keventd.
10294 * 2) Since we run with the RTNL semaphore not held, we can sleep
10295 * safely in order to wait for the netdev refcnt to drop to zero.
10296 *
10297 * We must not return until all unregister events added during
10298 * the interval the lock was held have been completed.
10299 */
10300void netdev_run_todo(void)
10301{
10302 struct net_device *dev, *tmp;
10303 struct list_head list;
10304#ifdef CONFIG_LOCKDEP
10305 struct list_head unlink_list;
10306
10307 list_replace_init(&net_unlink_list, &unlink_list);
10308
10309 while (!list_empty(&unlink_list)) {
10310 struct net_device *dev = list_first_entry(&unlink_list,
10311 struct net_device,
10312 unlink_list);
10313 list_del_init(&dev->unlink_list);
10314 dev->nested_level = dev->lower_level - 1;
10315 }
10316#endif
10317
10318 /* Snapshot list, allow later requests */
10319 list_replace_init(&net_todo_list, &list);
10320
10321 __rtnl_unlock();
10322
10323 /* Wait for rcu callbacks to finish before next phase */
10324 if (!list_empty(&list))
10325 rcu_barrier();
10326
10327 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10329 netdev_WARN(dev, "run_todo but not unregistering\n");
10330 list_del(&dev->todo_list);
10331 continue;
10332 }
10333
10334 write_lock(&dev_base_lock);
10335 dev->reg_state = NETREG_UNREGISTERED;
10336 write_unlock(&dev_base_lock);
10337 linkwatch_forget_dev(dev);
10338 }
10339
10340 while (!list_empty(&list)) {
10341 dev = netdev_wait_allrefs_any(&list);
10342 list_del(&dev->todo_list);
10343
10344 /* paranoia */
10345 BUG_ON(netdev_refcnt_read(dev) != 1);
10346 BUG_ON(!list_empty(&dev->ptype_all));
10347 BUG_ON(!list_empty(&dev->ptype_specific));
10348 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10349 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10350
10351 if (dev->priv_destructor)
10352 dev->priv_destructor(dev);
10353 if (dev->needs_free_netdev)
10354 free_netdev(dev);
10355
10356 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10357 wake_up(&netdev_unregistering_wq);
10358
10359 /* Free network device */
10360 kobject_put(&dev->dev.kobj);
10361 }
10362}
10363
10364/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10365 * all the same fields in the same order as net_device_stats, with only
10366 * the type differing, but rtnl_link_stats64 may have additional fields
10367 * at the end for newer counters.
10368 */
10369void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10370 const struct net_device_stats *netdev_stats)
10371{
10372 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10373 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10374 u64 *dst = (u64 *)stats64;
10375
10376 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10377 for (i = 0; i < n; i++)
10378 dst[i] = atomic_long_read(&src[i]);
10379 /* zero out counters that only exist in rtnl_link_stats64 */
10380 memset((char *)stats64 + n * sizeof(u64), 0,
10381 sizeof(*stats64) - n * sizeof(u64));
10382}
10383EXPORT_SYMBOL(netdev_stats_to_stats64);
10384
10385struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10386{
10387 struct net_device_core_stats __percpu *p;
10388
10389 p = alloc_percpu_gfp(struct net_device_core_stats,
10390 GFP_ATOMIC | __GFP_NOWARN);
10391
10392 if (p && cmpxchg(&dev->core_stats, NULL, p))
10393 free_percpu(p);
10394
10395 /* This READ_ONCE() pairs with the cmpxchg() above */
10396 return READ_ONCE(dev->core_stats);
10397}
10398EXPORT_SYMBOL(netdev_core_stats_alloc);
10399
10400/**
10401 * dev_get_stats - get network device statistics
10402 * @dev: device to get statistics from
10403 * @storage: place to store stats
10404 *
10405 * Get network statistics from device. Return @storage.
10406 * The device driver may provide its own method by setting
10407 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10408 * otherwise the internal statistics structure is used.
10409 */
10410struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10411 struct rtnl_link_stats64 *storage)
10412{
10413 const struct net_device_ops *ops = dev->netdev_ops;
10414 const struct net_device_core_stats __percpu *p;
10415
10416 if (ops->ndo_get_stats64) {
10417 memset(storage, 0, sizeof(*storage));
10418 ops->ndo_get_stats64(dev, storage);
10419 } else if (ops->ndo_get_stats) {
10420 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10421 } else {
10422 netdev_stats_to_stats64(storage, &dev->stats);
10423 }
10424
10425 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10426 p = READ_ONCE(dev->core_stats);
10427 if (p) {
10428 const struct net_device_core_stats *core_stats;
10429 int i;
10430
10431 for_each_possible_cpu(i) {
10432 core_stats = per_cpu_ptr(p, i);
10433 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10434 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10435 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10436 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10437 }
10438 }
10439 return storage;
10440}
10441EXPORT_SYMBOL(dev_get_stats);
10442
10443/**
10444 * dev_fetch_sw_netstats - get per-cpu network device statistics
10445 * @s: place to store stats
10446 * @netstats: per-cpu network stats to read from
10447 *
10448 * Read per-cpu network statistics and populate the related fields in @s.
10449 */
10450void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10451 const struct pcpu_sw_netstats __percpu *netstats)
10452{
10453 int cpu;
10454
10455 for_each_possible_cpu(cpu) {
10456 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10457 const struct pcpu_sw_netstats *stats;
10458 unsigned int start;
10459
10460 stats = per_cpu_ptr(netstats, cpu);
10461 do {
10462 start = u64_stats_fetch_begin(&stats->syncp);
10463 rx_packets = u64_stats_read(&stats->rx_packets);
10464 rx_bytes = u64_stats_read(&stats->rx_bytes);
10465 tx_packets = u64_stats_read(&stats->tx_packets);
10466 tx_bytes = u64_stats_read(&stats->tx_bytes);
10467 } while (u64_stats_fetch_retry(&stats->syncp, start));
10468
10469 s->rx_packets += rx_packets;
10470 s->rx_bytes += rx_bytes;
10471 s->tx_packets += tx_packets;
10472 s->tx_bytes += tx_bytes;
10473 }
10474}
10475EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10476
10477/**
10478 * dev_get_tstats64 - ndo_get_stats64 implementation
10479 * @dev: device to get statistics from
10480 * @s: place to store stats
10481 *
10482 * Populate @s from dev->stats and dev->tstats. Can be used as
10483 * ndo_get_stats64() callback.
10484 */
10485void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10486{
10487 netdev_stats_to_stats64(s, &dev->stats);
10488 dev_fetch_sw_netstats(s, dev->tstats);
10489}
10490EXPORT_SYMBOL_GPL(dev_get_tstats64);
10491
10492struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10493{
10494 struct netdev_queue *queue = dev_ingress_queue(dev);
10495
10496#ifdef CONFIG_NET_CLS_ACT
10497 if (queue)
10498 return queue;
10499 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10500 if (!queue)
10501 return NULL;
10502 netdev_init_one_queue(dev, queue, NULL);
10503 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10504 queue->qdisc_sleeping = &noop_qdisc;
10505 rcu_assign_pointer(dev->ingress_queue, queue);
10506#endif
10507 return queue;
10508}
10509
10510static const struct ethtool_ops default_ethtool_ops;
10511
10512void netdev_set_default_ethtool_ops(struct net_device *dev,
10513 const struct ethtool_ops *ops)
10514{
10515 if (dev->ethtool_ops == &default_ethtool_ops)
10516 dev->ethtool_ops = ops;
10517}
10518EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10519
10520/**
10521 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10522 * @dev: netdev to enable the IRQ coalescing on
10523 *
10524 * Sets a conservative default for SW IRQ coalescing. Users can use
10525 * sysfs attributes to override the default values.
10526 */
10527void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10528{
10529 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10530
10531 dev->gro_flush_timeout = 20000;
10532 dev->napi_defer_hard_irqs = 1;
10533}
10534EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10535
10536void netdev_freemem(struct net_device *dev)
10537{
10538 char *addr = (char *)dev - dev->padded;
10539
10540 kvfree(addr);
10541}
10542
10543/**
10544 * alloc_netdev_mqs - allocate network device
10545 * @sizeof_priv: size of private data to allocate space for
10546 * @name: device name format string
10547 * @name_assign_type: origin of device name
10548 * @setup: callback to initialize device
10549 * @txqs: the number of TX subqueues to allocate
10550 * @rxqs: the number of RX subqueues to allocate
10551 *
10552 * Allocates a struct net_device with private data area for driver use
10553 * and performs basic initialization. Also allocates subqueue structs
10554 * for each queue on the device.
10555 */
10556struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10557 unsigned char name_assign_type,
10558 void (*setup)(struct net_device *),
10559 unsigned int txqs, unsigned int rxqs)
10560{
10561 struct net_device *dev;
10562 unsigned int alloc_size;
10563 struct net_device *p;
10564
10565 BUG_ON(strlen(name) >= sizeof(dev->name));
10566
10567 if (txqs < 1) {
10568 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10569 return NULL;
10570 }
10571
10572 if (rxqs < 1) {
10573 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10574 return NULL;
10575 }
10576
10577 alloc_size = sizeof(struct net_device);
10578 if (sizeof_priv) {
10579 /* ensure 32-byte alignment of private area */
10580 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10581 alloc_size += sizeof_priv;
10582 }
10583 /* ensure 32-byte alignment of whole construct */
10584 alloc_size += NETDEV_ALIGN - 1;
10585
10586 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10587 if (!p)
10588 return NULL;
10589
10590 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10591 dev->padded = (char *)dev - (char *)p;
10592
10593 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10594#ifdef CONFIG_PCPU_DEV_REFCNT
10595 dev->pcpu_refcnt = alloc_percpu(int);
10596 if (!dev->pcpu_refcnt)
10597 goto free_dev;
10598 __dev_hold(dev);
10599#else
10600 refcount_set(&dev->dev_refcnt, 1);
10601#endif
10602
10603 if (dev_addr_init(dev))
10604 goto free_pcpu;
10605
10606 dev_mc_init(dev);
10607 dev_uc_init(dev);
10608
10609 dev_net_set(dev, &init_net);
10610
10611 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10612 dev->gso_max_segs = GSO_MAX_SEGS;
10613 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10614 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10615 dev->tso_max_segs = TSO_MAX_SEGS;
10616 dev->upper_level = 1;
10617 dev->lower_level = 1;
10618#ifdef CONFIG_LOCKDEP
10619 dev->nested_level = 0;
10620 INIT_LIST_HEAD(&dev->unlink_list);
10621#endif
10622
10623 INIT_LIST_HEAD(&dev->napi_list);
10624 INIT_LIST_HEAD(&dev->unreg_list);
10625 INIT_LIST_HEAD(&dev->close_list);
10626 INIT_LIST_HEAD(&dev->link_watch_list);
10627 INIT_LIST_HEAD(&dev->adj_list.upper);
10628 INIT_LIST_HEAD(&dev->adj_list.lower);
10629 INIT_LIST_HEAD(&dev->ptype_all);
10630 INIT_LIST_HEAD(&dev->ptype_specific);
10631 INIT_LIST_HEAD(&dev->net_notifier_list);
10632#ifdef CONFIG_NET_SCHED
10633 hash_init(dev->qdisc_hash);
10634#endif
10635 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10636 setup(dev);
10637
10638 if (!dev->tx_queue_len) {
10639 dev->priv_flags |= IFF_NO_QUEUE;
10640 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10641 }
10642
10643 dev->num_tx_queues = txqs;
10644 dev->real_num_tx_queues = txqs;
10645 if (netif_alloc_netdev_queues(dev))
10646 goto free_all;
10647
10648 dev->num_rx_queues = rxqs;
10649 dev->real_num_rx_queues = rxqs;
10650 if (netif_alloc_rx_queues(dev))
10651 goto free_all;
10652
10653 strcpy(dev->name, name);
10654 dev->name_assign_type = name_assign_type;
10655 dev->group = INIT_NETDEV_GROUP;
10656 if (!dev->ethtool_ops)
10657 dev->ethtool_ops = &default_ethtool_ops;
10658
10659 nf_hook_netdev_init(dev);
10660
10661 return dev;
10662
10663free_all:
10664 free_netdev(dev);
10665 return NULL;
10666
10667free_pcpu:
10668#ifdef CONFIG_PCPU_DEV_REFCNT
10669 free_percpu(dev->pcpu_refcnt);
10670free_dev:
10671#endif
10672 netdev_freemem(dev);
10673 return NULL;
10674}
10675EXPORT_SYMBOL(alloc_netdev_mqs);
10676
10677/**
10678 * free_netdev - free network device
10679 * @dev: device
10680 *
10681 * This function does the last stage of destroying an allocated device
10682 * interface. The reference to the device object is released. If this
10683 * is the last reference then it will be freed.Must be called in process
10684 * context.
10685 */
10686void free_netdev(struct net_device *dev)
10687{
10688 struct napi_struct *p, *n;
10689
10690 might_sleep();
10691
10692 /* When called immediately after register_netdevice() failed the unwind
10693 * handling may still be dismantling the device. Handle that case by
10694 * deferring the free.
10695 */
10696 if (dev->reg_state == NETREG_UNREGISTERING) {
10697 ASSERT_RTNL();
10698 dev->needs_free_netdev = true;
10699 return;
10700 }
10701
10702 netif_free_tx_queues(dev);
10703 netif_free_rx_queues(dev);
10704
10705 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10706
10707 /* Flush device addresses */
10708 dev_addr_flush(dev);
10709
10710 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10711 netif_napi_del(p);
10712
10713 ref_tracker_dir_exit(&dev->refcnt_tracker);
10714#ifdef CONFIG_PCPU_DEV_REFCNT
10715 free_percpu(dev->pcpu_refcnt);
10716 dev->pcpu_refcnt = NULL;
10717#endif
10718 free_percpu(dev->core_stats);
10719 dev->core_stats = NULL;
10720 free_percpu(dev->xdp_bulkq);
10721 dev->xdp_bulkq = NULL;
10722
10723 /* Compatibility with error handling in drivers */
10724 if (dev->reg_state == NETREG_UNINITIALIZED) {
10725 netdev_freemem(dev);
10726 return;
10727 }
10728
10729 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10730 dev->reg_state = NETREG_RELEASED;
10731
10732 /* will free via device release */
10733 put_device(&dev->dev);
10734}
10735EXPORT_SYMBOL(free_netdev);
10736
10737/**
10738 * synchronize_net - Synchronize with packet receive processing
10739 *
10740 * Wait for packets currently being received to be done.
10741 * Does not block later packets from starting.
10742 */
10743void synchronize_net(void)
10744{
10745 might_sleep();
10746 if (rtnl_is_locked())
10747 synchronize_rcu_expedited();
10748 else
10749 synchronize_rcu();
10750}
10751EXPORT_SYMBOL(synchronize_net);
10752
10753/**
10754 * unregister_netdevice_queue - remove device from the kernel
10755 * @dev: device
10756 * @head: list
10757 *
10758 * This function shuts down a device interface and removes it
10759 * from the kernel tables.
10760 * If head not NULL, device is queued to be unregistered later.
10761 *
10762 * Callers must hold the rtnl semaphore. You may want
10763 * unregister_netdev() instead of this.
10764 */
10765
10766void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10767{
10768 ASSERT_RTNL();
10769
10770 if (head) {
10771 list_move_tail(&dev->unreg_list, head);
10772 } else {
10773 LIST_HEAD(single);
10774
10775 list_add(&dev->unreg_list, &single);
10776 unregister_netdevice_many(&single);
10777 }
10778}
10779EXPORT_SYMBOL(unregister_netdevice_queue);
10780
10781void unregister_netdevice_many_notify(struct list_head *head,
10782 u32 portid, const struct nlmsghdr *nlh)
10783{
10784 struct net_device *dev, *tmp;
10785 LIST_HEAD(close_head);
10786
10787 BUG_ON(dev_boot_phase);
10788 ASSERT_RTNL();
10789
10790 if (list_empty(head))
10791 return;
10792
10793 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10794 /* Some devices call without registering
10795 * for initialization unwind. Remove those
10796 * devices and proceed with the remaining.
10797 */
10798 if (dev->reg_state == NETREG_UNINITIALIZED) {
10799 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10800 dev->name, dev);
10801
10802 WARN_ON(1);
10803 list_del(&dev->unreg_list);
10804 continue;
10805 }
10806 dev->dismantle = true;
10807 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10808 }
10809
10810 /* If device is running, close it first. */
10811 list_for_each_entry(dev, head, unreg_list)
10812 list_add_tail(&dev->close_list, &close_head);
10813 dev_close_many(&close_head, true);
10814
10815 list_for_each_entry(dev, head, unreg_list) {
10816 /* And unlink it from device chain. */
10817 write_lock(&dev_base_lock);
10818 unlist_netdevice(dev, false);
10819 dev->reg_state = NETREG_UNREGISTERING;
10820 write_unlock(&dev_base_lock);
10821 }
10822 flush_all_backlogs();
10823
10824 synchronize_net();
10825
10826 list_for_each_entry(dev, head, unreg_list) {
10827 struct sk_buff *skb = NULL;
10828
10829 /* Shutdown queueing discipline. */
10830 dev_shutdown(dev);
10831
10832 dev_xdp_uninstall(dev);
10833
10834 netdev_offload_xstats_disable_all(dev);
10835
10836 /* Notify protocols, that we are about to destroy
10837 * this device. They should clean all the things.
10838 */
10839 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10840
10841 if (!dev->rtnl_link_ops ||
10842 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10843 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10844 GFP_KERNEL, NULL, 0,
10845 portid, nlmsg_seq(nlh));
10846
10847 /*
10848 * Flush the unicast and multicast chains
10849 */
10850 dev_uc_flush(dev);
10851 dev_mc_flush(dev);
10852
10853 netdev_name_node_alt_flush(dev);
10854 netdev_name_node_free(dev->name_node);
10855
10856 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10857
10858 if (dev->netdev_ops->ndo_uninit)
10859 dev->netdev_ops->ndo_uninit(dev);
10860
10861 if (skb)
10862 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10863
10864 /* Notifier chain MUST detach us all upper devices. */
10865 WARN_ON(netdev_has_any_upper_dev(dev));
10866 WARN_ON(netdev_has_any_lower_dev(dev));
10867
10868 /* Remove entries from kobject tree */
10869 netdev_unregister_kobject(dev);
10870#ifdef CONFIG_XPS
10871 /* Remove XPS queueing entries */
10872 netif_reset_xps_queues_gt(dev, 0);
10873#endif
10874 }
10875
10876 synchronize_net();
10877
10878 list_for_each_entry(dev, head, unreg_list) {
10879 netdev_put(dev, &dev->dev_registered_tracker);
10880 net_set_todo(dev);
10881 }
10882
10883 list_del(head);
10884}
10885
10886/**
10887 * unregister_netdevice_many - unregister many devices
10888 * @head: list of devices
10889 *
10890 * Note: As most callers use a stack allocated list_head,
10891 * we force a list_del() to make sure stack wont be corrupted later.
10892 */
10893void unregister_netdevice_many(struct list_head *head)
10894{
10895 unregister_netdevice_many_notify(head, 0, NULL);
10896}
10897EXPORT_SYMBOL(unregister_netdevice_many);
10898
10899/**
10900 * unregister_netdev - remove device from the kernel
10901 * @dev: device
10902 *
10903 * This function shuts down a device interface and removes it
10904 * from the kernel tables.
10905 *
10906 * This is just a wrapper for unregister_netdevice that takes
10907 * the rtnl semaphore. In general you want to use this and not
10908 * unregister_netdevice.
10909 */
10910void unregister_netdev(struct net_device *dev)
10911{
10912 rtnl_lock();
10913 unregister_netdevice(dev);
10914 rtnl_unlock();
10915}
10916EXPORT_SYMBOL(unregister_netdev);
10917
10918/**
10919 * __dev_change_net_namespace - move device to different nethost namespace
10920 * @dev: device
10921 * @net: network namespace
10922 * @pat: If not NULL name pattern to try if the current device name
10923 * is already taken in the destination network namespace.
10924 * @new_ifindex: If not zero, specifies device index in the target
10925 * namespace.
10926 *
10927 * This function shuts down a device interface and moves it
10928 * to a new network namespace. On success 0 is returned, on
10929 * a failure a netagive errno code is returned.
10930 *
10931 * Callers must hold the rtnl semaphore.
10932 */
10933
10934int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10935 const char *pat, int new_ifindex)
10936{
10937 struct net *net_old = dev_net(dev);
10938 int err, new_nsid;
10939
10940 ASSERT_RTNL();
10941
10942 /* Don't allow namespace local devices to be moved. */
10943 err = -EINVAL;
10944 if (dev->features & NETIF_F_NETNS_LOCAL)
10945 goto out;
10946
10947 /* Ensure the device has been registrered */
10948 if (dev->reg_state != NETREG_REGISTERED)
10949 goto out;
10950
10951 /* Get out if there is nothing todo */
10952 err = 0;
10953 if (net_eq(net_old, net))
10954 goto out;
10955
10956 /* Pick the destination device name, and ensure
10957 * we can use it in the destination network namespace.
10958 */
10959 err = -EEXIST;
10960 if (netdev_name_in_use(net, dev->name)) {
10961 /* We get here if we can't use the current device name */
10962 if (!pat)
10963 goto out;
10964 err = dev_get_valid_name(net, dev, pat);
10965 if (err < 0)
10966 goto out;
10967 }
10968
10969 /* Check that new_ifindex isn't used yet. */
10970 err = -EBUSY;
10971 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10972 goto out;
10973
10974 /*
10975 * And now a mini version of register_netdevice unregister_netdevice.
10976 */
10977
10978 /* If device is running close it first. */
10979 dev_close(dev);
10980
10981 /* And unlink it from device chain */
10982 unlist_netdevice(dev, true);
10983
10984 synchronize_net();
10985
10986 /* Shutdown queueing discipline. */
10987 dev_shutdown(dev);
10988
10989 /* Notify protocols, that we are about to destroy
10990 * this device. They should clean all the things.
10991 *
10992 * Note that dev->reg_state stays at NETREG_REGISTERED.
10993 * This is wanted because this way 8021q and macvlan know
10994 * the device is just moving and can keep their slaves up.
10995 */
10996 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10997 rcu_barrier();
10998
10999 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11000 /* If there is an ifindex conflict assign a new one */
11001 if (!new_ifindex) {
11002 if (__dev_get_by_index(net, dev->ifindex))
11003 new_ifindex = dev_new_index(net);
11004 else
11005 new_ifindex = dev->ifindex;
11006 }
11007
11008 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11009 new_ifindex);
11010
11011 /*
11012 * Flush the unicast and multicast chains
11013 */
11014 dev_uc_flush(dev);
11015 dev_mc_flush(dev);
11016
11017 /* Send a netdev-removed uevent to the old namespace */
11018 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11019 netdev_adjacent_del_links(dev);
11020
11021 /* Move per-net netdevice notifiers that are following the netdevice */
11022 move_netdevice_notifiers_dev_net(dev, net);
11023
11024 /* Actually switch the network namespace */
11025 dev_net_set(dev, net);
11026 dev->ifindex = new_ifindex;
11027
11028 /* Send a netdev-add uevent to the new namespace */
11029 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11030 netdev_adjacent_add_links(dev);
11031
11032 /* Fixup kobjects */
11033 err = device_rename(&dev->dev, dev->name);
11034 WARN_ON(err);
11035
11036 /* Adapt owner in case owning user namespace of target network
11037 * namespace is different from the original one.
11038 */
11039 err = netdev_change_owner(dev, net_old, net);
11040 WARN_ON(err);
11041
11042 /* Add the device back in the hashes */
11043 list_netdevice(dev);
11044
11045 /* Notify protocols, that a new device appeared. */
11046 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11047
11048 /*
11049 * Prevent userspace races by waiting until the network
11050 * device is fully setup before sending notifications.
11051 */
11052 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11053
11054 synchronize_net();
11055 err = 0;
11056out:
11057 return err;
11058}
11059EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11060
11061static int dev_cpu_dead(unsigned int oldcpu)
11062{
11063 struct sk_buff **list_skb;
11064 struct sk_buff *skb;
11065 unsigned int cpu;
11066 struct softnet_data *sd, *oldsd, *remsd = NULL;
11067
11068 local_irq_disable();
11069 cpu = smp_processor_id();
11070 sd = &per_cpu(softnet_data, cpu);
11071 oldsd = &per_cpu(softnet_data, oldcpu);
11072
11073 /* Find end of our completion_queue. */
11074 list_skb = &sd->completion_queue;
11075 while (*list_skb)
11076 list_skb = &(*list_skb)->next;
11077 /* Append completion queue from offline CPU. */
11078 *list_skb = oldsd->completion_queue;
11079 oldsd->completion_queue = NULL;
11080
11081 /* Append output queue from offline CPU. */
11082 if (oldsd->output_queue) {
11083 *sd->output_queue_tailp = oldsd->output_queue;
11084 sd->output_queue_tailp = oldsd->output_queue_tailp;
11085 oldsd->output_queue = NULL;
11086 oldsd->output_queue_tailp = &oldsd->output_queue;
11087 }
11088 /* Append NAPI poll list from offline CPU, with one exception :
11089 * process_backlog() must be called by cpu owning percpu backlog.
11090 * We properly handle process_queue & input_pkt_queue later.
11091 */
11092 while (!list_empty(&oldsd->poll_list)) {
11093 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11094 struct napi_struct,
11095 poll_list);
11096
11097 list_del_init(&napi->poll_list);
11098 if (napi->poll == process_backlog)
11099 napi->state = 0;
11100 else
11101 ____napi_schedule(sd, napi);
11102 }
11103
11104 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11105 local_irq_enable();
11106
11107#ifdef CONFIG_RPS
11108 remsd = oldsd->rps_ipi_list;
11109 oldsd->rps_ipi_list = NULL;
11110#endif
11111 /* send out pending IPI's on offline CPU */
11112 net_rps_send_ipi(remsd);
11113
11114 /* Process offline CPU's input_pkt_queue */
11115 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11116 netif_rx(skb);
11117 input_queue_head_incr(oldsd);
11118 }
11119 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11120 netif_rx(skb);
11121 input_queue_head_incr(oldsd);
11122 }
11123
11124 return 0;
11125}
11126
11127/**
11128 * netdev_increment_features - increment feature set by one
11129 * @all: current feature set
11130 * @one: new feature set
11131 * @mask: mask feature set
11132 *
11133 * Computes a new feature set after adding a device with feature set
11134 * @one to the master device with current feature set @all. Will not
11135 * enable anything that is off in @mask. Returns the new feature set.
11136 */
11137netdev_features_t netdev_increment_features(netdev_features_t all,
11138 netdev_features_t one, netdev_features_t mask)
11139{
11140 if (mask & NETIF_F_HW_CSUM)
11141 mask |= NETIF_F_CSUM_MASK;
11142 mask |= NETIF_F_VLAN_CHALLENGED;
11143
11144 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11145 all &= one | ~NETIF_F_ALL_FOR_ALL;
11146
11147 /* If one device supports hw checksumming, set for all. */
11148 if (all & NETIF_F_HW_CSUM)
11149 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11150
11151 return all;
11152}
11153EXPORT_SYMBOL(netdev_increment_features);
11154
11155static struct hlist_head * __net_init netdev_create_hash(void)
11156{
11157 int i;
11158 struct hlist_head *hash;
11159
11160 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11161 if (hash != NULL)
11162 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11163 INIT_HLIST_HEAD(&hash[i]);
11164
11165 return hash;
11166}
11167
11168/* Initialize per network namespace state */
11169static int __net_init netdev_init(struct net *net)
11170{
11171 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11172 8 * sizeof_field(struct napi_struct, gro_bitmask));
11173
11174 INIT_LIST_HEAD(&net->dev_base_head);
11175
11176 net->dev_name_head = netdev_create_hash();
11177 if (net->dev_name_head == NULL)
11178 goto err_name;
11179
11180 net->dev_index_head = netdev_create_hash();
11181 if (net->dev_index_head == NULL)
11182 goto err_idx;
11183
11184 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11185
11186 return 0;
11187
11188err_idx:
11189 kfree(net->dev_name_head);
11190err_name:
11191 return -ENOMEM;
11192}
11193
11194/**
11195 * netdev_drivername - network driver for the device
11196 * @dev: network device
11197 *
11198 * Determine network driver for device.
11199 */
11200const char *netdev_drivername(const struct net_device *dev)
11201{
11202 const struct device_driver *driver;
11203 const struct device *parent;
11204 const char *empty = "";
11205
11206 parent = dev->dev.parent;
11207 if (!parent)
11208 return empty;
11209
11210 driver = parent->driver;
11211 if (driver && driver->name)
11212 return driver->name;
11213 return empty;
11214}
11215
11216static void __netdev_printk(const char *level, const struct net_device *dev,
11217 struct va_format *vaf)
11218{
11219 if (dev && dev->dev.parent) {
11220 dev_printk_emit(level[1] - '0',
11221 dev->dev.parent,
11222 "%s %s %s%s: %pV",
11223 dev_driver_string(dev->dev.parent),
11224 dev_name(dev->dev.parent),
11225 netdev_name(dev), netdev_reg_state(dev),
11226 vaf);
11227 } else if (dev) {
11228 printk("%s%s%s: %pV",
11229 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11230 } else {
11231 printk("%s(NULL net_device): %pV", level, vaf);
11232 }
11233}
11234
11235void netdev_printk(const char *level, const struct net_device *dev,
11236 const char *format, ...)
11237{
11238 struct va_format vaf;
11239 va_list args;
11240
11241 va_start(args, format);
11242
11243 vaf.fmt = format;
11244 vaf.va = &args;
11245
11246 __netdev_printk(level, dev, &vaf);
11247
11248 va_end(args);
11249}
11250EXPORT_SYMBOL(netdev_printk);
11251
11252#define define_netdev_printk_level(func, level) \
11253void func(const struct net_device *dev, const char *fmt, ...) \
11254{ \
11255 struct va_format vaf; \
11256 va_list args; \
11257 \
11258 va_start(args, fmt); \
11259 \
11260 vaf.fmt = fmt; \
11261 vaf.va = &args; \
11262 \
11263 __netdev_printk(level, dev, &vaf); \
11264 \
11265 va_end(args); \
11266} \
11267EXPORT_SYMBOL(func);
11268
11269define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11270define_netdev_printk_level(netdev_alert, KERN_ALERT);
11271define_netdev_printk_level(netdev_crit, KERN_CRIT);
11272define_netdev_printk_level(netdev_err, KERN_ERR);
11273define_netdev_printk_level(netdev_warn, KERN_WARNING);
11274define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11275define_netdev_printk_level(netdev_info, KERN_INFO);
11276
11277static void __net_exit netdev_exit(struct net *net)
11278{
11279 kfree(net->dev_name_head);
11280 kfree(net->dev_index_head);
11281 if (net != &init_net)
11282 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11283}
11284
11285static struct pernet_operations __net_initdata netdev_net_ops = {
11286 .init = netdev_init,
11287 .exit = netdev_exit,
11288};
11289
11290static void __net_exit default_device_exit_net(struct net *net)
11291{
11292 struct net_device *dev, *aux;
11293 /*
11294 * Push all migratable network devices back to the
11295 * initial network namespace
11296 */
11297 ASSERT_RTNL();
11298 for_each_netdev_safe(net, dev, aux) {
11299 int err;
11300 char fb_name[IFNAMSIZ];
11301
11302 /* Ignore unmoveable devices (i.e. loopback) */
11303 if (dev->features & NETIF_F_NETNS_LOCAL)
11304 continue;
11305
11306 /* Leave virtual devices for the generic cleanup */
11307 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11308 continue;
11309
11310 /* Push remaining network devices to init_net */
11311 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11312 if (netdev_name_in_use(&init_net, fb_name))
11313 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11314 err = dev_change_net_namespace(dev, &init_net, fb_name);
11315 if (err) {
11316 pr_emerg("%s: failed to move %s to init_net: %d\n",
11317 __func__, dev->name, err);
11318 BUG();
11319 }
11320 }
11321}
11322
11323static void __net_exit default_device_exit_batch(struct list_head *net_list)
11324{
11325 /* At exit all network devices most be removed from a network
11326 * namespace. Do this in the reverse order of registration.
11327 * Do this across as many network namespaces as possible to
11328 * improve batching efficiency.
11329 */
11330 struct net_device *dev;
11331 struct net *net;
11332 LIST_HEAD(dev_kill_list);
11333
11334 rtnl_lock();
11335 list_for_each_entry(net, net_list, exit_list) {
11336 default_device_exit_net(net);
11337 cond_resched();
11338 }
11339
11340 list_for_each_entry(net, net_list, exit_list) {
11341 for_each_netdev_reverse(net, dev) {
11342 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11343 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11344 else
11345 unregister_netdevice_queue(dev, &dev_kill_list);
11346 }
11347 }
11348 unregister_netdevice_many(&dev_kill_list);
11349 rtnl_unlock();
11350}
11351
11352static struct pernet_operations __net_initdata default_device_ops = {
11353 .exit_batch = default_device_exit_batch,
11354};
11355
11356/*
11357 * Initialize the DEV module. At boot time this walks the device list and
11358 * unhooks any devices that fail to initialise (normally hardware not
11359 * present) and leaves us with a valid list of present and active devices.
11360 *
11361 */
11362
11363/*
11364 * This is called single threaded during boot, so no need
11365 * to take the rtnl semaphore.
11366 */
11367static int __init net_dev_init(void)
11368{
11369 int i, rc = -ENOMEM;
11370
11371 BUG_ON(!dev_boot_phase);
11372
11373 if (dev_proc_init())
11374 goto out;
11375
11376 if (netdev_kobject_init())
11377 goto out;
11378
11379 INIT_LIST_HEAD(&ptype_all);
11380 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11381 INIT_LIST_HEAD(&ptype_base[i]);
11382
11383 if (register_pernet_subsys(&netdev_net_ops))
11384 goto out;
11385
11386 /*
11387 * Initialise the packet receive queues.
11388 */
11389
11390 for_each_possible_cpu(i) {
11391 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11392 struct softnet_data *sd = &per_cpu(softnet_data, i);
11393
11394 INIT_WORK(flush, flush_backlog);
11395
11396 skb_queue_head_init(&sd->input_pkt_queue);
11397 skb_queue_head_init(&sd->process_queue);
11398#ifdef CONFIG_XFRM_OFFLOAD
11399 skb_queue_head_init(&sd->xfrm_backlog);
11400#endif
11401 INIT_LIST_HEAD(&sd->poll_list);
11402 sd->output_queue_tailp = &sd->output_queue;
11403#ifdef CONFIG_RPS
11404 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11405 sd->cpu = i;
11406#endif
11407 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11408 spin_lock_init(&sd->defer_lock);
11409
11410 init_gro_hash(&sd->backlog);
11411 sd->backlog.poll = process_backlog;
11412 sd->backlog.weight = weight_p;
11413 }
11414
11415 dev_boot_phase = 0;
11416
11417 /* The loopback device is special if any other network devices
11418 * is present in a network namespace the loopback device must
11419 * be present. Since we now dynamically allocate and free the
11420 * loopback device ensure this invariant is maintained by
11421 * keeping the loopback device as the first device on the
11422 * list of network devices. Ensuring the loopback devices
11423 * is the first device that appears and the last network device
11424 * that disappears.
11425 */
11426 if (register_pernet_device(&loopback_net_ops))
11427 goto out;
11428
11429 if (register_pernet_device(&default_device_ops))
11430 goto out;
11431
11432 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11433 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11434
11435 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11436 NULL, dev_cpu_dead);
11437 WARN_ON(rc < 0);
11438 rc = 0;
11439out:
11440 return rc;
11441}
11442
11443subsys_initcall(net_dev_init);