Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3#include <ctype.h>
4#include <stdio.h>
5#include <stdlib.h>
6#include <string.h>
7#include <libelf.h>
8#include <gelf.h>
9#include <unistd.h>
10#include <linux/ptrace.h>
11#include <linux/kernel.h>
12
13/* s8 will be marked as poison while it's a reg of riscv */
14#if defined(__riscv)
15#define rv_s8 s8
16#endif
17
18#include "bpf.h"
19#include "libbpf.h"
20#include "libbpf_common.h"
21#include "libbpf_internal.h"
22#include "hashmap.h"
23
24/* libbpf's USDT support consists of BPF-side state/code and user-space
25 * state/code working together in concert. BPF-side parts are defined in
26 * usdt.bpf.h header library. User-space state is encapsulated by struct
27 * usdt_manager and all the supporting code centered around usdt_manager.
28 *
29 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
30 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
31 * don't support BPF cookie (see below). These two maps are implicitly
32 * embedded into user's end BPF object file when user's code included
33 * usdt.bpf.h. This means that libbpf doesn't do anything special to create
34 * these USDT support maps. They are created by normal libbpf logic of
35 * instantiating BPF maps when opening and loading BPF object.
36 *
37 * As such, libbpf is basically unaware of the need to do anything
38 * USDT-related until the very first call to bpf_program__attach_usdt(), which
39 * can be called by user explicitly or happen automatically during skeleton
40 * attach (or, equivalently, through generic bpf_program__attach() call). At
41 * this point, libbpf will instantiate and initialize struct usdt_manager and
42 * store it in bpf_object. USDT manager is per-BPF object construct, as each
43 * independent BPF object might or might not have USDT programs, and thus all
44 * the expected USDT-related state. There is no coordination between two
45 * bpf_object in parts of USDT attachment, they are oblivious of each other's
46 * existence and libbpf is just oblivious, dealing with bpf_object-specific
47 * USDT state.
48 *
49 * Quick crash course on USDTs.
50 *
51 * From user-space application's point of view, USDT is essentially just
52 * a slightly special function call that normally has zero overhead, unless it
53 * is being traced by some external entity (e.g, BPF-based tool). Here's how
54 * a typical application can trigger USDT probe:
55 *
56 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package
57 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
58 *
59 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
60 *
61 * USDT is identified by its <provider-name>:<probe-name> pair of names. Each
62 * individual USDT has a fixed number of arguments (3 in the above example)
63 * and specifies values of each argument as if it was a function call.
64 *
65 * USDT call is actually not a function call, but is instead replaced by
66 * a single NOP instruction (thus zero overhead, effectively). But in addition
67 * to that, those USDT macros generate special SHT_NOTE ELF records in
68 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
69 * `readelf -n <binary>`:
70 *
71 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
72 * Provider: test
73 * Name: usdt12
74 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
75 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
76 *
77 * In this case we have USDT test:usdt12 with 12 arguments.
78 *
79 * Location and base are offsets used to calculate absolute IP address of that
80 * NOP instruction that kernel can replace with an interrupt instruction to
81 * trigger instrumentation code (BPF program for all that we care about).
82 *
83 * Semaphore above is an optional feature. It records an address of a 2-byte
84 * refcount variable (normally in '.probes' ELF section) used for signaling if
85 * there is anything that is attached to USDT. This is useful for user
86 * applications if, for example, they need to prepare some arguments that are
87 * passed only to USDTs and preparation is expensive. By checking if USDT is
88 * "activated", an application can avoid paying those costs unnecessarily.
89 * Recent enough kernel has built-in support for automatically managing this
90 * refcount, which libbpf expects and relies on. If USDT is defined without
91 * associated semaphore, this value will be zero. See selftests for semaphore
92 * examples.
93 *
94 * Arguments is the most interesting part. This USDT specification string is
95 * providing information about all the USDT arguments and their locations. The
96 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
97 * whether the argument is signed or unsigned (negative size means signed).
98 * The part after @ sign is assembly-like definition of argument location
99 * (see [0] for more details). Technically, assembler can provide some pretty
100 * advanced definitions, but libbpf is currently supporting three most common
101 * cases:
102 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
103 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
104 * whose value is in register %rdx";
105 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
106 * specifies signed 32-bit integer stored at offset -1204 bytes from
107 * memory address stored in %rbp.
108 *
109 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
110 *
111 * During attachment, libbpf parses all the relevant USDT specifications and
112 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
113 * code through spec map. This allows BPF applications to quickly fetch the
114 * actual value at runtime using a simple BPF-side code.
115 *
116 * With basics out of the way, let's go over less immediately obvious aspects
117 * of supporting USDTs.
118 *
119 * First, there is no special USDT BPF program type. It is actually just
120 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
121 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
122 * that uprobe is usually attached at the function entry, while USDT will
123 * normally be somewhere inside the function. But it should always be
124 * pointing to NOP instruction, which makes such uprobes the fastest uprobe
125 * kind.
126 *
127 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
128 * macro invocations can end up being inlined many-many times, depending on
129 * specifics of each individual user application. So single conceptual USDT
130 * (identified by provider:name pair of identifiers) is, generally speaking,
131 * multiple uprobe locations (USDT call sites) in different places in user
132 * application. Further, again due to inlining, each USDT call site might end
133 * up having the same argument #N be located in a different place. In one call
134 * site it could be a constant, in another will end up in a register, and in
135 * yet another could be some other register or even somewhere on the stack.
136 *
137 * As such, "attaching to USDT" means (in general case) attaching the same
138 * uprobe BPF program to multiple target locations in user application, each
139 * potentially having a completely different USDT spec associated with it.
140 * To wire all this up together libbpf allocates a unique integer spec ID for
141 * each unique USDT spec. Spec IDs are allocated as sequential small integers
142 * so that they can be used as keys in array BPF map (for performance reasons).
143 * Spec ID allocation and accounting is big part of what usdt_manager is
144 * about. This state has to be maintained per-BPF object and coordinate
145 * between different USDT attachments within the same BPF object.
146 *
147 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
148 * as struct usdt_spec. Each invocation of BPF program at runtime needs to
149 * know its associated spec ID. It gets it either through BPF cookie, which
150 * libbpf sets to spec ID during attach time, or, if kernel is too old to
151 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
152 * case. The latter means that some modes of operation can't be supported
153 * without BPF cookie. Such a mode is attaching to shared library "generically",
154 * without specifying target process. In such case, it's impossible to
155 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
156 * is not supported without BPF cookie support.
157 *
158 * Note that libbpf is using BPF cookie functionality for its own internal
159 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
160 * provides conceptually equivalent USDT cookie support. It's still u64
161 * user-provided value that can be associated with USDT attachment. Note that
162 * this will be the same value for all USDT call sites within the same single
163 * *logical* USDT attachment. This makes sense because to user attaching to
164 * USDT is a single BPF program triggered for singular USDT probe. The fact
165 * that this is done at multiple actual locations is a mostly hidden
166 * implementation details. This USDT cookie value can be fetched with
167 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
168 *
169 * Lastly, while single USDT can have tons of USDT call sites, it doesn't
170 * necessarily have that many different USDT specs. It very well might be
171 * that 1000 USDT call sites only need 5 different USDT specs, because all the
172 * arguments are typically contained in a small set of registers or stack
173 * locations. As such, it's wasteful to allocate as many USDT spec IDs as
174 * there are USDT call sites. So libbpf tries to be frugal and performs
175 * on-the-fly deduplication during a single USDT attachment to only allocate
176 * the minimal required amount of unique USDT specs (and thus spec IDs). This
177 * is trivially achieved by using USDT spec string (Arguments string from USDT
178 * note) as a lookup key in a hashmap. USDT spec string uniquely defines
179 * everything about how to fetch USDT arguments, so two USDT call sites
180 * sharing USDT spec string can safely share the same USDT spec and spec ID.
181 * Note, this spec string deduplication is happening only during the same USDT
182 * attachment, so each USDT spec shares the same USDT cookie value. This is
183 * not generally true for other USDT attachments within the same BPF object,
184 * as even if USDT spec string is the same, USDT cookie value can be
185 * different. It was deemed excessive to try to deduplicate across independent
186 * USDT attachments by taking into account USDT spec string *and* USDT cookie
187 * value, which would complicate spec ID accounting significantly for little
188 * gain.
189 */
190
191#define USDT_BASE_SEC ".stapsdt.base"
192#define USDT_SEMA_SEC ".probes"
193#define USDT_NOTE_SEC ".note.stapsdt"
194#define USDT_NOTE_TYPE 3
195#define USDT_NOTE_NAME "stapsdt"
196
197/* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
198enum usdt_arg_type {
199 USDT_ARG_CONST,
200 USDT_ARG_REG,
201 USDT_ARG_REG_DEREF,
202 USDT_ARG_SIB,
203};
204
205/* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206struct usdt_arg_spec {
207 __u64 val_off;
208#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209 enum usdt_arg_type arg_type: 8;
210 __u16 idx_reg_off: 12;
211 __u16 scale_bitshift: 4;
212 __u8 __reserved: 8; /* keep reg_off offset stable */
213#else
214 __u8 __reserved: 8; /* keep reg_off offset stable */
215 __u16 idx_reg_off: 12;
216 __u16 scale_bitshift: 4;
217 enum usdt_arg_type arg_type: 8;
218#endif
219 short reg_off;
220 bool arg_signed;
221 char arg_bitshift;
222};
223
224/* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
225#define USDT_MAX_ARG_CNT 12
226
227/* should match struct __bpf_usdt_spec from usdt.bpf.h */
228struct usdt_spec {
229 struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
230 __u64 usdt_cookie;
231 short arg_cnt;
232};
233
234struct usdt_note {
235 const char *provider;
236 const char *name;
237 /* USDT args specification string, e.g.:
238 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
239 */
240 const char *args;
241 long loc_addr;
242 long base_addr;
243 long sema_addr;
244};
245
246struct usdt_target {
247 long abs_ip;
248 long rel_ip;
249 long sema_off;
250 struct usdt_spec spec;
251 const char *spec_str;
252};
253
254struct usdt_manager {
255 struct bpf_map *specs_map;
256 struct bpf_map *ip_to_spec_id_map;
257
258 int *free_spec_ids;
259 size_t free_spec_cnt;
260 size_t next_free_spec_id;
261
262 bool has_bpf_cookie;
263 bool has_sema_refcnt;
264 bool has_uprobe_multi;
265};
266
267struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
268{
269 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
270 struct usdt_manager *man;
271 struct bpf_map *specs_map, *ip_to_spec_id_map;
272
273 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
274 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
275 if (!specs_map || !ip_to_spec_id_map) {
276 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
277 return ERR_PTR(-ESRCH);
278 }
279
280 man = calloc(1, sizeof(*man));
281 if (!man)
282 return ERR_PTR(-ENOMEM);
283
284 man->specs_map = specs_map;
285 man->ip_to_spec_id_map = ip_to_spec_id_map;
286
287 /* Detect if BPF cookie is supported for kprobes.
288 * We don't need IP-to-ID mapping if we can use BPF cookies.
289 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
290 */
291 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
292
293 /* Detect kernel support for automatic refcounting of USDT semaphore.
294 * If this is not supported, USDTs with semaphores will not be supported.
295 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
296 */
297 man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
298
299 /*
300 * Detect kernel support for uprobe multi link to be used for attaching
301 * usdt probes.
302 */
303 man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
304 return man;
305}
306
307void usdt_manager_free(struct usdt_manager *man)
308{
309 if (IS_ERR_OR_NULL(man))
310 return;
311
312 free(man->free_spec_ids);
313 free(man);
314}
315
316static int sanity_check_usdt_elf(Elf *elf, const char *path)
317{
318 GElf_Ehdr ehdr;
319 int endianness;
320
321 if (elf_kind(elf) != ELF_K_ELF) {
322 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
323 return -EBADF;
324 }
325
326 switch (gelf_getclass(elf)) {
327 case ELFCLASS64:
328 if (sizeof(void *) != 8) {
329 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
330 return -EBADF;
331 }
332 break;
333 case ELFCLASS32:
334 if (sizeof(void *) != 4) {
335 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
336 return -EBADF;
337 }
338 break;
339 default:
340 pr_warn("usdt: unsupported ELF class for '%s'\n", path);
341 return -EBADF;
342 }
343
344 if (!gelf_getehdr(elf, &ehdr))
345 return -EINVAL;
346
347 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
348 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
349 path, ehdr.e_type);
350 return -EBADF;
351 }
352
353#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
354 endianness = ELFDATA2LSB;
355#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
356 endianness = ELFDATA2MSB;
357#else
358# error "Unrecognized __BYTE_ORDER__"
359#endif
360 if (endianness != ehdr.e_ident[EI_DATA]) {
361 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
362 return -EBADF;
363 }
364
365 return 0;
366}
367
368static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
369{
370 Elf_Scn *sec = NULL;
371 size_t shstrndx;
372
373 if (elf_getshdrstrndx(elf, &shstrndx))
374 return -EINVAL;
375
376 /* check if ELF is corrupted and avoid calling elf_strptr if yes */
377 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
378 return -EINVAL;
379
380 while ((sec = elf_nextscn(elf, sec)) != NULL) {
381 char *name;
382
383 if (!gelf_getshdr(sec, shdr))
384 return -EINVAL;
385
386 name = elf_strptr(elf, shstrndx, shdr->sh_name);
387 if (name && strcmp(sec_name, name) == 0) {
388 *scn = sec;
389 return 0;
390 }
391 }
392
393 return -ENOENT;
394}
395
396struct elf_seg {
397 long start;
398 long end;
399 long offset;
400 bool is_exec;
401};
402
403static int cmp_elf_segs(const void *_a, const void *_b)
404{
405 const struct elf_seg *a = _a;
406 const struct elf_seg *b = _b;
407
408 return a->start < b->start ? -1 : 1;
409}
410
411static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
412{
413 GElf_Phdr phdr;
414 size_t n;
415 int i, err;
416 struct elf_seg *seg;
417 void *tmp;
418
419 *seg_cnt = 0;
420
421 if (elf_getphdrnum(elf, &n)) {
422 err = -errno;
423 return err;
424 }
425
426 for (i = 0; i < n; i++) {
427 if (!gelf_getphdr(elf, i, &phdr)) {
428 err = -errno;
429 return err;
430 }
431
432 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
433 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
434 (long)phdr.p_type, (long)phdr.p_flags);
435 if (phdr.p_type != PT_LOAD)
436 continue;
437
438 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
439 if (!tmp)
440 return -ENOMEM;
441
442 *segs = tmp;
443 seg = *segs + *seg_cnt;
444 (*seg_cnt)++;
445
446 seg->start = phdr.p_vaddr;
447 seg->end = phdr.p_vaddr + phdr.p_memsz;
448 seg->offset = phdr.p_offset;
449 seg->is_exec = phdr.p_flags & PF_X;
450 }
451
452 if (*seg_cnt == 0) {
453 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
454 return -ESRCH;
455 }
456
457 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
458 return 0;
459}
460
461static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
462{
463 char path[PATH_MAX], line[PATH_MAX], mode[16];
464 size_t seg_start, seg_end, seg_off;
465 struct elf_seg *seg;
466 int tmp_pid, i, err;
467 FILE *f;
468
469 *seg_cnt = 0;
470
471 /* Handle containerized binaries only accessible from
472 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
473 * /proc/<pid>/maps.
474 */
475 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
476 goto proceed;
477
478 if (!realpath(lib_path, path)) {
479 pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
480 lib_path, errstr(-errno));
481 libbpf_strlcpy(path, lib_path, sizeof(path));
482 }
483
484proceed:
485 sprintf(line, "/proc/%d/maps", pid);
486 f = fopen(line, "re");
487 if (!f) {
488 err = -errno;
489 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
490 line, lib_path, errstr(err));
491 return err;
492 }
493
494 /* We need to handle lines with no path at the end:
495 *
496 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
497 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
498 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
499 */
500 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
501 &seg_start, &seg_end, mode, &seg_off, line) == 5) {
502 void *tmp;
503
504 /* to handle no path case (see above) we need to capture line
505 * without skipping any whitespaces. So we need to strip
506 * leading whitespaces manually here
507 */
508 i = 0;
509 while (isblank(line[i]))
510 i++;
511 if (strcmp(line + i, path) != 0)
512 continue;
513
514 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
515 path, seg_start, seg_end, mode, seg_off);
516
517 /* ignore non-executable sections for shared libs */
518 if (mode[2] != 'x')
519 continue;
520
521 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
522 if (!tmp) {
523 err = -ENOMEM;
524 goto err_out;
525 }
526
527 *segs = tmp;
528 seg = *segs + *seg_cnt;
529 *seg_cnt += 1;
530
531 seg->start = seg_start;
532 seg->end = seg_end;
533 seg->offset = seg_off;
534 seg->is_exec = true;
535 }
536
537 if (*seg_cnt == 0) {
538 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
539 lib_path, path, pid);
540 err = -ESRCH;
541 goto err_out;
542 }
543
544 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
545 err = 0;
546err_out:
547 fclose(f);
548 return err;
549}
550
551static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
552{
553 struct elf_seg *seg;
554 int i;
555
556 /* for ELF binaries (both executables and shared libraries), we are
557 * given virtual address (absolute for executables, relative for
558 * libraries) which should match address range of [seg_start, seg_end)
559 */
560 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
561 if (seg->start <= virtaddr && virtaddr < seg->end)
562 return seg;
563 }
564 return NULL;
565}
566
567static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
568{
569 struct elf_seg *seg;
570 int i;
571
572 /* for VMA segments from /proc/<pid>/maps file, provided "address" is
573 * actually a file offset, so should be fall within logical
574 * offset-based range of [offset_start, offset_end)
575 */
576 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
577 if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
578 return seg;
579 }
580 return NULL;
581}
582
583static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off,
584 size_t desc_off, struct usdt_note *usdt_note);
585
586static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
587
588static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
589 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
590 struct usdt_target **out_targets, size_t *out_target_cnt)
591{
592 size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
593 struct elf_seg *segs = NULL, *vma_segs = NULL;
594 struct usdt_target *targets = NULL, *target;
595 long base_addr = 0;
596 Elf_Scn *notes_scn, *base_scn;
597 GElf_Shdr base_shdr, notes_shdr;
598 GElf_Ehdr ehdr;
599 GElf_Nhdr nhdr;
600 Elf_Data *data;
601 int err;
602
603 *out_targets = NULL;
604 *out_target_cnt = 0;
605
606 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn);
607 if (err) {
608 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
609 return err;
610 }
611
612 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
613 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
614 return -EINVAL;
615 }
616
617 err = parse_elf_segs(elf, path, &segs, &seg_cnt);
618 if (err) {
619 pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
620 path, errstr(err));
621 goto err_out;
622 }
623
624 /* .stapsdt.base ELF section is optional, but is used for prelink
625 * offset compensation (see a big comment further below)
626 */
627 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
628 base_addr = base_shdr.sh_addr;
629
630 data = elf_getdata(notes_scn, 0);
631 off = 0;
632 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
633 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
634 struct usdt_note note;
635 struct elf_seg *seg = NULL;
636 void *tmp;
637
638 err = parse_usdt_note(&nhdr, data->d_buf, name_off, desc_off, ¬e);
639 if (err)
640 goto err_out;
641
642 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
643 continue;
644
645 /* We need to compensate "prelink effect". See [0] for details,
646 * relevant parts quoted here:
647 *
648 * Each SDT probe also expands into a non-allocated ELF note. You can
649 * find this by looking at SHT_NOTE sections and decoding the format;
650 * see below for details. Because the note is non-allocated, it means
651 * there is no runtime cost, and also preserved in both stripped files
652 * and .debug files.
653 *
654 * However, this means that prelink won't adjust the note's contents
655 * for address offsets. Instead, this is done via the .stapsdt.base
656 * section. This is a special section that is added to the text. We
657 * will only ever have one of these sections in a final link and it
658 * will only ever be one byte long. Nothing about this section itself
659 * matters, we just use it as a marker to detect prelink address
660 * adjustments.
661 *
662 * Each probe note records the link-time address of the .stapsdt.base
663 * section alongside the probe PC address. The decoder compares the
664 * base address stored in the note with the .stapsdt.base section's
665 * sh_addr. Initially these are the same, but the section header will
666 * be adjusted by prelink. So the decoder applies the difference to
667 * the probe PC address to get the correct prelinked PC address; the
668 * same adjustment is applied to the semaphore address, if any.
669 *
670 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
671 */
672 usdt_abs_ip = note.loc_addr;
673 if (base_addr && note.base_addr)
674 usdt_abs_ip += base_addr - note.base_addr;
675
676 /* When attaching uprobes (which is what USDTs basically are)
677 * kernel expects file offset to be specified, not a relative
678 * virtual address, so we need to translate virtual address to
679 * file offset, for both ET_EXEC and ET_DYN binaries.
680 */
681 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
682 if (!seg) {
683 err = -ESRCH;
684 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
685 usdt_provider, usdt_name, path, usdt_abs_ip);
686 goto err_out;
687 }
688 if (!seg->is_exec) {
689 err = -ESRCH;
690 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
691 path, seg->start, seg->end, usdt_provider, usdt_name,
692 usdt_abs_ip);
693 goto err_out;
694 }
695 /* translate from virtual address to file offset */
696 usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
697
698 if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
699 /* If we don't have BPF cookie support but need to
700 * attach to a shared library, we'll need to know and
701 * record absolute addresses of attach points due to
702 * the need to lookup USDT spec by absolute IP of
703 * triggered uprobe. Doing this resolution is only
704 * possible when we have a specific PID of the process
705 * that's using specified shared library. BPF cookie
706 * removes the absolute address limitation as we don't
707 * need to do this lookup (we just use BPF cookie as
708 * an index of USDT spec), so for newer kernels with
709 * BPF cookie support libbpf supports USDT attachment
710 * to shared libraries with no PID filter.
711 */
712 if (pid < 0) {
713 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
714 err = -ENOTSUP;
715 goto err_out;
716 }
717
718 /* vma_segs are lazily initialized only if necessary */
719 if (vma_seg_cnt == 0) {
720 err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
721 if (err) {
722 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
723 pid, path, errstr(err));
724 goto err_out;
725 }
726 }
727
728 seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
729 if (!seg) {
730 err = -ESRCH;
731 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
732 usdt_provider, usdt_name, path, usdt_rel_ip);
733 goto err_out;
734 }
735
736 usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
737 }
738
739 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
740 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
741 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
742 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
743
744 /* Adjust semaphore address to be a file offset */
745 if (note.sema_addr) {
746 if (!man->has_sema_refcnt) {
747 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
748 usdt_provider, usdt_name, path);
749 err = -ENOTSUP;
750 goto err_out;
751 }
752
753 seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
754 if (!seg) {
755 err = -ESRCH;
756 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
757 usdt_provider, usdt_name, path, note.sema_addr);
758 goto err_out;
759 }
760 if (seg->is_exec) {
761 err = -ESRCH;
762 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
763 path, seg->start, seg->end, usdt_provider, usdt_name,
764 note.sema_addr);
765 goto err_out;
766 }
767
768 usdt_sema_off = note.sema_addr - seg->start + seg->offset;
769
770 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
771 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
772 path, note.sema_addr, note.base_addr, usdt_sema_off,
773 seg->start, seg->end, seg->offset);
774 }
775
776 /* Record adjusted addresses and offsets and parse USDT spec */
777 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
778 if (!tmp) {
779 err = -ENOMEM;
780 goto err_out;
781 }
782 targets = tmp;
783
784 target = &targets[target_cnt];
785 memset(target, 0, sizeof(*target));
786
787 target->abs_ip = usdt_abs_ip;
788 target->rel_ip = usdt_rel_ip;
789 target->sema_off = usdt_sema_off;
790
791 /* notes.args references strings from ELF itself, so they can
792 * be referenced safely until elf_end() call
793 */
794 target->spec_str = note.args;
795
796 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie);
797 if (err)
798 goto err_out;
799
800 target_cnt++;
801 }
802
803 *out_targets = targets;
804 *out_target_cnt = target_cnt;
805 err = target_cnt;
806
807err_out:
808 free(segs);
809 free(vma_segs);
810 if (err < 0)
811 free(targets);
812 return err;
813}
814
815struct bpf_link_usdt {
816 struct bpf_link link;
817
818 struct usdt_manager *usdt_man;
819
820 size_t spec_cnt;
821 int *spec_ids;
822
823 size_t uprobe_cnt;
824 struct {
825 long abs_ip;
826 struct bpf_link *link;
827 } *uprobes;
828
829 struct bpf_link *multi_link;
830};
831
832static int bpf_link_usdt_detach(struct bpf_link *link)
833{
834 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
835 struct usdt_manager *man = usdt_link->usdt_man;
836 int i;
837
838 bpf_link__destroy(usdt_link->multi_link);
839
840 /* When having multi_link, uprobe_cnt is 0 */
841 for (i = 0; i < usdt_link->uprobe_cnt; i++) {
842 /* detach underlying uprobe link */
843 bpf_link__destroy(usdt_link->uprobes[i].link);
844 /* there is no need to update specs map because it will be
845 * unconditionally overwritten on subsequent USDT attaches,
846 * but if BPF cookies are not used we need to remove entry
847 * from ip_to_spec_id map, otherwise we'll run into false
848 * conflicting IP errors
849 */
850 if (!man->has_bpf_cookie) {
851 /* not much we can do about errors here */
852 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
853 &usdt_link->uprobes[i].abs_ip);
854 }
855 }
856
857 /* try to return the list of previously used spec IDs to usdt_manager
858 * for future reuse for subsequent USDT attaches
859 */
860 if (!man->free_spec_ids) {
861 /* if there were no free spec IDs yet, just transfer our IDs */
862 man->free_spec_ids = usdt_link->spec_ids;
863 man->free_spec_cnt = usdt_link->spec_cnt;
864 usdt_link->spec_ids = NULL;
865 } else {
866 /* otherwise concat IDs */
867 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
868 int *new_free_ids;
869
870 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
871 sizeof(*new_free_ids));
872 /* If we couldn't resize free_spec_ids, we'll just leak
873 * a bunch of free IDs; this is very unlikely to happen and if
874 * system is so exhausted on memory, it's the least of user's
875 * concerns, probably.
876 * So just do our best here to return those IDs to usdt_manager.
877 * Another edge case when we can legitimately get NULL is when
878 * new_cnt is zero, which can happen in some edge cases, so we
879 * need to be careful about that.
880 */
881 if (new_free_ids || new_cnt == 0) {
882 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
883 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
884 man->free_spec_ids = new_free_ids;
885 man->free_spec_cnt = new_cnt;
886 }
887 }
888
889 return 0;
890}
891
892static void bpf_link_usdt_dealloc(struct bpf_link *link)
893{
894 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
895
896 free(usdt_link->spec_ids);
897 free(usdt_link->uprobes);
898 free(usdt_link);
899}
900
901static size_t specs_hash_fn(long key, void *ctx)
902{
903 return str_hash((char *)key);
904}
905
906static bool specs_equal_fn(long key1, long key2, void *ctx)
907{
908 return strcmp((char *)key1, (char *)key2) == 0;
909}
910
911static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
912 struct bpf_link_usdt *link, struct usdt_target *target,
913 int *spec_id, bool *is_new)
914{
915 long tmp;
916 void *new_ids;
917 int err;
918
919 /* check if we already allocated spec ID for this spec string */
920 if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
921 *spec_id = tmp;
922 *is_new = false;
923 return 0;
924 }
925
926 /* otherwise it's a new ID that needs to be set up in specs map and
927 * returned back to usdt_manager when USDT link is detached
928 */
929 new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
930 if (!new_ids)
931 return -ENOMEM;
932 link->spec_ids = new_ids;
933
934 /* get next free spec ID, giving preference to free list, if not empty */
935 if (man->free_spec_cnt) {
936 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
937
938 /* cache spec ID for current spec string for future lookups */
939 err = hashmap__add(specs_hash, target->spec_str, *spec_id);
940 if (err)
941 return err;
942
943 man->free_spec_cnt--;
944 } else {
945 /* don't allocate spec ID bigger than what fits in specs map */
946 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
947 return -E2BIG;
948
949 *spec_id = man->next_free_spec_id;
950
951 /* cache spec ID for current spec string for future lookups */
952 err = hashmap__add(specs_hash, target->spec_str, *spec_id);
953 if (err)
954 return err;
955
956 man->next_free_spec_id++;
957 }
958
959 /* remember new spec ID in the link for later return back to free list on detach */
960 link->spec_ids[link->spec_cnt] = *spec_id;
961 link->spec_cnt++;
962 *is_new = true;
963 return 0;
964}
965
966struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
967 pid_t pid, const char *path,
968 const char *usdt_provider, const char *usdt_name,
969 __u64 usdt_cookie)
970{
971 unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
972 int i, err, spec_map_fd, ip_map_fd;
973 LIBBPF_OPTS(bpf_uprobe_opts, opts);
974 struct hashmap *specs_hash = NULL;
975 struct bpf_link_usdt *link = NULL;
976 struct usdt_target *targets = NULL;
977 __u64 *cookies = NULL;
978 struct elf_fd elf_fd;
979 size_t target_cnt;
980
981 spec_map_fd = bpf_map__fd(man->specs_map);
982 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
983
984 err = elf_open(path, &elf_fd);
985 if (err)
986 return libbpf_err_ptr(err);
987
988 err = sanity_check_usdt_elf(elf_fd.elf, path);
989 if (err)
990 goto err_out;
991
992 /* normalize PID filter */
993 if (pid < 0)
994 pid = -1;
995 else if (pid == 0)
996 pid = getpid();
997
998 /* discover USDT in given binary, optionally limiting
999 * activations to a given PID, if pid > 0
1000 */
1001 err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
1002 usdt_cookie, &targets, &target_cnt);
1003 if (err <= 0) {
1004 err = (err == 0) ? -ENOENT : err;
1005 goto err_out;
1006 }
1007
1008 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1009 if (IS_ERR(specs_hash)) {
1010 err = PTR_ERR(specs_hash);
1011 goto err_out;
1012 }
1013
1014 link = calloc(1, sizeof(*link));
1015 if (!link) {
1016 err = -ENOMEM;
1017 goto err_out;
1018 }
1019
1020 link->usdt_man = man;
1021 link->link.detach = &bpf_link_usdt_detach;
1022 link->link.dealloc = &bpf_link_usdt_dealloc;
1023
1024 if (man->has_uprobe_multi) {
1025 offsets = calloc(target_cnt, sizeof(*offsets));
1026 cookies = calloc(target_cnt, sizeof(*cookies));
1027 ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1028
1029 if (!offsets || !ref_ctr_offsets || !cookies) {
1030 err = -ENOMEM;
1031 goto err_out;
1032 }
1033 } else {
1034 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1035 if (!link->uprobes) {
1036 err = -ENOMEM;
1037 goto err_out;
1038 }
1039 }
1040
1041 for (i = 0; i < target_cnt; i++) {
1042 struct usdt_target *target = &targets[i];
1043 struct bpf_link *uprobe_link;
1044 bool is_new;
1045 int spec_id;
1046
1047 /* Spec ID can be either reused or newly allocated. If it is
1048 * newly allocated, we'll need to fill out spec map, otherwise
1049 * entire spec should be valid and can be just used by a new
1050 * uprobe. We reuse spec when USDT arg spec is identical. We
1051 * also never share specs between two different USDT
1052 * attachments ("links"), so all the reused specs already
1053 * share USDT cookie value implicitly.
1054 */
1055 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1056 if (err)
1057 goto err_out;
1058
1059 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1060 err = -errno;
1061 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1062 spec_id, usdt_provider, usdt_name, path, errstr(err));
1063 goto err_out;
1064 }
1065 if (!man->has_bpf_cookie &&
1066 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1067 err = -errno;
1068 if (err == -EEXIST) {
1069 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1070 spec_id, usdt_provider, usdt_name, path);
1071 } else {
1072 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1073 target->abs_ip, spec_id, usdt_provider, usdt_name,
1074 path, errstr(err));
1075 }
1076 goto err_out;
1077 }
1078
1079 if (man->has_uprobe_multi) {
1080 offsets[i] = target->rel_ip;
1081 ref_ctr_offsets[i] = target->sema_off;
1082 cookies[i] = spec_id;
1083 } else {
1084 opts.ref_ctr_offset = target->sema_off;
1085 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1086 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1087 target->rel_ip, &opts);
1088 err = libbpf_get_error(uprobe_link);
1089 if (err) {
1090 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1091 i, usdt_provider, usdt_name, path, errstr(err));
1092 goto err_out;
1093 }
1094
1095 link->uprobes[i].link = uprobe_link;
1096 link->uprobes[i].abs_ip = target->abs_ip;
1097 link->uprobe_cnt++;
1098 }
1099 }
1100
1101 if (man->has_uprobe_multi) {
1102 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1103 .ref_ctr_offsets = ref_ctr_offsets,
1104 .offsets = offsets,
1105 .cookies = cookies,
1106 .cnt = target_cnt,
1107 );
1108
1109 link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1110 NULL, &opts_multi);
1111 if (!link->multi_link) {
1112 err = -errno;
1113 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1114 usdt_provider, usdt_name, path, errstr(err));
1115 goto err_out;
1116 }
1117
1118 free(offsets);
1119 free(ref_ctr_offsets);
1120 free(cookies);
1121 }
1122
1123 free(targets);
1124 hashmap__free(specs_hash);
1125 elf_close(&elf_fd);
1126 return &link->link;
1127
1128err_out:
1129 free(offsets);
1130 free(ref_ctr_offsets);
1131 free(cookies);
1132
1133 if (link)
1134 bpf_link__destroy(&link->link);
1135 free(targets);
1136 hashmap__free(specs_hash);
1137 elf_close(&elf_fd);
1138 return libbpf_err_ptr(err);
1139}
1140
1141/* Parse out USDT ELF note from '.note.stapsdt' section.
1142 * Logic inspired by perf's code.
1143 */
1144static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off,
1145 struct usdt_note *note)
1146{
1147 const char *provider, *name, *args;
1148 long addrs[3];
1149 size_t len;
1150
1151 /* sanity check USDT note name and type first */
1152 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1153 return -EINVAL;
1154 if (nhdr->n_type != USDT_NOTE_TYPE)
1155 return -EINVAL;
1156
1157 /* sanity check USDT note contents ("description" in ELF terminology) */
1158 len = nhdr->n_descsz;
1159 data = data + desc_off;
1160
1161 /* +3 is the very minimum required to store three empty strings */
1162 if (len < sizeof(addrs) + 3)
1163 return -EINVAL;
1164
1165 /* get location, base, and semaphore addrs */
1166 memcpy(&addrs, data, sizeof(addrs));
1167
1168 /* parse string fields: provider, name, args */
1169 provider = data + sizeof(addrs);
1170
1171 name = (const char *)memchr(provider, '\0', data + len - provider);
1172 if (!name) /* non-zero-terminated provider */
1173 return -EINVAL;
1174 name++;
1175 if (name >= data + len || *name == '\0') /* missing or empty name */
1176 return -EINVAL;
1177
1178 args = memchr(name, '\0', data + len - name);
1179 if (!args) /* non-zero-terminated name */
1180 return -EINVAL;
1181 ++args;
1182 if (args >= data + len) /* missing arguments spec */
1183 return -EINVAL;
1184
1185 note->provider = provider;
1186 note->name = name;
1187 if (*args == '\0' || *args == ':')
1188 note->args = "";
1189 else
1190 note->args = args;
1191 note->loc_addr = addrs[0];
1192 note->base_addr = addrs[1];
1193 note->sema_addr = addrs[2];
1194
1195 return 0;
1196}
1197
1198static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1199
1200static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1201{
1202 struct usdt_arg_spec *arg;
1203 const char *s;
1204 int arg_sz, len;
1205
1206 spec->usdt_cookie = usdt_cookie;
1207 spec->arg_cnt = 0;
1208
1209 s = note->args;
1210 while (s[0]) {
1211 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1212 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1213 USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1214 return -E2BIG;
1215 }
1216
1217 arg = &spec->args[spec->arg_cnt];
1218 len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1219 if (len < 0)
1220 return len;
1221
1222 arg->arg_signed = arg_sz < 0;
1223 if (arg_sz < 0)
1224 arg_sz = -arg_sz;
1225
1226 switch (arg_sz) {
1227 case 1: case 2: case 4: case 8:
1228 arg->arg_bitshift = 64 - arg_sz * 8;
1229 break;
1230 default:
1231 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1232 spec->arg_cnt, s, arg_sz);
1233 return -EINVAL;
1234 }
1235
1236 s += len;
1237 spec->arg_cnt++;
1238 }
1239
1240 return 0;
1241}
1242
1243/* Architecture-specific logic for parsing USDT argument location specs */
1244
1245#if defined(__x86_64__) || defined(__i386__)
1246
1247static int calc_pt_regs_off(const char *reg_name)
1248{
1249 static struct {
1250 const char *names[4];
1251 size_t pt_regs_off;
1252 } reg_map[] = {
1253#ifdef __x86_64__
1254#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1255#else
1256#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1257#endif
1258 { {"rip", "eip", "", ""}, reg_off(rip, eip) },
1259 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1260 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1261 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1262 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1263 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1264 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1265 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1266 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1267#undef reg_off
1268#ifdef __x86_64__
1269 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1270 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1271 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1272 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1273 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1274 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1275 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1276 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1277#endif
1278 };
1279 int i, j;
1280
1281 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1282 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1283 if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1284 return reg_map[i].pt_regs_off;
1285 }
1286 }
1287
1288 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1289 return -ENOENT;
1290}
1291
1292static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1293{
1294 char reg_name[16] = {0}, idx_reg_name[16] = {0};
1295 int len, reg_off, idx_reg_off, scale = 1;
1296 long off = 0;
1297
1298 if (sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^,] , %d ) %n",
1299 arg_sz, &off, reg_name, idx_reg_name, &scale, &len) == 5 ||
1300 sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^,] , %d ) %n",
1301 arg_sz, reg_name, idx_reg_name, &scale, &len) == 4 ||
1302 sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^)] ) %n",
1303 arg_sz, &off, reg_name, idx_reg_name, &len) == 4 ||
1304 sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^)] ) %n",
1305 arg_sz, reg_name, idx_reg_name, &len) == 3
1306 ) {
1307 /*
1308 * Scale Index Base case:
1309 * 1@-96(%rbp,%rax,8)
1310 * 1@(%rbp,%rax,8)
1311 * 1@-96(%rbp,%rax)
1312 * 1@(%rbp,%rax)
1313 */
1314 arg->arg_type = USDT_ARG_SIB;
1315 arg->val_off = off;
1316
1317 reg_off = calc_pt_regs_off(reg_name);
1318 if (reg_off < 0)
1319 return reg_off;
1320 arg->reg_off = reg_off;
1321
1322 idx_reg_off = calc_pt_regs_off(idx_reg_name);
1323 if (idx_reg_off < 0)
1324 return idx_reg_off;
1325 arg->idx_reg_off = idx_reg_off;
1326
1327 /* validate scale factor and set fields directly */
1328 switch (scale) {
1329 case 1: arg->scale_bitshift = 0; break;
1330 case 2: arg->scale_bitshift = 1; break;
1331 case 4: arg->scale_bitshift = 2; break;
1332 case 8: arg->scale_bitshift = 3; break;
1333 default:
1334 pr_warn("usdt: invalid SIB scale %d, expected 1, 2, 4, 8\n", scale);
1335 return -EINVAL;
1336 }
1337 } else if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n",
1338 arg_sz, &off, reg_name, &len) == 3) {
1339 /* Memory dereference case, e.g., -4@-20(%rbp) */
1340 arg->arg_type = USDT_ARG_REG_DEREF;
1341 arg->val_off = off;
1342 reg_off = calc_pt_regs_off(reg_name);
1343 if (reg_off < 0)
1344 return reg_off;
1345 arg->reg_off = reg_off;
1346 } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1347 /* Memory dereference case without offset, e.g., 8@(%rsp) */
1348 arg->arg_type = USDT_ARG_REG_DEREF;
1349 arg->val_off = 0;
1350 reg_off = calc_pt_regs_off(reg_name);
1351 if (reg_off < 0)
1352 return reg_off;
1353 arg->reg_off = reg_off;
1354 } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1355 /* Register read case, e.g., -4@%eax */
1356 arg->arg_type = USDT_ARG_REG;
1357 /* register read has no memory offset */
1358 arg->val_off = 0;
1359
1360 reg_off = calc_pt_regs_off(reg_name);
1361 if (reg_off < 0)
1362 return reg_off;
1363 arg->reg_off = reg_off;
1364 } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1365 /* Constant value case, e.g., 4@$71 */
1366 arg->arg_type = USDT_ARG_CONST;
1367 arg->val_off = off;
1368 arg->reg_off = 0;
1369 } else {
1370 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1371 return -EINVAL;
1372 }
1373
1374 return len;
1375}
1376
1377#elif defined(__s390x__)
1378
1379static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1380{
1381 unsigned int reg;
1382 int len;
1383 long off;
1384
1385 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) {
1386 /* Memory dereference case, e.g., -2@-28(%r15) */
1387 arg->arg_type = USDT_ARG_REG_DEREF;
1388 arg->val_off = off;
1389 if (reg > 15) {
1390 pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1391 return -EINVAL;
1392 }
1393 arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1394 } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) {
1395 /* Register read case, e.g., -8@%r0 */
1396 arg->arg_type = USDT_ARG_REG;
1397 arg->val_off = 0;
1398 if (reg > 15) {
1399 pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1400 return -EINVAL;
1401 }
1402 arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1403 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1404 /* Constant value case, e.g., 4@71 */
1405 arg->arg_type = USDT_ARG_CONST;
1406 arg->val_off = off;
1407 arg->reg_off = 0;
1408 } else {
1409 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1410 return -EINVAL;
1411 }
1412
1413 return len;
1414}
1415
1416#elif defined(__aarch64__)
1417
1418static int calc_pt_regs_off(const char *reg_name)
1419{
1420 int reg_num;
1421
1422 if (sscanf(reg_name, "x%d", ®_num) == 1) {
1423 if (reg_num >= 0 && reg_num < 31)
1424 return offsetof(struct user_pt_regs, regs[reg_num]);
1425 } else if (strcmp(reg_name, "sp") == 0) {
1426 return offsetof(struct user_pt_regs, sp);
1427 }
1428 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1429 return -ENOENT;
1430}
1431
1432static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1433{
1434 char reg_name[16];
1435 int len, reg_off;
1436 long off;
1437
1438 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1439 /* Memory dereference case, e.g., -4@[sp, 96] */
1440 arg->arg_type = USDT_ARG_REG_DEREF;
1441 arg->val_off = off;
1442 reg_off = calc_pt_regs_off(reg_name);
1443 if (reg_off < 0)
1444 return reg_off;
1445 arg->reg_off = reg_off;
1446 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1447 /* Memory dereference case, e.g., -4@[sp] */
1448 arg->arg_type = USDT_ARG_REG_DEREF;
1449 arg->val_off = 0;
1450 reg_off = calc_pt_regs_off(reg_name);
1451 if (reg_off < 0)
1452 return reg_off;
1453 arg->reg_off = reg_off;
1454 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1455 /* Constant value case, e.g., 4@5 */
1456 arg->arg_type = USDT_ARG_CONST;
1457 arg->val_off = off;
1458 arg->reg_off = 0;
1459 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1460 /* Register read case, e.g., -8@x4 */
1461 arg->arg_type = USDT_ARG_REG;
1462 arg->val_off = 0;
1463 reg_off = calc_pt_regs_off(reg_name);
1464 if (reg_off < 0)
1465 return reg_off;
1466 arg->reg_off = reg_off;
1467 } else {
1468 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1469 return -EINVAL;
1470 }
1471
1472 return len;
1473}
1474
1475#elif defined(__riscv)
1476
1477static int calc_pt_regs_off(const char *reg_name)
1478{
1479 static struct {
1480 const char *name;
1481 size_t pt_regs_off;
1482 } reg_map[] = {
1483 { "ra", offsetof(struct user_regs_struct, ra) },
1484 { "sp", offsetof(struct user_regs_struct, sp) },
1485 { "gp", offsetof(struct user_regs_struct, gp) },
1486 { "tp", offsetof(struct user_regs_struct, tp) },
1487 { "a0", offsetof(struct user_regs_struct, a0) },
1488 { "a1", offsetof(struct user_regs_struct, a1) },
1489 { "a2", offsetof(struct user_regs_struct, a2) },
1490 { "a3", offsetof(struct user_regs_struct, a3) },
1491 { "a4", offsetof(struct user_regs_struct, a4) },
1492 { "a5", offsetof(struct user_regs_struct, a5) },
1493 { "a6", offsetof(struct user_regs_struct, a6) },
1494 { "a7", offsetof(struct user_regs_struct, a7) },
1495 { "s0", offsetof(struct user_regs_struct, s0) },
1496 { "s1", offsetof(struct user_regs_struct, s1) },
1497 { "s2", offsetof(struct user_regs_struct, s2) },
1498 { "s3", offsetof(struct user_regs_struct, s3) },
1499 { "s4", offsetof(struct user_regs_struct, s4) },
1500 { "s5", offsetof(struct user_regs_struct, s5) },
1501 { "s6", offsetof(struct user_regs_struct, s6) },
1502 { "s7", offsetof(struct user_regs_struct, s7) },
1503 { "s8", offsetof(struct user_regs_struct, rv_s8) },
1504 { "s9", offsetof(struct user_regs_struct, s9) },
1505 { "s10", offsetof(struct user_regs_struct, s10) },
1506 { "s11", offsetof(struct user_regs_struct, s11) },
1507 { "t0", offsetof(struct user_regs_struct, t0) },
1508 { "t1", offsetof(struct user_regs_struct, t1) },
1509 { "t2", offsetof(struct user_regs_struct, t2) },
1510 { "t3", offsetof(struct user_regs_struct, t3) },
1511 { "t4", offsetof(struct user_regs_struct, t4) },
1512 { "t5", offsetof(struct user_regs_struct, t5) },
1513 { "t6", offsetof(struct user_regs_struct, t6) },
1514 };
1515 int i;
1516
1517 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1518 if (strcmp(reg_name, reg_map[i].name) == 0)
1519 return reg_map[i].pt_regs_off;
1520 }
1521
1522 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1523 return -ENOENT;
1524}
1525
1526static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1527{
1528 char reg_name[16];
1529 int len, reg_off;
1530 long off;
1531
1532 if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1533 /* Memory dereference case, e.g., -8@-88(s0) */
1534 arg->arg_type = USDT_ARG_REG_DEREF;
1535 arg->val_off = off;
1536 reg_off = calc_pt_regs_off(reg_name);
1537 if (reg_off < 0)
1538 return reg_off;
1539 arg->reg_off = reg_off;
1540 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1541 /* Constant value case, e.g., 4@5 */
1542 arg->arg_type = USDT_ARG_CONST;
1543 arg->val_off = off;
1544 arg->reg_off = 0;
1545 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1546 /* Register read case, e.g., -8@a1 */
1547 arg->arg_type = USDT_ARG_REG;
1548 arg->val_off = 0;
1549 reg_off = calc_pt_regs_off(reg_name);
1550 if (reg_off < 0)
1551 return reg_off;
1552 arg->reg_off = reg_off;
1553 } else {
1554 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1555 return -EINVAL;
1556 }
1557
1558 return len;
1559}
1560
1561#elif defined(__arm__)
1562
1563static int calc_pt_regs_off(const char *reg_name)
1564{
1565 static struct {
1566 const char *name;
1567 size_t pt_regs_off;
1568 } reg_map[] = {
1569 { "r0", offsetof(struct pt_regs, uregs[0]) },
1570 { "r1", offsetof(struct pt_regs, uregs[1]) },
1571 { "r2", offsetof(struct pt_regs, uregs[2]) },
1572 { "r3", offsetof(struct pt_regs, uregs[3]) },
1573 { "r4", offsetof(struct pt_regs, uregs[4]) },
1574 { "r5", offsetof(struct pt_regs, uregs[5]) },
1575 { "r6", offsetof(struct pt_regs, uregs[6]) },
1576 { "r7", offsetof(struct pt_regs, uregs[7]) },
1577 { "r8", offsetof(struct pt_regs, uregs[8]) },
1578 { "r9", offsetof(struct pt_regs, uregs[9]) },
1579 { "r10", offsetof(struct pt_regs, uregs[10]) },
1580 { "fp", offsetof(struct pt_regs, uregs[11]) },
1581 { "ip", offsetof(struct pt_regs, uregs[12]) },
1582 { "sp", offsetof(struct pt_regs, uregs[13]) },
1583 { "lr", offsetof(struct pt_regs, uregs[14]) },
1584 { "pc", offsetof(struct pt_regs, uregs[15]) },
1585 };
1586 int i;
1587
1588 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1589 if (strcmp(reg_name, reg_map[i].name) == 0)
1590 return reg_map[i].pt_regs_off;
1591 }
1592
1593 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1594 return -ENOENT;
1595}
1596
1597static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1598{
1599 char reg_name[16];
1600 int len, reg_off;
1601 long off;
1602
1603 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1604 arg_sz, reg_name, &off, &len) == 3) {
1605 /* Memory dereference case, e.g., -4@[fp, #96] */
1606 arg->arg_type = USDT_ARG_REG_DEREF;
1607 arg->val_off = off;
1608 reg_off = calc_pt_regs_off(reg_name);
1609 if (reg_off < 0)
1610 return reg_off;
1611 arg->reg_off = reg_off;
1612 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1613 /* Memory dereference case, e.g., -4@[sp] */
1614 arg->arg_type = USDT_ARG_REG_DEREF;
1615 arg->val_off = 0;
1616 reg_off = calc_pt_regs_off(reg_name);
1617 if (reg_off < 0)
1618 return reg_off;
1619 arg->reg_off = reg_off;
1620 } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1621 /* Constant value case, e.g., 4@#5 */
1622 arg->arg_type = USDT_ARG_CONST;
1623 arg->val_off = off;
1624 arg->reg_off = 0;
1625 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1626 /* Register read case, e.g., -8@r4 */
1627 arg->arg_type = USDT_ARG_REG;
1628 arg->val_off = 0;
1629 reg_off = calc_pt_regs_off(reg_name);
1630 if (reg_off < 0)
1631 return reg_off;
1632 arg->reg_off = reg_off;
1633 } else {
1634 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1635 return -EINVAL;
1636 }
1637
1638 return len;
1639}
1640
1641#else
1642
1643static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1644{
1645 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1646 return -ENOTSUP;
1647}
1648
1649#endif