Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
149/* Functions */
150static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151{
152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
153}
154
155static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156{
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
158 nodes);
159}
160
161static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162{
163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
164}
165
166static void mt_free_rcu(struct rcu_head *head)
167{
168 struct maple_node *node = container_of(head, struct maple_node, rcu);
169
170 kmem_cache_free(maple_node_cache, node);
171}
172
173/*
174 * ma_free_rcu() - Use rcu callback to free a maple node
175 * @node: The node to free
176 *
177 * The maple tree uses the parent pointer to indicate this node is no longer in
178 * use and will be freed.
179 */
180static void ma_free_rcu(struct maple_node *node)
181{
182 node->parent = ma_parent_ptr(node);
183 call_rcu(&node->rcu, mt_free_rcu);
184}
185
186
187static void mas_set_height(struct ma_state *mas)
188{
189 unsigned int new_flags = mas->tree->ma_flags;
190
191 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
194 mas->tree->ma_flags = new_flags;
195}
196
197static unsigned int mas_mt_height(struct ma_state *mas)
198{
199 return mt_height(mas->tree);
200}
201
202static inline enum maple_type mte_node_type(const struct maple_enode *entry)
203{
204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
205 MAPLE_NODE_TYPE_MASK;
206}
207
208static inline bool ma_is_dense(const enum maple_type type)
209{
210 return type < maple_leaf_64;
211}
212
213static inline bool ma_is_leaf(const enum maple_type type)
214{
215 return type < maple_range_64;
216}
217
218static inline bool mte_is_leaf(const struct maple_enode *entry)
219{
220 return ma_is_leaf(mte_node_type(entry));
221}
222
223/*
224 * We also reserve values with the bottom two bits set to '10' which are
225 * below 4096
226 */
227static inline bool mt_is_reserved(const void *entry)
228{
229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
230 xa_is_internal(entry);
231}
232
233static inline void mas_set_err(struct ma_state *mas, long err)
234{
235 mas->node = MA_ERROR(err);
236}
237
238static inline bool mas_is_ptr(struct ma_state *mas)
239{
240 return mas->node == MAS_ROOT;
241}
242
243static inline bool mas_is_start(struct ma_state *mas)
244{
245 return mas->node == MAS_START;
246}
247
248bool mas_is_err(struct ma_state *mas)
249{
250 return xa_is_err(mas->node);
251}
252
253static inline bool mas_searchable(struct ma_state *mas)
254{
255 if (mas_is_none(mas))
256 return false;
257
258 if (mas_is_ptr(mas))
259 return false;
260
261 return true;
262}
263
264static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
265{
266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
267}
268
269/*
270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
271 * @entry: The maple encoded node
272 *
273 * Return: a maple topiary pointer
274 */
275static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
276{
277 return (struct maple_topiary *)
278 ((unsigned long)entry & ~MAPLE_NODE_MASK);
279}
280
281/*
282 * mas_mn() - Get the maple state node.
283 * @mas: The maple state
284 *
285 * Return: the maple node (not encoded - bare pointer).
286 */
287static inline struct maple_node *mas_mn(const struct ma_state *mas)
288{
289 return mte_to_node(mas->node);
290}
291
292/*
293 * mte_set_node_dead() - Set a maple encoded node as dead.
294 * @mn: The maple encoded node.
295 */
296static inline void mte_set_node_dead(struct maple_enode *mn)
297{
298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
299 smp_wmb(); /* Needed for RCU */
300}
301
302/* Bit 1 indicates the root is a node */
303#define MAPLE_ROOT_NODE 0x02
304/* maple_type stored bit 3-6 */
305#define MAPLE_ENODE_TYPE_SHIFT 0x03
306/* Bit 2 means a NULL somewhere below */
307#define MAPLE_ENODE_NULL 0x04
308
309static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
310 enum maple_type type)
311{
312 return (void *)((unsigned long)node |
313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
314}
315
316static inline void *mte_mk_root(const struct maple_enode *node)
317{
318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
319}
320
321static inline void *mte_safe_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_set_full(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
329}
330
331static inline void *mte_clear_full(const struct maple_enode *node)
332{
333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
334}
335
336static inline bool mte_has_null(const struct maple_enode *node)
337{
338 return (unsigned long)node & MAPLE_ENODE_NULL;
339}
340
341static inline bool ma_is_root(struct maple_node *node)
342{
343 return ((unsigned long)node->parent & MA_ROOT_PARENT);
344}
345
346static inline bool mte_is_root(const struct maple_enode *node)
347{
348 return ma_is_root(mte_to_node(node));
349}
350
351static inline bool mas_is_root_limits(const struct ma_state *mas)
352{
353 return !mas->min && mas->max == ULONG_MAX;
354}
355
356static inline bool mt_is_alloc(struct maple_tree *mt)
357{
358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
359}
360
361/*
362 * The Parent Pointer
363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
365 * bit values need an extra bit to store the offset. This extra bit comes from
366 * a reuse of the last bit in the node type. This is possible by using bit 1 to
367 * indicate if bit 2 is part of the type or the slot.
368 *
369 * Note types:
370 * 0x??1 = Root
371 * 0x?00 = 16 bit nodes
372 * 0x010 = 32 bit nodes
373 * 0x110 = 64 bit nodes
374 *
375 * Slot size and alignment
376 * 0b??1 : Root
377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
380 */
381
382#define MAPLE_PARENT_ROOT 0x01
383
384#define MAPLE_PARENT_SLOT_SHIFT 0x03
385#define MAPLE_PARENT_SLOT_MASK 0xF8
386
387#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
388#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
389
390#define MAPLE_PARENT_RANGE64 0x06
391#define MAPLE_PARENT_RANGE32 0x04
392#define MAPLE_PARENT_NOT_RANGE16 0x02
393
394/*
395 * mte_parent_shift() - Get the parent shift for the slot storage.
396 * @parent: The parent pointer cast as an unsigned long
397 * Return: The shift into that pointer to the star to of the slot
398 */
399static inline unsigned long mte_parent_shift(unsigned long parent)
400{
401 /* Note bit 1 == 0 means 16B */
402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
403 return MAPLE_PARENT_SLOT_SHIFT;
404
405 return MAPLE_PARENT_16B_SLOT_SHIFT;
406}
407
408/*
409 * mte_parent_slot_mask() - Get the slot mask for the parent.
410 * @parent: The parent pointer cast as an unsigned long.
411 * Return: The slot mask for that parent.
412 */
413static inline unsigned long mte_parent_slot_mask(unsigned long parent)
414{
415 /* Note bit 1 == 0 means 16B */
416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
417 return MAPLE_PARENT_SLOT_MASK;
418
419 return MAPLE_PARENT_16B_SLOT_MASK;
420}
421
422/*
423 * mas_parent_enum() - Return the maple_type of the parent from the stored
424 * parent type.
425 * @mas: The maple state
426 * @node: The maple_enode to extract the parent's enum
427 * Return: The node->parent maple_type
428 */
429static inline
430enum maple_type mte_parent_enum(struct maple_enode *p_enode,
431 struct maple_tree *mt)
432{
433 unsigned long p_type;
434
435 p_type = (unsigned long)p_enode;
436 if (p_type & MAPLE_PARENT_ROOT)
437 return 0; /* Validated in the caller. */
438
439 p_type &= MAPLE_NODE_MASK;
440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
441
442 switch (p_type) {
443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
444 if (mt_is_alloc(mt))
445 return maple_arange_64;
446 return maple_range_64;
447 }
448
449 return 0;
450}
451
452static inline
453enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
454{
455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
456}
457
458/*
459 * mte_set_parent() - Set the parent node and encode the slot
460 * @enode: The encoded maple node.
461 * @parent: The encoded maple node that is the parent of @enode.
462 * @slot: The slot that @enode resides in @parent.
463 *
464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
465 * parent type.
466 */
467static inline
468void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
469 unsigned char slot)
470{
471 unsigned long val = (unsigned long) parent;
472 unsigned long shift;
473 unsigned long type;
474 enum maple_type p_type = mte_node_type(parent);
475
476 BUG_ON(p_type == maple_dense);
477 BUG_ON(p_type == maple_leaf_64);
478
479 switch (p_type) {
480 case maple_range_64:
481 case maple_arange_64:
482 shift = MAPLE_PARENT_SLOT_SHIFT;
483 type = MAPLE_PARENT_RANGE64;
484 break;
485 default:
486 case maple_dense:
487 case maple_leaf_64:
488 shift = type = 0;
489 break;
490 }
491
492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
493 val |= (slot << shift) | type;
494 mte_to_node(enode)->parent = ma_parent_ptr(val);
495}
496
497/*
498 * mte_parent_slot() - get the parent slot of @enode.
499 * @enode: The encoded maple node.
500 *
501 * Return: The slot in the parent node where @enode resides.
502 */
503static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
504{
505 unsigned long val = (unsigned long) mte_to_node(enode)->parent;
506
507 /* Root. */
508 if (val & 1)
509 return 0;
510
511 /*
512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
514 */
515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
516}
517
518/*
519 * mte_parent() - Get the parent of @node.
520 * @node: The encoded maple node.
521 *
522 * Return: The parent maple node.
523 */
524static inline struct maple_node *mte_parent(const struct maple_enode *enode)
525{
526 return (void *)((unsigned long)
527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
528}
529
530/*
531 * ma_dead_node() - check if the @enode is dead.
532 * @enode: The encoded maple node
533 *
534 * Return: true if dead, false otherwise.
535 */
536static inline bool ma_dead_node(const struct maple_node *node)
537{
538 struct maple_node *parent = (void *)((unsigned long)
539 node->parent & ~MAPLE_NODE_MASK);
540
541 return (parent == node);
542}
543/*
544 * mte_dead_node() - check if the @enode is dead.
545 * @enode: The encoded maple node
546 *
547 * Return: true if dead, false otherwise.
548 */
549static inline bool mte_dead_node(const struct maple_enode *enode)
550{
551 struct maple_node *parent, *node;
552
553 node = mte_to_node(enode);
554 parent = mte_parent(enode);
555 return (parent == node);
556}
557
558/*
559 * mas_allocated() - Get the number of nodes allocated in a maple state.
560 * @mas: The maple state
561 *
562 * The ma_state alloc member is overloaded to hold a pointer to the first
563 * allocated node or to the number of requested nodes to allocate. If bit 0 is
564 * set, then the alloc contains the number of requested nodes. If there is an
565 * allocated node, then the total allocated nodes is in that node.
566 *
567 * Return: The total number of nodes allocated
568 */
569static inline unsigned long mas_allocated(const struct ma_state *mas)
570{
571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
572 return 0;
573
574 return mas->alloc->total;
575}
576
577/*
578 * mas_set_alloc_req() - Set the requested number of allocations.
579 * @mas: the maple state
580 * @count: the number of allocations.
581 *
582 * The requested number of allocations is either in the first allocated node,
583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
584 * no allocated node. Set the request either in the node or do the necessary
585 * encoding to store in @mas->alloc directly.
586 */
587static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
588{
589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
590 if (!count)
591 mas->alloc = NULL;
592 else
593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
594 return;
595 }
596
597 mas->alloc->request_count = count;
598}
599
600/*
601 * mas_alloc_req() - get the requested number of allocations.
602 * @mas: The maple state
603 *
604 * The alloc count is either stored directly in @mas, or in
605 * @mas->alloc->request_count if there is at least one node allocated. Decode
606 * the request count if it's stored directly in @mas->alloc.
607 *
608 * Return: The allocation request count.
609 */
610static inline unsigned int mas_alloc_req(const struct ma_state *mas)
611{
612 if ((unsigned long)mas->alloc & 0x1)
613 return (unsigned long)(mas->alloc) >> 1;
614 else if (mas->alloc)
615 return mas->alloc->request_count;
616 return 0;
617}
618
619/*
620 * ma_pivots() - Get a pointer to the maple node pivots.
621 * @node - the maple node
622 * @type - the node type
623 *
624 * Return: A pointer to the maple node pivots
625 */
626static inline unsigned long *ma_pivots(struct maple_node *node,
627 enum maple_type type)
628{
629 switch (type) {
630 case maple_arange_64:
631 return node->ma64.pivot;
632 case maple_range_64:
633 case maple_leaf_64:
634 return node->mr64.pivot;
635 case maple_dense:
636 return NULL;
637 }
638 return NULL;
639}
640
641/*
642 * ma_gaps() - Get a pointer to the maple node gaps.
643 * @node - the maple node
644 * @type - the node type
645 *
646 * Return: A pointer to the maple node gaps
647 */
648static inline unsigned long *ma_gaps(struct maple_node *node,
649 enum maple_type type)
650{
651 switch (type) {
652 case maple_arange_64:
653 return node->ma64.gap;
654 case maple_range_64:
655 case maple_leaf_64:
656 case maple_dense:
657 return NULL;
658 }
659 return NULL;
660}
661
662/*
663 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
664 * @mn: The maple encoded node.
665 * @piv: The pivot.
666 *
667 * Return: the pivot at @piv of @mn.
668 */
669static inline unsigned long mte_pivot(const struct maple_enode *mn,
670 unsigned char piv)
671{
672 struct maple_node *node = mte_to_node(mn);
673
674 if (piv >= mt_pivots[piv]) {
675 WARN_ON(1);
676 return 0;
677 }
678 switch (mte_node_type(mn)) {
679 case maple_arange_64:
680 return node->ma64.pivot[piv];
681 case maple_range_64:
682 case maple_leaf_64:
683 return node->mr64.pivot[piv];
684 case maple_dense:
685 return 0;
686 }
687 return 0;
688}
689
690/*
691 * mas_safe_pivot() - get the pivot at @piv or mas->max.
692 * @mas: The maple state
693 * @pivots: The pointer to the maple node pivots
694 * @piv: The pivot to fetch
695 * @type: The maple node type
696 *
697 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
698 * otherwise.
699 */
700static inline unsigned long
701mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
702 unsigned char piv, enum maple_type type)
703{
704 if (piv >= mt_pivots[type])
705 return mas->max;
706
707 return pivots[piv];
708}
709
710/*
711 * mas_safe_min() - Return the minimum for a given offset.
712 * @mas: The maple state
713 * @pivots: The pointer to the maple node pivots
714 * @offset: The offset into the pivot array
715 *
716 * Return: The minimum range value that is contained in @offset.
717 */
718static inline unsigned long
719mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
720{
721 if (likely(offset))
722 return pivots[offset - 1] + 1;
723
724 return mas->min;
725}
726
727/*
728 * mas_logical_pivot() - Get the logical pivot of a given offset.
729 * @mas: The maple state
730 * @pivots: The pointer to the maple node pivots
731 * @offset: The offset into the pivot array
732 * @type: The maple node type
733 *
734 * When there is no value at a pivot (beyond the end of the data), then the
735 * pivot is actually @mas->max.
736 *
737 * Return: the logical pivot of a given @offset.
738 */
739static inline unsigned long
740mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
741 unsigned char offset, enum maple_type type)
742{
743 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
744
745 if (likely(lpiv))
746 return lpiv;
747
748 if (likely(offset))
749 return mas->max;
750
751 return lpiv;
752}
753
754/*
755 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
756 * @mn: The encoded maple node
757 * @piv: The pivot offset
758 * @val: The value of the pivot
759 */
760static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
761 unsigned long val)
762{
763 struct maple_node *node = mte_to_node(mn);
764 enum maple_type type = mte_node_type(mn);
765
766 BUG_ON(piv >= mt_pivots[type]);
767 switch (type) {
768 default:
769 case maple_range_64:
770 case maple_leaf_64:
771 node->mr64.pivot[piv] = val;
772 break;
773 case maple_arange_64:
774 node->ma64.pivot[piv] = val;
775 break;
776 case maple_dense:
777 break;
778 }
779
780}
781
782/*
783 * ma_slots() - Get a pointer to the maple node slots.
784 * @mn: The maple node
785 * @mt: The maple node type
786 *
787 * Return: A pointer to the maple node slots
788 */
789static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
790{
791 switch (mt) {
792 default:
793 case maple_arange_64:
794 return mn->ma64.slot;
795 case maple_range_64:
796 case maple_leaf_64:
797 return mn->mr64.slot;
798 case maple_dense:
799 return mn->slot;
800 }
801}
802
803static inline bool mt_locked(const struct maple_tree *mt)
804{
805 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
806 lockdep_is_held(&mt->ma_lock);
807}
808
809static inline void *mt_slot(const struct maple_tree *mt,
810 void __rcu **slots, unsigned char offset)
811{
812 return rcu_dereference_check(slots[offset], mt_locked(mt));
813}
814
815/*
816 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
817 * @mas: The maple state
818 * @slots: The pointer to the slots
819 * @offset: The offset into the slots array to fetch
820 *
821 * Return: The entry stored in @slots at the @offset.
822 */
823static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
824 unsigned char offset)
825{
826 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
827}
828
829/*
830 * mas_slot() - Get the slot value when not holding the maple tree lock.
831 * @mas: The maple state
832 * @slots: The pointer to the slots
833 * @offset: The offset into the slots array to fetch
834 *
835 * Return: The entry stored in @slots at the @offset
836 */
837static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
838 unsigned char offset)
839{
840 return mt_slot(mas->tree, slots, offset);
841}
842
843/*
844 * mas_root() - Get the maple tree root.
845 * @mas: The maple state.
846 *
847 * Return: The pointer to the root of the tree
848 */
849static inline void *mas_root(struct ma_state *mas)
850{
851 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
852}
853
854static inline void *mt_root_locked(struct maple_tree *mt)
855{
856 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
857}
858
859/*
860 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
861 * @mas: The maple state.
862 *
863 * Return: The pointer to the root of the tree
864 */
865static inline void *mas_root_locked(struct ma_state *mas)
866{
867 return mt_root_locked(mas->tree);
868}
869
870static inline struct maple_metadata *ma_meta(struct maple_node *mn,
871 enum maple_type mt)
872{
873 switch (mt) {
874 case maple_arange_64:
875 return &mn->ma64.meta;
876 default:
877 return &mn->mr64.meta;
878 }
879}
880
881/*
882 * ma_set_meta() - Set the metadata information of a node.
883 * @mn: The maple node
884 * @mt: The maple node type
885 * @offset: The offset of the highest sub-gap in this node.
886 * @end: The end of the data in this node.
887 */
888static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
889 unsigned char offset, unsigned char end)
890{
891 struct maple_metadata *meta = ma_meta(mn, mt);
892
893 meta->gap = offset;
894 meta->end = end;
895}
896
897/*
898 * ma_meta_end() - Get the data end of a node from the metadata
899 * @mn: The maple node
900 * @mt: The maple node type
901 */
902static inline unsigned char ma_meta_end(struct maple_node *mn,
903 enum maple_type mt)
904{
905 struct maple_metadata *meta = ma_meta(mn, mt);
906
907 return meta->end;
908}
909
910/*
911 * ma_meta_gap() - Get the largest gap location of a node from the metadata
912 * @mn: The maple node
913 * @mt: The maple node type
914 */
915static inline unsigned char ma_meta_gap(struct maple_node *mn,
916 enum maple_type mt)
917{
918 BUG_ON(mt != maple_arange_64);
919
920 return mn->ma64.meta.gap;
921}
922
923/*
924 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
925 * @mn: The maple node
926 * @mn: The maple node type
927 * @offset: The location of the largest gap.
928 */
929static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
930 unsigned char offset)
931{
932
933 struct maple_metadata *meta = ma_meta(mn, mt);
934
935 meta->gap = offset;
936}
937
938/*
939 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
940 * @mat - the ma_topiary, a linked list of dead nodes.
941 * @dead_enode - the node to be marked as dead and added to the tail of the list
942 *
943 * Add the @dead_enode to the linked list in @mat.
944 */
945static inline void mat_add(struct ma_topiary *mat,
946 struct maple_enode *dead_enode)
947{
948 mte_set_node_dead(dead_enode);
949 mte_to_mat(dead_enode)->next = NULL;
950 if (!mat->tail) {
951 mat->tail = mat->head = dead_enode;
952 return;
953 }
954
955 mte_to_mat(mat->tail)->next = dead_enode;
956 mat->tail = dead_enode;
957}
958
959static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
960static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
961
962/*
963 * mas_mat_free() - Free all nodes in a dead list.
964 * @mas - the maple state
965 * @mat - the ma_topiary linked list of dead nodes to free.
966 *
967 * Free walk a dead list.
968 */
969static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
970{
971 struct maple_enode *next;
972
973 while (mat->head) {
974 next = mte_to_mat(mat->head)->next;
975 mas_free(mas, mat->head);
976 mat->head = next;
977 }
978}
979
980/*
981 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
982 * @mas - the maple state
983 * @mat - the ma_topiary linked list of dead nodes to free.
984 *
985 * Destroy walk a dead list.
986 */
987static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
988{
989 struct maple_enode *next;
990
991 while (mat->head) {
992 next = mte_to_mat(mat->head)->next;
993 mte_destroy_walk(mat->head, mat->mtree);
994 mat->head = next;
995 }
996}
997/*
998 * mas_descend() - Descend into the slot stored in the ma_state.
999 * @mas - the maple state.
1000 *
1001 * Note: Not RCU safe, only use in write side or debug code.
1002 */
1003static inline void mas_descend(struct ma_state *mas)
1004{
1005 enum maple_type type;
1006 unsigned long *pivots;
1007 struct maple_node *node;
1008 void __rcu **slots;
1009
1010 node = mas_mn(mas);
1011 type = mte_node_type(mas->node);
1012 pivots = ma_pivots(node, type);
1013 slots = ma_slots(node, type);
1014
1015 if (mas->offset)
1016 mas->min = pivots[mas->offset - 1] + 1;
1017 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1018 mas->node = mas_slot(mas, slots, mas->offset);
1019}
1020
1021/*
1022 * mte_set_gap() - Set a maple node gap.
1023 * @mn: The encoded maple node
1024 * @gap: The offset of the gap to set
1025 * @val: The gap value
1026 */
1027static inline void mte_set_gap(const struct maple_enode *mn,
1028 unsigned char gap, unsigned long val)
1029{
1030 switch (mte_node_type(mn)) {
1031 default:
1032 break;
1033 case maple_arange_64:
1034 mte_to_node(mn)->ma64.gap[gap] = val;
1035 break;
1036 }
1037}
1038
1039/*
1040 * mas_ascend() - Walk up a level of the tree.
1041 * @mas: The maple state
1042 *
1043 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1044 * may cause several levels of walking up to find the correct min and max.
1045 * May find a dead node which will cause a premature return.
1046 * Return: 1 on dead node, 0 otherwise
1047 */
1048static int mas_ascend(struct ma_state *mas)
1049{
1050 struct maple_enode *p_enode; /* parent enode. */
1051 struct maple_enode *a_enode; /* ancestor enode. */
1052 struct maple_node *a_node; /* ancestor node. */
1053 struct maple_node *p_node; /* parent node. */
1054 unsigned char a_slot;
1055 enum maple_type a_type;
1056 unsigned long min, max;
1057 unsigned long *pivots;
1058 unsigned char offset;
1059 bool set_max = false, set_min = false;
1060
1061 a_node = mas_mn(mas);
1062 if (ma_is_root(a_node)) {
1063 mas->offset = 0;
1064 return 0;
1065 }
1066
1067 p_node = mte_parent(mas->node);
1068 if (unlikely(a_node == p_node))
1069 return 1;
1070 a_type = mas_parent_enum(mas, mas->node);
1071 offset = mte_parent_slot(mas->node);
1072 a_enode = mt_mk_node(p_node, a_type);
1073
1074 /* Check to make sure all parent information is still accurate */
1075 if (p_node != mte_parent(mas->node))
1076 return 1;
1077
1078 mas->node = a_enode;
1079 mas->offset = offset;
1080
1081 if (mte_is_root(a_enode)) {
1082 mas->max = ULONG_MAX;
1083 mas->min = 0;
1084 return 0;
1085 }
1086
1087 min = 0;
1088 max = ULONG_MAX;
1089 do {
1090 p_enode = a_enode;
1091 a_type = mas_parent_enum(mas, p_enode);
1092 a_node = mte_parent(p_enode);
1093 a_slot = mte_parent_slot(p_enode);
1094 pivots = ma_pivots(a_node, a_type);
1095 a_enode = mt_mk_node(a_node, a_type);
1096
1097 if (!set_min && a_slot) {
1098 set_min = true;
1099 min = pivots[a_slot - 1] + 1;
1100 }
1101
1102 if (!set_max && a_slot < mt_pivots[a_type]) {
1103 set_max = true;
1104 max = pivots[a_slot];
1105 }
1106
1107 if (unlikely(ma_dead_node(a_node)))
1108 return 1;
1109
1110 if (unlikely(ma_is_root(a_node)))
1111 break;
1112
1113 } while (!set_min || !set_max);
1114
1115 mas->max = max;
1116 mas->min = min;
1117 return 0;
1118}
1119
1120/*
1121 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1122 * @mas: The maple state
1123 *
1124 * Return: A pointer to a maple node.
1125 */
1126static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1127{
1128 struct maple_alloc *ret, *node = mas->alloc;
1129 unsigned long total = mas_allocated(mas);
1130
1131 /* nothing or a request pending. */
1132 if (unlikely(!total))
1133 return NULL;
1134
1135 if (total == 1) {
1136 /* single allocation in this ma_state */
1137 mas->alloc = NULL;
1138 ret = node;
1139 goto single_node;
1140 }
1141
1142 if (!node->node_count) {
1143 /* Single allocation in this node. */
1144 mas->alloc = node->slot[0];
1145 node->slot[0] = NULL;
1146 mas->alloc->total = node->total - 1;
1147 ret = node;
1148 goto new_head;
1149 }
1150
1151 node->total--;
1152 ret = node->slot[node->node_count];
1153 node->slot[node->node_count--] = NULL;
1154
1155single_node:
1156new_head:
1157 ret->total = 0;
1158 ret->node_count = 0;
1159 if (ret->request_count) {
1160 mas_set_alloc_req(mas, ret->request_count + 1);
1161 ret->request_count = 0;
1162 }
1163 return (struct maple_node *)ret;
1164}
1165
1166/*
1167 * mas_push_node() - Push a node back on the maple state allocation.
1168 * @mas: The maple state
1169 * @used: The used maple node
1170 *
1171 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1172 * requested node count as necessary.
1173 */
1174static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1175{
1176 struct maple_alloc *reuse = (struct maple_alloc *)used;
1177 struct maple_alloc *head = mas->alloc;
1178 unsigned long count;
1179 unsigned int requested = mas_alloc_req(mas);
1180
1181 memset(reuse, 0, sizeof(*reuse));
1182 count = mas_allocated(mas);
1183
1184 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1185 if (head->slot[0])
1186 head->node_count++;
1187 head->slot[head->node_count] = reuse;
1188 head->total++;
1189 goto done;
1190 }
1191
1192 reuse->total = 1;
1193 if ((head) && !((unsigned long)head & 0x1)) {
1194 head->request_count = 0;
1195 reuse->slot[0] = head;
1196 reuse->total += head->total;
1197 }
1198
1199 mas->alloc = reuse;
1200done:
1201 if (requested > 1)
1202 mas_set_alloc_req(mas, requested - 1);
1203}
1204
1205/*
1206 * mas_alloc_nodes() - Allocate nodes into a maple state
1207 * @mas: The maple state
1208 * @gfp: The GFP Flags
1209 */
1210static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1211{
1212 struct maple_alloc *node;
1213 unsigned long allocated = mas_allocated(mas);
1214 unsigned long success = allocated;
1215 unsigned int requested = mas_alloc_req(mas);
1216 unsigned int count;
1217 void **slots = NULL;
1218 unsigned int max_req = 0;
1219
1220 if (!requested)
1221 return;
1222
1223 mas_set_alloc_req(mas, 0);
1224 if (mas->mas_flags & MA_STATE_PREALLOC) {
1225 if (allocated)
1226 return;
1227 WARN_ON(!allocated);
1228 }
1229
1230 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1231 node = (struct maple_alloc *)mt_alloc_one(gfp);
1232 if (!node)
1233 goto nomem_one;
1234
1235 if (allocated)
1236 node->slot[0] = mas->alloc;
1237
1238 success++;
1239 mas->alloc = node;
1240 requested--;
1241 }
1242
1243 node = mas->alloc;
1244 while (requested) {
1245 max_req = MAPLE_ALLOC_SLOTS;
1246 if (node->slot[0]) {
1247 unsigned int offset = node->node_count + 1;
1248
1249 slots = (void **)&node->slot[offset];
1250 max_req -= offset;
1251 } else {
1252 slots = (void **)&node->slot;
1253 }
1254
1255 max_req = min(requested, max_req);
1256 count = mt_alloc_bulk(gfp, max_req, slots);
1257 if (!count)
1258 goto nomem_bulk;
1259
1260 node->node_count += count;
1261 /* zero indexed. */
1262 if (slots == (void **)&node->slot)
1263 node->node_count--;
1264
1265 success += count;
1266 node = node->slot[0];
1267 requested -= count;
1268 }
1269 mas->alloc->total = success;
1270 return;
1271
1272nomem_bulk:
1273 /* Clean up potential freed allocations on bulk failure */
1274 memset(slots, 0, max_req * sizeof(unsigned long));
1275nomem_one:
1276 mas_set_alloc_req(mas, requested);
1277 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1278 mas->alloc->total = success;
1279 mas_set_err(mas, -ENOMEM);
1280 return;
1281
1282}
1283
1284/*
1285 * mas_free() - Free an encoded maple node
1286 * @mas: The maple state
1287 * @used: The encoded maple node to free.
1288 *
1289 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1290 * otherwise.
1291 */
1292static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1293{
1294 struct maple_node *tmp = mte_to_node(used);
1295
1296 if (mt_in_rcu(mas->tree))
1297 ma_free_rcu(tmp);
1298 else
1299 mas_push_node(mas, tmp);
1300}
1301
1302/*
1303 * mas_node_count() - Check if enough nodes are allocated and request more if
1304 * there is not enough nodes.
1305 * @mas: The maple state
1306 * @count: The number of nodes needed
1307 * @gfp: the gfp flags
1308 */
1309static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1310{
1311 unsigned long allocated = mas_allocated(mas);
1312
1313 if (allocated < count) {
1314 mas_set_alloc_req(mas, count - allocated);
1315 mas_alloc_nodes(mas, gfp);
1316 }
1317}
1318
1319/*
1320 * mas_node_count() - Check if enough nodes are allocated and request more if
1321 * there is not enough nodes.
1322 * @mas: The maple state
1323 * @count: The number of nodes needed
1324 *
1325 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1326 */
1327static void mas_node_count(struct ma_state *mas, int count)
1328{
1329 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1330}
1331
1332/*
1333 * mas_start() - Sets up maple state for operations.
1334 * @mas: The maple state.
1335 *
1336 * If mas->node == MAS_START, then set the min, max, depth, and offset to
1337 * defaults.
1338 *
1339 * Return:
1340 * - If mas->node is an error or not MAS_START, return NULL.
1341 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1342 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1343 * - If it's a tree: NULL & mas->node == safe root node.
1344 */
1345static inline struct maple_enode *mas_start(struct ma_state *mas)
1346{
1347 if (likely(mas_is_start(mas))) {
1348 struct maple_enode *root;
1349
1350 mas->node = MAS_NONE;
1351 mas->min = 0;
1352 mas->max = ULONG_MAX;
1353 mas->depth = 0;
1354 mas->offset = 0;
1355
1356 root = mas_root(mas);
1357 /* Tree with nodes */
1358 if (likely(xa_is_node(root))) {
1359 mas->depth = 1;
1360 mas->node = mte_safe_root(root);
1361 return NULL;
1362 }
1363
1364 /* empty tree */
1365 if (unlikely(!root)) {
1366 mas->offset = MAPLE_NODE_SLOTS;
1367 return NULL;
1368 }
1369
1370 /* Single entry tree */
1371 mas->node = MAS_ROOT;
1372 mas->offset = MAPLE_NODE_SLOTS;
1373
1374 /* Single entry tree. */
1375 if (mas->index > 0)
1376 return NULL;
1377
1378 return root;
1379 }
1380
1381 return NULL;
1382}
1383
1384/*
1385 * ma_data_end() - Find the end of the data in a node.
1386 * @node: The maple node
1387 * @type: The maple node type
1388 * @pivots: The array of pivots in the node
1389 * @max: The maximum value in the node
1390 *
1391 * Uses metadata to find the end of the data when possible.
1392 * Return: The zero indexed last slot with data (may be null).
1393 */
1394static inline unsigned char ma_data_end(struct maple_node *node,
1395 enum maple_type type,
1396 unsigned long *pivots,
1397 unsigned long max)
1398{
1399 unsigned char offset;
1400
1401 if (type == maple_arange_64)
1402 return ma_meta_end(node, type);
1403
1404 offset = mt_pivots[type] - 1;
1405 if (likely(!pivots[offset]))
1406 return ma_meta_end(node, type);
1407
1408 if (likely(pivots[offset] == max))
1409 return offset;
1410
1411 return mt_pivots[type];
1412}
1413
1414/*
1415 * mas_data_end() - Find the end of the data (slot).
1416 * @mas: the maple state
1417 *
1418 * This method is optimized to check the metadata of a node if the node type
1419 * supports data end metadata.
1420 *
1421 * Return: The zero indexed last slot with data (may be null).
1422 */
1423static inline unsigned char mas_data_end(struct ma_state *mas)
1424{
1425 enum maple_type type;
1426 struct maple_node *node;
1427 unsigned char offset;
1428 unsigned long *pivots;
1429
1430 type = mte_node_type(mas->node);
1431 node = mas_mn(mas);
1432 if (type == maple_arange_64)
1433 return ma_meta_end(node, type);
1434
1435 pivots = ma_pivots(node, type);
1436 offset = mt_pivots[type] - 1;
1437 if (likely(!pivots[offset]))
1438 return ma_meta_end(node, type);
1439
1440 if (likely(pivots[offset] == mas->max))
1441 return offset;
1442
1443 return mt_pivots[type];
1444}
1445
1446/*
1447 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1448 * @mas - the maple state
1449 *
1450 * Return: The maximum gap in the leaf.
1451 */
1452static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1453{
1454 enum maple_type mt;
1455 unsigned long pstart, gap, max_gap;
1456 struct maple_node *mn;
1457 unsigned long *pivots;
1458 void __rcu **slots;
1459 unsigned char i;
1460 unsigned char max_piv;
1461
1462 mt = mte_node_type(mas->node);
1463 mn = mas_mn(mas);
1464 slots = ma_slots(mn, mt);
1465 max_gap = 0;
1466 if (unlikely(ma_is_dense(mt))) {
1467 gap = 0;
1468 for (i = 0; i < mt_slots[mt]; i++) {
1469 if (slots[i]) {
1470 if (gap > max_gap)
1471 max_gap = gap;
1472 gap = 0;
1473 } else {
1474 gap++;
1475 }
1476 }
1477 if (gap > max_gap)
1478 max_gap = gap;
1479 return max_gap;
1480 }
1481
1482 /*
1483 * Check the first implied pivot optimizes the loop below and slot 1 may
1484 * be skipped if there is a gap in slot 0.
1485 */
1486 pivots = ma_pivots(mn, mt);
1487 if (likely(!slots[0])) {
1488 max_gap = pivots[0] - mas->min + 1;
1489 i = 2;
1490 } else {
1491 i = 1;
1492 }
1493
1494 /* reduce max_piv as the special case is checked before the loop */
1495 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1496 /*
1497 * Check end implied pivot which can only be a gap on the right most
1498 * node.
1499 */
1500 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1501 gap = ULONG_MAX - pivots[max_piv];
1502 if (gap > max_gap)
1503 max_gap = gap;
1504 }
1505
1506 for (; i <= max_piv; i++) {
1507 /* data == no gap. */
1508 if (likely(slots[i]))
1509 continue;
1510
1511 pstart = pivots[i - 1];
1512 gap = pivots[i] - pstart;
1513 if (gap > max_gap)
1514 max_gap = gap;
1515
1516 /* There cannot be two gaps in a row. */
1517 i++;
1518 }
1519 return max_gap;
1520}
1521
1522/*
1523 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1524 * @node: The maple node
1525 * @gaps: The pointer to the gaps
1526 * @mt: The maple node type
1527 * @*off: Pointer to store the offset location of the gap.
1528 *
1529 * Uses the metadata data end to scan backwards across set gaps.
1530 *
1531 * Return: The maximum gap value
1532 */
1533static inline unsigned long
1534ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1535 unsigned char *off)
1536{
1537 unsigned char offset, i;
1538 unsigned long max_gap = 0;
1539
1540 i = offset = ma_meta_end(node, mt);
1541 do {
1542 if (gaps[i] > max_gap) {
1543 max_gap = gaps[i];
1544 offset = i;
1545 }
1546 } while (i--);
1547
1548 *off = offset;
1549 return max_gap;
1550}
1551
1552/*
1553 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1554 * @mas: The maple state.
1555 *
1556 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1557 *
1558 * Return: The gap value.
1559 */
1560static inline unsigned long mas_max_gap(struct ma_state *mas)
1561{
1562 unsigned long *gaps;
1563 unsigned char offset;
1564 enum maple_type mt;
1565 struct maple_node *node;
1566
1567 mt = mte_node_type(mas->node);
1568 if (ma_is_leaf(mt))
1569 return mas_leaf_max_gap(mas);
1570
1571 node = mas_mn(mas);
1572 offset = ma_meta_gap(node, mt);
1573 if (offset == MAPLE_ARANGE64_META_MAX)
1574 return 0;
1575
1576 gaps = ma_gaps(node, mt);
1577 return gaps[offset];
1578}
1579
1580/*
1581 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1582 * @mas: The maple state
1583 * @offset: The gap offset in the parent to set
1584 * @new: The new gap value.
1585 *
1586 * Set the parent gap then continue to set the gap upwards, using the metadata
1587 * of the parent to see if it is necessary to check the node above.
1588 */
1589static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1590 unsigned long new)
1591{
1592 unsigned long meta_gap = 0;
1593 struct maple_node *pnode;
1594 struct maple_enode *penode;
1595 unsigned long *pgaps;
1596 unsigned char meta_offset;
1597 enum maple_type pmt;
1598
1599 pnode = mte_parent(mas->node);
1600 pmt = mas_parent_enum(mas, mas->node);
1601 penode = mt_mk_node(pnode, pmt);
1602 pgaps = ma_gaps(pnode, pmt);
1603
1604ascend:
1605 meta_offset = ma_meta_gap(pnode, pmt);
1606 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1607 meta_gap = 0;
1608 else
1609 meta_gap = pgaps[meta_offset];
1610
1611 pgaps[offset] = new;
1612
1613 if (meta_gap == new)
1614 return;
1615
1616 if (offset != meta_offset) {
1617 if (meta_gap > new)
1618 return;
1619
1620 ma_set_meta_gap(pnode, pmt, offset);
1621 } else if (new < meta_gap) {
1622 meta_offset = 15;
1623 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1624 ma_set_meta_gap(pnode, pmt, meta_offset);
1625 }
1626
1627 if (ma_is_root(pnode))
1628 return;
1629
1630 /* Go to the parent node. */
1631 pnode = mte_parent(penode);
1632 pmt = mas_parent_enum(mas, penode);
1633 pgaps = ma_gaps(pnode, pmt);
1634 offset = mte_parent_slot(penode);
1635 penode = mt_mk_node(pnode, pmt);
1636 goto ascend;
1637}
1638
1639/*
1640 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1641 * @mas - the maple state.
1642 */
1643static inline void mas_update_gap(struct ma_state *mas)
1644{
1645 unsigned char pslot;
1646 unsigned long p_gap;
1647 unsigned long max_gap;
1648
1649 if (!mt_is_alloc(mas->tree))
1650 return;
1651
1652 if (mte_is_root(mas->node))
1653 return;
1654
1655 max_gap = mas_max_gap(mas);
1656
1657 pslot = mte_parent_slot(mas->node);
1658 p_gap = ma_gaps(mte_parent(mas->node),
1659 mas_parent_enum(mas, mas->node))[pslot];
1660
1661 if (p_gap != max_gap)
1662 mas_parent_gap(mas, pslot, max_gap);
1663}
1664
1665/*
1666 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1667 * @parent with the slot encoded.
1668 * @mas - the maple state (for the tree)
1669 * @parent - the maple encoded node containing the children.
1670 */
1671static inline void mas_adopt_children(struct ma_state *mas,
1672 struct maple_enode *parent)
1673{
1674 enum maple_type type = mte_node_type(parent);
1675 struct maple_node *node = mas_mn(mas);
1676 void __rcu **slots = ma_slots(node, type);
1677 unsigned long *pivots = ma_pivots(node, type);
1678 struct maple_enode *child;
1679 unsigned char offset;
1680
1681 offset = ma_data_end(node, type, pivots, mas->max);
1682 do {
1683 child = mas_slot_locked(mas, slots, offset);
1684 mte_set_parent(child, parent, offset);
1685 } while (offset--);
1686}
1687
1688/*
1689 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1690 * parent encoding to locate the maple node in the tree.
1691 * @mas - the ma_state to use for operations.
1692 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1693 * leave the node (true) and handle the adoption and free elsewhere.
1694 */
1695static inline void mas_replace(struct ma_state *mas, bool advanced)
1696 __must_hold(mas->tree->lock)
1697{
1698 struct maple_node *mn = mas_mn(mas);
1699 struct maple_enode *old_enode;
1700 unsigned char offset = 0;
1701 void __rcu **slots = NULL;
1702
1703 if (ma_is_root(mn)) {
1704 old_enode = mas_root_locked(mas);
1705 } else {
1706 offset = mte_parent_slot(mas->node);
1707 slots = ma_slots(mte_parent(mas->node),
1708 mas_parent_enum(mas, mas->node));
1709 old_enode = mas_slot_locked(mas, slots, offset);
1710 }
1711
1712 if (!advanced && !mte_is_leaf(mas->node))
1713 mas_adopt_children(mas, mas->node);
1714
1715 if (mte_is_root(mas->node)) {
1716 mn->parent = ma_parent_ptr(
1717 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1718 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1719 mas_set_height(mas);
1720 } else {
1721 rcu_assign_pointer(slots[offset], mas->node);
1722 }
1723
1724 if (!advanced)
1725 mas_free(mas, old_enode);
1726}
1727
1728/*
1729 * mas_new_child() - Find the new child of a node.
1730 * @mas: the maple state
1731 * @child: the maple state to store the child.
1732 */
1733static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1734 __must_hold(mas->tree->lock)
1735{
1736 enum maple_type mt;
1737 unsigned char offset;
1738 unsigned char end;
1739 unsigned long *pivots;
1740 struct maple_enode *entry;
1741 struct maple_node *node;
1742 void __rcu **slots;
1743
1744 mt = mte_node_type(mas->node);
1745 node = mas_mn(mas);
1746 slots = ma_slots(node, mt);
1747 pivots = ma_pivots(node, mt);
1748 end = ma_data_end(node, mt, pivots, mas->max);
1749 for (offset = mas->offset; offset <= end; offset++) {
1750 entry = mas_slot_locked(mas, slots, offset);
1751 if (mte_parent(entry) == node) {
1752 *child = *mas;
1753 mas->offset = offset + 1;
1754 child->offset = offset;
1755 mas_descend(child);
1756 child->offset = 0;
1757 return true;
1758 }
1759 }
1760 return false;
1761}
1762
1763/*
1764 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1765 * old data or set b_node->b_end.
1766 * @b_node: the maple_big_node
1767 * @shift: the shift count
1768 */
1769static inline void mab_shift_right(struct maple_big_node *b_node,
1770 unsigned char shift)
1771{
1772 unsigned long size = b_node->b_end * sizeof(unsigned long);
1773
1774 memmove(b_node->pivot + shift, b_node->pivot, size);
1775 memmove(b_node->slot + shift, b_node->slot, size);
1776 if (b_node->type == maple_arange_64)
1777 memmove(b_node->gap + shift, b_node->gap, size);
1778}
1779
1780/*
1781 * mab_middle_node() - Check if a middle node is needed (unlikely)
1782 * @b_node: the maple_big_node that contains the data.
1783 * @size: the amount of data in the b_node
1784 * @split: the potential split location
1785 * @slot_count: the size that can be stored in a single node being considered.
1786 *
1787 * Return: true if a middle node is required.
1788 */
1789static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1790 unsigned char slot_count)
1791{
1792 unsigned char size = b_node->b_end;
1793
1794 if (size >= 2 * slot_count)
1795 return true;
1796
1797 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1798 return true;
1799
1800 return false;
1801}
1802
1803/*
1804 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1805 * @b_node: the maple_big_node with the data
1806 * @split: the suggested split location
1807 * @slot_count: the number of slots in the node being considered.
1808 *
1809 * Return: the split location.
1810 */
1811static inline int mab_no_null_split(struct maple_big_node *b_node,
1812 unsigned char split, unsigned char slot_count)
1813{
1814 if (!b_node->slot[split]) {
1815 /*
1816 * If the split is less than the max slot && the right side will
1817 * still be sufficient, then increment the split on NULL.
1818 */
1819 if ((split < slot_count - 1) &&
1820 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1821 split++;
1822 else
1823 split--;
1824 }
1825 return split;
1826}
1827
1828/*
1829 * mab_calc_split() - Calculate the split location and if there needs to be two
1830 * splits.
1831 * @bn: The maple_big_node with the data
1832 * @mid_split: The second split, if required. 0 otherwise.
1833 *
1834 * Return: The first split location. The middle split is set in @mid_split.
1835 */
1836static inline int mab_calc_split(struct ma_state *mas,
1837 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1838{
1839 unsigned char b_end = bn->b_end;
1840 int split = b_end / 2; /* Assume equal split. */
1841 unsigned char slot_min, slot_count = mt_slots[bn->type];
1842
1843 /*
1844 * To support gap tracking, all NULL entries are kept together and a node cannot
1845 * end on a NULL entry, with the exception of the left-most leaf. The
1846 * limitation means that the split of a node must be checked for this condition
1847 * and be able to put more data in one direction or the other.
1848 */
1849 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1850 *mid_split = 0;
1851 split = b_end - mt_min_slots[bn->type];
1852
1853 if (!ma_is_leaf(bn->type))
1854 return split;
1855
1856 mas->mas_flags |= MA_STATE_REBALANCE;
1857 if (!bn->slot[split])
1858 split--;
1859 return split;
1860 }
1861
1862 /*
1863 * Although extremely rare, it is possible to enter what is known as the 3-way
1864 * split scenario. The 3-way split comes about by means of a store of a range
1865 * that overwrites the end and beginning of two full nodes. The result is a set
1866 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1867 * also be located in different parent nodes which are also full. This can
1868 * carry upwards all the way to the root in the worst case.
1869 */
1870 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1871 split = b_end / 3;
1872 *mid_split = split * 2;
1873 } else {
1874 slot_min = mt_min_slots[bn->type];
1875
1876 *mid_split = 0;
1877 /*
1878 * Avoid having a range less than the slot count unless it
1879 * causes one node to be deficient.
1880 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1881 */
1882 while (((bn->pivot[split] - min) < slot_count - 1) &&
1883 (split < slot_count - 1) && (b_end - split > slot_min))
1884 split++;
1885 }
1886
1887 /* Avoid ending a node on a NULL entry */
1888 split = mab_no_null_split(bn, split, slot_count);
1889 if (!(*mid_split))
1890 return split;
1891
1892 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1893
1894 return split;
1895}
1896
1897/*
1898 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1899 * and set @b_node->b_end to the next free slot.
1900 * @mas: The maple state
1901 * @mas_start: The starting slot to copy
1902 * @mas_end: The end slot to copy (inclusively)
1903 * @b_node: The maple_big_node to place the data
1904 * @mab_start: The starting location in maple_big_node to store the data.
1905 */
1906static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1907 unsigned char mas_end, struct maple_big_node *b_node,
1908 unsigned char mab_start)
1909{
1910 enum maple_type mt;
1911 struct maple_node *node;
1912 void __rcu **slots;
1913 unsigned long *pivots, *gaps;
1914 int i = mas_start, j = mab_start;
1915 unsigned char piv_end;
1916
1917 node = mas_mn(mas);
1918 mt = mte_node_type(mas->node);
1919 pivots = ma_pivots(node, mt);
1920 if (!i) {
1921 b_node->pivot[j] = pivots[i++];
1922 if (unlikely(i > mas_end))
1923 goto complete;
1924 j++;
1925 }
1926
1927 piv_end = min(mas_end, mt_pivots[mt]);
1928 for (; i < piv_end; i++, j++) {
1929 b_node->pivot[j] = pivots[i];
1930 if (unlikely(!b_node->pivot[j]))
1931 break;
1932
1933 if (unlikely(mas->max == b_node->pivot[j]))
1934 goto complete;
1935 }
1936
1937 if (likely(i <= mas_end))
1938 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1939
1940complete:
1941 b_node->b_end = ++j;
1942 j -= mab_start;
1943 slots = ma_slots(node, mt);
1944 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1945 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1946 gaps = ma_gaps(node, mt);
1947 memcpy(b_node->gap + mab_start, gaps + mas_start,
1948 sizeof(unsigned long) * j);
1949 }
1950}
1951
1952/*
1953 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1954 * @mas: The maple state
1955 * @node: The maple node
1956 * @pivots: pointer to the maple node pivots
1957 * @mt: The maple type
1958 * @end: The assumed end
1959 *
1960 * Note, end may be incremented within this function but not modified at the
1961 * source. This is fine since the metadata is the last thing to be stored in a
1962 * node during a write.
1963 */
1964static inline void mas_leaf_set_meta(struct ma_state *mas,
1965 struct maple_node *node, unsigned long *pivots,
1966 enum maple_type mt, unsigned char end)
1967{
1968 /* There is no room for metadata already */
1969 if (mt_pivots[mt] <= end)
1970 return;
1971
1972 if (pivots[end] && pivots[end] < mas->max)
1973 end++;
1974
1975 if (end < mt_slots[mt] - 1)
1976 ma_set_meta(node, mt, 0, end);
1977}
1978
1979/*
1980 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1981 * @b_node: the maple_big_node that has the data
1982 * @mab_start: the start location in @b_node.
1983 * @mab_end: The end location in @b_node (inclusively)
1984 * @mas: The maple state with the maple encoded node.
1985 */
1986static inline void mab_mas_cp(struct maple_big_node *b_node,
1987 unsigned char mab_start, unsigned char mab_end,
1988 struct ma_state *mas, bool new_max)
1989{
1990 int i, j = 0;
1991 enum maple_type mt = mte_node_type(mas->node);
1992 struct maple_node *node = mte_to_node(mas->node);
1993 void __rcu **slots = ma_slots(node, mt);
1994 unsigned long *pivots = ma_pivots(node, mt);
1995 unsigned long *gaps = NULL;
1996 unsigned char end;
1997
1998 if (mab_end - mab_start > mt_pivots[mt])
1999 mab_end--;
2000
2001 if (!pivots[mt_pivots[mt] - 1])
2002 slots[mt_pivots[mt]] = NULL;
2003
2004 i = mab_start;
2005 do {
2006 pivots[j++] = b_node->pivot[i++];
2007 } while (i <= mab_end && likely(b_node->pivot[i]));
2008
2009 memcpy(slots, b_node->slot + mab_start,
2010 sizeof(void *) * (i - mab_start));
2011
2012 if (new_max)
2013 mas->max = b_node->pivot[i - 1];
2014
2015 end = j - 1;
2016 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2017 unsigned long max_gap = 0;
2018 unsigned char offset = 15;
2019
2020 gaps = ma_gaps(node, mt);
2021 do {
2022 gaps[--j] = b_node->gap[--i];
2023 if (gaps[j] > max_gap) {
2024 offset = j;
2025 max_gap = gaps[j];
2026 }
2027 } while (j);
2028
2029 ma_set_meta(node, mt, offset, end);
2030 } else {
2031 mas_leaf_set_meta(mas, node, pivots, mt, end);
2032 }
2033}
2034
2035/*
2036 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2037 * @mas: the maple state with the maple encoded node of the sub-tree.
2038 *
2039 * Descend through a sub-tree and adopt children who do not have the correct
2040 * parents set. Follow the parents which have the correct parents as they are
2041 * the new entries which need to be followed to find other incorrectly set
2042 * parents.
2043 */
2044static inline void mas_descend_adopt(struct ma_state *mas)
2045{
2046 struct ma_state list[3], next[3];
2047 int i, n;
2048
2049 /*
2050 * At each level there may be up to 3 correct parent pointers which indicates
2051 * the new nodes which need to be walked to find any new nodes at a lower level.
2052 */
2053
2054 for (i = 0; i < 3; i++) {
2055 list[i] = *mas;
2056 list[i].offset = 0;
2057 next[i].offset = 0;
2058 }
2059 next[0] = *mas;
2060
2061 while (!mte_is_leaf(list[0].node)) {
2062 n = 0;
2063 for (i = 0; i < 3; i++) {
2064 if (mas_is_none(&list[i]))
2065 continue;
2066
2067 if (i && list[i-1].node == list[i].node)
2068 continue;
2069
2070 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2071 n++;
2072
2073 mas_adopt_children(&list[i], list[i].node);
2074 }
2075
2076 while (n < 3)
2077 next[n++].node = MAS_NONE;
2078
2079 /* descend by setting the list to the children */
2080 for (i = 0; i < 3; i++)
2081 list[i] = next[i];
2082 }
2083}
2084
2085/*
2086 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2087 * @mas: The maple state
2088 * @end: The maple node end
2089 * @mt: The maple node type
2090 */
2091static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2092 enum maple_type mt)
2093{
2094 if (!(mas->mas_flags & MA_STATE_BULK))
2095 return;
2096
2097 if (mte_is_root(mas->node))
2098 return;
2099
2100 if (end > mt_min_slots[mt]) {
2101 mas->mas_flags &= ~MA_STATE_REBALANCE;
2102 return;
2103 }
2104}
2105
2106/*
2107 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2108 * data from a maple encoded node.
2109 * @wr_mas: the maple write state
2110 * @b_node: the maple_big_node to fill with data
2111 * @offset_end: the offset to end copying
2112 *
2113 * Return: The actual end of the data stored in @b_node
2114 */
2115static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2116 struct maple_big_node *b_node, unsigned char offset_end)
2117{
2118 unsigned char slot;
2119 unsigned char b_end;
2120 /* Possible underflow of piv will wrap back to 0 before use. */
2121 unsigned long piv;
2122 struct ma_state *mas = wr_mas->mas;
2123
2124 b_node->type = wr_mas->type;
2125 b_end = 0;
2126 slot = mas->offset;
2127 if (slot) {
2128 /* Copy start data up to insert. */
2129 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2130 b_end = b_node->b_end;
2131 piv = b_node->pivot[b_end - 1];
2132 } else
2133 piv = mas->min - 1;
2134
2135 if (piv + 1 < mas->index) {
2136 /* Handle range starting after old range */
2137 b_node->slot[b_end] = wr_mas->content;
2138 if (!wr_mas->content)
2139 b_node->gap[b_end] = mas->index - 1 - piv;
2140 b_node->pivot[b_end++] = mas->index - 1;
2141 }
2142
2143 /* Store the new entry. */
2144 mas->offset = b_end;
2145 b_node->slot[b_end] = wr_mas->entry;
2146 b_node->pivot[b_end] = mas->last;
2147
2148 /* Appended. */
2149 if (mas->last >= mas->max)
2150 goto b_end;
2151
2152 /* Handle new range ending before old range ends */
2153 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2154 if (piv > mas->last) {
2155 if (piv == ULONG_MAX)
2156 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2157
2158 if (offset_end != slot)
2159 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2160 offset_end);
2161
2162 b_node->slot[++b_end] = wr_mas->content;
2163 if (!wr_mas->content)
2164 b_node->gap[b_end] = piv - mas->last + 1;
2165 b_node->pivot[b_end] = piv;
2166 }
2167
2168 slot = offset_end + 1;
2169 if (slot > wr_mas->node_end)
2170 goto b_end;
2171
2172 /* Copy end data to the end of the node. */
2173 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2174 b_node->b_end--;
2175 return;
2176
2177b_end:
2178 b_node->b_end = b_end;
2179}
2180
2181/*
2182 * mas_prev_sibling() - Find the previous node with the same parent.
2183 * @mas: the maple state
2184 *
2185 * Return: True if there is a previous sibling, false otherwise.
2186 */
2187static inline bool mas_prev_sibling(struct ma_state *mas)
2188{
2189 unsigned int p_slot = mte_parent_slot(mas->node);
2190
2191 if (mte_is_root(mas->node))
2192 return false;
2193
2194 if (!p_slot)
2195 return false;
2196
2197 mas_ascend(mas);
2198 mas->offset = p_slot - 1;
2199 mas_descend(mas);
2200 return true;
2201}
2202
2203/*
2204 * mas_next_sibling() - Find the next node with the same parent.
2205 * @mas: the maple state
2206 *
2207 * Return: true if there is a next sibling, false otherwise.
2208 */
2209static inline bool mas_next_sibling(struct ma_state *mas)
2210{
2211 MA_STATE(parent, mas->tree, mas->index, mas->last);
2212
2213 if (mte_is_root(mas->node))
2214 return false;
2215
2216 parent = *mas;
2217 mas_ascend(&parent);
2218 parent.offset = mte_parent_slot(mas->node) + 1;
2219 if (parent.offset > mas_data_end(&parent))
2220 return false;
2221
2222 *mas = parent;
2223 mas_descend(mas);
2224 return true;
2225}
2226
2227/*
2228 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2229 * @enode: The encoded maple node.
2230 *
2231 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2232 *
2233 * Return: @enode or MAS_NONE
2234 */
2235static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2236{
2237 if (enode)
2238 return enode;
2239
2240 return ma_enode_ptr(MAS_NONE);
2241}
2242
2243/*
2244 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2245 * @wr_mas: The maple write state
2246 *
2247 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2248 */
2249static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2250{
2251 struct ma_state *mas = wr_mas->mas;
2252 unsigned char count;
2253 unsigned char offset;
2254 unsigned long index, min, max;
2255
2256 if (unlikely(ma_is_dense(wr_mas->type))) {
2257 wr_mas->r_max = wr_mas->r_min = mas->index;
2258 mas->offset = mas->index = mas->min;
2259 return;
2260 }
2261
2262 wr_mas->node = mas_mn(wr_mas->mas);
2263 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2264 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2265 wr_mas->pivots, mas->max);
2266 offset = mas->offset;
2267 min = mas_safe_min(mas, wr_mas->pivots, offset);
2268 if (unlikely(offset == count))
2269 goto max;
2270
2271 max = wr_mas->pivots[offset];
2272 index = mas->index;
2273 if (unlikely(index <= max))
2274 goto done;
2275
2276 if (unlikely(!max && offset))
2277 goto max;
2278
2279 min = max + 1;
2280 while (++offset < count) {
2281 max = wr_mas->pivots[offset];
2282 if (index <= max)
2283 goto done;
2284 else if (unlikely(!max))
2285 break;
2286
2287 min = max + 1;
2288 }
2289
2290max:
2291 max = mas->max;
2292done:
2293 wr_mas->r_max = max;
2294 wr_mas->r_min = min;
2295 wr_mas->offset_end = mas->offset = offset;
2296}
2297
2298/*
2299 * mas_topiary_range() - Add a range of slots to the topiary.
2300 * @mas: The maple state
2301 * @destroy: The topiary to add the slots (usually destroy)
2302 * @start: The starting slot inclusively
2303 * @end: The end slot inclusively
2304 */
2305static inline void mas_topiary_range(struct ma_state *mas,
2306 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2307{
2308 void __rcu **slots;
2309 unsigned char offset;
2310
2311 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2312 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2313 for (offset = start; offset <= end; offset++) {
2314 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2315
2316 if (mte_dead_node(enode))
2317 continue;
2318
2319 mat_add(destroy, enode);
2320 }
2321}
2322
2323/*
2324 * mast_topiary() - Add the portions of the tree to the removal list; either to
2325 * be freed or discarded (destroy walk).
2326 * @mast: The maple_subtree_state.
2327 */
2328static inline void mast_topiary(struct maple_subtree_state *mast)
2329{
2330 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2331 unsigned char r_start, r_end;
2332 unsigned char l_start, l_end;
2333 void __rcu **l_slots, **r_slots;
2334
2335 wr_mas.type = mte_node_type(mast->orig_l->node);
2336 mast->orig_l->index = mast->orig_l->last;
2337 mas_wr_node_walk(&wr_mas);
2338 l_start = mast->orig_l->offset + 1;
2339 l_end = mas_data_end(mast->orig_l);
2340 r_start = 0;
2341 r_end = mast->orig_r->offset;
2342
2343 if (r_end)
2344 r_end--;
2345
2346 l_slots = ma_slots(mas_mn(mast->orig_l),
2347 mte_node_type(mast->orig_l->node));
2348
2349 r_slots = ma_slots(mas_mn(mast->orig_r),
2350 mte_node_type(mast->orig_r->node));
2351
2352 if ((l_start < l_end) &&
2353 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2354 l_start++;
2355 }
2356
2357 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2358 if (r_end)
2359 r_end--;
2360 }
2361
2362 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2363 return;
2364
2365 /* At the node where left and right sides meet, add the parts between */
2366 if (mast->orig_l->node == mast->orig_r->node) {
2367 return mas_topiary_range(mast->orig_l, mast->destroy,
2368 l_start, r_end);
2369 }
2370
2371 /* mast->orig_r is different and consumed. */
2372 if (mte_is_leaf(mast->orig_r->node))
2373 return;
2374
2375 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2376 l_end--;
2377
2378
2379 if (l_start <= l_end)
2380 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2381
2382 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2383 r_start++;
2384
2385 if (r_start <= r_end)
2386 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2387}
2388
2389/*
2390 * mast_rebalance_next() - Rebalance against the next node
2391 * @mast: The maple subtree state
2392 * @old_r: The encoded maple node to the right (next node).
2393 */
2394static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2395{
2396 unsigned char b_end = mast->bn->b_end;
2397
2398 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2399 mast->bn, b_end);
2400 mast->orig_r->last = mast->orig_r->max;
2401}
2402
2403/*
2404 * mast_rebalance_prev() - Rebalance against the previous node
2405 * @mast: The maple subtree state
2406 * @old_l: The encoded maple node to the left (previous node)
2407 */
2408static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2409{
2410 unsigned char end = mas_data_end(mast->orig_l) + 1;
2411 unsigned char b_end = mast->bn->b_end;
2412
2413 mab_shift_right(mast->bn, end);
2414 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2415 mast->l->min = mast->orig_l->min;
2416 mast->orig_l->index = mast->orig_l->min;
2417 mast->bn->b_end = end + b_end;
2418 mast->l->offset += end;
2419}
2420
2421/*
2422 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2423 * the node to the right. Checking the nodes to the right then the left at each
2424 * level upwards until root is reached. Free and destroy as needed.
2425 * Data is copied into the @mast->bn.
2426 * @mast: The maple_subtree_state.
2427 */
2428static inline
2429bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2430{
2431 struct ma_state r_tmp = *mast->orig_r;
2432 struct ma_state l_tmp = *mast->orig_l;
2433 struct maple_enode *ancestor = NULL;
2434 unsigned char start, end;
2435 unsigned char depth = 0;
2436
2437 r_tmp = *mast->orig_r;
2438 l_tmp = *mast->orig_l;
2439 do {
2440 mas_ascend(mast->orig_r);
2441 mas_ascend(mast->orig_l);
2442 depth++;
2443 if (!ancestor &&
2444 (mast->orig_r->node == mast->orig_l->node)) {
2445 ancestor = mast->orig_r->node;
2446 end = mast->orig_r->offset - 1;
2447 start = mast->orig_l->offset + 1;
2448 }
2449
2450 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2451 if (!ancestor) {
2452 ancestor = mast->orig_r->node;
2453 start = 0;
2454 }
2455
2456 mast->orig_r->offset++;
2457 do {
2458 mas_descend(mast->orig_r);
2459 mast->orig_r->offset = 0;
2460 depth--;
2461 } while (depth);
2462
2463 mast_rebalance_next(mast);
2464 do {
2465 unsigned char l_off = 0;
2466 struct maple_enode *child = r_tmp.node;
2467
2468 mas_ascend(&r_tmp);
2469 if (ancestor == r_tmp.node)
2470 l_off = start;
2471
2472 if (r_tmp.offset)
2473 r_tmp.offset--;
2474
2475 if (l_off < r_tmp.offset)
2476 mas_topiary_range(&r_tmp, mast->destroy,
2477 l_off, r_tmp.offset);
2478
2479 if (l_tmp.node != child)
2480 mat_add(mast->free, child);
2481
2482 } while (r_tmp.node != ancestor);
2483
2484 *mast->orig_l = l_tmp;
2485 return true;
2486
2487 } else if (mast->orig_l->offset != 0) {
2488 if (!ancestor) {
2489 ancestor = mast->orig_l->node;
2490 end = mas_data_end(mast->orig_l);
2491 }
2492
2493 mast->orig_l->offset--;
2494 do {
2495 mas_descend(mast->orig_l);
2496 mast->orig_l->offset =
2497 mas_data_end(mast->orig_l);
2498 depth--;
2499 } while (depth);
2500
2501 mast_rebalance_prev(mast);
2502 do {
2503 unsigned char r_off;
2504 struct maple_enode *child = l_tmp.node;
2505
2506 mas_ascend(&l_tmp);
2507 if (ancestor == l_tmp.node)
2508 r_off = end;
2509 else
2510 r_off = mas_data_end(&l_tmp);
2511
2512 if (l_tmp.offset < r_off)
2513 l_tmp.offset++;
2514
2515 if (l_tmp.offset < r_off)
2516 mas_topiary_range(&l_tmp, mast->destroy,
2517 l_tmp.offset, r_off);
2518
2519 if (r_tmp.node != child)
2520 mat_add(mast->free, child);
2521
2522 } while (l_tmp.node != ancestor);
2523
2524 *mast->orig_r = r_tmp;
2525 return true;
2526 }
2527 } while (!mte_is_root(mast->orig_r->node));
2528
2529 *mast->orig_r = r_tmp;
2530 *mast->orig_l = l_tmp;
2531 return false;
2532}
2533
2534/*
2535 * mast_ascend_free() - Add current original maple state nodes to the free list
2536 * and ascend.
2537 * @mast: the maple subtree state.
2538 *
2539 * Ascend the original left and right sides and add the previous nodes to the
2540 * free list. Set the slots to point to the correct location in the new nodes.
2541 */
2542static inline void
2543mast_ascend_free(struct maple_subtree_state *mast)
2544{
2545 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2546 struct maple_enode *left = mast->orig_l->node;
2547 struct maple_enode *right = mast->orig_r->node;
2548
2549 mas_ascend(mast->orig_l);
2550 mas_ascend(mast->orig_r);
2551 mat_add(mast->free, left);
2552
2553 if (left != right)
2554 mat_add(mast->free, right);
2555
2556 mast->orig_r->offset = 0;
2557 mast->orig_r->index = mast->r->max;
2558 /* last should be larger than or equal to index */
2559 if (mast->orig_r->last < mast->orig_r->index)
2560 mast->orig_r->last = mast->orig_r->index;
2561 /*
2562 * The node may not contain the value so set slot to ensure all
2563 * of the nodes contents are freed or destroyed.
2564 */
2565 wr_mas.type = mte_node_type(mast->orig_r->node);
2566 mas_wr_node_walk(&wr_mas);
2567 /* Set up the left side of things */
2568 mast->orig_l->offset = 0;
2569 mast->orig_l->index = mast->l->min;
2570 wr_mas.mas = mast->orig_l;
2571 wr_mas.type = mte_node_type(mast->orig_l->node);
2572 mas_wr_node_walk(&wr_mas);
2573
2574 mast->bn->type = wr_mas.type;
2575}
2576
2577/*
2578 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2579 * @mas: the maple state with the allocations.
2580 * @b_node: the maple_big_node with the type encoding.
2581 *
2582 * Use the node type from the maple_big_node to allocate a new node from the
2583 * ma_state. This function exists mainly for code readability.
2584 *
2585 * Return: A new maple encoded node
2586 */
2587static inline struct maple_enode
2588*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2589{
2590 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2591}
2592
2593/*
2594 * mas_mab_to_node() - Set up right and middle nodes
2595 *
2596 * @mas: the maple state that contains the allocations.
2597 * @b_node: the node which contains the data.
2598 * @left: The pointer which will have the left node
2599 * @right: The pointer which may have the right node
2600 * @middle: the pointer which may have the middle node (rare)
2601 * @mid_split: the split location for the middle node
2602 *
2603 * Return: the split of left.
2604 */
2605static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2606 struct maple_big_node *b_node, struct maple_enode **left,
2607 struct maple_enode **right, struct maple_enode **middle,
2608 unsigned char *mid_split, unsigned long min)
2609{
2610 unsigned char split = 0;
2611 unsigned char slot_count = mt_slots[b_node->type];
2612
2613 *left = mas_new_ma_node(mas, b_node);
2614 *right = NULL;
2615 *middle = NULL;
2616 *mid_split = 0;
2617
2618 if (b_node->b_end < slot_count) {
2619 split = b_node->b_end;
2620 } else {
2621 split = mab_calc_split(mas, b_node, mid_split, min);
2622 *right = mas_new_ma_node(mas, b_node);
2623 }
2624
2625 if (*mid_split)
2626 *middle = mas_new_ma_node(mas, b_node);
2627
2628 return split;
2629
2630}
2631
2632/*
2633 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2634 * pointer.
2635 * @b_node - the big node to add the entry
2636 * @mas - the maple state to get the pivot (mas->max)
2637 * @entry - the entry to add, if NULL nothing happens.
2638 */
2639static inline void mab_set_b_end(struct maple_big_node *b_node,
2640 struct ma_state *mas,
2641 void *entry)
2642{
2643 if (!entry)
2644 return;
2645
2646 b_node->slot[b_node->b_end] = entry;
2647 if (mt_is_alloc(mas->tree))
2648 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2649 b_node->pivot[b_node->b_end++] = mas->max;
2650}
2651
2652/*
2653 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2654 * of @mas->node to either @left or @right, depending on @slot and @split
2655 *
2656 * @mas - the maple state with the node that needs a parent
2657 * @left - possible parent 1
2658 * @right - possible parent 2
2659 * @slot - the slot the mas->node was placed
2660 * @split - the split location between @left and @right
2661 */
2662static inline void mas_set_split_parent(struct ma_state *mas,
2663 struct maple_enode *left,
2664 struct maple_enode *right,
2665 unsigned char *slot, unsigned char split)
2666{
2667 if (mas_is_none(mas))
2668 return;
2669
2670 if ((*slot) <= split)
2671 mte_set_parent(mas->node, left, *slot);
2672 else if (right)
2673 mte_set_parent(mas->node, right, (*slot) - split - 1);
2674
2675 (*slot)++;
2676}
2677
2678/*
2679 * mte_mid_split_check() - Check if the next node passes the mid-split
2680 * @**l: Pointer to left encoded maple node.
2681 * @**m: Pointer to middle encoded maple node.
2682 * @**r: Pointer to right encoded maple node.
2683 * @slot: The offset
2684 * @*split: The split location.
2685 * @mid_split: The middle split.
2686 */
2687static inline void mte_mid_split_check(struct maple_enode **l,
2688 struct maple_enode **r,
2689 struct maple_enode *right,
2690 unsigned char slot,
2691 unsigned char *split,
2692 unsigned char mid_split)
2693{
2694 if (*r == right)
2695 return;
2696
2697 if (slot < mid_split)
2698 return;
2699
2700 *l = *r;
2701 *r = right;
2702 *split = mid_split;
2703}
2704
2705/*
2706 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2707 * is taken from @mast->l.
2708 * @mast - the maple subtree state
2709 * @left - the left node
2710 * @right - the right node
2711 * @split - the split location.
2712 */
2713static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2714 struct maple_enode *left,
2715 struct maple_enode *middle,
2716 struct maple_enode *right,
2717 unsigned char split,
2718 unsigned char mid_split)
2719{
2720 unsigned char slot;
2721 struct maple_enode *l = left;
2722 struct maple_enode *r = right;
2723
2724 if (mas_is_none(mast->l))
2725 return;
2726
2727 if (middle)
2728 r = middle;
2729
2730 slot = mast->l->offset;
2731
2732 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2733 mas_set_split_parent(mast->l, l, r, &slot, split);
2734
2735 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2736 mas_set_split_parent(mast->m, l, r, &slot, split);
2737
2738 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2739 mas_set_split_parent(mast->r, l, r, &slot, split);
2740}
2741
2742/*
2743 * mas_wmb_replace() - Write memory barrier and replace
2744 * @mas: The maple state
2745 * @free: the maple topiary list of nodes to free
2746 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2747 *
2748 * Updates gap as necessary.
2749 */
2750static inline void mas_wmb_replace(struct ma_state *mas,
2751 struct ma_topiary *free,
2752 struct ma_topiary *destroy)
2753{
2754 /* All nodes must see old data as dead prior to replacing that data */
2755 smp_wmb(); /* Needed for RCU */
2756
2757 /* Insert the new data in the tree */
2758 mas_replace(mas, true);
2759
2760 if (!mte_is_leaf(mas->node))
2761 mas_descend_adopt(mas);
2762
2763 mas_mat_free(mas, free);
2764
2765 if (destroy)
2766 mas_mat_destroy(mas, destroy);
2767
2768 if (mte_is_leaf(mas->node))
2769 return;
2770
2771 mas_update_gap(mas);
2772}
2773
2774/*
2775 * mast_new_root() - Set a new tree root during subtree creation
2776 * @mast: The maple subtree state
2777 * @mas: The maple state
2778 */
2779static inline void mast_new_root(struct maple_subtree_state *mast,
2780 struct ma_state *mas)
2781{
2782 mas_mn(mast->l)->parent =
2783 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2784 if (!mte_dead_node(mast->orig_l->node) &&
2785 !mte_is_root(mast->orig_l->node)) {
2786 do {
2787 mast_ascend_free(mast);
2788 mast_topiary(mast);
2789 } while (!mte_is_root(mast->orig_l->node));
2790 }
2791 if ((mast->orig_l->node != mas->node) &&
2792 (mast->l->depth > mas_mt_height(mas))) {
2793 mat_add(mast->free, mas->node);
2794 }
2795}
2796
2797/*
2798 * mast_cp_to_nodes() - Copy data out to nodes.
2799 * @mast: The maple subtree state
2800 * @left: The left encoded maple node
2801 * @middle: The middle encoded maple node
2802 * @right: The right encoded maple node
2803 * @split: The location to split between left and (middle ? middle : right)
2804 * @mid_split: The location to split between middle and right.
2805 */
2806static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2807 struct maple_enode *left, struct maple_enode *middle,
2808 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2809{
2810 bool new_lmax = true;
2811
2812 mast->l->node = mte_node_or_none(left);
2813 mast->m->node = mte_node_or_none(middle);
2814 mast->r->node = mte_node_or_none(right);
2815
2816 mast->l->min = mast->orig_l->min;
2817 if (split == mast->bn->b_end) {
2818 mast->l->max = mast->orig_r->max;
2819 new_lmax = false;
2820 }
2821
2822 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2823
2824 if (middle) {
2825 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2826 mast->m->min = mast->bn->pivot[split] + 1;
2827 split = mid_split;
2828 }
2829
2830 mast->r->max = mast->orig_r->max;
2831 if (right) {
2832 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2833 mast->r->min = mast->bn->pivot[split] + 1;
2834 }
2835}
2836
2837/*
2838 * mast_combine_cp_left - Copy in the original left side of the tree into the
2839 * combined data set in the maple subtree state big node.
2840 * @mast: The maple subtree state
2841 */
2842static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2843{
2844 unsigned char l_slot = mast->orig_l->offset;
2845
2846 if (!l_slot)
2847 return;
2848
2849 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2850}
2851
2852/*
2853 * mast_combine_cp_right: Copy in the original right side of the tree into the
2854 * combined data set in the maple subtree state big node.
2855 * @mast: The maple subtree state
2856 */
2857static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2858{
2859 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2860 return;
2861
2862 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2863 mt_slot_count(mast->orig_r->node), mast->bn,
2864 mast->bn->b_end);
2865 mast->orig_r->last = mast->orig_r->max;
2866}
2867
2868/*
2869 * mast_sufficient: Check if the maple subtree state has enough data in the big
2870 * node to create at least one sufficient node
2871 * @mast: the maple subtree state
2872 */
2873static inline bool mast_sufficient(struct maple_subtree_state *mast)
2874{
2875 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2876 return true;
2877
2878 return false;
2879}
2880
2881/*
2882 * mast_overflow: Check if there is too much data in the subtree state for a
2883 * single node.
2884 * @mast: The maple subtree state
2885 */
2886static inline bool mast_overflow(struct maple_subtree_state *mast)
2887{
2888 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2889 return true;
2890
2891 return false;
2892}
2893
2894static inline void *mtree_range_walk(struct ma_state *mas)
2895{
2896 unsigned long *pivots;
2897 unsigned char offset;
2898 struct maple_node *node;
2899 struct maple_enode *next, *last;
2900 enum maple_type type;
2901 void __rcu **slots;
2902 unsigned char end;
2903 unsigned long max, min;
2904 unsigned long prev_max, prev_min;
2905
2906 next = mas->node;
2907 min = mas->min;
2908 max = mas->max;
2909 do {
2910 offset = 0;
2911 last = next;
2912 node = mte_to_node(next);
2913 type = mte_node_type(next);
2914 pivots = ma_pivots(node, type);
2915 end = ma_data_end(node, type, pivots, max);
2916 if (unlikely(ma_dead_node(node)))
2917 goto dead_node;
2918
2919 if (pivots[offset] >= mas->index) {
2920 prev_max = max;
2921 prev_min = min;
2922 max = pivots[offset];
2923 goto next;
2924 }
2925
2926 do {
2927 offset++;
2928 } while ((offset < end) && (pivots[offset] < mas->index));
2929
2930 prev_min = min;
2931 min = pivots[offset - 1] + 1;
2932 prev_max = max;
2933 if (likely(offset < end && pivots[offset]))
2934 max = pivots[offset];
2935
2936next:
2937 slots = ma_slots(node, type);
2938 next = mt_slot(mas->tree, slots, offset);
2939 if (unlikely(ma_dead_node(node)))
2940 goto dead_node;
2941 } while (!ma_is_leaf(type));
2942
2943 mas->offset = offset;
2944 mas->index = min;
2945 mas->last = max;
2946 mas->min = prev_min;
2947 mas->max = prev_max;
2948 mas->node = last;
2949 return (void *) next;
2950
2951dead_node:
2952 mas_reset(mas);
2953 return NULL;
2954}
2955
2956/*
2957 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2958 * @mas: The starting maple state
2959 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2960 * @count: The estimated count of iterations needed.
2961 *
2962 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2963 * is hit. First @b_node is split into two entries which are inserted into the
2964 * next iteration of the loop. @b_node is returned populated with the final
2965 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2966 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2967 * to account of what has been copied into the new sub-tree. The update of
2968 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2969 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2970 * the new sub-tree in case the sub-tree becomes the full tree.
2971 *
2972 * Return: the number of elements in b_node during the last loop.
2973 */
2974static int mas_spanning_rebalance(struct ma_state *mas,
2975 struct maple_subtree_state *mast, unsigned char count)
2976{
2977 unsigned char split, mid_split;
2978 unsigned char slot = 0;
2979 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2980
2981 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2982 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2983 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2984 MA_TOPIARY(free, mas->tree);
2985 MA_TOPIARY(destroy, mas->tree);
2986
2987 /*
2988 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2989 * Rebalancing is done by use of the ``struct maple_topiary``.
2990 */
2991 mast->l = &l_mas;
2992 mast->m = &m_mas;
2993 mast->r = &r_mas;
2994 mast->free = &free;
2995 mast->destroy = &destroy;
2996 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2997
2998 /* Check if this is not root and has sufficient data. */
2999 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3000 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3001 mast_spanning_rebalance(mast);
3002
3003 mast->orig_l->depth = 0;
3004
3005 /*
3006 * Each level of the tree is examined and balanced, pushing data to the left or
3007 * right, or rebalancing against left or right nodes is employed to avoid
3008 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3009 * the tree is created, there may be a mix of new and old nodes. The old nodes
3010 * will have the incorrect parent pointers and currently be in two trees: the
3011 * original tree and the partially new tree. To remedy the parent pointers in
3012 * the old tree, the new data is swapped into the active tree and a walk down
3013 * the tree is performed and the parent pointers are updated.
3014 * See mas_descend_adopt() for more information..
3015 */
3016 while (count--) {
3017 mast->bn->b_end--;
3018 mast->bn->type = mte_node_type(mast->orig_l->node);
3019 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3020 &mid_split, mast->orig_l->min);
3021 mast_set_split_parents(mast, left, middle, right, split,
3022 mid_split);
3023 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3024
3025 /*
3026 * Copy data from next level in the tree to mast->bn from next
3027 * iteration
3028 */
3029 memset(mast->bn, 0, sizeof(struct maple_big_node));
3030 mast->bn->type = mte_node_type(left);
3031 mast->orig_l->depth++;
3032
3033 /* Root already stored in l->node. */
3034 if (mas_is_root_limits(mast->l))
3035 goto new_root;
3036
3037 mast_ascend_free(mast);
3038 mast_combine_cp_left(mast);
3039 l_mas.offset = mast->bn->b_end;
3040 mab_set_b_end(mast->bn, &l_mas, left);
3041 mab_set_b_end(mast->bn, &m_mas, middle);
3042 mab_set_b_end(mast->bn, &r_mas, right);
3043
3044 /* Copy anything necessary out of the right node. */
3045 mast_combine_cp_right(mast);
3046 mast_topiary(mast);
3047 mast->orig_l->last = mast->orig_l->max;
3048
3049 if (mast_sufficient(mast))
3050 continue;
3051
3052 if (mast_overflow(mast))
3053 continue;
3054
3055 /* May be a new root stored in mast->bn */
3056 if (mas_is_root_limits(mast->orig_l))
3057 break;
3058
3059 mast_spanning_rebalance(mast);
3060
3061 /* rebalancing from other nodes may require another loop. */
3062 if (!count)
3063 count++;
3064 }
3065
3066 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3067 mte_node_type(mast->orig_l->node));
3068 mast->orig_l->depth++;
3069 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3070 mte_set_parent(left, l_mas.node, slot);
3071 if (middle)
3072 mte_set_parent(middle, l_mas.node, ++slot);
3073
3074 if (right)
3075 mte_set_parent(right, l_mas.node, ++slot);
3076
3077 if (mas_is_root_limits(mast->l)) {
3078new_root:
3079 mast_new_root(mast, mas);
3080 } else {
3081 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3082 }
3083
3084 if (!mte_dead_node(mast->orig_l->node))
3085 mat_add(&free, mast->orig_l->node);
3086
3087 mas->depth = mast->orig_l->depth;
3088 *mast->orig_l = l_mas;
3089 mte_set_node_dead(mas->node);
3090
3091 /* Set up mas for insertion. */
3092 mast->orig_l->depth = mas->depth;
3093 mast->orig_l->alloc = mas->alloc;
3094 *mas = *mast->orig_l;
3095 mas_wmb_replace(mas, &free, &destroy);
3096 mtree_range_walk(mas);
3097 return mast->bn->b_end;
3098}
3099
3100/*
3101 * mas_rebalance() - Rebalance a given node.
3102 * @mas: The maple state
3103 * @b_node: The big maple node.
3104 *
3105 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3106 * Continue upwards until tree is sufficient.
3107 *
3108 * Return: the number of elements in b_node during the last loop.
3109 */
3110static inline int mas_rebalance(struct ma_state *mas,
3111 struct maple_big_node *b_node)
3112{
3113 char empty_count = mas_mt_height(mas);
3114 struct maple_subtree_state mast;
3115 unsigned char shift, b_end = ++b_node->b_end;
3116
3117 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3118 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3119
3120 trace_ma_op(__func__, mas);
3121
3122 /*
3123 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3124 * against the node to the right if it exists, otherwise the node to the
3125 * left of this node is rebalanced against this node. If rebalancing
3126 * causes just one node to be produced instead of two, then the parent
3127 * is also examined and rebalanced if it is insufficient. Every level
3128 * tries to combine the data in the same way. If one node contains the
3129 * entire range of the tree, then that node is used as a new root node.
3130 */
3131 mas_node_count(mas, 1 + empty_count * 3);
3132 if (mas_is_err(mas))
3133 return 0;
3134
3135 mast.orig_l = &l_mas;
3136 mast.orig_r = &r_mas;
3137 mast.bn = b_node;
3138 mast.bn->type = mte_node_type(mas->node);
3139
3140 l_mas = r_mas = *mas;
3141
3142 if (mas_next_sibling(&r_mas)) {
3143 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3144 r_mas.last = r_mas.index = r_mas.max;
3145 } else {
3146 mas_prev_sibling(&l_mas);
3147 shift = mas_data_end(&l_mas) + 1;
3148 mab_shift_right(b_node, shift);
3149 mas->offset += shift;
3150 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3151 b_node->b_end = shift + b_end;
3152 l_mas.index = l_mas.last = l_mas.min;
3153 }
3154
3155 return mas_spanning_rebalance(mas, &mast, empty_count);
3156}
3157
3158/*
3159 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3160 * state.
3161 * @mas: The maple state
3162 * @end: The end of the left-most node.
3163 *
3164 * During a mass-insert event (such as forking), it may be necessary to
3165 * rebalance the left-most node when it is not sufficient.
3166 */
3167static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3168{
3169 enum maple_type mt = mte_node_type(mas->node);
3170 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3171 struct maple_enode *eparent;
3172 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3173 void __rcu **l_slots, **slots;
3174 unsigned long *l_pivs, *pivs, gap;
3175 bool in_rcu = mt_in_rcu(mas->tree);
3176
3177 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3178
3179 l_mas = *mas;
3180 mas_prev_sibling(&l_mas);
3181
3182 /* set up node. */
3183 if (in_rcu) {
3184 /* Allocate for both left and right as well as parent. */
3185 mas_node_count(mas, 3);
3186 if (mas_is_err(mas))
3187 return;
3188
3189 newnode = mas_pop_node(mas);
3190 } else {
3191 newnode = &reuse;
3192 }
3193
3194 node = mas_mn(mas);
3195 newnode->parent = node->parent;
3196 slots = ma_slots(newnode, mt);
3197 pivs = ma_pivots(newnode, mt);
3198 left = mas_mn(&l_mas);
3199 l_slots = ma_slots(left, mt);
3200 l_pivs = ma_pivots(left, mt);
3201 if (!l_slots[split])
3202 split++;
3203 tmp = mas_data_end(&l_mas) - split;
3204
3205 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3206 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3207 pivs[tmp] = l_mas.max;
3208 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3209 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3210
3211 l_mas.max = l_pivs[split];
3212 mas->min = l_mas.max + 1;
3213 eparent = mt_mk_node(mte_parent(l_mas.node),
3214 mas_parent_enum(&l_mas, l_mas.node));
3215 tmp += end;
3216 if (!in_rcu) {
3217 unsigned char max_p = mt_pivots[mt];
3218 unsigned char max_s = mt_slots[mt];
3219
3220 if (tmp < max_p)
3221 memset(pivs + tmp, 0,
3222 sizeof(unsigned long *) * (max_p - tmp));
3223
3224 if (tmp < mt_slots[mt])
3225 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3226
3227 memcpy(node, newnode, sizeof(struct maple_node));
3228 ma_set_meta(node, mt, 0, tmp - 1);
3229 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3230 l_pivs[split]);
3231
3232 /* Remove data from l_pivs. */
3233 tmp = split + 1;
3234 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3235 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3236 ma_set_meta(left, mt, 0, split);
3237
3238 goto done;
3239 }
3240
3241 /* RCU requires replacing both l_mas, mas, and parent. */
3242 mas->node = mt_mk_node(newnode, mt);
3243 ma_set_meta(newnode, mt, 0, tmp);
3244
3245 new_left = mas_pop_node(mas);
3246 new_left->parent = left->parent;
3247 mt = mte_node_type(l_mas.node);
3248 slots = ma_slots(new_left, mt);
3249 pivs = ma_pivots(new_left, mt);
3250 memcpy(slots, l_slots, sizeof(void *) * split);
3251 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3252 ma_set_meta(new_left, mt, 0, split);
3253 l_mas.node = mt_mk_node(new_left, mt);
3254
3255 /* replace parent. */
3256 offset = mte_parent_slot(mas->node);
3257 mt = mas_parent_enum(&l_mas, l_mas.node);
3258 parent = mas_pop_node(mas);
3259 slots = ma_slots(parent, mt);
3260 pivs = ma_pivots(parent, mt);
3261 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3262 rcu_assign_pointer(slots[offset], mas->node);
3263 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3264 pivs[offset - 1] = l_mas.max;
3265 eparent = mt_mk_node(parent, mt);
3266done:
3267 gap = mas_leaf_max_gap(mas);
3268 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3269 gap = mas_leaf_max_gap(&l_mas);
3270 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3271 mas_ascend(mas);
3272
3273 if (in_rcu)
3274 mas_replace(mas, false);
3275
3276 mas_update_gap(mas);
3277}
3278
3279/*
3280 * mas_split_final_node() - Split the final node in a subtree operation.
3281 * @mast: the maple subtree state
3282 * @mas: The maple state
3283 * @height: The height of the tree in case it's a new root.
3284 */
3285static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3286 struct ma_state *mas, int height)
3287{
3288 struct maple_enode *ancestor;
3289
3290 if (mte_is_root(mas->node)) {
3291 if (mt_is_alloc(mas->tree))
3292 mast->bn->type = maple_arange_64;
3293 else
3294 mast->bn->type = maple_range_64;
3295 mas->depth = height;
3296 }
3297 /*
3298 * Only a single node is used here, could be root.
3299 * The Big_node data should just fit in a single node.
3300 */
3301 ancestor = mas_new_ma_node(mas, mast->bn);
3302 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3303 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3304 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3305
3306 mast->l->node = ancestor;
3307 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3308 mas->offset = mast->bn->b_end - 1;
3309 return true;
3310}
3311
3312/*
3313 * mast_fill_bnode() - Copy data into the big node in the subtree state
3314 * @mast: The maple subtree state
3315 * @mas: the maple state
3316 * @skip: The number of entries to skip for new nodes insertion.
3317 */
3318static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3319 struct ma_state *mas,
3320 unsigned char skip)
3321{
3322 bool cp = true;
3323 struct maple_enode *old = mas->node;
3324 unsigned char split;
3325
3326 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3327 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3328 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3329 mast->bn->b_end = 0;
3330
3331 if (mte_is_root(mas->node)) {
3332 cp = false;
3333 } else {
3334 mas_ascend(mas);
3335 mat_add(mast->free, old);
3336 mas->offset = mte_parent_slot(mas->node);
3337 }
3338
3339 if (cp && mast->l->offset)
3340 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3341
3342 split = mast->bn->b_end;
3343 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3344 mast->r->offset = mast->bn->b_end;
3345 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3346 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3347 cp = false;
3348
3349 if (cp)
3350 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3351 mast->bn, mast->bn->b_end);
3352
3353 mast->bn->b_end--;
3354 mast->bn->type = mte_node_type(mas->node);
3355}
3356
3357/*
3358 * mast_split_data() - Split the data in the subtree state big node into regular
3359 * nodes.
3360 * @mast: The maple subtree state
3361 * @mas: The maple state
3362 * @split: The location to split the big node
3363 */
3364static inline void mast_split_data(struct maple_subtree_state *mast,
3365 struct ma_state *mas, unsigned char split)
3366{
3367 unsigned char p_slot;
3368
3369 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3370 mte_set_pivot(mast->r->node, 0, mast->r->max);
3371 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3372 mast->l->offset = mte_parent_slot(mas->node);
3373 mast->l->max = mast->bn->pivot[split];
3374 mast->r->min = mast->l->max + 1;
3375 if (mte_is_leaf(mas->node))
3376 return;
3377
3378 p_slot = mast->orig_l->offset;
3379 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3380 &p_slot, split);
3381 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3382 &p_slot, split);
3383}
3384
3385/*
3386 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3387 * data to the right or left node if there is room.
3388 * @mas: The maple state
3389 * @height: The current height of the maple state
3390 * @mast: The maple subtree state
3391 * @left: Push left or not.
3392 *
3393 * Keeping the height of the tree low means faster lookups.
3394 *
3395 * Return: True if pushed, false otherwise.
3396 */
3397static inline bool mas_push_data(struct ma_state *mas, int height,
3398 struct maple_subtree_state *mast, bool left)
3399{
3400 unsigned char slot_total = mast->bn->b_end;
3401 unsigned char end, space, split;
3402
3403 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3404 tmp_mas = *mas;
3405 tmp_mas.depth = mast->l->depth;
3406
3407 if (left && !mas_prev_sibling(&tmp_mas))
3408 return false;
3409 else if (!left && !mas_next_sibling(&tmp_mas))
3410 return false;
3411
3412 end = mas_data_end(&tmp_mas);
3413 slot_total += end;
3414 space = 2 * mt_slot_count(mas->node) - 2;
3415 /* -2 instead of -1 to ensure there isn't a triple split */
3416 if (ma_is_leaf(mast->bn->type))
3417 space--;
3418
3419 if (mas->max == ULONG_MAX)
3420 space--;
3421
3422 if (slot_total >= space)
3423 return false;
3424
3425 /* Get the data; Fill mast->bn */
3426 mast->bn->b_end++;
3427 if (left) {
3428 mab_shift_right(mast->bn, end + 1);
3429 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3430 mast->bn->b_end = slot_total + 1;
3431 } else {
3432 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3433 }
3434
3435 /* Configure mast for splitting of mast->bn */
3436 split = mt_slots[mast->bn->type] - 2;
3437 if (left) {
3438 /* Switch mas to prev node */
3439 mat_add(mast->free, mas->node);
3440 *mas = tmp_mas;
3441 /* Start using mast->l for the left side. */
3442 tmp_mas.node = mast->l->node;
3443 *mast->l = tmp_mas;
3444 } else {
3445 mat_add(mast->free, tmp_mas.node);
3446 tmp_mas.node = mast->r->node;
3447 *mast->r = tmp_mas;
3448 split = slot_total - split;
3449 }
3450 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3451 /* Update parent slot for split calculation. */
3452 if (left)
3453 mast->orig_l->offset += end + 1;
3454
3455 mast_split_data(mast, mas, split);
3456 mast_fill_bnode(mast, mas, 2);
3457 mas_split_final_node(mast, mas, height + 1);
3458 return true;
3459}
3460
3461/*
3462 * mas_split() - Split data that is too big for one node into two.
3463 * @mas: The maple state
3464 * @b_node: The maple big node
3465 * Return: 1 on success, 0 on failure.
3466 */
3467static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3468{
3469
3470 struct maple_subtree_state mast;
3471 int height = 0;
3472 unsigned char mid_split, split = 0;
3473
3474 /*
3475 * Splitting is handled differently from any other B-tree; the Maple
3476 * Tree splits upwards. Splitting up means that the split operation
3477 * occurs when the walk of the tree hits the leaves and not on the way
3478 * down. The reason for splitting up is that it is impossible to know
3479 * how much space will be needed until the leaf is (or leaves are)
3480 * reached. Since overwriting data is allowed and a range could
3481 * overwrite more than one range or result in changing one entry into 3
3482 * entries, it is impossible to know if a split is required until the
3483 * data is examined.
3484 *
3485 * Splitting is a balancing act between keeping allocations to a minimum
3486 * and avoiding a 'jitter' event where a tree is expanded to make room
3487 * for an entry followed by a contraction when the entry is removed. To
3488 * accomplish the balance, there are empty slots remaining in both left
3489 * and right nodes after a split.
3490 */
3491 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3492 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3495 MA_TOPIARY(mat, mas->tree);
3496
3497 trace_ma_op(__func__, mas);
3498 mas->depth = mas_mt_height(mas);
3499 /* Allocation failures will happen early. */
3500 mas_node_count(mas, 1 + mas->depth * 2);
3501 if (mas_is_err(mas))
3502 return 0;
3503
3504 mast.l = &l_mas;
3505 mast.r = &r_mas;
3506 mast.orig_l = &prev_l_mas;
3507 mast.orig_r = &prev_r_mas;
3508 mast.free = &mat;
3509 mast.bn = b_node;
3510
3511 while (height++ <= mas->depth) {
3512 if (mt_slots[b_node->type] > b_node->b_end) {
3513 mas_split_final_node(&mast, mas, height);
3514 break;
3515 }
3516
3517 l_mas = r_mas = *mas;
3518 l_mas.node = mas_new_ma_node(mas, b_node);
3519 r_mas.node = mas_new_ma_node(mas, b_node);
3520 /*
3521 * Another way that 'jitter' is avoided is to terminate a split up early if the
3522 * left or right node has space to spare. This is referred to as "pushing left"
3523 * or "pushing right" and is similar to the B* tree, except the nodes left or
3524 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3525 * is a significant savings.
3526 */
3527 /* Try to push left. */
3528 if (mas_push_data(mas, height, &mast, true))
3529 break;
3530
3531 /* Try to push right. */
3532 if (mas_push_data(mas, height, &mast, false))
3533 break;
3534
3535 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3536 mast_split_data(&mast, mas, split);
3537 /*
3538 * Usually correct, mab_mas_cp in the above call overwrites
3539 * r->max.
3540 */
3541 mast.r->max = mas->max;
3542 mast_fill_bnode(&mast, mas, 1);
3543 prev_l_mas = *mast.l;
3544 prev_r_mas = *mast.r;
3545 }
3546
3547 /* Set the original node as dead */
3548 mat_add(mast.free, mas->node);
3549 mas->node = l_mas.node;
3550 mas_wmb_replace(mas, mast.free, NULL);
3551 mtree_range_walk(mas);
3552 return 1;
3553}
3554
3555/*
3556 * mas_reuse_node() - Reuse the node to store the data.
3557 * @wr_mas: The maple write state
3558 * @bn: The maple big node
3559 * @end: The end of the data.
3560 *
3561 * Will always return false in RCU mode.
3562 *
3563 * Return: True if node was reused, false otherwise.
3564 */
3565static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3566 struct maple_big_node *bn, unsigned char end)
3567{
3568 /* Need to be rcu safe. */
3569 if (mt_in_rcu(wr_mas->mas->tree))
3570 return false;
3571
3572 if (end > bn->b_end) {
3573 int clear = mt_slots[wr_mas->type] - bn->b_end;
3574
3575 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3576 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3577 }
3578 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3579 return true;
3580}
3581
3582/*
3583 * mas_commit_b_node() - Commit the big node into the tree.
3584 * @wr_mas: The maple write state
3585 * @b_node: The maple big node
3586 * @end: The end of the data.
3587 */
3588static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3589 struct maple_big_node *b_node, unsigned char end)
3590{
3591 struct maple_node *node;
3592 unsigned char b_end = b_node->b_end;
3593 enum maple_type b_type = b_node->type;
3594
3595 if ((b_end < mt_min_slots[b_type]) &&
3596 (!mte_is_root(wr_mas->mas->node)) &&
3597 (mas_mt_height(wr_mas->mas) > 1))
3598 return mas_rebalance(wr_mas->mas, b_node);
3599
3600 if (b_end >= mt_slots[b_type])
3601 return mas_split(wr_mas->mas, b_node);
3602
3603 if (mas_reuse_node(wr_mas, b_node, end))
3604 goto reuse_node;
3605
3606 mas_node_count(wr_mas->mas, 1);
3607 if (mas_is_err(wr_mas->mas))
3608 return 0;
3609
3610 node = mas_pop_node(wr_mas->mas);
3611 node->parent = mas_mn(wr_mas->mas)->parent;
3612 wr_mas->mas->node = mt_mk_node(node, b_type);
3613 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3614 mas_replace(wr_mas->mas, false);
3615reuse_node:
3616 mas_update_gap(wr_mas->mas);
3617 return 1;
3618}
3619
3620/*
3621 * mas_root_expand() - Expand a root to a node
3622 * @mas: The maple state
3623 * @entry: The entry to store into the tree
3624 */
3625static inline int mas_root_expand(struct ma_state *mas, void *entry)
3626{
3627 void *contents = mas_root_locked(mas);
3628 enum maple_type type = maple_leaf_64;
3629 struct maple_node *node;
3630 void __rcu **slots;
3631 unsigned long *pivots;
3632 int slot = 0;
3633
3634 mas_node_count(mas, 1);
3635 if (unlikely(mas_is_err(mas)))
3636 return 0;
3637
3638 node = mas_pop_node(mas);
3639 pivots = ma_pivots(node, type);
3640 slots = ma_slots(node, type);
3641 node->parent = ma_parent_ptr(
3642 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3643 mas->node = mt_mk_node(node, type);
3644
3645 if (mas->index) {
3646 if (contents) {
3647 rcu_assign_pointer(slots[slot], contents);
3648 if (likely(mas->index > 1))
3649 slot++;
3650 }
3651 pivots[slot++] = mas->index - 1;
3652 }
3653
3654 rcu_assign_pointer(slots[slot], entry);
3655 mas->offset = slot;
3656 pivots[slot] = mas->last;
3657 if (mas->last != ULONG_MAX)
3658 slot++;
3659 mas->depth = 1;
3660 mas_set_height(mas);
3661
3662 /* swap the new root into the tree */
3663 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3664 ma_set_meta(node, maple_leaf_64, 0, slot);
3665 return slot;
3666}
3667
3668static inline void mas_store_root(struct ma_state *mas, void *entry)
3669{
3670 if (likely((mas->last != 0) || (mas->index != 0)))
3671 mas_root_expand(mas, entry);
3672 else if (((unsigned long) (entry) & 3) == 2)
3673 mas_root_expand(mas, entry);
3674 else {
3675 rcu_assign_pointer(mas->tree->ma_root, entry);
3676 mas->node = MAS_START;
3677 }
3678}
3679
3680/*
3681 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3682 * spans the node.
3683 * @mas: The maple state
3684 * @piv: The pivot value being written
3685 * @type: The maple node type
3686 * @entry: The data to write
3687 *
3688 * Spanning writes are writes that start in one node and end in another OR if
3689 * the write of a %NULL will cause the node to end with a %NULL.
3690 *
3691 * Return: True if this is a spanning write, false otherwise.
3692 */
3693static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3694{
3695 unsigned long max;
3696 unsigned long last = wr_mas->mas->last;
3697 unsigned long piv = wr_mas->r_max;
3698 enum maple_type type = wr_mas->type;
3699 void *entry = wr_mas->entry;
3700
3701 /* Contained in this pivot */
3702 if (piv > last)
3703 return false;
3704
3705 max = wr_mas->mas->max;
3706 if (unlikely(ma_is_leaf(type))) {
3707 /* Fits in the node, but may span slots. */
3708 if (last < max)
3709 return false;
3710
3711 /* Writes to the end of the node but not null. */
3712 if ((last == max) && entry)
3713 return false;
3714
3715 /*
3716 * Writing ULONG_MAX is not a spanning write regardless of the
3717 * value being written as long as the range fits in the node.
3718 */
3719 if ((last == ULONG_MAX) && (last == max))
3720 return false;
3721 } else if (piv == last) {
3722 if (entry)
3723 return false;
3724
3725 /* Detect spanning store wr walk */
3726 if (last == ULONG_MAX)
3727 return false;
3728 }
3729
3730 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3731
3732 return true;
3733}
3734
3735static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3736{
3737 wr_mas->type = mte_node_type(wr_mas->mas->node);
3738 mas_wr_node_walk(wr_mas);
3739 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3740}
3741
3742static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3743{
3744 wr_mas->mas->max = wr_mas->r_max;
3745 wr_mas->mas->min = wr_mas->r_min;
3746 wr_mas->mas->node = wr_mas->content;
3747 wr_mas->mas->offset = 0;
3748 wr_mas->mas->depth++;
3749}
3750/*
3751 * mas_wr_walk() - Walk the tree for a write.
3752 * @wr_mas: The maple write state
3753 *
3754 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3755 *
3756 * Return: True if it's contained in a node, false on spanning write.
3757 */
3758static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3759{
3760 struct ma_state *mas = wr_mas->mas;
3761
3762 while (true) {
3763 mas_wr_walk_descend(wr_mas);
3764 if (unlikely(mas_is_span_wr(wr_mas)))
3765 return false;
3766
3767 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3768 mas->offset);
3769 if (ma_is_leaf(wr_mas->type))
3770 return true;
3771
3772 mas_wr_walk_traverse(wr_mas);
3773 }
3774
3775 return true;
3776}
3777
3778static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3779{
3780 struct ma_state *mas = wr_mas->mas;
3781
3782 while (true) {
3783 mas_wr_walk_descend(wr_mas);
3784 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3785 mas->offset);
3786 if (ma_is_leaf(wr_mas->type))
3787 return true;
3788 mas_wr_walk_traverse(wr_mas);
3789
3790 }
3791 return true;
3792}
3793/*
3794 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3795 * @l_wr_mas: The left maple write state
3796 * @r_wr_mas: The right maple write state
3797 */
3798static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3799 struct ma_wr_state *r_wr_mas)
3800{
3801 struct ma_state *r_mas = r_wr_mas->mas;
3802 struct ma_state *l_mas = l_wr_mas->mas;
3803 unsigned char l_slot;
3804
3805 l_slot = l_mas->offset;
3806 if (!l_wr_mas->content)
3807 l_mas->index = l_wr_mas->r_min;
3808
3809 if ((l_mas->index == l_wr_mas->r_min) &&
3810 (l_slot &&
3811 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3812 if (l_slot > 1)
3813 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3814 else
3815 l_mas->index = l_mas->min;
3816
3817 l_mas->offset = l_slot - 1;
3818 }
3819
3820 if (!r_wr_mas->content) {
3821 if (r_mas->last < r_wr_mas->r_max)
3822 r_mas->last = r_wr_mas->r_max;
3823 r_mas->offset++;
3824 } else if ((r_mas->last == r_wr_mas->r_max) &&
3825 (r_mas->last < r_mas->max) &&
3826 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3827 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3828 r_wr_mas->type, r_mas->offset + 1);
3829 r_mas->offset++;
3830 }
3831}
3832
3833static inline void *mas_state_walk(struct ma_state *mas)
3834{
3835 void *entry;
3836
3837 entry = mas_start(mas);
3838 if (mas_is_none(mas))
3839 return NULL;
3840
3841 if (mas_is_ptr(mas))
3842 return entry;
3843
3844 return mtree_range_walk(mas);
3845}
3846
3847/*
3848 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3849 * to date.
3850 *
3851 * @mas: The maple state.
3852 *
3853 * Note: Leaves mas in undesirable state.
3854 * Return: The entry for @mas->index or %NULL on dead node.
3855 */
3856static inline void *mtree_lookup_walk(struct ma_state *mas)
3857{
3858 unsigned long *pivots;
3859 unsigned char offset;
3860 struct maple_node *node;
3861 struct maple_enode *next;
3862 enum maple_type type;
3863 void __rcu **slots;
3864 unsigned char end;
3865 unsigned long max;
3866
3867 next = mas->node;
3868 max = ULONG_MAX;
3869 do {
3870 offset = 0;
3871 node = mte_to_node(next);
3872 type = mte_node_type(next);
3873 pivots = ma_pivots(node, type);
3874 end = ma_data_end(node, type, pivots, max);
3875 if (unlikely(ma_dead_node(node)))
3876 goto dead_node;
3877
3878 if (pivots[offset] >= mas->index)
3879 goto next;
3880
3881 do {
3882 offset++;
3883 } while ((offset < end) && (pivots[offset] < mas->index));
3884
3885 if (likely(offset > end))
3886 max = pivots[offset];
3887
3888next:
3889 slots = ma_slots(node, type);
3890 next = mt_slot(mas->tree, slots, offset);
3891 if (unlikely(ma_dead_node(node)))
3892 goto dead_node;
3893 } while (!ma_is_leaf(type));
3894
3895 return (void *) next;
3896
3897dead_node:
3898 mas_reset(mas);
3899 return NULL;
3900}
3901
3902/*
3903 * mas_new_root() - Create a new root node that only contains the entry passed
3904 * in.
3905 * @mas: The maple state
3906 * @entry: The entry to store.
3907 *
3908 * Only valid when the index == 0 and the last == ULONG_MAX
3909 *
3910 * Return 0 on error, 1 on success.
3911 */
3912static inline int mas_new_root(struct ma_state *mas, void *entry)
3913{
3914 struct maple_enode *root = mas_root_locked(mas);
3915 enum maple_type type = maple_leaf_64;
3916 struct maple_node *node;
3917 void __rcu **slots;
3918 unsigned long *pivots;
3919
3920 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3921 mas->depth = 0;
3922 mas_set_height(mas);
3923 rcu_assign_pointer(mas->tree->ma_root, entry);
3924 mas->node = MAS_START;
3925 goto done;
3926 }
3927
3928 mas_node_count(mas, 1);
3929 if (mas_is_err(mas))
3930 return 0;
3931
3932 node = mas_pop_node(mas);
3933 pivots = ma_pivots(node, type);
3934 slots = ma_slots(node, type);
3935 node->parent = ma_parent_ptr(
3936 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3937 mas->node = mt_mk_node(node, type);
3938 rcu_assign_pointer(slots[0], entry);
3939 pivots[0] = mas->last;
3940 mas->depth = 1;
3941 mas_set_height(mas);
3942 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3943
3944done:
3945 if (xa_is_node(root))
3946 mte_destroy_walk(root, mas->tree);
3947
3948 return 1;
3949}
3950/*
3951 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3952 * and new nodes where necessary, then place the sub-tree in the actual tree.
3953 * Note that mas is expected to point to the node which caused the store to
3954 * span.
3955 * @wr_mas: The maple write state
3956 *
3957 * Return: 0 on error, positive on success.
3958 */
3959static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3960{
3961 struct maple_subtree_state mast;
3962 struct maple_big_node b_node;
3963 struct ma_state *mas;
3964 unsigned char height;
3965
3966 /* Left and Right side of spanning store */
3967 MA_STATE(l_mas, NULL, 0, 0);
3968 MA_STATE(r_mas, NULL, 0, 0);
3969
3970 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3971 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3972
3973 /*
3974 * A store operation that spans multiple nodes is called a spanning
3975 * store and is handled early in the store call stack by the function
3976 * mas_is_span_wr(). When a spanning store is identified, the maple
3977 * state is duplicated. The first maple state walks the left tree path
3978 * to ``index``, the duplicate walks the right tree path to ``last``.
3979 * The data in the two nodes are combined into a single node, two nodes,
3980 * or possibly three nodes (see the 3-way split above). A ``NULL``
3981 * written to the last entry of a node is considered a spanning store as
3982 * a rebalance is required for the operation to complete and an overflow
3983 * of data may happen.
3984 */
3985 mas = wr_mas->mas;
3986 trace_ma_op(__func__, mas);
3987
3988 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3989 return mas_new_root(mas, wr_mas->entry);
3990 /*
3991 * Node rebalancing may occur due to this store, so there may be three new
3992 * entries per level plus a new root.
3993 */
3994 height = mas_mt_height(mas);
3995 mas_node_count(mas, 1 + height * 3);
3996 if (mas_is_err(mas))
3997 return 0;
3998
3999 /*
4000 * Set up right side. Need to get to the next offset after the spanning
4001 * store to ensure it's not NULL and to combine both the next node and
4002 * the node with the start together.
4003 */
4004 r_mas = *mas;
4005 /* Avoid overflow, walk to next slot in the tree. */
4006 if (r_mas.last + 1)
4007 r_mas.last++;
4008
4009 r_mas.index = r_mas.last;
4010 mas_wr_walk_index(&r_wr_mas);
4011 r_mas.last = r_mas.index = mas->last;
4012
4013 /* Set up left side. */
4014 l_mas = *mas;
4015 mas_wr_walk_index(&l_wr_mas);
4016
4017 if (!wr_mas->entry) {
4018 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4019 mas->offset = l_mas.offset;
4020 mas->index = l_mas.index;
4021 mas->last = l_mas.last = r_mas.last;
4022 }
4023
4024 /* expanding NULLs may make this cover the entire range */
4025 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4026 mas_set_range(mas, 0, ULONG_MAX);
4027 return mas_new_root(mas, wr_mas->entry);
4028 }
4029
4030 memset(&b_node, 0, sizeof(struct maple_big_node));
4031 /* Copy l_mas and store the value in b_node. */
4032 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4033 /* Copy r_mas into b_node. */
4034 if (r_mas.offset <= r_wr_mas.node_end)
4035 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4036 &b_node, b_node.b_end + 1);
4037 else
4038 b_node.b_end++;
4039
4040 /* Stop spanning searches by searching for just index. */
4041 l_mas.index = l_mas.last = mas->index;
4042
4043 mast.bn = &b_node;
4044 mast.orig_l = &l_mas;
4045 mast.orig_r = &r_mas;
4046 /* Combine l_mas and r_mas and split them up evenly again. */
4047 return mas_spanning_rebalance(mas, &mast, height + 1);
4048}
4049
4050/*
4051 * mas_wr_node_store() - Attempt to store the value in a node
4052 * @wr_mas: The maple write state
4053 *
4054 * Attempts to reuse the node, but may allocate.
4055 *
4056 * Return: True if stored, false otherwise
4057 */
4058static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4059{
4060 struct ma_state *mas = wr_mas->mas;
4061 void __rcu **dst_slots;
4062 unsigned long *dst_pivots;
4063 unsigned char dst_offset;
4064 unsigned char new_end = wr_mas->node_end;
4065 unsigned char offset;
4066 unsigned char node_slots = mt_slots[wr_mas->type];
4067 struct maple_node reuse, *newnode;
4068 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4069 bool in_rcu = mt_in_rcu(mas->tree);
4070
4071 offset = mas->offset;
4072 if (mas->last == wr_mas->r_max) {
4073 /* runs right to the end of the node */
4074 if (mas->last == mas->max)
4075 new_end = offset;
4076 /* don't copy this offset */
4077 wr_mas->offset_end++;
4078 } else if (mas->last < wr_mas->r_max) {
4079 /* new range ends in this range */
4080 if (unlikely(wr_mas->r_max == ULONG_MAX))
4081 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4082
4083 new_end++;
4084 } else {
4085 if (wr_mas->end_piv == mas->last)
4086 wr_mas->offset_end++;
4087
4088 new_end -= wr_mas->offset_end - offset - 1;
4089 }
4090
4091 /* new range starts within a range */
4092 if (wr_mas->r_min < mas->index)
4093 new_end++;
4094
4095 /* Not enough room */
4096 if (new_end >= node_slots)
4097 return false;
4098
4099 /* Not enough data. */
4100 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4101 !(mas->mas_flags & MA_STATE_BULK))
4102 return false;
4103
4104 /* set up node. */
4105 if (in_rcu) {
4106 mas_node_count(mas, 1);
4107 if (mas_is_err(mas))
4108 return false;
4109
4110 newnode = mas_pop_node(mas);
4111 } else {
4112 memset(&reuse, 0, sizeof(struct maple_node));
4113 newnode = &reuse;
4114 }
4115
4116 newnode->parent = mas_mn(mas)->parent;
4117 dst_pivots = ma_pivots(newnode, wr_mas->type);
4118 dst_slots = ma_slots(newnode, wr_mas->type);
4119 /* Copy from start to insert point */
4120 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4121 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4122 dst_offset = offset;
4123
4124 /* Handle insert of new range starting after old range */
4125 if (wr_mas->r_min < mas->index) {
4126 mas->offset++;
4127 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4128 dst_pivots[dst_offset++] = mas->index - 1;
4129 }
4130
4131 /* Store the new entry and range end. */
4132 if (dst_offset < max_piv)
4133 dst_pivots[dst_offset] = mas->last;
4134 mas->offset = dst_offset;
4135 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4136
4137 /*
4138 * this range wrote to the end of the node or it overwrote the rest of
4139 * the data
4140 */
4141 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4142 new_end = dst_offset;
4143 goto done;
4144 }
4145
4146 dst_offset++;
4147 /* Copy to the end of node if necessary. */
4148 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4149 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4150 sizeof(void *) * copy_size);
4151 if (dst_offset < max_piv) {
4152 if (copy_size > max_piv - dst_offset)
4153 copy_size = max_piv - dst_offset;
4154
4155 memcpy(dst_pivots + dst_offset,
4156 wr_mas->pivots + wr_mas->offset_end,
4157 sizeof(unsigned long) * copy_size);
4158 }
4159
4160 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4161 dst_pivots[new_end] = mas->max;
4162
4163done:
4164 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4165 if (in_rcu) {
4166 mas->node = mt_mk_node(newnode, wr_mas->type);
4167 mas_replace(mas, false);
4168 } else {
4169 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4170 }
4171 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4172 mas_update_gap(mas);
4173 return true;
4174}
4175
4176/*
4177 * mas_wr_slot_store: Attempt to store a value in a slot.
4178 * @wr_mas: the maple write state
4179 *
4180 * Return: True if stored, false otherwise
4181 */
4182static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4183{
4184 struct ma_state *mas = wr_mas->mas;
4185 unsigned long lmax; /* Logical max. */
4186 unsigned char offset = mas->offset;
4187
4188 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4189 (offset != wr_mas->node_end)))
4190 return false;
4191
4192 if (offset == wr_mas->node_end - 1)
4193 lmax = mas->max;
4194 else
4195 lmax = wr_mas->pivots[offset + 1];
4196
4197 /* going to overwrite too many slots. */
4198 if (lmax < mas->last)
4199 return false;
4200
4201 if (wr_mas->r_min == mas->index) {
4202 /* overwriting two or more ranges with one. */
4203 if (lmax == mas->last)
4204 return false;
4205
4206 /* Overwriting all of offset and a portion of offset + 1. */
4207 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4208 wr_mas->pivots[offset] = mas->last;
4209 goto done;
4210 }
4211
4212 /* Doesn't end on the next range end. */
4213 if (lmax != mas->last)
4214 return false;
4215
4216 /* Overwriting a portion of offset and all of offset + 1 */
4217 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4218 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4219 wr_mas->pivots[offset + 1] = mas->last;
4220
4221 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4222 wr_mas->pivots[offset] = mas->index - 1;
4223 mas->offset++; /* Keep mas accurate. */
4224
4225done:
4226 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4227 mas_update_gap(mas);
4228 return true;
4229}
4230
4231static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4232{
4233 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4234 (wr_mas->offset_end < wr_mas->node_end))
4235 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4236
4237 if (wr_mas->mas->last > wr_mas->end_piv)
4238 wr_mas->end_piv = wr_mas->mas->max;
4239}
4240
4241static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4242{
4243 struct ma_state *mas = wr_mas->mas;
4244
4245 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4246 mas->last = wr_mas->end_piv;
4247
4248 /* Check next slot(s) if we are overwriting the end */
4249 if ((mas->last == wr_mas->end_piv) &&
4250 (wr_mas->node_end != wr_mas->offset_end) &&
4251 !wr_mas->slots[wr_mas->offset_end + 1]) {
4252 wr_mas->offset_end++;
4253 if (wr_mas->offset_end == wr_mas->node_end)
4254 mas->last = mas->max;
4255 else
4256 mas->last = wr_mas->pivots[wr_mas->offset_end];
4257 wr_mas->end_piv = mas->last;
4258 }
4259
4260 if (!wr_mas->content) {
4261 /* If this one is null, the next and prev are not */
4262 mas->index = wr_mas->r_min;
4263 } else {
4264 /* Check prev slot if we are overwriting the start */
4265 if (mas->index == wr_mas->r_min && mas->offset &&
4266 !wr_mas->slots[mas->offset - 1]) {
4267 mas->offset--;
4268 wr_mas->r_min = mas->index =
4269 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4270 wr_mas->r_max = wr_mas->pivots[mas->offset];
4271 }
4272 }
4273}
4274
4275static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4276{
4277 unsigned char end = wr_mas->node_end;
4278 unsigned char new_end = end + 1;
4279 struct ma_state *mas = wr_mas->mas;
4280 unsigned char node_pivots = mt_pivots[wr_mas->type];
4281
4282 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4283 if (new_end < node_pivots)
4284 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4285
4286 if (new_end < node_pivots)
4287 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4288
4289 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4290 mas->offset = new_end;
4291 wr_mas->pivots[end] = mas->index - 1;
4292
4293 return true;
4294 }
4295
4296 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4297 if (new_end < node_pivots)
4298 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4299
4300 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4301 if (new_end < node_pivots)
4302 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4303
4304 wr_mas->pivots[end] = mas->last;
4305 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4306 return true;
4307 }
4308
4309 return false;
4310}
4311
4312/*
4313 * mas_wr_bnode() - Slow path for a modification.
4314 * @wr_mas: The write maple state
4315 *
4316 * This is where split, rebalance end up.
4317 */
4318static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4319{
4320 struct maple_big_node b_node;
4321
4322 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4323 memset(&b_node, 0, sizeof(struct maple_big_node));
4324 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4325 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4326}
4327
4328static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4329{
4330 unsigned char node_slots;
4331 unsigned char node_size;
4332 struct ma_state *mas = wr_mas->mas;
4333
4334 /* Direct replacement */
4335 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4336 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4337 if (!!wr_mas->entry ^ !!wr_mas->content)
4338 mas_update_gap(mas);
4339 return;
4340 }
4341
4342 /* Attempt to append */
4343 node_slots = mt_slots[wr_mas->type];
4344 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4345 if (mas->max == ULONG_MAX)
4346 node_size++;
4347
4348 /* slot and node store will not fit, go to the slow path */
4349 if (unlikely(node_size >= node_slots))
4350 goto slow_path;
4351
4352 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4353 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4354 if (!wr_mas->content || !wr_mas->entry)
4355 mas_update_gap(mas);
4356 return;
4357 }
4358
4359 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4360 return;
4361 else if (mas_wr_node_store(wr_mas))
4362 return;
4363
4364 if (mas_is_err(mas))
4365 return;
4366
4367slow_path:
4368 mas_wr_bnode(wr_mas);
4369}
4370
4371/*
4372 * mas_wr_store_entry() - Internal call to store a value
4373 * @mas: The maple state
4374 * @entry: The entry to store.
4375 *
4376 * Return: The contents that was stored at the index.
4377 */
4378static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4379{
4380 struct ma_state *mas = wr_mas->mas;
4381
4382 wr_mas->content = mas_start(mas);
4383 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4384 mas_store_root(mas, wr_mas->entry);
4385 return wr_mas->content;
4386 }
4387
4388 if (unlikely(!mas_wr_walk(wr_mas))) {
4389 mas_wr_spanning_store(wr_mas);
4390 return wr_mas->content;
4391 }
4392
4393 /* At this point, we are at the leaf node that needs to be altered. */
4394 wr_mas->end_piv = wr_mas->r_max;
4395 mas_wr_end_piv(wr_mas);
4396
4397 if (!wr_mas->entry)
4398 mas_wr_extend_null(wr_mas);
4399
4400 /* New root for a single pointer */
4401 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4402 mas_new_root(mas, wr_mas->entry);
4403 return wr_mas->content;
4404 }
4405
4406 mas_wr_modify(wr_mas);
4407 return wr_mas->content;
4408}
4409
4410/**
4411 * mas_insert() - Internal call to insert a value
4412 * @mas: The maple state
4413 * @entry: The entry to store
4414 *
4415 * Return: %NULL or the contents that already exists at the requested index
4416 * otherwise. The maple state needs to be checked for error conditions.
4417 */
4418static inline void *mas_insert(struct ma_state *mas, void *entry)
4419{
4420 MA_WR_STATE(wr_mas, mas, entry);
4421
4422 /*
4423 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4424 * tree. If the insert fits exactly into an existing gap with a value
4425 * of NULL, then the slot only needs to be written with the new value.
4426 * If the range being inserted is adjacent to another range, then only a
4427 * single pivot needs to be inserted (as well as writing the entry). If
4428 * the new range is within a gap but does not touch any other ranges,
4429 * then two pivots need to be inserted: the start - 1, and the end. As
4430 * usual, the entry must be written. Most operations require a new node
4431 * to be allocated and replace an existing node to ensure RCU safety,
4432 * when in RCU mode. The exception to requiring a newly allocated node
4433 * is when inserting at the end of a node (appending). When done
4434 * carefully, appending can reuse the node in place.
4435 */
4436 wr_mas.content = mas_start(mas);
4437 if (wr_mas.content)
4438 goto exists;
4439
4440 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4441 mas_store_root(mas, entry);
4442 return NULL;
4443 }
4444
4445 /* spanning writes always overwrite something */
4446 if (!mas_wr_walk(&wr_mas))
4447 goto exists;
4448
4449 /* At this point, we are at the leaf node that needs to be altered. */
4450 wr_mas.offset_end = mas->offset;
4451 wr_mas.end_piv = wr_mas.r_max;
4452
4453 if (wr_mas.content || (mas->last > wr_mas.r_max))
4454 goto exists;
4455
4456 if (!entry)
4457 return NULL;
4458
4459 mas_wr_modify(&wr_mas);
4460 return wr_mas.content;
4461
4462exists:
4463 mas_set_err(mas, -EEXIST);
4464 return wr_mas.content;
4465
4466}
4467
4468/*
4469 * mas_prev_node() - Find the prev non-null entry at the same level in the
4470 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4471 * @mas: The maple state
4472 * @min: The lower limit to search
4473 *
4474 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4475 * Return: 1 if the node is dead, 0 otherwise.
4476 */
4477static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4478{
4479 enum maple_type mt;
4480 int offset, level;
4481 void __rcu **slots;
4482 struct maple_node *node;
4483 struct maple_enode *enode;
4484 unsigned long *pivots;
4485
4486 if (mas_is_none(mas))
4487 return 0;
4488
4489 level = 0;
4490 do {
4491 node = mas_mn(mas);
4492 if (ma_is_root(node))
4493 goto no_entry;
4494
4495 /* Walk up. */
4496 if (unlikely(mas_ascend(mas)))
4497 return 1;
4498 offset = mas->offset;
4499 level++;
4500 } while (!offset);
4501
4502 offset--;
4503 mt = mte_node_type(mas->node);
4504 node = mas_mn(mas);
4505 slots = ma_slots(node, mt);
4506 pivots = ma_pivots(node, mt);
4507 mas->max = pivots[offset];
4508 if (offset)
4509 mas->min = pivots[offset - 1] + 1;
4510 if (unlikely(ma_dead_node(node)))
4511 return 1;
4512
4513 if (mas->max < min)
4514 goto no_entry_min;
4515
4516 while (level > 1) {
4517 level--;
4518 enode = mas_slot(mas, slots, offset);
4519 if (unlikely(ma_dead_node(node)))
4520 return 1;
4521
4522 mas->node = enode;
4523 mt = mte_node_type(mas->node);
4524 node = mas_mn(mas);
4525 slots = ma_slots(node, mt);
4526 pivots = ma_pivots(node, mt);
4527 offset = ma_data_end(node, mt, pivots, mas->max);
4528 if (offset)
4529 mas->min = pivots[offset - 1] + 1;
4530
4531 if (offset < mt_pivots[mt])
4532 mas->max = pivots[offset];
4533
4534 if (mas->max < min)
4535 goto no_entry;
4536 }
4537
4538 mas->node = mas_slot(mas, slots, offset);
4539 if (unlikely(ma_dead_node(node)))
4540 return 1;
4541
4542 mas->offset = mas_data_end(mas);
4543 if (unlikely(mte_dead_node(mas->node)))
4544 return 1;
4545
4546 return 0;
4547
4548no_entry_min:
4549 mas->offset = offset;
4550 if (offset)
4551 mas->min = pivots[offset - 1] + 1;
4552no_entry:
4553 if (unlikely(ma_dead_node(node)))
4554 return 1;
4555
4556 mas->node = MAS_NONE;
4557 return 0;
4558}
4559
4560/*
4561 * mas_next_node() - Get the next node at the same level in the tree.
4562 * @mas: The maple state
4563 * @max: The maximum pivot value to check.
4564 *
4565 * The next value will be mas->node[mas->offset] or MAS_NONE.
4566 * Return: 1 on dead node, 0 otherwise.
4567 */
4568static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4569 unsigned long max)
4570{
4571 unsigned long min, pivot;
4572 unsigned long *pivots;
4573 struct maple_enode *enode;
4574 int level = 0;
4575 unsigned char offset;
4576 enum maple_type mt;
4577 void __rcu **slots;
4578
4579 if (mas->max >= max)
4580 goto no_entry;
4581
4582 level = 0;
4583 do {
4584 if (ma_is_root(node))
4585 goto no_entry;
4586
4587 min = mas->max + 1;
4588 if (min > max)
4589 goto no_entry;
4590
4591 if (unlikely(mas_ascend(mas)))
4592 return 1;
4593
4594 offset = mas->offset;
4595 level++;
4596 node = mas_mn(mas);
4597 mt = mte_node_type(mas->node);
4598 pivots = ma_pivots(node, mt);
4599 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4600
4601 slots = ma_slots(node, mt);
4602 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4603 while (unlikely(level > 1)) {
4604 /* Descend, if necessary */
4605 enode = mas_slot(mas, slots, offset);
4606 if (unlikely(ma_dead_node(node)))
4607 return 1;
4608
4609 mas->node = enode;
4610 level--;
4611 node = mas_mn(mas);
4612 mt = mte_node_type(mas->node);
4613 slots = ma_slots(node, mt);
4614 pivots = ma_pivots(node, mt);
4615 offset = 0;
4616 pivot = pivots[0];
4617 }
4618
4619 enode = mas_slot(mas, slots, offset);
4620 if (unlikely(ma_dead_node(node)))
4621 return 1;
4622
4623 mas->node = enode;
4624 mas->min = min;
4625 mas->max = pivot;
4626 return 0;
4627
4628no_entry:
4629 if (unlikely(ma_dead_node(node)))
4630 return 1;
4631
4632 mas->node = MAS_NONE;
4633 return 0;
4634}
4635
4636/*
4637 * mas_next_nentry() - Get the next node entry
4638 * @mas: The maple state
4639 * @max: The maximum value to check
4640 * @*range_start: Pointer to store the start of the range.
4641 *
4642 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4643 * pivot of the entry.
4644 *
4645 * Return: The next entry, %NULL otherwise
4646 */
4647static inline void *mas_next_nentry(struct ma_state *mas,
4648 struct maple_node *node, unsigned long max, enum maple_type type)
4649{
4650 unsigned char count;
4651 unsigned long pivot;
4652 unsigned long *pivots;
4653 void __rcu **slots;
4654 void *entry;
4655
4656 if (mas->last == mas->max) {
4657 mas->index = mas->max;
4658 return NULL;
4659 }
4660
4661 pivots = ma_pivots(node, type);
4662 slots = ma_slots(node, type);
4663 mas->index = mas_safe_min(mas, pivots, mas->offset);
4664 if (ma_dead_node(node))
4665 return NULL;
4666
4667 if (mas->index > max)
4668 return NULL;
4669
4670 count = ma_data_end(node, type, pivots, mas->max);
4671 if (mas->offset > count)
4672 return NULL;
4673
4674 while (mas->offset < count) {
4675 pivot = pivots[mas->offset];
4676 entry = mas_slot(mas, slots, mas->offset);
4677 if (ma_dead_node(node))
4678 return NULL;
4679
4680 if (entry)
4681 goto found;
4682
4683 if (pivot >= max)
4684 return NULL;
4685
4686 mas->index = pivot + 1;
4687 mas->offset++;
4688 }
4689
4690 if (mas->index > mas->max) {
4691 mas->index = mas->last;
4692 return NULL;
4693 }
4694
4695 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4696 entry = mas_slot(mas, slots, mas->offset);
4697 if (ma_dead_node(node))
4698 return NULL;
4699
4700 if (!pivot)
4701 return NULL;
4702
4703 if (!entry)
4704 return NULL;
4705
4706found:
4707 mas->last = pivot;
4708 return entry;
4709}
4710
4711static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4712{
4713
4714retry:
4715 mas_set(mas, index);
4716 mas_state_walk(mas);
4717 if (mas_is_start(mas))
4718 goto retry;
4719
4720 return;
4721
4722}
4723
4724/*
4725 * mas_next_entry() - Internal function to get the next entry.
4726 * @mas: The maple state
4727 * @limit: The maximum range start.
4728 *
4729 * Set the @mas->node to the next entry and the range_start to
4730 * the beginning value for the entry. Does not check beyond @limit.
4731 * Sets @mas->index and @mas->last to the limit if it is hit.
4732 * Restarts on dead nodes.
4733 *
4734 * Return: the next entry or %NULL.
4735 */
4736static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4737{
4738 void *entry = NULL;
4739 struct maple_enode *prev_node;
4740 struct maple_node *node;
4741 unsigned char offset;
4742 unsigned long last;
4743 enum maple_type mt;
4744
4745 last = mas->last;
4746retry:
4747 offset = mas->offset;
4748 prev_node = mas->node;
4749 node = mas_mn(mas);
4750 mt = mte_node_type(mas->node);
4751 mas->offset++;
4752 if (unlikely(mas->offset >= mt_slots[mt])) {
4753 mas->offset = mt_slots[mt] - 1;
4754 goto next_node;
4755 }
4756
4757 while (!mas_is_none(mas)) {
4758 entry = mas_next_nentry(mas, node, limit, mt);
4759 if (unlikely(ma_dead_node(node))) {
4760 mas_rewalk(mas, last);
4761 goto retry;
4762 }
4763
4764 if (likely(entry))
4765 return entry;
4766
4767 if (unlikely((mas->index > limit)))
4768 break;
4769
4770next_node:
4771 prev_node = mas->node;
4772 offset = mas->offset;
4773 if (unlikely(mas_next_node(mas, node, limit))) {
4774 mas_rewalk(mas, last);
4775 goto retry;
4776 }
4777 mas->offset = 0;
4778 node = mas_mn(mas);
4779 mt = mte_node_type(mas->node);
4780 }
4781
4782 mas->index = mas->last = limit;
4783 mas->offset = offset;
4784 mas->node = prev_node;
4785 return NULL;
4786}
4787
4788/*
4789 * mas_prev_nentry() - Get the previous node entry.
4790 * @mas: The maple state.
4791 * @limit: The lower limit to check for a value.
4792 *
4793 * Return: the entry, %NULL otherwise.
4794 */
4795static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4796 unsigned long index)
4797{
4798 unsigned long pivot, min;
4799 unsigned char offset;
4800 struct maple_node *mn;
4801 enum maple_type mt;
4802 unsigned long *pivots;
4803 void __rcu **slots;
4804 void *entry;
4805
4806retry:
4807 if (!mas->offset)
4808 return NULL;
4809
4810 mn = mas_mn(mas);
4811 mt = mte_node_type(mas->node);
4812 offset = mas->offset - 1;
4813 if (offset >= mt_slots[mt])
4814 offset = mt_slots[mt] - 1;
4815
4816 slots = ma_slots(mn, mt);
4817 pivots = ma_pivots(mn, mt);
4818 if (offset == mt_pivots[mt])
4819 pivot = mas->max;
4820 else
4821 pivot = pivots[offset];
4822
4823 if (unlikely(ma_dead_node(mn))) {
4824 mas_rewalk(mas, index);
4825 goto retry;
4826 }
4827
4828 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4829 !pivot))
4830 pivot = pivots[--offset];
4831
4832 min = mas_safe_min(mas, pivots, offset);
4833 entry = mas_slot(mas, slots, offset);
4834 if (unlikely(ma_dead_node(mn))) {
4835 mas_rewalk(mas, index);
4836 goto retry;
4837 }
4838
4839 if (likely(entry)) {
4840 mas->offset = offset;
4841 mas->last = pivot;
4842 mas->index = min;
4843 }
4844 return entry;
4845}
4846
4847static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4848{
4849 void *entry;
4850
4851retry:
4852 while (likely(!mas_is_none(mas))) {
4853 entry = mas_prev_nentry(mas, min, mas->index);
4854 if (unlikely(mas->last < min))
4855 goto not_found;
4856
4857 if (likely(entry))
4858 return entry;
4859
4860 if (unlikely(mas_prev_node(mas, min))) {
4861 mas_rewalk(mas, mas->index);
4862 goto retry;
4863 }
4864
4865 mas->offset++;
4866 }
4867
4868 mas->offset--;
4869not_found:
4870 mas->index = mas->last = min;
4871 return NULL;
4872}
4873
4874/*
4875 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4876 * highest gap address of a given size in a given node and descend.
4877 * @mas: The maple state
4878 * @size: The needed size.
4879 *
4880 * Return: True if found in a leaf, false otherwise.
4881 *
4882 */
4883static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4884{
4885 enum maple_type type = mte_node_type(mas->node);
4886 struct maple_node *node = mas_mn(mas);
4887 unsigned long *pivots, *gaps;
4888 void __rcu **slots;
4889 unsigned long gap = 0;
4890 unsigned long max, min, index;
4891 unsigned char offset;
4892
4893 if (unlikely(mas_is_err(mas)))
4894 return true;
4895
4896 if (ma_is_dense(type)) {
4897 /* dense nodes. */
4898 mas->offset = (unsigned char)(mas->index - mas->min);
4899 return true;
4900 }
4901
4902 pivots = ma_pivots(node, type);
4903 slots = ma_slots(node, type);
4904 gaps = ma_gaps(node, type);
4905 offset = mas->offset;
4906 min = mas_safe_min(mas, pivots, offset);
4907 /* Skip out of bounds. */
4908 while (mas->last < min)
4909 min = mas_safe_min(mas, pivots, --offset);
4910
4911 max = mas_safe_pivot(mas, pivots, offset, type);
4912 index = mas->index;
4913 while (index <= max) {
4914 gap = 0;
4915 if (gaps)
4916 gap = gaps[offset];
4917 else if (!mas_slot(mas, slots, offset))
4918 gap = max - min + 1;
4919
4920 if (gap) {
4921 if ((size <= gap) && (size <= mas->last - min + 1))
4922 break;
4923
4924 if (!gaps) {
4925 /* Skip the next slot, it cannot be a gap. */
4926 if (offset < 2)
4927 goto ascend;
4928
4929 offset -= 2;
4930 max = pivots[offset];
4931 min = mas_safe_min(mas, pivots, offset);
4932 continue;
4933 }
4934 }
4935
4936 if (!offset)
4937 goto ascend;
4938
4939 offset--;
4940 max = min - 1;
4941 min = mas_safe_min(mas, pivots, offset);
4942 }
4943
4944 if (unlikely(index > max)) {
4945 mas_set_err(mas, -EBUSY);
4946 return false;
4947 }
4948
4949 if (unlikely(ma_is_leaf(type))) {
4950 mas->offset = offset;
4951 mas->min = min;
4952 mas->max = min + gap - 1;
4953 return true;
4954 }
4955
4956 /* descend, only happens under lock. */
4957 mas->node = mas_slot(mas, slots, offset);
4958 mas->min = min;
4959 mas->max = max;
4960 mas->offset = mas_data_end(mas);
4961 return false;
4962
4963ascend:
4964 if (mte_is_root(mas->node))
4965 mas_set_err(mas, -EBUSY);
4966
4967 return false;
4968}
4969
4970static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4971{
4972 enum maple_type type = mte_node_type(mas->node);
4973 unsigned long pivot, min, gap = 0;
4974 unsigned char offset;
4975 unsigned long *gaps;
4976 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4977 void __rcu **slots = ma_slots(mas_mn(mas), type);
4978 bool found = false;
4979
4980 if (ma_is_dense(type)) {
4981 mas->offset = (unsigned char)(mas->index - mas->min);
4982 return true;
4983 }
4984
4985 gaps = ma_gaps(mte_to_node(mas->node), type);
4986 offset = mas->offset;
4987 min = mas_safe_min(mas, pivots, offset);
4988 for (; offset < mt_slots[type]; offset++) {
4989 pivot = mas_safe_pivot(mas, pivots, offset, type);
4990 if (offset && !pivot)
4991 break;
4992
4993 /* Not within lower bounds */
4994 if (mas->index > pivot)
4995 goto next_slot;
4996
4997 if (gaps)
4998 gap = gaps[offset];
4999 else if (!mas_slot(mas, slots, offset))
5000 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5001 else
5002 goto next_slot;
5003
5004 if (gap >= size) {
5005 if (ma_is_leaf(type)) {
5006 found = true;
5007 goto done;
5008 }
5009 if (mas->index <= pivot) {
5010 mas->node = mas_slot(mas, slots, offset);
5011 mas->min = min;
5012 mas->max = pivot;
5013 offset = 0;
5014 break;
5015 }
5016 }
5017next_slot:
5018 min = pivot + 1;
5019 if (mas->last <= pivot) {
5020 mas_set_err(mas, -EBUSY);
5021 return true;
5022 }
5023 }
5024
5025 if (mte_is_root(mas->node))
5026 found = true;
5027done:
5028 mas->offset = offset;
5029 return found;
5030}
5031
5032/**
5033 * mas_walk() - Search for @mas->index in the tree.
5034 * @mas: The maple state.
5035 *
5036 * mas->index and mas->last will be set to the range if there is a value. If
5037 * mas->node is MAS_NONE, reset to MAS_START.
5038 *
5039 * Return: the entry at the location or %NULL.
5040 */
5041void *mas_walk(struct ma_state *mas)
5042{
5043 void *entry;
5044
5045retry:
5046 entry = mas_state_walk(mas);
5047 if (mas_is_start(mas))
5048 goto retry;
5049
5050 if (mas_is_ptr(mas)) {
5051 if (!mas->index) {
5052 mas->last = 0;
5053 } else {
5054 mas->index = 1;
5055 mas->last = ULONG_MAX;
5056 }
5057 return entry;
5058 }
5059
5060 if (mas_is_none(mas)) {
5061 mas->index = 0;
5062 mas->last = ULONG_MAX;
5063 }
5064
5065 return entry;
5066}
5067EXPORT_SYMBOL_GPL(mas_walk);
5068
5069static inline bool mas_rewind_node(struct ma_state *mas)
5070{
5071 unsigned char slot;
5072
5073 do {
5074 if (mte_is_root(mas->node)) {
5075 slot = mas->offset;
5076 if (!slot)
5077 return false;
5078 } else {
5079 mas_ascend(mas);
5080 slot = mas->offset;
5081 }
5082 } while (!slot);
5083
5084 mas->offset = --slot;
5085 return true;
5086}
5087
5088/*
5089 * mas_skip_node() - Internal function. Skip over a node.
5090 * @mas: The maple state.
5091 *
5092 * Return: true if there is another node, false otherwise.
5093 */
5094static inline bool mas_skip_node(struct ma_state *mas)
5095{
5096 unsigned char slot, slot_count;
5097 unsigned long *pivots;
5098 enum maple_type mt;
5099
5100 mt = mte_node_type(mas->node);
5101 slot_count = mt_slots[mt] - 1;
5102 do {
5103 if (mte_is_root(mas->node)) {
5104 slot = mas->offset;
5105 if (slot > slot_count) {
5106 mas_set_err(mas, -EBUSY);
5107 return false;
5108 }
5109 } else {
5110 mas_ascend(mas);
5111 slot = mas->offset;
5112 mt = mte_node_type(mas->node);
5113 slot_count = mt_slots[mt] - 1;
5114 }
5115 } while (slot > slot_count);
5116
5117 mas->offset = ++slot;
5118 pivots = ma_pivots(mas_mn(mas), mt);
5119 if (slot > 0)
5120 mas->min = pivots[slot - 1] + 1;
5121
5122 if (slot <= slot_count)
5123 mas->max = pivots[slot];
5124
5125 return true;
5126}
5127
5128/*
5129 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5130 * @size
5131 * @mas: The maple state
5132 * @size: The size of the gap required
5133 *
5134 * Search between @mas->index and @mas->last for a gap of @size.
5135 */
5136static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5137{
5138 struct maple_enode *last = NULL;
5139
5140 /*
5141 * There are 4 options:
5142 * go to child (descend)
5143 * go back to parent (ascend)
5144 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5145 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5146 */
5147 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5148 if (last == mas->node)
5149 mas_skip_node(mas);
5150 else
5151 last = mas->node;
5152 }
5153}
5154
5155/*
5156 * mas_fill_gap() - Fill a located gap with @entry.
5157 * @mas: The maple state
5158 * @entry: The value to store
5159 * @slot: The offset into the node to store the @entry
5160 * @size: The size of the entry
5161 * @index: The start location
5162 */
5163static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5164 unsigned char slot, unsigned long size, unsigned long *index)
5165{
5166 MA_WR_STATE(wr_mas, mas, entry);
5167 unsigned char pslot = mte_parent_slot(mas->node);
5168 struct maple_enode *mn = mas->node;
5169 unsigned long *pivots;
5170 enum maple_type ptype;
5171 /*
5172 * mas->index is the start address for the search
5173 * which may no longer be needed.
5174 * mas->last is the end address for the search
5175 */
5176
5177 *index = mas->index;
5178 mas->last = mas->index + size - 1;
5179
5180 /*
5181 * It is possible that using mas->max and mas->min to correctly
5182 * calculate the index and last will cause an issue in the gap
5183 * calculation, so fix the ma_state here
5184 */
5185 mas_ascend(mas);
5186 ptype = mte_node_type(mas->node);
5187 pivots = ma_pivots(mas_mn(mas), ptype);
5188 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5189 mas->min = mas_safe_min(mas, pivots, pslot);
5190 mas->node = mn;
5191 mas->offset = slot;
5192 mas_wr_store_entry(&wr_mas);
5193}
5194
5195/*
5196 * mas_sparse_area() - Internal function. Return upper or lower limit when
5197 * searching for a gap in an empty tree.
5198 * @mas: The maple state
5199 * @min: the minimum range
5200 * @max: The maximum range
5201 * @size: The size of the gap
5202 * @fwd: Searching forward or back
5203 */
5204static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5205 unsigned long max, unsigned long size, bool fwd)
5206{
5207 unsigned long start = 0;
5208
5209 if (!unlikely(mas_is_none(mas)))
5210 start++;
5211 /* mas_is_ptr */
5212
5213 if (start < min)
5214 start = min;
5215
5216 if (fwd) {
5217 mas->index = start;
5218 mas->last = start + size - 1;
5219 return;
5220 }
5221
5222 mas->index = max;
5223}
5224
5225/*
5226 * mas_empty_area() - Get the lowest address within the range that is
5227 * sufficient for the size requested.
5228 * @mas: The maple state
5229 * @min: The lowest value of the range
5230 * @max: The highest value of the range
5231 * @size: The size needed
5232 */
5233int mas_empty_area(struct ma_state *mas, unsigned long min,
5234 unsigned long max, unsigned long size)
5235{
5236 unsigned char offset;
5237 unsigned long *pivots;
5238 enum maple_type mt;
5239
5240 if (mas_is_start(mas))
5241 mas_start(mas);
5242 else if (mas->offset >= 2)
5243 mas->offset -= 2;
5244 else if (!mas_skip_node(mas))
5245 return -EBUSY;
5246
5247 /* Empty set */
5248 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5249 mas_sparse_area(mas, min, max, size, true);
5250 return 0;
5251 }
5252
5253 /* The start of the window can only be within these values */
5254 mas->index = min;
5255 mas->last = max;
5256 mas_awalk(mas, size);
5257
5258 if (unlikely(mas_is_err(mas)))
5259 return xa_err(mas->node);
5260
5261 offset = mas->offset;
5262 if (unlikely(offset == MAPLE_NODE_SLOTS))
5263 return -EBUSY;
5264
5265 mt = mte_node_type(mas->node);
5266 pivots = ma_pivots(mas_mn(mas), mt);
5267 if (offset)
5268 mas->min = pivots[offset - 1] + 1;
5269
5270 if (offset < mt_pivots[mt])
5271 mas->max = pivots[offset];
5272
5273 if (mas->index < mas->min)
5274 mas->index = mas->min;
5275
5276 mas->last = mas->index + size - 1;
5277 return 0;
5278}
5279EXPORT_SYMBOL_GPL(mas_empty_area);
5280
5281/*
5282 * mas_empty_area_rev() - Get the highest address within the range that is
5283 * sufficient for the size requested.
5284 * @mas: The maple state
5285 * @min: The lowest value of the range
5286 * @max: The highest value of the range
5287 * @size: The size needed
5288 */
5289int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5290 unsigned long max, unsigned long size)
5291{
5292 struct maple_enode *last = mas->node;
5293
5294 if (mas_is_start(mas)) {
5295 mas_start(mas);
5296 mas->offset = mas_data_end(mas);
5297 } else if (mas->offset >= 2) {
5298 mas->offset -= 2;
5299 } else if (!mas_rewind_node(mas)) {
5300 return -EBUSY;
5301 }
5302
5303 /* Empty set. */
5304 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5305 mas_sparse_area(mas, min, max, size, false);
5306 return 0;
5307 }
5308
5309 /* The start of the window can only be within these values. */
5310 mas->index = min;
5311 mas->last = max;
5312
5313 while (!mas_rev_awalk(mas, size)) {
5314 if (last == mas->node) {
5315 if (!mas_rewind_node(mas))
5316 return -EBUSY;
5317 } else {
5318 last = mas->node;
5319 }
5320 }
5321
5322 if (mas_is_err(mas))
5323 return xa_err(mas->node);
5324
5325 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5326 return -EBUSY;
5327
5328 /*
5329 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5330 * the maximum is outside the window we are searching, then use the last
5331 * location in the search.
5332 * mas->max and mas->min is the range of the gap.
5333 * mas->index and mas->last are currently set to the search range.
5334 */
5335
5336 /* Trim the upper limit to the max. */
5337 if (mas->max <= mas->last)
5338 mas->last = mas->max;
5339
5340 mas->index = mas->last - size + 1;
5341 return 0;
5342}
5343EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5344
5345static inline int mas_alloc(struct ma_state *mas, void *entry,
5346 unsigned long size, unsigned long *index)
5347{
5348 unsigned long min;
5349
5350 mas_start(mas);
5351 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5352 mas_root_expand(mas, entry);
5353 if (mas_is_err(mas))
5354 return xa_err(mas->node);
5355
5356 if (!mas->index)
5357 return mte_pivot(mas->node, 0);
5358 return mte_pivot(mas->node, 1);
5359 }
5360
5361 /* Must be walking a tree. */
5362 mas_awalk(mas, size);
5363 if (mas_is_err(mas))
5364 return xa_err(mas->node);
5365
5366 if (mas->offset == MAPLE_NODE_SLOTS)
5367 goto no_gap;
5368
5369 /*
5370 * At this point, mas->node points to the right node and we have an
5371 * offset that has a sufficient gap.
5372 */
5373 min = mas->min;
5374 if (mas->offset)
5375 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5376
5377 if (mas->index < min)
5378 mas->index = min;
5379
5380 mas_fill_gap(mas, entry, mas->offset, size, index);
5381 return 0;
5382
5383no_gap:
5384 return -EBUSY;
5385}
5386
5387static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5388 unsigned long max, void *entry,
5389 unsigned long size, unsigned long *index)
5390{
5391 int ret = 0;
5392
5393 ret = mas_empty_area_rev(mas, min, max, size);
5394 if (ret)
5395 return ret;
5396
5397 if (mas_is_err(mas))
5398 return xa_err(mas->node);
5399
5400 if (mas->offset == MAPLE_NODE_SLOTS)
5401 goto no_gap;
5402
5403 mas_fill_gap(mas, entry, mas->offset, size, index);
5404 return 0;
5405
5406no_gap:
5407 return -EBUSY;
5408}
5409
5410/*
5411 * mas_dead_leaves() - Mark all leaves of a node as dead.
5412 * @mas: The maple state
5413 * @slots: Pointer to the slot array
5414 *
5415 * Must hold the write lock.
5416 *
5417 * Return: The number of leaves marked as dead.
5418 */
5419static inline
5420unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5421{
5422 struct maple_node *node;
5423 enum maple_type type;
5424 void *entry;
5425 int offset;
5426
5427 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5428 entry = mas_slot_locked(mas, slots, offset);
5429 type = mte_node_type(entry);
5430 node = mte_to_node(entry);
5431 /* Use both node and type to catch LE & BE metadata */
5432 if (!node || !type)
5433 break;
5434
5435 mte_set_node_dead(entry);
5436 smp_wmb(); /* Needed for RCU */
5437 node->type = type;
5438 rcu_assign_pointer(slots[offset], node);
5439 }
5440
5441 return offset;
5442}
5443
5444static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5445{
5446 struct maple_node *node, *next;
5447 void __rcu **slots = NULL;
5448
5449 next = mas_mn(mas);
5450 do {
5451 mas->node = ma_enode_ptr(next);
5452 node = mas_mn(mas);
5453 slots = ma_slots(node, node->type);
5454 next = mas_slot_locked(mas, slots, offset);
5455 offset = 0;
5456 } while (!ma_is_leaf(next->type));
5457
5458 return slots;
5459}
5460
5461static void mt_free_walk(struct rcu_head *head)
5462{
5463 void __rcu **slots;
5464 struct maple_node *node, *start;
5465 struct maple_tree mt;
5466 unsigned char offset;
5467 enum maple_type type;
5468 MA_STATE(mas, &mt, 0, 0);
5469
5470 node = container_of(head, struct maple_node, rcu);
5471
5472 if (ma_is_leaf(node->type))
5473 goto free_leaf;
5474
5475 mt_init_flags(&mt, node->ma_flags);
5476 mas_lock(&mas);
5477 start = node;
5478 mas.node = mt_mk_node(node, node->type);
5479 slots = mas_dead_walk(&mas, 0);
5480 node = mas_mn(&mas);
5481 do {
5482 mt_free_bulk(node->slot_len, slots);
5483 offset = node->parent_slot + 1;
5484 mas.node = node->piv_parent;
5485 if (mas_mn(&mas) == node)
5486 goto start_slots_free;
5487
5488 type = mte_node_type(mas.node);
5489 slots = ma_slots(mte_to_node(mas.node), type);
5490 if ((offset < mt_slots[type]) && (slots[offset]))
5491 slots = mas_dead_walk(&mas, offset);
5492
5493 node = mas_mn(&mas);
5494 } while ((node != start) || (node->slot_len < offset));
5495
5496 slots = ma_slots(node, node->type);
5497 mt_free_bulk(node->slot_len, slots);
5498
5499start_slots_free:
5500 mas_unlock(&mas);
5501free_leaf:
5502 mt_free_rcu(&node->rcu);
5503}
5504
5505static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5506 struct maple_enode *prev, unsigned char offset)
5507{
5508 struct maple_node *node;
5509 struct maple_enode *next = mas->node;
5510 void __rcu **slots = NULL;
5511
5512 do {
5513 mas->node = next;
5514 node = mas_mn(mas);
5515 slots = ma_slots(node, mte_node_type(mas->node));
5516 next = mas_slot_locked(mas, slots, 0);
5517 if ((mte_dead_node(next)))
5518 next = mas_slot_locked(mas, slots, 1);
5519
5520 mte_set_node_dead(mas->node);
5521 node->type = mte_node_type(mas->node);
5522 node->piv_parent = prev;
5523 node->parent_slot = offset;
5524 offset = 0;
5525 prev = mas->node;
5526 } while (!mte_is_leaf(next));
5527
5528 return slots;
5529}
5530
5531static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5532 bool free)
5533{
5534 void __rcu **slots;
5535 struct maple_node *node = mte_to_node(enode);
5536 struct maple_enode *start;
5537 struct maple_tree mt;
5538
5539 MA_STATE(mas, &mt, 0, 0);
5540
5541 if (mte_is_leaf(enode))
5542 goto free_leaf;
5543
5544 mt_init_flags(&mt, ma_flags);
5545 mas_lock(&mas);
5546
5547 mas.node = start = enode;
5548 slots = mas_destroy_descend(&mas, start, 0);
5549 node = mas_mn(&mas);
5550 do {
5551 enum maple_type type;
5552 unsigned char offset;
5553 struct maple_enode *parent, *tmp;
5554
5555 node->slot_len = mas_dead_leaves(&mas, slots);
5556 if (free)
5557 mt_free_bulk(node->slot_len, slots);
5558 offset = node->parent_slot + 1;
5559 mas.node = node->piv_parent;
5560 if (mas_mn(&mas) == node)
5561 goto start_slots_free;
5562
5563 type = mte_node_type(mas.node);
5564 slots = ma_slots(mte_to_node(mas.node), type);
5565 if (offset >= mt_slots[type])
5566 goto next;
5567
5568 tmp = mas_slot_locked(&mas, slots, offset);
5569 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5570 parent = mas.node;
5571 mas.node = tmp;
5572 slots = mas_destroy_descend(&mas, parent, offset);
5573 }
5574next:
5575 node = mas_mn(&mas);
5576 } while (start != mas.node);
5577
5578 node = mas_mn(&mas);
5579 node->slot_len = mas_dead_leaves(&mas, slots);
5580 if (free)
5581 mt_free_bulk(node->slot_len, slots);
5582
5583start_slots_free:
5584 mas_unlock(&mas);
5585
5586free_leaf:
5587 if (free)
5588 mt_free_rcu(&node->rcu);
5589}
5590
5591/*
5592 * mte_destroy_walk() - Free a tree or sub-tree.
5593 * @enode - the encoded maple node (maple_enode) to start
5594 * @mn - the tree to free - needed for node types.
5595 *
5596 * Must hold the write lock.
5597 */
5598static inline void mte_destroy_walk(struct maple_enode *enode,
5599 struct maple_tree *mt)
5600{
5601 struct maple_node *node = mte_to_node(enode);
5602
5603 if (mt_in_rcu(mt)) {
5604 mt_destroy_walk(enode, mt->ma_flags, false);
5605 call_rcu(&node->rcu, mt_free_walk);
5606 } else {
5607 mt_destroy_walk(enode, mt->ma_flags, true);
5608 }
5609}
5610
5611static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5612{
5613 if (!mas_is_start(wr_mas->mas)) {
5614 if (mas_is_none(wr_mas->mas)) {
5615 mas_reset(wr_mas->mas);
5616 } else {
5617 wr_mas->r_max = wr_mas->mas->max;
5618 wr_mas->type = mte_node_type(wr_mas->mas->node);
5619 if (mas_is_span_wr(wr_mas))
5620 mas_reset(wr_mas->mas);
5621 }
5622 }
5623
5624}
5625
5626/* Interface */
5627
5628/**
5629 * mas_store() - Store an @entry.
5630 * @mas: The maple state.
5631 * @entry: The entry to store.
5632 *
5633 * The @mas->index and @mas->last is used to set the range for the @entry.
5634 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5635 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5636 *
5637 * Return: the first entry between mas->index and mas->last or %NULL.
5638 */
5639void *mas_store(struct ma_state *mas, void *entry)
5640{
5641 MA_WR_STATE(wr_mas, mas, entry);
5642
5643 trace_ma_write(__func__, mas, 0, entry);
5644#ifdef CONFIG_DEBUG_MAPLE_TREE
5645 if (mas->index > mas->last)
5646 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5647 MT_BUG_ON(mas->tree, mas->index > mas->last);
5648 if (mas->index > mas->last) {
5649 mas_set_err(mas, -EINVAL);
5650 return NULL;
5651 }
5652
5653#endif
5654
5655 /*
5656 * Storing is the same operation as insert with the added caveat that it
5657 * can overwrite entries. Although this seems simple enough, one may
5658 * want to examine what happens if a single store operation was to
5659 * overwrite multiple entries within a self-balancing B-Tree.
5660 */
5661 mas_wr_store_setup(&wr_mas);
5662 mas_wr_store_entry(&wr_mas);
5663 return wr_mas.content;
5664}
5665EXPORT_SYMBOL_GPL(mas_store);
5666
5667/**
5668 * mas_store_gfp() - Store a value into the tree.
5669 * @mas: The maple state
5670 * @entry: The entry to store
5671 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5672 *
5673 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5674 * be allocated.
5675 */
5676int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5677{
5678 MA_WR_STATE(wr_mas, mas, entry);
5679
5680 mas_wr_store_setup(&wr_mas);
5681 trace_ma_write(__func__, mas, 0, entry);
5682retry:
5683 mas_wr_store_entry(&wr_mas);
5684 if (unlikely(mas_nomem(mas, gfp)))
5685 goto retry;
5686
5687 if (unlikely(mas_is_err(mas)))
5688 return xa_err(mas->node);
5689
5690 return 0;
5691}
5692EXPORT_SYMBOL_GPL(mas_store_gfp);
5693
5694/**
5695 * mas_store_prealloc() - Store a value into the tree using memory
5696 * preallocated in the maple state.
5697 * @mas: The maple state
5698 * @entry: The entry to store.
5699 */
5700void mas_store_prealloc(struct ma_state *mas, void *entry)
5701{
5702 MA_WR_STATE(wr_mas, mas, entry);
5703
5704 mas_wr_store_setup(&wr_mas);
5705 trace_ma_write(__func__, mas, 0, entry);
5706 mas_wr_store_entry(&wr_mas);
5707 BUG_ON(mas_is_err(mas));
5708 mas_destroy(mas);
5709}
5710EXPORT_SYMBOL_GPL(mas_store_prealloc);
5711
5712/**
5713 * mas_preallocate() - Preallocate enough nodes for a store operation
5714 * @mas: The maple state
5715 * @entry: The entry that will be stored
5716 * @gfp: The GFP_FLAGS to use for allocations.
5717 *
5718 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5719 */
5720int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5721{
5722 int ret;
5723
5724 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5725 mas->mas_flags |= MA_STATE_PREALLOC;
5726 if (likely(!mas_is_err(mas)))
5727 return 0;
5728
5729 mas_set_alloc_req(mas, 0);
5730 ret = xa_err(mas->node);
5731 mas_reset(mas);
5732 mas_destroy(mas);
5733 mas_reset(mas);
5734 return ret;
5735}
5736
5737/*
5738 * mas_destroy() - destroy a maple state.
5739 * @mas: The maple state
5740 *
5741 * Upon completion, check the left-most node and rebalance against the node to
5742 * the right if necessary. Frees any allocated nodes associated with this maple
5743 * state.
5744 */
5745void mas_destroy(struct ma_state *mas)
5746{
5747 struct maple_alloc *node;
5748
5749 /*
5750 * When using mas_for_each() to insert an expected number of elements,
5751 * it is possible that the number inserted is less than the expected
5752 * number. To fix an invalid final node, a check is performed here to
5753 * rebalance the previous node with the final node.
5754 */
5755 if (mas->mas_flags & MA_STATE_REBALANCE) {
5756 unsigned char end;
5757
5758 if (mas_is_start(mas))
5759 mas_start(mas);
5760
5761 mtree_range_walk(mas);
5762 end = mas_data_end(mas) + 1;
5763 if (end < mt_min_slot_count(mas->node) - 1)
5764 mas_destroy_rebalance(mas, end);
5765
5766 mas->mas_flags &= ~MA_STATE_REBALANCE;
5767 }
5768 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5769
5770 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5771 node = mas->alloc;
5772 mas->alloc = node->slot[0];
5773 if (node->node_count > 0)
5774 mt_free_bulk(node->node_count,
5775 (void __rcu **)&node->slot[1]);
5776 kmem_cache_free(maple_node_cache, node);
5777 }
5778 mas->alloc = NULL;
5779}
5780EXPORT_SYMBOL_GPL(mas_destroy);
5781
5782/*
5783 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5784 * @mas: The maple state
5785 * @nr_entries: The number of expected entries.
5786 *
5787 * This will attempt to pre-allocate enough nodes to store the expected number
5788 * of entries. The allocations will occur using the bulk allocator interface
5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5790 * to ensure any unused nodes are freed.
5791 *
5792 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5793 */
5794int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5795{
5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5797 struct maple_enode *enode = mas->node;
5798 int nr_nodes;
5799 int ret;
5800
5801 /*
5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5803 * forking a process and duplicating the VMAs from one tree to a new
5804 * tree. When such a situation arises, it is known that the new tree is
5805 * not going to be used until the entire tree is populated. For
5806 * performance reasons, it is best to use a bulk load with RCU disabled.
5807 * This allows for optimistic splitting that favours the left and reuse
5808 * of nodes during the operation.
5809 */
5810
5811 /* Optimize splitting for bulk insert in-order */
5812 mas->mas_flags |= MA_STATE_BULK;
5813
5814 /*
5815 * Avoid overflow, assume a gap between each entry and a trailing null.
5816 * If this is wrong, it just means allocation can happen during
5817 * insertion of entries.
5818 */
5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5820 if (!mt_is_alloc(mas->tree))
5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5822
5823 /* Leaves; reduce slots to keep space for expansion */
5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5825 /* Internal nodes */
5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5827 /* Add working room for split (2 nodes) + new parents */
5828 mas_node_count(mas, nr_nodes + 3);
5829
5830 /* Detect if allocations run out */
5831 mas->mas_flags |= MA_STATE_PREALLOC;
5832
5833 if (!mas_is_err(mas))
5834 return 0;
5835
5836 ret = xa_err(mas->node);
5837 mas->node = enode;
5838 mas_destroy(mas);
5839 return ret;
5840
5841}
5842EXPORT_SYMBOL_GPL(mas_expected_entries);
5843
5844/**
5845 * mas_next() - Get the next entry.
5846 * @mas: The maple state
5847 * @max: The maximum index to check.
5848 *
5849 * Returns the next entry after @mas->index.
5850 * Must hold rcu_read_lock or the write lock.
5851 * Can return the zero entry.
5852 *
5853 * Return: The next entry or %NULL
5854 */
5855void *mas_next(struct ma_state *mas, unsigned long max)
5856{
5857 if (mas_is_none(mas) || mas_is_paused(mas))
5858 mas->node = MAS_START;
5859
5860 if (mas_is_start(mas))
5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5862
5863 if (mas_is_ptr(mas)) {
5864 if (!mas->index) {
5865 mas->index = 1;
5866 mas->last = ULONG_MAX;
5867 }
5868 return NULL;
5869 }
5870
5871 if (mas->last == ULONG_MAX)
5872 return NULL;
5873
5874 /* Retries on dead nodes handled by mas_next_entry */
5875 return mas_next_entry(mas, max);
5876}
5877EXPORT_SYMBOL_GPL(mas_next);
5878
5879/**
5880 * mt_next() - get the next value in the maple tree
5881 * @mt: The maple tree
5882 * @index: The start index
5883 * @max: The maximum index to check
5884 *
5885 * Return: The entry at @index or higher, or %NULL if nothing is found.
5886 */
5887void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5888{
5889 void *entry = NULL;
5890 MA_STATE(mas, mt, index, index);
5891
5892 rcu_read_lock();
5893 entry = mas_next(&mas, max);
5894 rcu_read_unlock();
5895 return entry;
5896}
5897EXPORT_SYMBOL_GPL(mt_next);
5898
5899/**
5900 * mas_prev() - Get the previous entry
5901 * @mas: The maple state
5902 * @min: The minimum value to check.
5903 *
5904 * Must hold rcu_read_lock or the write lock.
5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5906 * searchable nodes.
5907 *
5908 * Return: the previous value or %NULL.
5909 */
5910void *mas_prev(struct ma_state *mas, unsigned long min)
5911{
5912 if (!mas->index) {
5913 /* Nothing comes before 0 */
5914 mas->last = 0;
5915 return NULL;
5916 }
5917
5918 if (unlikely(mas_is_ptr(mas)))
5919 return NULL;
5920
5921 if (mas_is_none(mas) || mas_is_paused(mas))
5922 mas->node = MAS_START;
5923
5924 if (mas_is_start(mas)) {
5925 mas_walk(mas);
5926 if (!mas->index)
5927 return NULL;
5928 }
5929
5930 if (mas_is_ptr(mas)) {
5931 if (!mas->index) {
5932 mas->last = 0;
5933 return NULL;
5934 }
5935
5936 mas->index = mas->last = 0;
5937 return mas_root_locked(mas);
5938 }
5939 return mas_prev_entry(mas, min);
5940}
5941EXPORT_SYMBOL_GPL(mas_prev);
5942
5943/**
5944 * mt_prev() - get the previous value in the maple tree
5945 * @mt: The maple tree
5946 * @index: The start index
5947 * @min: The minimum index to check
5948 *
5949 * Return: The entry at @index or lower, or %NULL if nothing is found.
5950 */
5951void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5952{
5953 void *entry = NULL;
5954 MA_STATE(mas, mt, index, index);
5955
5956 rcu_read_lock();
5957 entry = mas_prev(&mas, min);
5958 rcu_read_unlock();
5959 return entry;
5960}
5961EXPORT_SYMBOL_GPL(mt_prev);
5962
5963/**
5964 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5965 * @mas: The maple state to pause
5966 *
5967 * Some users need to pause a walk and drop the lock they're holding in
5968 * order to yield to a higher priority thread or carry out an operation
5969 * on an entry. Those users should call this function before they drop
5970 * the lock. It resets the @mas to be suitable for the next iteration
5971 * of the loop after the user has reacquired the lock. If most entries
5972 * found during a walk require you to call mas_pause(), the mt_for_each()
5973 * iterator may be more appropriate.
5974 *
5975 */
5976void mas_pause(struct ma_state *mas)
5977{
5978 mas->node = MAS_PAUSE;
5979}
5980EXPORT_SYMBOL_GPL(mas_pause);
5981
5982/**
5983 * mas_find() - On the first call, find the entry at or after mas->index up to
5984 * %max. Otherwise, find the entry after mas->index.
5985 * @mas: The maple state
5986 * @max: The maximum value to check.
5987 *
5988 * Must hold rcu_read_lock or the write lock.
5989 * If an entry exists, last and index are updated accordingly.
5990 * May set @mas->node to MAS_NONE.
5991 *
5992 * Return: The entry or %NULL.
5993 */
5994void *mas_find(struct ma_state *mas, unsigned long max)
5995{
5996 if (unlikely(mas_is_paused(mas))) {
5997 if (unlikely(mas->last == ULONG_MAX)) {
5998 mas->node = MAS_NONE;
5999 return NULL;
6000 }
6001 mas->node = MAS_START;
6002 mas->index = ++mas->last;
6003 }
6004
6005 if (unlikely(mas_is_start(mas))) {
6006 /* First run or continue */
6007 void *entry;
6008
6009 if (mas->index > max)
6010 return NULL;
6011
6012 entry = mas_walk(mas);
6013 if (entry)
6014 return entry;
6015 }
6016
6017 if (unlikely(!mas_searchable(mas)))
6018 return NULL;
6019
6020 /* Retries on dead nodes handled by mas_next_entry */
6021 return mas_next_entry(mas, max);
6022}
6023EXPORT_SYMBOL_GPL(mas_find);
6024
6025/**
6026 * mas_find_rev: On the first call, find the first non-null entry at or below
6027 * mas->index down to %min. Otherwise find the first non-null entry below
6028 * mas->index down to %min.
6029 * @mas: The maple state
6030 * @min: The minimum value to check.
6031 *
6032 * Must hold rcu_read_lock or the write lock.
6033 * If an entry exists, last and index are updated accordingly.
6034 * May set @mas->node to MAS_NONE.
6035 *
6036 * Return: The entry or %NULL.
6037 */
6038void *mas_find_rev(struct ma_state *mas, unsigned long min)
6039{
6040 if (unlikely(mas_is_paused(mas))) {
6041 if (unlikely(mas->last == ULONG_MAX)) {
6042 mas->node = MAS_NONE;
6043 return NULL;
6044 }
6045 mas->node = MAS_START;
6046 mas->last = --mas->index;
6047 }
6048
6049 if (unlikely(mas_is_start(mas))) {
6050 /* First run or continue */
6051 void *entry;
6052
6053 if (mas->index < min)
6054 return NULL;
6055
6056 entry = mas_walk(mas);
6057 if (entry)
6058 return entry;
6059 }
6060
6061 if (unlikely(!mas_searchable(mas)))
6062 return NULL;
6063
6064 if (mas->index < min)
6065 return NULL;
6066
6067 /* Retries on dead nodes handled by mas_prev_entry */
6068 return mas_prev_entry(mas, min);
6069}
6070EXPORT_SYMBOL_GPL(mas_find_rev);
6071
6072/**
6073 * mas_erase() - Find the range in which index resides and erase the entire
6074 * range.
6075 * @mas: The maple state
6076 *
6077 * Must hold the write lock.
6078 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6079 * erases that range.
6080 *
6081 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6082 */
6083void *mas_erase(struct ma_state *mas)
6084{
6085 void *entry;
6086 MA_WR_STATE(wr_mas, mas, NULL);
6087
6088 if (mas_is_none(mas) || mas_is_paused(mas))
6089 mas->node = MAS_START;
6090
6091 /* Retry unnecessary when holding the write lock. */
6092 entry = mas_state_walk(mas);
6093 if (!entry)
6094 return NULL;
6095
6096write_retry:
6097 /* Must reset to ensure spanning writes of last slot are detected */
6098 mas_reset(mas);
6099 mas_wr_store_setup(&wr_mas);
6100 mas_wr_store_entry(&wr_mas);
6101 if (mas_nomem(mas, GFP_KERNEL))
6102 goto write_retry;
6103
6104 return entry;
6105}
6106EXPORT_SYMBOL_GPL(mas_erase);
6107
6108/**
6109 * mas_nomem() - Check if there was an error allocating and do the allocation
6110 * if necessary If there are allocations, then free them.
6111 * @mas: The maple state
6112 * @gfp: The GFP_FLAGS to use for allocations
6113 * Return: true on allocation, false otherwise.
6114 */
6115bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6116 __must_hold(mas->tree->lock)
6117{
6118 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6119 mas_destroy(mas);
6120 return false;
6121 }
6122
6123 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6124 mtree_unlock(mas->tree);
6125 mas_alloc_nodes(mas, gfp);
6126 mtree_lock(mas->tree);
6127 } else {
6128 mas_alloc_nodes(mas, gfp);
6129 }
6130
6131 if (!mas_allocated(mas))
6132 return false;
6133
6134 mas->node = MAS_START;
6135 return true;
6136}
6137
6138void __init maple_tree_init(void)
6139{
6140 maple_node_cache = kmem_cache_create("maple_node",
6141 sizeof(struct maple_node), sizeof(struct maple_node),
6142 SLAB_PANIC, NULL);
6143}
6144
6145/**
6146 * mtree_load() - Load a value stored in a maple tree
6147 * @mt: The maple tree
6148 * @index: The index to load
6149 *
6150 * Return: the entry or %NULL
6151 */
6152void *mtree_load(struct maple_tree *mt, unsigned long index)
6153{
6154 MA_STATE(mas, mt, index, index);
6155 void *entry;
6156
6157 trace_ma_read(__func__, &mas);
6158 rcu_read_lock();
6159retry:
6160 entry = mas_start(&mas);
6161 if (unlikely(mas_is_none(&mas)))
6162 goto unlock;
6163
6164 if (unlikely(mas_is_ptr(&mas))) {
6165 if (index)
6166 entry = NULL;
6167
6168 goto unlock;
6169 }
6170
6171 entry = mtree_lookup_walk(&mas);
6172 if (!entry && unlikely(mas_is_start(&mas)))
6173 goto retry;
6174unlock:
6175 rcu_read_unlock();
6176 if (xa_is_zero(entry))
6177 return NULL;
6178
6179 return entry;
6180}
6181EXPORT_SYMBOL(mtree_load);
6182
6183/**
6184 * mtree_store_range() - Store an entry at a given range.
6185 * @mt: The maple tree
6186 * @index: The start of the range
6187 * @last: The end of the range
6188 * @entry: The entry to store
6189 * @gfp: The GFP_FLAGS to use for allocations
6190 *
6191 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6192 * be allocated.
6193 */
6194int mtree_store_range(struct maple_tree *mt, unsigned long index,
6195 unsigned long last, void *entry, gfp_t gfp)
6196{
6197 MA_STATE(mas, mt, index, last);
6198 MA_WR_STATE(wr_mas, &mas, entry);
6199
6200 trace_ma_write(__func__, &mas, 0, entry);
6201 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6202 return -EINVAL;
6203
6204 if (index > last)
6205 return -EINVAL;
6206
6207 mtree_lock(mt);
6208retry:
6209 mas_wr_store_entry(&wr_mas);
6210 if (mas_nomem(&mas, gfp))
6211 goto retry;
6212
6213 mtree_unlock(mt);
6214 if (mas_is_err(&mas))
6215 return xa_err(mas.node);
6216
6217 return 0;
6218}
6219EXPORT_SYMBOL(mtree_store_range);
6220
6221/**
6222 * mtree_store() - Store an entry at a given index.
6223 * @mt: The maple tree
6224 * @index: The index to store the value
6225 * @entry: The entry to store
6226 * @gfp: The GFP_FLAGS to use for allocations
6227 *
6228 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6229 * be allocated.
6230 */
6231int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6232 gfp_t gfp)
6233{
6234 return mtree_store_range(mt, index, index, entry, gfp);
6235}
6236EXPORT_SYMBOL(mtree_store);
6237
6238/**
6239 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6240 * @mt: The maple tree
6241 * @first: The start of the range
6242 * @last: The end of the range
6243 * @entry: The entry to store
6244 * @gfp: The GFP_FLAGS to use for allocations.
6245 *
6246 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6247 * request, -ENOMEM if memory could not be allocated.
6248 */
6249int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6250 unsigned long last, void *entry, gfp_t gfp)
6251{
6252 MA_STATE(ms, mt, first, last);
6253
6254 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6255 return -EINVAL;
6256
6257 if (first > last)
6258 return -EINVAL;
6259
6260 mtree_lock(mt);
6261retry:
6262 mas_insert(&ms, entry);
6263 if (mas_nomem(&ms, gfp))
6264 goto retry;
6265
6266 mtree_unlock(mt);
6267 if (mas_is_err(&ms))
6268 return xa_err(ms.node);
6269
6270 return 0;
6271}
6272EXPORT_SYMBOL(mtree_insert_range);
6273
6274/**
6275 * mtree_insert() - Insert an entry at a give index if there is no value.
6276 * @mt: The maple tree
6277 * @index : The index to store the value
6278 * @entry: The entry to store
6279 * @gfp: The FGP_FLAGS to use for allocations.
6280 *
6281 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6282 * request, -ENOMEM if memory could not be allocated.
6283 */
6284int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6285 gfp_t gfp)
6286{
6287 return mtree_insert_range(mt, index, index, entry, gfp);
6288}
6289EXPORT_SYMBOL(mtree_insert);
6290
6291int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6292 void *entry, unsigned long size, unsigned long min,
6293 unsigned long max, gfp_t gfp)
6294{
6295 int ret = 0;
6296
6297 MA_STATE(mas, mt, min, max - size);
6298 if (!mt_is_alloc(mt))
6299 return -EINVAL;
6300
6301 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6302 return -EINVAL;
6303
6304 if (min > max)
6305 return -EINVAL;
6306
6307 if (max < size)
6308 return -EINVAL;
6309
6310 if (!size)
6311 return -EINVAL;
6312
6313 mtree_lock(mt);
6314retry:
6315 mas.offset = 0;
6316 mas.index = min;
6317 mas.last = max - size;
6318 ret = mas_alloc(&mas, entry, size, startp);
6319 if (mas_nomem(&mas, gfp))
6320 goto retry;
6321
6322 mtree_unlock(mt);
6323 return ret;
6324}
6325EXPORT_SYMBOL(mtree_alloc_range);
6326
6327int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6328 void *entry, unsigned long size, unsigned long min,
6329 unsigned long max, gfp_t gfp)
6330{
6331 int ret = 0;
6332
6333 MA_STATE(mas, mt, min, max - size);
6334 if (!mt_is_alloc(mt))
6335 return -EINVAL;
6336
6337 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6338 return -EINVAL;
6339
6340 if (min >= max)
6341 return -EINVAL;
6342
6343 if (max < size - 1)
6344 return -EINVAL;
6345
6346 if (!size)
6347 return -EINVAL;
6348
6349 mtree_lock(mt);
6350retry:
6351 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6352 if (mas_nomem(&mas, gfp))
6353 goto retry;
6354
6355 mtree_unlock(mt);
6356 return ret;
6357}
6358EXPORT_SYMBOL(mtree_alloc_rrange);
6359
6360/**
6361 * mtree_erase() - Find an index and erase the entire range.
6362 * @mt: The maple tree
6363 * @index: The index to erase
6364 *
6365 * Erasing is the same as a walk to an entry then a store of a NULL to that
6366 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6367 *
6368 * Return: The entry stored at the @index or %NULL
6369 */
6370void *mtree_erase(struct maple_tree *mt, unsigned long index)
6371{
6372 void *entry = NULL;
6373
6374 MA_STATE(mas, mt, index, index);
6375 trace_ma_op(__func__, &mas);
6376
6377 mtree_lock(mt);
6378 entry = mas_erase(&mas);
6379 mtree_unlock(mt);
6380
6381 return entry;
6382}
6383EXPORT_SYMBOL(mtree_erase);
6384
6385/**
6386 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6387 * @mt: The maple tree
6388 *
6389 * Note: Does not handle locking.
6390 */
6391void __mt_destroy(struct maple_tree *mt)
6392{
6393 void *root = mt_root_locked(mt);
6394
6395 rcu_assign_pointer(mt->ma_root, NULL);
6396 if (xa_is_node(root))
6397 mte_destroy_walk(root, mt);
6398
6399 mt->ma_flags = 0;
6400}
6401EXPORT_SYMBOL_GPL(__mt_destroy);
6402
6403/**
6404 * mtree_destroy() - Destroy a maple tree
6405 * @mt: The maple tree
6406 *
6407 * Frees all resources used by the tree. Handles locking.
6408 */
6409void mtree_destroy(struct maple_tree *mt)
6410{
6411 mtree_lock(mt);
6412 __mt_destroy(mt);
6413 mtree_unlock(mt);
6414}
6415EXPORT_SYMBOL(mtree_destroy);
6416
6417/**
6418 * mt_find() - Search from the start up until an entry is found.
6419 * @mt: The maple tree
6420 * @index: Pointer which contains the start location of the search
6421 * @max: The maximum value to check
6422 *
6423 * Handles locking. @index will be incremented to one beyond the range.
6424 *
6425 * Return: The entry at or after the @index or %NULL
6426 */
6427void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6428{
6429 MA_STATE(mas, mt, *index, *index);
6430 void *entry;
6431#ifdef CONFIG_DEBUG_MAPLE_TREE
6432 unsigned long copy = *index;
6433#endif
6434
6435 trace_ma_read(__func__, &mas);
6436
6437 if ((*index) > max)
6438 return NULL;
6439
6440 rcu_read_lock();
6441retry:
6442 entry = mas_state_walk(&mas);
6443 if (mas_is_start(&mas))
6444 goto retry;
6445
6446 if (unlikely(xa_is_zero(entry)))
6447 entry = NULL;
6448
6449 if (entry)
6450 goto unlock;
6451
6452 while (mas_searchable(&mas) && (mas.index < max)) {
6453 entry = mas_next_entry(&mas, max);
6454 if (likely(entry && !xa_is_zero(entry)))
6455 break;
6456 }
6457
6458 if (unlikely(xa_is_zero(entry)))
6459 entry = NULL;
6460unlock:
6461 rcu_read_unlock();
6462 if (likely(entry)) {
6463 *index = mas.last + 1;
6464#ifdef CONFIG_DEBUG_MAPLE_TREE
6465 if ((*index) && (*index) <= copy)
6466 pr_err("index not increased! %lx <= %lx\n",
6467 *index, copy);
6468 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6469#endif
6470 }
6471
6472 return entry;
6473}
6474EXPORT_SYMBOL(mt_find);
6475
6476/**
6477 * mt_find_after() - Search from the start up until an entry is found.
6478 * @mt: The maple tree
6479 * @index: Pointer which contains the start location of the search
6480 * @max: The maximum value to check
6481 *
6482 * Handles locking, detects wrapping on index == 0
6483 *
6484 * Return: The entry at or after the @index or %NULL
6485 */
6486void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6487 unsigned long max)
6488{
6489 if (!(*index))
6490 return NULL;
6491
6492 return mt_find(mt, index, max);
6493}
6494EXPORT_SYMBOL(mt_find_after);
6495
6496#ifdef CONFIG_DEBUG_MAPLE_TREE
6497atomic_t maple_tree_tests_run;
6498EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6499atomic_t maple_tree_tests_passed;
6500EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6501
6502#ifndef __KERNEL__
6503extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6504void mt_set_non_kernel(unsigned int val)
6505{
6506 kmem_cache_set_non_kernel(maple_node_cache, val);
6507}
6508
6509extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6510unsigned long mt_get_alloc_size(void)
6511{
6512 return kmem_cache_get_alloc(maple_node_cache);
6513}
6514
6515extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6516void mt_zero_nr_tallocated(void)
6517{
6518 kmem_cache_zero_nr_tallocated(maple_node_cache);
6519}
6520
6521extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6522unsigned int mt_nr_tallocated(void)
6523{
6524 return kmem_cache_nr_tallocated(maple_node_cache);
6525}
6526
6527extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6528unsigned int mt_nr_allocated(void)
6529{
6530 return kmem_cache_nr_allocated(maple_node_cache);
6531}
6532
6533/*
6534 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6535 * @mas: The maple state
6536 * @index: The index to restore in @mas.
6537 *
6538 * Used in test code.
6539 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6540 */
6541static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6542{
6543 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6544 return 0;
6545
6546 if (likely(!mte_dead_node(mas->node)))
6547 return 0;
6548
6549 mas_rewalk(mas, index);
6550 return 1;
6551}
6552
6553void mt_cache_shrink(void)
6554{
6555}
6556#else
6557/*
6558 * mt_cache_shrink() - For testing, don't use this.
6559 *
6560 * Certain testcases can trigger an OOM when combined with other memory
6561 * debugging configuration options. This function is used to reduce the
6562 * possibility of an out of memory even due to kmem_cache objects remaining
6563 * around for longer than usual.
6564 */
6565void mt_cache_shrink(void)
6566{
6567 kmem_cache_shrink(maple_node_cache);
6568
6569}
6570EXPORT_SYMBOL_GPL(mt_cache_shrink);
6571
6572#endif /* not defined __KERNEL__ */
6573/*
6574 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6575 * @mas: The maple state
6576 * @offset: The offset into the slot array to fetch.
6577 *
6578 * Return: The entry stored at @offset.
6579 */
6580static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6581 unsigned char offset)
6582{
6583 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6584 offset);
6585}
6586
6587
6588/*
6589 * mas_first_entry() - Go the first leaf and find the first entry.
6590 * @mas: the maple state.
6591 * @limit: the maximum index to check.
6592 * @*r_start: Pointer to set to the range start.
6593 *
6594 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6595 *
6596 * Return: The first entry or MAS_NONE.
6597 */
6598static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6599 unsigned long limit, enum maple_type mt)
6600
6601{
6602 unsigned long max;
6603 unsigned long *pivots;
6604 void __rcu **slots;
6605 void *entry = NULL;
6606
6607 mas->index = mas->min;
6608 if (mas->index > limit)
6609 goto none;
6610
6611 max = mas->max;
6612 mas->offset = 0;
6613 while (likely(!ma_is_leaf(mt))) {
6614 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6615 slots = ma_slots(mn, mt);
6616 pivots = ma_pivots(mn, mt);
6617 max = pivots[0];
6618 entry = mas_slot(mas, slots, 0);
6619 if (unlikely(ma_dead_node(mn)))
6620 return NULL;
6621 mas->node = entry;
6622 mn = mas_mn(mas);
6623 mt = mte_node_type(mas->node);
6624 }
6625 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6626
6627 mas->max = max;
6628 slots = ma_slots(mn, mt);
6629 entry = mas_slot(mas, slots, 0);
6630 if (unlikely(ma_dead_node(mn)))
6631 return NULL;
6632
6633 /* Slot 0 or 1 must be set */
6634 if (mas->index > limit)
6635 goto none;
6636
6637 if (likely(entry))
6638 return entry;
6639
6640 pivots = ma_pivots(mn, mt);
6641 mas->index = pivots[0] + 1;
6642 mas->offset = 1;
6643 entry = mas_slot(mas, slots, 1);
6644 if (unlikely(ma_dead_node(mn)))
6645 return NULL;
6646
6647 if (mas->index > limit)
6648 goto none;
6649
6650 if (likely(entry))
6651 return entry;
6652
6653none:
6654 if (likely(!ma_dead_node(mn)))
6655 mas->node = MAS_NONE;
6656 return NULL;
6657}
6658
6659/* Depth first search, post-order */
6660static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6661{
6662
6663 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6664 unsigned long p_min, p_max;
6665
6666 mas_next_node(mas, mas_mn(mas), max);
6667 if (!mas_is_none(mas))
6668 return;
6669
6670 if (mte_is_root(mn))
6671 return;
6672
6673 mas->node = mn;
6674 mas_ascend(mas);
6675 while (mas->node != MAS_NONE) {
6676 p = mas->node;
6677 p_min = mas->min;
6678 p_max = mas->max;
6679 mas_prev_node(mas, 0);
6680 }
6681
6682 if (p == MAS_NONE)
6683 return;
6684
6685 mas->node = p;
6686 mas->max = p_max;
6687 mas->min = p_min;
6688}
6689
6690/* Tree validations */
6691static void mt_dump_node(const struct maple_tree *mt, void *entry,
6692 unsigned long min, unsigned long max, unsigned int depth);
6693static void mt_dump_range(unsigned long min, unsigned long max,
6694 unsigned int depth)
6695{
6696 static const char spaces[] = " ";
6697
6698 if (min == max)
6699 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6700 else
6701 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6702}
6703
6704static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6705 unsigned int depth)
6706{
6707 mt_dump_range(min, max, depth);
6708
6709 if (xa_is_value(entry))
6710 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6711 xa_to_value(entry), entry);
6712 else if (xa_is_zero(entry))
6713 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6714 else if (mt_is_reserved(entry))
6715 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6716 else
6717 pr_cont("%p\n", entry);
6718}
6719
6720static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6721 unsigned long min, unsigned long max, unsigned int depth)
6722{
6723 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6724 bool leaf = mte_is_leaf(entry);
6725 unsigned long first = min;
6726 int i;
6727
6728 pr_cont(" contents: ");
6729 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6730 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6731 pr_cont("%p\n", node->slot[i]);
6732 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6733 unsigned long last = max;
6734
6735 if (i < (MAPLE_RANGE64_SLOTS - 1))
6736 last = node->pivot[i];
6737 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6738 break;
6739 if (last == 0 && i > 0)
6740 break;
6741 if (leaf)
6742 mt_dump_entry(mt_slot(mt, node->slot, i),
6743 first, last, depth + 1);
6744 else if (node->slot[i])
6745 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6746 first, last, depth + 1);
6747
6748 if (last == max)
6749 break;
6750 if (last > max) {
6751 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6752 node, last, max, i);
6753 break;
6754 }
6755 first = last + 1;
6756 }
6757}
6758
6759static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6760 unsigned long min, unsigned long max, unsigned int depth)
6761{
6762 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6763 bool leaf = mte_is_leaf(entry);
6764 unsigned long first = min;
6765 int i;
6766
6767 pr_cont(" contents: ");
6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6769 pr_cont("%lu ", node->gap[i]);
6770 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6771 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6772 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6773 pr_cont("%p\n", node->slot[i]);
6774 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6775 unsigned long last = max;
6776
6777 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6778 last = node->pivot[i];
6779 else if (!node->slot[i])
6780 break;
6781 if (last == 0 && i > 0)
6782 break;
6783 if (leaf)
6784 mt_dump_entry(mt_slot(mt, node->slot, i),
6785 first, last, depth + 1);
6786 else if (node->slot[i])
6787 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6788 first, last, depth + 1);
6789
6790 if (last == max)
6791 break;
6792 if (last > max) {
6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6794 node, last, max, i);
6795 break;
6796 }
6797 first = last + 1;
6798 }
6799}
6800
6801static void mt_dump_node(const struct maple_tree *mt, void *entry,
6802 unsigned long min, unsigned long max, unsigned int depth)
6803{
6804 struct maple_node *node = mte_to_node(entry);
6805 unsigned int type = mte_node_type(entry);
6806 unsigned int i;
6807
6808 mt_dump_range(min, max, depth);
6809
6810 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6811 node ? node->parent : NULL);
6812 switch (type) {
6813 case maple_dense:
6814 pr_cont("\n");
6815 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6816 if (min + i > max)
6817 pr_cont("OUT OF RANGE: ");
6818 mt_dump_entry(mt_slot(mt, node->slot, i),
6819 min + i, min + i, depth);
6820 }
6821 break;
6822 case maple_leaf_64:
6823 case maple_range_64:
6824 mt_dump_range64(mt, entry, min, max, depth);
6825 break;
6826 case maple_arange_64:
6827 mt_dump_arange64(mt, entry, min, max, depth);
6828 break;
6829
6830 default:
6831 pr_cont(" UNKNOWN TYPE\n");
6832 }
6833}
6834
6835void mt_dump(const struct maple_tree *mt)
6836{
6837 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6838
6839 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6840 mt, mt->ma_flags, mt_height(mt), entry);
6841 if (!xa_is_node(entry))
6842 mt_dump_entry(entry, 0, 0, 0);
6843 else if (entry)
6844 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6845}
6846EXPORT_SYMBOL_GPL(mt_dump);
6847
6848/*
6849 * Calculate the maximum gap in a node and check if that's what is reported in
6850 * the parent (unless root).
6851 */
6852static void mas_validate_gaps(struct ma_state *mas)
6853{
6854 struct maple_enode *mte = mas->node;
6855 struct maple_node *p_mn;
6856 unsigned long gap = 0, max_gap = 0;
6857 unsigned long p_end, p_start = mas->min;
6858 unsigned char p_slot;
6859 unsigned long *gaps = NULL;
6860 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6861 int i;
6862
6863 if (ma_is_dense(mte_node_type(mte))) {
6864 for (i = 0; i < mt_slot_count(mte); i++) {
6865 if (mas_get_slot(mas, i)) {
6866 if (gap > max_gap)
6867 max_gap = gap;
6868 gap = 0;
6869 continue;
6870 }
6871 gap++;
6872 }
6873 goto counted;
6874 }
6875
6876 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6877 for (i = 0; i < mt_slot_count(mte); i++) {
6878 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6879
6880 if (!gaps) {
6881 if (mas_get_slot(mas, i)) {
6882 gap = 0;
6883 goto not_empty;
6884 }
6885
6886 gap += p_end - p_start + 1;
6887 } else {
6888 void *entry = mas_get_slot(mas, i);
6889
6890 gap = gaps[i];
6891 if (!entry) {
6892 if (gap != p_end - p_start + 1) {
6893 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6894 mas_mn(mas), i,
6895 mas_get_slot(mas, i), gap,
6896 p_end, p_start);
6897 mt_dump(mas->tree);
6898
6899 MT_BUG_ON(mas->tree,
6900 gap != p_end - p_start + 1);
6901 }
6902 } else {
6903 if (gap > p_end - p_start + 1) {
6904 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6905 mas_mn(mas), i, gap, p_end, p_start,
6906 p_end - p_start + 1);
6907 MT_BUG_ON(mas->tree,
6908 gap > p_end - p_start + 1);
6909 }
6910 }
6911 }
6912
6913 if (gap > max_gap)
6914 max_gap = gap;
6915not_empty:
6916 p_start = p_end + 1;
6917 if (p_end >= mas->max)
6918 break;
6919 }
6920
6921counted:
6922 if (mte_is_root(mte))
6923 return;
6924
6925 p_slot = mte_parent_slot(mas->node);
6926 p_mn = mte_parent(mte);
6927 MT_BUG_ON(mas->tree, max_gap > mas->max);
6928 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6929 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6930 mt_dump(mas->tree);
6931 }
6932
6933 MT_BUG_ON(mas->tree,
6934 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6935}
6936
6937static void mas_validate_parent_slot(struct ma_state *mas)
6938{
6939 struct maple_node *parent;
6940 struct maple_enode *node;
6941 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6942 unsigned char p_slot = mte_parent_slot(mas->node);
6943 void __rcu **slots;
6944 int i;
6945
6946 if (mte_is_root(mas->node))
6947 return;
6948
6949 parent = mte_parent(mas->node);
6950 slots = ma_slots(parent, p_type);
6951 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6952
6953 /* Check prev/next parent slot for duplicate node entry */
6954
6955 for (i = 0; i < mt_slots[p_type]; i++) {
6956 node = mas_slot(mas, slots, i);
6957 if (i == p_slot) {
6958 if (node != mas->node)
6959 pr_err("parent %p[%u] does not have %p\n",
6960 parent, i, mas_mn(mas));
6961 MT_BUG_ON(mas->tree, node != mas->node);
6962 } else if (node == mas->node) {
6963 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6964 mas_mn(mas), parent, i, p_slot);
6965 MT_BUG_ON(mas->tree, node == mas->node);
6966 }
6967 }
6968}
6969
6970static void mas_validate_child_slot(struct ma_state *mas)
6971{
6972 enum maple_type type = mte_node_type(mas->node);
6973 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6974 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6975 struct maple_enode *child;
6976 unsigned char i;
6977
6978 if (mte_is_leaf(mas->node))
6979 return;
6980
6981 for (i = 0; i < mt_slots[type]; i++) {
6982 child = mas_slot(mas, slots, i);
6983 if (!pivots[i] || pivots[i] == mas->max)
6984 break;
6985
6986 if (!child)
6987 break;
6988
6989 if (mte_parent_slot(child) != i) {
6990 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6991 mas_mn(mas), i, mte_to_node(child),
6992 mte_parent_slot(child));
6993 MT_BUG_ON(mas->tree, 1);
6994 }
6995
6996 if (mte_parent(child) != mte_to_node(mas->node)) {
6997 pr_err("child %p has parent %p not %p\n",
6998 mte_to_node(child), mte_parent(child),
6999 mte_to_node(mas->node));
7000 MT_BUG_ON(mas->tree, 1);
7001 }
7002 }
7003}
7004
7005/*
7006 * Validate all pivots are within mas->min and mas->max.
7007 */
7008static void mas_validate_limits(struct ma_state *mas)
7009{
7010 int i;
7011 unsigned long prev_piv = 0;
7012 enum maple_type type = mte_node_type(mas->node);
7013 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7014 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7015
7016 /* all limits are fine here. */
7017 if (mte_is_root(mas->node))
7018 return;
7019
7020 for (i = 0; i < mt_slots[type]; i++) {
7021 unsigned long piv;
7022
7023 piv = mas_safe_pivot(mas, pivots, i, type);
7024
7025 if (!piv && (i != 0))
7026 break;
7027
7028 if (!mte_is_leaf(mas->node)) {
7029 void *entry = mas_slot(mas, slots, i);
7030
7031 if (!entry)
7032 pr_err("%p[%u] cannot be null\n",
7033 mas_mn(mas), i);
7034
7035 MT_BUG_ON(mas->tree, !entry);
7036 }
7037
7038 if (prev_piv > piv) {
7039 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7040 mas_mn(mas), i, piv, prev_piv);
7041 MT_BUG_ON(mas->tree, piv < prev_piv);
7042 }
7043
7044 if (piv < mas->min) {
7045 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7046 piv, mas->min);
7047 MT_BUG_ON(mas->tree, piv < mas->min);
7048 }
7049 if (piv > mas->max) {
7050 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7051 piv, mas->max);
7052 MT_BUG_ON(mas->tree, piv > mas->max);
7053 }
7054 prev_piv = piv;
7055 if (piv == mas->max)
7056 break;
7057 }
7058 for (i += 1; i < mt_slots[type]; i++) {
7059 void *entry = mas_slot(mas, slots, i);
7060
7061 if (entry && (i != mt_slots[type] - 1)) {
7062 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7063 i, entry);
7064 MT_BUG_ON(mas->tree, entry != NULL);
7065 }
7066
7067 if (i < mt_pivots[type]) {
7068 unsigned long piv = pivots[i];
7069
7070 if (!piv)
7071 continue;
7072
7073 pr_err("%p[%u] should not have piv %lu\n",
7074 mas_mn(mas), i, piv);
7075 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7076 }
7077 }
7078}
7079
7080static void mt_validate_nulls(struct maple_tree *mt)
7081{
7082 void *entry, *last = (void *)1;
7083 unsigned char offset = 0;
7084 void __rcu **slots;
7085 MA_STATE(mas, mt, 0, 0);
7086
7087 mas_start(&mas);
7088 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7089 return;
7090
7091 while (!mte_is_leaf(mas.node))
7092 mas_descend(&mas);
7093
7094 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7095 do {
7096 entry = mas_slot(&mas, slots, offset);
7097 if (!last && !entry) {
7098 pr_err("Sequential nulls end at %p[%u]\n",
7099 mas_mn(&mas), offset);
7100 }
7101 MT_BUG_ON(mt, !last && !entry);
7102 last = entry;
7103 if (offset == mas_data_end(&mas)) {
7104 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7105 if (mas_is_none(&mas))
7106 return;
7107 offset = 0;
7108 slots = ma_slots(mte_to_node(mas.node),
7109 mte_node_type(mas.node));
7110 } else {
7111 offset++;
7112 }
7113
7114 } while (!mas_is_none(&mas));
7115}
7116
7117/*
7118 * validate a maple tree by checking:
7119 * 1. The limits (pivots are within mas->min to mas->max)
7120 * 2. The gap is correctly set in the parents
7121 */
7122void mt_validate(struct maple_tree *mt)
7123{
7124 unsigned char end;
7125
7126 MA_STATE(mas, mt, 0, 0);
7127 rcu_read_lock();
7128 mas_start(&mas);
7129 if (!mas_searchable(&mas))
7130 goto done;
7131
7132 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7133 while (!mas_is_none(&mas)) {
7134 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7135 if (!mte_is_root(mas.node)) {
7136 end = mas_data_end(&mas);
7137 if ((end < mt_min_slot_count(mas.node)) &&
7138 (mas.max != ULONG_MAX)) {
7139 pr_err("Invalid size %u of %p\n", end,
7140 mas_mn(&mas));
7141 MT_BUG_ON(mas.tree, 1);
7142 }
7143
7144 }
7145 mas_validate_parent_slot(&mas);
7146 mas_validate_child_slot(&mas);
7147 mas_validate_limits(&mas);
7148 if (mt_is_alloc(mt))
7149 mas_validate_gaps(&mas);
7150 mas_dfs_postorder(&mas, ULONG_MAX);
7151 }
7152 mt_validate_nulls(mt);
7153done:
7154 rcu_read_unlock();
7155
7156}
7157EXPORT_SYMBOL_GPL(mt_validate);
7158
7159#endif /* CONFIG_DEBUG_MAPLE_TREE */