at v6.19 3295 lines 92 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2 3/* 4 * VMA-specific functions. 5 */ 6 7#include "vma_internal.h" 8#include "vma.h" 9 10struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 vm_flags_t vm_flags; 19 struct file *file; 20 pgprot_t page_prot; 21 22 /* User-defined fields, perhaps updated by .mmap_prepare(). */ 23 const struct vm_operations_struct *vm_ops; 24 void *vm_private_data; 25 26 unsigned long charged; 27 28 struct vm_area_struct *prev; 29 struct vm_area_struct *next; 30 31 /* Unmapping state. */ 32 struct vma_munmap_struct vms; 33 struct ma_state mas_detach; 34 struct maple_tree mt_detach; 35 36 /* Determine if we can check KSM flags early in mmap() logic. */ 37 bool check_ksm_early :1; 38 /* If we map new, hold the file rmap lock on mapping. */ 39 bool hold_file_rmap_lock :1; 40 /* If .mmap_prepare changed the file, we don't need to pin. */ 41 bool file_doesnt_need_get :1; 42}; 43 44#define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \ 45 struct mmap_state name = { \ 46 .mm = mm_, \ 47 .vmi = vmi_, \ 48 .addr = addr_, \ 49 .end = (addr_) + (len_), \ 50 .pgoff = pgoff_, \ 51 .pglen = PHYS_PFN(len_), \ 52 .vm_flags = vm_flags_, \ 53 .file = file_, \ 54 .page_prot = vm_get_page_prot(vm_flags_), \ 55 } 56 57#define VMG_MMAP_STATE(name, map_, vma_) \ 58 struct vma_merge_struct name = { \ 59 .mm = (map_)->mm, \ 60 .vmi = (map_)->vmi, \ 61 .start = (map_)->addr, \ 62 .end = (map_)->end, \ 63 .vm_flags = (map_)->vm_flags, \ 64 .pgoff = (map_)->pgoff, \ 65 .file = (map_)->file, \ 66 .prev = (map_)->prev, \ 67 .middle = vma_, \ 68 .next = (vma_) ? NULL : (map_)->next, \ 69 .state = VMA_MERGE_START, \ 70 } 71 72/* Was this VMA ever forked from a parent, i.e. maybe contains CoW mappings? */ 73static bool vma_is_fork_child(struct vm_area_struct *vma) 74{ 75 /* 76 * The list_is_singular() test is to avoid merging VMA cloned from 77 * parents. This can improve scalability caused by the anon_vma root 78 * lock. 79 */ 80 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 81} 82 83static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 84{ 85 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 86 87 if (!mpol_equal(vmg->policy, vma_policy(vma))) 88 return false; 89 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE) 90 return false; 91 if (vma->vm_file != vmg->file) 92 return false; 93 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 94 return false; 95 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 96 return false; 97 return true; 98} 99 100static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 101{ 102 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 103 struct vm_area_struct *src = vmg->middle; /* existing merge case. */ 104 struct anon_vma *tgt_anon = tgt->anon_vma; 105 struct anon_vma *src_anon = vmg->anon_vma; 106 107 /* 108 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 109 * will remove the existing VMA's anon_vma's so there's no scalability 110 * concerns. 111 */ 112 VM_WARN_ON(src && src_anon != src->anon_vma); 113 114 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 115 if (!tgt_anon && src_anon) { 116 struct vm_area_struct *copied_from = vmg->copied_from; 117 118 if (vma_is_fork_child(src)) 119 return false; 120 if (vma_is_fork_child(copied_from)) 121 return false; 122 123 return true; 124 } 125 /* Case 2 - we will simply use tgt's anon_vma. */ 126 if (tgt_anon && !src_anon) 127 return !vma_is_fork_child(tgt); 128 /* Case 3 - the anon_vma's are already shared. */ 129 return src_anon == tgt_anon; 130} 131 132/* 133 * init_multi_vma_prep() - Initializer for struct vma_prepare 134 * @vp: The vma_prepare struct 135 * @vma: The vma that will be altered once locked 136 * @vmg: The merge state that will be used to determine adjustment and VMA 137 * removal. 138 */ 139static void init_multi_vma_prep(struct vma_prepare *vp, 140 struct vm_area_struct *vma, 141 struct vma_merge_struct *vmg) 142{ 143 struct vm_area_struct *adjust; 144 struct vm_area_struct **remove = &vp->remove; 145 146 memset(vp, 0, sizeof(struct vma_prepare)); 147 vp->vma = vma; 148 vp->anon_vma = vma->anon_vma; 149 150 if (vmg && vmg->__remove_middle) { 151 *remove = vmg->middle; 152 remove = &vp->remove2; 153 } 154 if (vmg && vmg->__remove_next) 155 *remove = vmg->next; 156 157 if (vmg && vmg->__adjust_middle_start) 158 adjust = vmg->middle; 159 else if (vmg && vmg->__adjust_next_start) 160 adjust = vmg->next; 161 else 162 adjust = NULL; 163 164 vp->adj_next = adjust; 165 if (!vp->anon_vma && adjust) 166 vp->anon_vma = adjust->anon_vma; 167 168 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 169 vp->anon_vma != adjust->anon_vma); 170 171 vp->file = vma->vm_file; 172 if (vp->file) 173 vp->mapping = vma->vm_file->f_mapping; 174 175 if (vmg && vmg->skip_vma_uprobe) 176 vp->skip_vma_uprobe = true; 177} 178 179/* 180 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 181 * in front of (at a lower virtual address and file offset than) the vma. 182 * 183 * We cannot merge two vmas if they have differently assigned (non-NULL) 184 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 185 * 186 * We don't check here for the merged mmap wrapping around the end of pagecache 187 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 188 * wrap, nor mmaps which cover the final page at index -1UL. 189 * 190 * We assume the vma may be removed as part of the merge. 191 */ 192static bool can_vma_merge_before(struct vma_merge_struct *vmg) 193{ 194 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 195 196 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 197 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 198 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 199 return true; 200 } 201 202 return false; 203} 204 205/* 206 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 207 * beyond (at a higher virtual address and file offset than) the vma. 208 * 209 * We cannot merge two vmas if they have differently assigned (non-NULL) 210 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 211 * 212 * We assume that vma is not removed as part of the merge. 213 */ 214static bool can_vma_merge_after(struct vma_merge_struct *vmg) 215{ 216 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 217 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 218 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 219 return true; 220 } 221 return false; 222} 223 224static void __vma_link_file(struct vm_area_struct *vma, 225 struct address_space *mapping) 226{ 227 if (vma_is_shared_maywrite(vma)) 228 mapping_allow_writable(mapping); 229 230 flush_dcache_mmap_lock(mapping); 231 vma_interval_tree_insert(vma, &mapping->i_mmap); 232 flush_dcache_mmap_unlock(mapping); 233} 234 235/* 236 * Requires inode->i_mapping->i_mmap_rwsem 237 */ 238static void __remove_shared_vm_struct(struct vm_area_struct *vma, 239 struct address_space *mapping) 240{ 241 if (vma_is_shared_maywrite(vma)) 242 mapping_unmap_writable(mapping); 243 244 flush_dcache_mmap_lock(mapping); 245 vma_interval_tree_remove(vma, &mapping->i_mmap); 246 flush_dcache_mmap_unlock(mapping); 247} 248 249/* 250 * vma has some anon_vma assigned, and is already inserted on that 251 * anon_vma's interval trees. 252 * 253 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 254 * vma must be removed from the anon_vma's interval trees using 255 * anon_vma_interval_tree_pre_update_vma(). 256 * 257 * After the update, the vma will be reinserted using 258 * anon_vma_interval_tree_post_update_vma(). 259 * 260 * The entire update must be protected by exclusive mmap_lock and by 261 * the root anon_vma's mutex. 262 */ 263static void 264anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 265{ 266 struct anon_vma_chain *avc; 267 268 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 269 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 270} 271 272static void 273anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 274{ 275 struct anon_vma_chain *avc; 276 277 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 278 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 279} 280 281/* 282 * vma_prepare() - Helper function for handling locking VMAs prior to altering 283 * @vp: The initialized vma_prepare struct 284 */ 285static void vma_prepare(struct vma_prepare *vp) 286{ 287 if (vp->file) { 288 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 289 290 if (vp->adj_next) 291 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 292 vp->adj_next->vm_end); 293 294 i_mmap_lock_write(vp->mapping); 295 if (vp->insert && vp->insert->vm_file) { 296 /* 297 * Put into interval tree now, so instantiated pages 298 * are visible to arm/parisc __flush_dcache_page 299 * throughout; but we cannot insert into address 300 * space until vma start or end is updated. 301 */ 302 __vma_link_file(vp->insert, 303 vp->insert->vm_file->f_mapping); 304 } 305 } 306 307 if (vp->anon_vma) { 308 anon_vma_lock_write(vp->anon_vma); 309 anon_vma_interval_tree_pre_update_vma(vp->vma); 310 if (vp->adj_next) 311 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 312 } 313 314 if (vp->file) { 315 flush_dcache_mmap_lock(vp->mapping); 316 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 317 if (vp->adj_next) 318 vma_interval_tree_remove(vp->adj_next, 319 &vp->mapping->i_mmap); 320 } 321 322} 323 324/* 325 * vma_complete- Helper function for handling the unlocking after altering VMAs, 326 * or for inserting a VMA. 327 * 328 * @vp: The vma_prepare struct 329 * @vmi: The vma iterator 330 * @mm: The mm_struct 331 */ 332static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 333 struct mm_struct *mm) 334{ 335 if (vp->file) { 336 if (vp->adj_next) 337 vma_interval_tree_insert(vp->adj_next, 338 &vp->mapping->i_mmap); 339 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 340 flush_dcache_mmap_unlock(vp->mapping); 341 } 342 343 if (vp->remove && vp->file) { 344 __remove_shared_vm_struct(vp->remove, vp->mapping); 345 if (vp->remove2) 346 __remove_shared_vm_struct(vp->remove2, vp->mapping); 347 } else if (vp->insert) { 348 /* 349 * split_vma has split insert from vma, and needs 350 * us to insert it before dropping the locks 351 * (it may either follow vma or precede it). 352 */ 353 vma_iter_store_new(vmi, vp->insert); 354 mm->map_count++; 355 } 356 357 if (vp->anon_vma) { 358 anon_vma_interval_tree_post_update_vma(vp->vma); 359 if (vp->adj_next) 360 anon_vma_interval_tree_post_update_vma(vp->adj_next); 361 anon_vma_unlock_write(vp->anon_vma); 362 } 363 364 if (vp->file) { 365 i_mmap_unlock_write(vp->mapping); 366 367 if (!vp->skip_vma_uprobe) { 368 uprobe_mmap(vp->vma); 369 370 if (vp->adj_next) 371 uprobe_mmap(vp->adj_next); 372 } 373 } 374 375 if (vp->remove) { 376again: 377 vma_mark_detached(vp->remove); 378 if (vp->file) { 379 uprobe_munmap(vp->remove, vp->remove->vm_start, 380 vp->remove->vm_end); 381 fput(vp->file); 382 } 383 if (vp->remove->anon_vma) 384 anon_vma_merge(vp->vma, vp->remove); 385 mm->map_count--; 386 mpol_put(vma_policy(vp->remove)); 387 if (!vp->remove2) 388 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 389 vm_area_free(vp->remove); 390 391 /* 392 * In mprotect's case 6 (see comments on vma_merge), 393 * we are removing both mid and next vmas 394 */ 395 if (vp->remove2) { 396 vp->remove = vp->remove2; 397 vp->remove2 = NULL; 398 goto again; 399 } 400 } 401 if (vp->insert && vp->file) 402 uprobe_mmap(vp->insert); 403} 404 405/* 406 * init_vma_prep() - Initializer wrapper for vma_prepare struct 407 * @vp: The vma_prepare struct 408 * @vma: The vma that will be altered once locked 409 */ 410static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 411{ 412 init_multi_vma_prep(vp, vma, NULL); 413} 414 415/* 416 * Can the proposed VMA be merged with the left (previous) VMA taking into 417 * account the start position of the proposed range. 418 */ 419static bool can_vma_merge_left(struct vma_merge_struct *vmg) 420 421{ 422 return vmg->prev && vmg->prev->vm_end == vmg->start && 423 can_vma_merge_after(vmg); 424} 425 426/* 427 * Can the proposed VMA be merged with the right (next) VMA taking into 428 * account the end position of the proposed range. 429 * 430 * In addition, if we can merge with the left VMA, ensure that left and right 431 * anon_vma's are also compatible. 432 */ 433static bool can_vma_merge_right(struct vma_merge_struct *vmg, 434 bool can_merge_left) 435{ 436 struct vm_area_struct *next = vmg->next; 437 struct vm_area_struct *prev; 438 439 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 440 return false; 441 442 if (!can_merge_left) 443 return true; 444 445 /* 446 * If we can merge with prev (left) and next (right), indicating that 447 * each VMA's anon_vma is compatible with the proposed anon_vma, this 448 * does not mean prev and next are compatible with EACH OTHER. 449 * 450 * We therefore check this in addition to mergeability to either side. 451 */ 452 prev = vmg->prev; 453 return !prev->anon_vma || !next->anon_vma || 454 prev->anon_vma == next->anon_vma; 455} 456 457/* 458 * Close a vm structure and free it. 459 */ 460void remove_vma(struct vm_area_struct *vma) 461{ 462 might_sleep(); 463 vma_close(vma); 464 if (vma->vm_file) 465 fput(vma->vm_file); 466 mpol_put(vma_policy(vma)); 467 vm_area_free(vma); 468} 469 470/* 471 * Get rid of page table information in the indicated region. 472 * 473 * Called with the mm semaphore held. 474 */ 475void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 476 struct vm_area_struct *prev, struct vm_area_struct *next) 477{ 478 struct mm_struct *mm = vma->vm_mm; 479 struct mmu_gather tlb; 480 481 tlb_gather_mmu(&tlb, mm); 482 update_hiwater_rss(mm); 483 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end); 484 mas_set(mas, vma->vm_end); 485 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 486 next ? next->vm_start : USER_PGTABLES_CEILING, 487 /* mm_wr_locked = */ true); 488 tlb_finish_mmu(&tlb); 489} 490 491/* 492 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 493 * has already been checked or doesn't make sense to fail. 494 * VMA Iterator will point to the original VMA. 495 */ 496static __must_check int 497__split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 498 unsigned long addr, int new_below) 499{ 500 struct vma_prepare vp; 501 struct vm_area_struct *new; 502 int err; 503 504 WARN_ON(vma->vm_start >= addr); 505 WARN_ON(vma->vm_end <= addr); 506 507 if (vma->vm_ops && vma->vm_ops->may_split) { 508 err = vma->vm_ops->may_split(vma, addr); 509 if (err) 510 return err; 511 } 512 513 new = vm_area_dup(vma); 514 if (!new) 515 return -ENOMEM; 516 517 if (new_below) { 518 new->vm_end = addr; 519 } else { 520 new->vm_start = addr; 521 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 522 } 523 524 err = -ENOMEM; 525 vma_iter_config(vmi, new->vm_start, new->vm_end); 526 if (vma_iter_prealloc(vmi, new)) 527 goto out_free_vma; 528 529 err = vma_dup_policy(vma, new); 530 if (err) 531 goto out_free_vmi; 532 533 err = anon_vma_clone(new, vma); 534 if (err) 535 goto out_free_mpol; 536 537 if (new->vm_file) 538 get_file(new->vm_file); 539 540 if (new->vm_ops && new->vm_ops->open) 541 new->vm_ops->open(new); 542 543 vma_start_write(vma); 544 vma_start_write(new); 545 546 init_vma_prep(&vp, vma); 547 vp.insert = new; 548 vma_prepare(&vp); 549 550 /* 551 * Get rid of huge pages and shared page tables straddling the split 552 * boundary. 553 */ 554 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 555 if (is_vm_hugetlb_page(vma)) 556 hugetlb_split(vma, addr); 557 558 if (new_below) { 559 vma->vm_start = addr; 560 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 561 } else { 562 vma->vm_end = addr; 563 } 564 565 /* vma_complete stores the new vma */ 566 vma_complete(&vp, vmi, vma->vm_mm); 567 validate_mm(vma->vm_mm); 568 569 /* Success. */ 570 if (new_below) 571 vma_next(vmi); 572 else 573 vma_prev(vmi); 574 575 return 0; 576 577out_free_mpol: 578 mpol_put(vma_policy(new)); 579out_free_vmi: 580 vma_iter_free(vmi); 581out_free_vma: 582 vm_area_free(new); 583 return err; 584} 585 586/* 587 * Split a vma into two pieces at address 'addr', a new vma is allocated 588 * either for the first part or the tail. 589 */ 590static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 591 unsigned long addr, int new_below) 592{ 593 if (vma->vm_mm->map_count >= sysctl_max_map_count) 594 return -ENOMEM; 595 596 return __split_vma(vmi, vma, addr, new_below); 597} 598 599/* 600 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 601 * instance that the destination VMA has no anon_vma but the source does. 602 * 603 * @dst: The destination VMA 604 * @src: The source VMA 605 * @dup: Pointer to the destination VMA when successful. 606 * 607 * Returns: 0 on success. 608 */ 609static int dup_anon_vma(struct vm_area_struct *dst, 610 struct vm_area_struct *src, struct vm_area_struct **dup) 611{ 612 /* 613 * There are three cases to consider for correctly propagating 614 * anon_vma's on merge. 615 * 616 * The first is trivial - neither VMA has anon_vma, we need not do 617 * anything. 618 * 619 * The second where both have anon_vma is also a no-op, as they must 620 * then be the same, so there is simply nothing to copy. 621 * 622 * Here we cover the third - if the destination VMA has no anon_vma, 623 * that is it is unfaulted, we need to ensure that the newly merged 624 * range is referenced by the anon_vma's of the source. 625 */ 626 if (src->anon_vma && !dst->anon_vma) { 627 int ret; 628 629 vma_assert_write_locked(dst); 630 dst->anon_vma = src->anon_vma; 631 ret = anon_vma_clone(dst, src); 632 if (ret) 633 return ret; 634 635 *dup = dst; 636 } 637 638 return 0; 639} 640 641#ifdef CONFIG_DEBUG_VM_MAPLE_TREE 642void validate_mm(struct mm_struct *mm) 643{ 644 int bug = 0; 645 int i = 0; 646 struct vm_area_struct *vma; 647 VMA_ITERATOR(vmi, mm, 0); 648 649 mt_validate(&mm->mm_mt); 650 for_each_vma(vmi, vma) { 651#ifdef CONFIG_DEBUG_VM_RB 652 struct anon_vma *anon_vma = vma->anon_vma; 653 struct anon_vma_chain *avc; 654#endif 655 unsigned long vmi_start, vmi_end; 656 bool warn = 0; 657 658 vmi_start = vma_iter_addr(&vmi); 659 vmi_end = vma_iter_end(&vmi); 660 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 661 warn = 1; 662 663 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 664 warn = 1; 665 666 if (warn) { 667 pr_emerg("issue in %s\n", current->comm); 668 dump_stack(); 669 dump_vma(vma); 670 pr_emerg("tree range: %px start %lx end %lx\n", vma, 671 vmi_start, vmi_end - 1); 672 vma_iter_dump_tree(&vmi); 673 } 674 675#ifdef CONFIG_DEBUG_VM_RB 676 if (anon_vma) { 677 anon_vma_lock_read(anon_vma); 678 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 679 anon_vma_interval_tree_verify(avc); 680 anon_vma_unlock_read(anon_vma); 681 } 682#endif 683 /* Check for a infinite loop */ 684 if (++i > mm->map_count + 10) { 685 i = -1; 686 break; 687 } 688 } 689 if (i != mm->map_count) { 690 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 691 bug = 1; 692 } 693 VM_BUG_ON_MM(bug, mm); 694} 695#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 696 697/* 698 * Based on the vmg flag indicating whether we need to adjust the vm_start field 699 * for the middle or next VMA, we calculate what the range of the newly adjusted 700 * VMA ought to be, and set the VMA's range accordingly. 701 */ 702static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 703{ 704 struct vm_area_struct *adjust; 705 pgoff_t pgoff; 706 707 if (vmg->__adjust_middle_start) { 708 adjust = vmg->middle; 709 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 710 } else if (vmg->__adjust_next_start) { 711 adjust = vmg->next; 712 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 713 } else { 714 return; 715 } 716 717 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 718} 719 720/* 721 * Actually perform the VMA merge operation. 722 * 723 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 724 * modify any VMAs or cause inconsistent state should an OOM condition arise. 725 * 726 * Returns 0 on success, or an error value on failure. 727 */ 728static int commit_merge(struct vma_merge_struct *vmg) 729{ 730 struct vm_area_struct *vma; 731 struct vma_prepare vp; 732 733 if (vmg->__adjust_next_start) { 734 /* We manipulate middle and adjust next, which is the target. */ 735 vma = vmg->middle; 736 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 737 } else { 738 vma = vmg->target; 739 /* Note: vma iterator must be pointing to 'start'. */ 740 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 741 } 742 743 init_multi_vma_prep(&vp, vma, vmg); 744 745 /* 746 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 747 * manipulate any VMAs until we succeed at preallocation. 748 * 749 * Past this point, we will not return an error. 750 */ 751 if (vma_iter_prealloc(vmg->vmi, vma)) 752 return -ENOMEM; 753 754 vma_prepare(&vp); 755 /* 756 * THP pages may need to do additional splits if we increase 757 * middle->vm_start. 758 */ 759 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 760 vmg->__adjust_middle_start ? vmg->middle : NULL); 761 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 762 vmg_adjust_set_range(vmg); 763 vma_iter_store_overwrite(vmg->vmi, vmg->target); 764 765 vma_complete(&vp, vmg->vmi, vma->vm_mm); 766 767 return 0; 768} 769 770/* We can only remove VMAs when merging if they do not have a close hook. */ 771static bool can_merge_remove_vma(struct vm_area_struct *vma) 772{ 773 return !vma->vm_ops || !vma->vm_ops->close; 774} 775 776/* 777 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 778 * attributes modified. 779 * 780 * @vmg: Describes the modifications being made to a VMA and associated 781 * metadata. 782 * 783 * When the attributes of a range within a VMA change, then it might be possible 784 * for immediately adjacent VMAs to be merged into that VMA due to having 785 * identical properties. 786 * 787 * This function checks for the existence of any such mergeable VMAs and updates 788 * the maple tree describing the @vmg->middle->vm_mm address space to account 789 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 790 * merge. 791 * 792 * As part of this operation, if a merge occurs, the @vmg object will have its 793 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 794 * calls to this function should reset these fields. 795 * 796 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 797 * 798 * ASSUMPTIONS: 799 * - The caller must assign the VMA to be modified to @vmg->middle. 800 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 801 * - The caller must not set @vmg->next, as we determine this. 802 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 803 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 804 */ 805static __must_check struct vm_area_struct *vma_merge_existing_range( 806 struct vma_merge_struct *vmg) 807{ 808 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY; 809 struct vm_area_struct *middle = vmg->middle; 810 struct vm_area_struct *prev = vmg->prev; 811 struct vm_area_struct *next; 812 struct vm_area_struct *anon_dup = NULL; 813 unsigned long start = vmg->start; 814 unsigned long end = vmg->end; 815 bool left_side = middle && start == middle->vm_start; 816 bool right_side = middle && end == middle->vm_end; 817 int err = 0; 818 bool merge_left, merge_right, merge_both; 819 820 mmap_assert_write_locked(vmg->mm); 821 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 822 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 823 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 824 VM_WARN_ON_VMG(start >= end, vmg); 825 826 /* 827 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 828 * not, we must span a portion of the VMA. 829 */ 830 VM_WARN_ON_VMG(middle && 831 ((middle != prev && vmg->start != middle->vm_start) || 832 vmg->end > middle->vm_end), vmg); 833 /* The vmi must be positioned within vmg->middle. */ 834 VM_WARN_ON_VMG(middle && 835 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 836 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 837 /* An existing merge can never be used by the mremap() logic. */ 838 VM_WARN_ON_VMG(vmg->copied_from, vmg); 839 840 vmg->state = VMA_MERGE_NOMERGE; 841 842 /* 843 * If a special mapping or if the range being modified is neither at the 844 * furthermost left or right side of the VMA, then we have no chance of 845 * merging and should abort. 846 */ 847 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side)) 848 return NULL; 849 850 if (left_side) 851 merge_left = can_vma_merge_left(vmg); 852 else 853 merge_left = false; 854 855 if (right_side) { 856 next = vmg->next = vma_iter_next_range(vmg->vmi); 857 vma_iter_prev_range(vmg->vmi); 858 859 merge_right = can_vma_merge_right(vmg, merge_left); 860 } else { 861 merge_right = false; 862 next = NULL; 863 } 864 865 if (merge_left) /* If merging prev, position iterator there. */ 866 vma_prev(vmg->vmi); 867 else if (!merge_right) /* If we have nothing to merge, abort. */ 868 return NULL; 869 870 merge_both = merge_left && merge_right; 871 /* If we span the entire VMA, a merge implies it will be deleted. */ 872 vmg->__remove_middle = left_side && right_side; 873 874 /* 875 * If we need to remove middle in its entirety but are unable to do so, 876 * we have no sensible recourse but to abort the merge. 877 */ 878 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 879 return NULL; 880 881 /* 882 * If we merge both VMAs, then next is also deleted. This implies 883 * merge_will_delete_vma also. 884 */ 885 vmg->__remove_next = merge_both; 886 887 /* 888 * If we cannot delete next, then we can reduce the operation to merging 889 * prev and middle (thereby deleting middle). 890 */ 891 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 892 vmg->__remove_next = false; 893 merge_right = false; 894 merge_both = false; 895 } 896 897 /* No matter what happens, we will be adjusting middle. */ 898 vma_start_write(middle); 899 900 if (merge_right) { 901 vma_start_write(next); 902 vmg->target = next; 903 sticky_flags |= (next->vm_flags & VM_STICKY); 904 } 905 906 if (merge_left) { 907 vma_start_write(prev); 908 vmg->target = prev; 909 sticky_flags |= (prev->vm_flags & VM_STICKY); 910 } 911 912 if (merge_both) { 913 /* 914 * |<-------------------->| 915 * |-------********-------| 916 * prev middle next 917 * extend delete delete 918 */ 919 920 vmg->start = prev->vm_start; 921 vmg->end = next->vm_end; 922 vmg->pgoff = prev->vm_pgoff; 923 924 /* 925 * We already ensured anon_vma compatibility above, so now it's 926 * simply a case of, if prev has no anon_vma object, which of 927 * next or middle contains the anon_vma we must duplicate. 928 */ 929 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 930 &anon_dup); 931 } else if (merge_left) { 932 /* 933 * |<------------>| OR 934 * |<----------------->| 935 * |-------************* 936 * prev middle 937 * extend shrink/delete 938 */ 939 940 vmg->start = prev->vm_start; 941 vmg->pgoff = prev->vm_pgoff; 942 943 if (!vmg->__remove_middle) 944 vmg->__adjust_middle_start = true; 945 946 err = dup_anon_vma(prev, middle, &anon_dup); 947 } else { /* merge_right */ 948 /* 949 * |<------------->| OR 950 * |<----------------->| 951 * *************-------| 952 * middle next 953 * shrink/delete extend 954 */ 955 956 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 957 958 VM_WARN_ON_VMG(!merge_right, vmg); 959 /* If we are offset into a VMA, then prev must be middle. */ 960 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 961 962 if (vmg->__remove_middle) { 963 vmg->end = next->vm_end; 964 vmg->pgoff = next->vm_pgoff - pglen; 965 } else { 966 /* We shrink middle and expand next. */ 967 vmg->__adjust_next_start = true; 968 vmg->start = middle->vm_start; 969 vmg->end = start; 970 vmg->pgoff = middle->vm_pgoff; 971 } 972 973 err = dup_anon_vma(next, middle, &anon_dup); 974 } 975 976 if (err || commit_merge(vmg)) 977 goto abort; 978 979 vm_flags_set(vmg->target, sticky_flags); 980 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 981 vmg->state = VMA_MERGE_SUCCESS; 982 return vmg->target; 983 984abort: 985 vma_iter_set(vmg->vmi, start); 986 vma_iter_load(vmg->vmi); 987 988 if (anon_dup) 989 unlink_anon_vmas(anon_dup); 990 991 /* 992 * This means we have failed to clone anon_vma's correctly, but no 993 * actual changes to VMAs have occurred, so no harm no foul - if the 994 * user doesn't want this reported and instead just wants to give up on 995 * the merge, allow it. 996 */ 997 if (!vmg->give_up_on_oom) 998 vmg->state = VMA_MERGE_ERROR_NOMEM; 999 return NULL; 1000} 1001 1002/* 1003 * vma_merge_new_range - Attempt to merge a new VMA into address space 1004 * 1005 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 1006 * (exclusive), which we try to merge with any adjacent VMAs if possible. 1007 * 1008 * We are about to add a VMA to the address space starting at @vmg->start and 1009 * ending at @vmg->end. There are three different possible scenarios: 1010 * 1011 * 1. There is a VMA with identical properties immediately adjacent to the 1012 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1013 * EXPAND that VMA: 1014 * 1015 * Proposed: |-----| or |-----| 1016 * Existing: |----| |----| 1017 * 1018 * 2. There are VMAs with identical properties immediately adjacent to the 1019 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1020 * EXPAND the former and REMOVE the latter: 1021 * 1022 * Proposed: |-----| 1023 * Existing: |----| |----| 1024 * 1025 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1026 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1027 * 1028 * In instances where we can merge, this function returns the expanded VMA which 1029 * will have its range adjusted accordingly and the underlying maple tree also 1030 * adjusted. 1031 * 1032 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1033 * to the VMA we expanded. 1034 * 1035 * This function adjusts @vmg to provide @vmg->next if not already specified, 1036 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1037 * 1038 * ASSUMPTIONS: 1039 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1040 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1041 other than VMAs that will be unmapped should the operation succeed. 1042 * - The caller must have specified the previous vma in @vmg->prev. 1043 * - The caller must have specified the next vma in @vmg->next. 1044 * - The caller must have positioned the vmi at or before the gap. 1045 */ 1046struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1047{ 1048 struct vm_area_struct *prev = vmg->prev; 1049 struct vm_area_struct *next = vmg->next; 1050 unsigned long end = vmg->end; 1051 bool can_merge_left, can_merge_right; 1052 1053 mmap_assert_write_locked(vmg->mm); 1054 VM_WARN_ON_VMG(vmg->middle, vmg); 1055 VM_WARN_ON_VMG(vmg->target, vmg); 1056 /* vmi must point at or before the gap. */ 1057 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1058 1059 vmg->state = VMA_MERGE_NOMERGE; 1060 1061 /* Special VMAs are unmergeable, also if no prev/next. */ 1062 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next)) 1063 return NULL; 1064 1065 can_merge_left = can_vma_merge_left(vmg); 1066 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1067 1068 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1069 if (can_merge_right) { 1070 vmg->end = next->vm_end; 1071 vmg->target = next; 1072 } 1073 1074 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1075 if (can_merge_left) { 1076 vmg->start = prev->vm_start; 1077 vmg->target = prev; 1078 vmg->pgoff = prev->vm_pgoff; 1079 1080 /* 1081 * If this merge would result in removal of the next VMA but we 1082 * are not permitted to do so, reduce the operation to merging 1083 * prev and vma. 1084 */ 1085 if (can_merge_right && !can_merge_remove_vma(next)) 1086 vmg->end = end; 1087 1088 /* In expand-only case we are already positioned at prev. */ 1089 if (!vmg->just_expand) { 1090 /* Equivalent to going to the previous range. */ 1091 vma_prev(vmg->vmi); 1092 } 1093 } 1094 1095 /* 1096 * Now try to expand adjacent VMA(s). This takes care of removing the 1097 * following VMA if we have VMAs on both sides. 1098 */ 1099 if (vmg->target && !vma_expand(vmg)) { 1100 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 1101 vmg->state = VMA_MERGE_SUCCESS; 1102 return vmg->target; 1103 } 1104 1105 return NULL; 1106} 1107 1108/* 1109 * vma_merge_copied_range - Attempt to merge a VMA that is being copied by 1110 * mremap() 1111 * 1112 * @vmg: Describes the VMA we are adding, in the copied-to range @vmg->start to 1113 * @vmg->end (exclusive), which we try to merge with any adjacent VMAs if 1114 * possible. 1115 * 1116 * vmg->prev, next, start, end, pgoff should all be relative to the COPIED TO 1117 * range, i.e. the target range for the VMA. 1118 * 1119 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1120 * to the VMA we expanded. 1121 * 1122 * ASSUMPTIONS: Same as vma_merge_new_range(), except vmg->middle must contain 1123 * the copied-from VMA. 1124 */ 1125static struct vm_area_struct *vma_merge_copied_range(struct vma_merge_struct *vmg) 1126{ 1127 /* We must have a copied-from VMA. */ 1128 VM_WARN_ON_VMG(!vmg->middle, vmg); 1129 1130 vmg->copied_from = vmg->middle; 1131 vmg->middle = NULL; 1132 return vma_merge_new_range(vmg); 1133} 1134 1135/* 1136 * vma_expand - Expand an existing VMA 1137 * 1138 * @vmg: Describes a VMA expansion operation. 1139 * 1140 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1141 * Will expand over vmg->next if it's different from vmg->target and vmg->end == 1142 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with 1143 * vmg->next needs to be handled by the caller. 1144 * 1145 * Returns: 0 on success. 1146 * 1147 * ASSUMPTIONS: 1148 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1149 * - The caller must have set @vmg->target and @vmg->next. 1150 */ 1151int vma_expand(struct vma_merge_struct *vmg) 1152{ 1153 struct vm_area_struct *anon_dup = NULL; 1154 struct vm_area_struct *target = vmg->target; 1155 struct vm_area_struct *next = vmg->next; 1156 bool remove_next = false; 1157 vm_flags_t sticky_flags; 1158 int ret = 0; 1159 1160 mmap_assert_write_locked(vmg->mm); 1161 vma_start_write(target); 1162 1163 if (next && target != next && vmg->end == next->vm_end) 1164 remove_next = true; 1165 1166 /* We must have a target. */ 1167 VM_WARN_ON_VMG(!target, vmg); 1168 /* This should have already been checked by this point. */ 1169 VM_WARN_ON_VMG(remove_next && !can_merge_remove_vma(next), vmg); 1170 /* Not merging but overwriting any part of next is not handled. */ 1171 VM_WARN_ON_VMG(next && !remove_next && 1172 next != target && vmg->end > next->vm_start, vmg); 1173 /* Only handles expanding. */ 1174 VM_WARN_ON_VMG(target->vm_start < vmg->start || 1175 target->vm_end > vmg->end, vmg); 1176 1177 sticky_flags = vmg->vm_flags & VM_STICKY; 1178 sticky_flags |= target->vm_flags & VM_STICKY; 1179 if (remove_next) 1180 sticky_flags |= next->vm_flags & VM_STICKY; 1181 1182 /* 1183 * If we are removing the next VMA or copying from a VMA 1184 * (e.g. mremap()'ing), we must propagate anon_vma state. 1185 * 1186 * Note that, by convention, callers ignore OOM for this case, so 1187 * we don't need to account for vmg->give_up_on_mm here. 1188 */ 1189 if (remove_next) 1190 ret = dup_anon_vma(target, next, &anon_dup); 1191 if (!ret && vmg->copied_from) 1192 ret = dup_anon_vma(target, vmg->copied_from, &anon_dup); 1193 if (ret) 1194 return ret; 1195 1196 if (remove_next) { 1197 vma_start_write(next); 1198 vmg->__remove_next = true; 1199 } 1200 if (commit_merge(vmg)) 1201 goto nomem; 1202 1203 vm_flags_set(target, sticky_flags); 1204 return 0; 1205 1206nomem: 1207 if (anon_dup) 1208 unlink_anon_vmas(anon_dup); 1209 /* 1210 * If the user requests that we just give upon OOM, we are safe to do so 1211 * here, as commit merge provides this contract to us. Nothing has been 1212 * changed - no harm no foul, just don't report it. 1213 */ 1214 if (!vmg->give_up_on_oom) 1215 vmg->state = VMA_MERGE_ERROR_NOMEM; 1216 return -ENOMEM; 1217} 1218 1219/* 1220 * vma_shrink() - Reduce an existing VMAs memory area 1221 * @vmi: The vma iterator 1222 * @vma: The VMA to modify 1223 * @start: The new start 1224 * @end: The new end 1225 * 1226 * Returns: 0 on success, -ENOMEM otherwise 1227 */ 1228int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1229 unsigned long start, unsigned long end, pgoff_t pgoff) 1230{ 1231 struct vma_prepare vp; 1232 1233 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1234 1235 if (vma->vm_start < start) 1236 vma_iter_config(vmi, vma->vm_start, start); 1237 else 1238 vma_iter_config(vmi, end, vma->vm_end); 1239 1240 if (vma_iter_prealloc(vmi, NULL)) 1241 return -ENOMEM; 1242 1243 vma_start_write(vma); 1244 1245 init_vma_prep(&vp, vma); 1246 vma_prepare(&vp); 1247 vma_adjust_trans_huge(vma, start, end, NULL); 1248 1249 vma_iter_clear(vmi); 1250 vma_set_range(vma, start, end, pgoff); 1251 vma_complete(&vp, vmi, vma->vm_mm); 1252 validate_mm(vma->vm_mm); 1253 return 0; 1254} 1255 1256static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1257 struct ma_state *mas_detach, bool mm_wr_locked) 1258{ 1259 struct mmu_gather tlb; 1260 1261 if (!vms->clear_ptes) /* Nothing to do */ 1262 return; 1263 1264 /* 1265 * We can free page tables without write-locking mmap_lock because VMAs 1266 * were isolated before we downgraded mmap_lock. 1267 */ 1268 mas_set(mas_detach, 1); 1269 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1270 update_hiwater_rss(vms->vma->vm_mm); 1271 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1272 vms->vma_count); 1273 1274 mas_set(mas_detach, 1); 1275 /* start and end may be different if there is no prev or next vma. */ 1276 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1277 vms->unmap_end, mm_wr_locked); 1278 tlb_finish_mmu(&tlb); 1279 vms->clear_ptes = false; 1280} 1281 1282static void vms_clean_up_area(struct vma_munmap_struct *vms, 1283 struct ma_state *mas_detach) 1284{ 1285 struct vm_area_struct *vma; 1286 1287 if (!vms->nr_pages) 1288 return; 1289 1290 vms_clear_ptes(vms, mas_detach, true); 1291 mas_set(mas_detach, 0); 1292 mas_for_each(mas_detach, vma, ULONG_MAX) 1293 vma_close(vma); 1294} 1295 1296/* 1297 * vms_complete_munmap_vmas() - Finish the munmap() operation 1298 * @vms: The vma munmap struct 1299 * @mas_detach: The maple state of the detached vmas 1300 * 1301 * This updates the mm_struct, unmaps the region, frees the resources 1302 * used for the munmap() and may downgrade the lock - if requested. Everything 1303 * needed to be done once the vma maple tree is updated. 1304 */ 1305static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1306 struct ma_state *mas_detach) 1307{ 1308 struct vm_area_struct *vma; 1309 struct mm_struct *mm; 1310 1311 mm = current->mm; 1312 mm->map_count -= vms->vma_count; 1313 mm->locked_vm -= vms->locked_vm; 1314 if (vms->unlock) 1315 mmap_write_downgrade(mm); 1316 1317 if (!vms->nr_pages) 1318 return; 1319 1320 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1321 /* Update high watermark before we lower total_vm */ 1322 update_hiwater_vm(mm); 1323 /* Stat accounting */ 1324 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1325 /* Paranoid bookkeeping */ 1326 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1327 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1328 VM_WARN_ON(vms->data_vm > mm->data_vm); 1329 mm->exec_vm -= vms->exec_vm; 1330 mm->stack_vm -= vms->stack_vm; 1331 mm->data_vm -= vms->data_vm; 1332 1333 /* Remove and clean up vmas */ 1334 mas_set(mas_detach, 0); 1335 mas_for_each(mas_detach, vma, ULONG_MAX) 1336 remove_vma(vma); 1337 1338 vm_unacct_memory(vms->nr_accounted); 1339 validate_mm(mm); 1340 if (vms->unlock) 1341 mmap_read_unlock(mm); 1342 1343 __mt_destroy(mas_detach->tree); 1344} 1345 1346/* 1347 * reattach_vmas() - Undo any munmap work and free resources 1348 * @mas_detach: The maple state with the detached maple tree 1349 * 1350 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1351 */ 1352static void reattach_vmas(struct ma_state *mas_detach) 1353{ 1354 struct vm_area_struct *vma; 1355 1356 mas_set(mas_detach, 0); 1357 mas_for_each(mas_detach, vma, ULONG_MAX) 1358 vma_mark_attached(vma); 1359 1360 __mt_destroy(mas_detach->tree); 1361} 1362 1363/* 1364 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1365 * for removal at a later date. Handles splitting first and last if necessary 1366 * and marking the vmas as isolated. 1367 * 1368 * @vms: The vma munmap struct 1369 * @mas_detach: The maple state tracking the detached tree 1370 * 1371 * Return: 0 on success, error otherwise 1372 */ 1373static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1374 struct ma_state *mas_detach) 1375{ 1376 struct vm_area_struct *next = NULL; 1377 int error; 1378 1379 /* 1380 * If we need to split any vma, do it now to save pain later. 1381 * Does it split the first one? 1382 */ 1383 if (vms->start > vms->vma->vm_start) { 1384 1385 /* 1386 * Make sure that map_count on return from munmap() will 1387 * not exceed its limit; but let map_count go just above 1388 * its limit temporarily, to help free resources as expected. 1389 */ 1390 if (vms->end < vms->vma->vm_end && 1391 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1392 error = -ENOMEM; 1393 goto map_count_exceeded; 1394 } 1395 1396 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1397 if (vma_is_sealed(vms->vma)) { 1398 error = -EPERM; 1399 goto start_split_failed; 1400 } 1401 1402 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1403 if (error) 1404 goto start_split_failed; 1405 } 1406 vms->prev = vma_prev(vms->vmi); 1407 if (vms->prev) 1408 vms->unmap_start = vms->prev->vm_end; 1409 1410 /* 1411 * Detach a range of VMAs from the mm. Using next as a temp variable as 1412 * it is always overwritten. 1413 */ 1414 for_each_vma_range(*(vms->vmi), next, vms->end) { 1415 long nrpages; 1416 1417 if (vma_is_sealed(next)) { 1418 error = -EPERM; 1419 goto modify_vma_failed; 1420 } 1421 /* Does it split the end? */ 1422 if (next->vm_end > vms->end) { 1423 error = __split_vma(vms->vmi, next, vms->end, 0); 1424 if (error) 1425 goto end_split_failed; 1426 } 1427 vma_start_write(next); 1428 mas_set(mas_detach, vms->vma_count++); 1429 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1430 if (error) 1431 goto munmap_gather_failed; 1432 1433 vma_mark_detached(next); 1434 nrpages = vma_pages(next); 1435 1436 vms->nr_pages += nrpages; 1437 if (next->vm_flags & VM_LOCKED) 1438 vms->locked_vm += nrpages; 1439 1440 if (next->vm_flags & VM_ACCOUNT) 1441 vms->nr_accounted += nrpages; 1442 1443 if (is_exec_mapping(next->vm_flags)) 1444 vms->exec_vm += nrpages; 1445 else if (is_stack_mapping(next->vm_flags)) 1446 vms->stack_vm += nrpages; 1447 else if (is_data_mapping(next->vm_flags)) 1448 vms->data_vm += nrpages; 1449 1450 if (vms->uf) { 1451 /* 1452 * If userfaultfd_unmap_prep returns an error the vmas 1453 * will remain split, but userland will get a 1454 * highly unexpected error anyway. This is no 1455 * different than the case where the first of the two 1456 * __split_vma fails, but we don't undo the first 1457 * split, despite we could. This is unlikely enough 1458 * failure that it's not worth optimizing it for. 1459 */ 1460 error = userfaultfd_unmap_prep(next, vms->start, 1461 vms->end, vms->uf); 1462 if (error) 1463 goto userfaultfd_error; 1464 } 1465#ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1466 BUG_ON(next->vm_start < vms->start); 1467 BUG_ON(next->vm_start > vms->end); 1468#endif 1469 } 1470 1471 vms->next = vma_next(vms->vmi); 1472 if (vms->next) 1473 vms->unmap_end = vms->next->vm_start; 1474 1475#if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1476 /* Make sure no VMAs are about to be lost. */ 1477 { 1478 MA_STATE(test, mas_detach->tree, 0, 0); 1479 struct vm_area_struct *vma_mas, *vma_test; 1480 int test_count = 0; 1481 1482 vma_iter_set(vms->vmi, vms->start); 1483 rcu_read_lock(); 1484 vma_test = mas_find(&test, vms->vma_count - 1); 1485 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1486 BUG_ON(vma_mas != vma_test); 1487 test_count++; 1488 vma_test = mas_next(&test, vms->vma_count - 1); 1489 } 1490 rcu_read_unlock(); 1491 BUG_ON(vms->vma_count != test_count); 1492 } 1493#endif 1494 1495 while (vma_iter_addr(vms->vmi) > vms->start) 1496 vma_iter_prev_range(vms->vmi); 1497 1498 vms->clear_ptes = true; 1499 return 0; 1500 1501userfaultfd_error: 1502munmap_gather_failed: 1503end_split_failed: 1504modify_vma_failed: 1505 reattach_vmas(mas_detach); 1506start_split_failed: 1507map_count_exceeded: 1508 return error; 1509} 1510 1511/* 1512 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1513 * @vms: The vma munmap struct 1514 * @vmi: The vma iterator 1515 * @vma: The first vm_area_struct to munmap 1516 * @start: The aligned start address to munmap 1517 * @end: The aligned end address to munmap 1518 * @uf: The userfaultfd list_head 1519 * @unlock: Unlock after the operation. Only unlocked on success 1520 */ 1521static void init_vma_munmap(struct vma_munmap_struct *vms, 1522 struct vma_iterator *vmi, struct vm_area_struct *vma, 1523 unsigned long start, unsigned long end, struct list_head *uf, 1524 bool unlock) 1525{ 1526 vms->vmi = vmi; 1527 vms->vma = vma; 1528 if (vma) { 1529 vms->start = start; 1530 vms->end = end; 1531 } else { 1532 vms->start = vms->end = 0; 1533 } 1534 vms->unlock = unlock; 1535 vms->uf = uf; 1536 vms->vma_count = 0; 1537 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1538 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1539 vms->unmap_start = FIRST_USER_ADDRESS; 1540 vms->unmap_end = USER_PGTABLES_CEILING; 1541 vms->clear_ptes = false; 1542} 1543 1544/* 1545 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1546 * @vmi: The vma iterator 1547 * @vma: The starting vm_area_struct 1548 * @mm: The mm_struct 1549 * @start: The aligned start address to munmap. 1550 * @end: The aligned end address to munmap. 1551 * @uf: The userfaultfd list_head 1552 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1553 * success. 1554 * 1555 * Return: 0 on success and drops the lock if so directed, error and leaves the 1556 * lock held otherwise. 1557 */ 1558int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1559 struct mm_struct *mm, unsigned long start, unsigned long end, 1560 struct list_head *uf, bool unlock) 1561{ 1562 struct maple_tree mt_detach; 1563 MA_STATE(mas_detach, &mt_detach, 0, 0); 1564 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1565 mt_on_stack(mt_detach); 1566 struct vma_munmap_struct vms; 1567 int error; 1568 1569 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1570 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1571 if (error) 1572 goto gather_failed; 1573 1574 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1575 if (error) 1576 goto clear_tree_failed; 1577 1578 /* Point of no return */ 1579 vms_complete_munmap_vmas(&vms, &mas_detach); 1580 return 0; 1581 1582clear_tree_failed: 1583 reattach_vmas(&mas_detach); 1584gather_failed: 1585 validate_mm(mm); 1586 return error; 1587} 1588 1589/* 1590 * do_vmi_munmap() - munmap a given range. 1591 * @vmi: The vma iterator 1592 * @mm: The mm_struct 1593 * @start: The start address to munmap 1594 * @len: The length of the range to munmap 1595 * @uf: The userfaultfd list_head 1596 * @unlock: set to true if the user wants to drop the mmap_lock on success 1597 * 1598 * This function takes a @mas that is either pointing to the previous VMA or set 1599 * to MA_START and sets it up to remove the mapping(s). The @len will be 1600 * aligned. 1601 * 1602 * Return: 0 on success and drops the lock if so directed, error and leaves the 1603 * lock held otherwise. 1604 */ 1605int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1606 unsigned long start, size_t len, struct list_head *uf, 1607 bool unlock) 1608{ 1609 unsigned long end; 1610 struct vm_area_struct *vma; 1611 1612 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1613 return -EINVAL; 1614 1615 end = start + PAGE_ALIGN(len); 1616 if (end == start) 1617 return -EINVAL; 1618 1619 /* Find the first overlapping VMA */ 1620 vma = vma_find(vmi, end); 1621 if (!vma) { 1622 if (unlock) 1623 mmap_write_unlock(mm); 1624 return 0; 1625 } 1626 1627 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1628} 1629 1630/* 1631 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1632 * context and anonymous VMA name within the range [start, end). 1633 * 1634 * As a result, we might be able to merge the newly modified VMA range with an 1635 * adjacent VMA with identical properties. 1636 * 1637 * If no merge is possible and the range does not span the entirety of the VMA, 1638 * we then need to split the VMA to accommodate the change. 1639 * 1640 * The function returns either the merged VMA, the original VMA if a split was 1641 * required instead, or an error if the split failed. 1642 */ 1643static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1644{ 1645 struct vm_area_struct *vma = vmg->middle; 1646 unsigned long start = vmg->start; 1647 unsigned long end = vmg->end; 1648 struct vm_area_struct *merged; 1649 1650 /* First, try to merge. */ 1651 merged = vma_merge_existing_range(vmg); 1652 if (merged) 1653 return merged; 1654 if (vmg_nomem(vmg)) 1655 return ERR_PTR(-ENOMEM); 1656 1657 /* 1658 * Split can fail for reasons other than OOM, so if the user requests 1659 * this it's probably a mistake. 1660 */ 1661 VM_WARN_ON(vmg->give_up_on_oom && 1662 (vma->vm_start != start || vma->vm_end != end)); 1663 1664 /* Split any preceding portion of the VMA. */ 1665 if (vma->vm_start < start) { 1666 int err = split_vma(vmg->vmi, vma, start, 1); 1667 1668 if (err) 1669 return ERR_PTR(err); 1670 } 1671 1672 /* Split any trailing portion of the VMA. */ 1673 if (vma->vm_end > end) { 1674 int err = split_vma(vmg->vmi, vma, end, 0); 1675 1676 if (err) 1677 return ERR_PTR(err); 1678 } 1679 1680 return vma; 1681} 1682 1683struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 1684 struct vm_area_struct *prev, struct vm_area_struct *vma, 1685 unsigned long start, unsigned long end, 1686 vm_flags_t *vm_flags_ptr) 1687{ 1688 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1689 const vm_flags_t vm_flags = *vm_flags_ptr; 1690 struct vm_area_struct *ret; 1691 1692 vmg.vm_flags = vm_flags; 1693 1694 ret = vma_modify(&vmg); 1695 if (IS_ERR(ret)) 1696 return ret; 1697 1698 /* 1699 * For a merge to succeed, the flags must match those 1700 * requested. However, sticky flags may have been retained, so propagate 1701 * them to the caller. 1702 */ 1703 if (vmg.state == VMA_MERGE_SUCCESS) 1704 *vm_flags_ptr = ret->vm_flags; 1705 return ret; 1706} 1707 1708struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi, 1709 struct vm_area_struct *prev, struct vm_area_struct *vma, 1710 unsigned long start, unsigned long end, 1711 struct anon_vma_name *new_name) 1712{ 1713 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1714 1715 vmg.anon_name = new_name; 1716 1717 return vma_modify(&vmg); 1718} 1719 1720struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi, 1721 struct vm_area_struct *prev, struct vm_area_struct *vma, 1722 unsigned long start, unsigned long end, 1723 struct mempolicy *new_pol) 1724{ 1725 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1726 1727 vmg.policy = new_pol; 1728 1729 return vma_modify(&vmg); 1730} 1731 1732struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi, 1733 struct vm_area_struct *prev, struct vm_area_struct *vma, 1734 unsigned long start, unsigned long end, vm_flags_t vm_flags, 1735 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom) 1736{ 1737 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1738 1739 vmg.vm_flags = vm_flags; 1740 vmg.uffd_ctx = new_ctx; 1741 if (give_up_on_oom) 1742 vmg.give_up_on_oom = true; 1743 1744 return vma_modify(&vmg); 1745} 1746 1747/* 1748 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1749 * VMA with identical properties. 1750 */ 1751struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1752 struct vm_area_struct *vma, 1753 unsigned long delta) 1754{ 1755 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1756 1757 vmg.next = vma_iter_next_rewind(vmi, NULL); 1758 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1759 1760 return vma_merge_new_range(&vmg); 1761} 1762 1763void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1764{ 1765 vb->count = 0; 1766} 1767 1768static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1769{ 1770 struct address_space *mapping; 1771 int i; 1772 1773 mapping = vb->vmas[0]->vm_file->f_mapping; 1774 i_mmap_lock_write(mapping); 1775 for (i = 0; i < vb->count; i++) { 1776 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1777 __remove_shared_vm_struct(vb->vmas[i], mapping); 1778 } 1779 i_mmap_unlock_write(mapping); 1780 1781 unlink_file_vma_batch_init(vb); 1782} 1783 1784void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1785 struct vm_area_struct *vma) 1786{ 1787 if (vma->vm_file == NULL) 1788 return; 1789 1790 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1791 vb->count == ARRAY_SIZE(vb->vmas)) 1792 unlink_file_vma_batch_process(vb); 1793 1794 vb->vmas[vb->count] = vma; 1795 vb->count++; 1796} 1797 1798void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1799{ 1800 if (vb->count > 0) 1801 unlink_file_vma_batch_process(vb); 1802} 1803 1804static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock) 1805{ 1806 struct file *file = vma->vm_file; 1807 struct address_space *mapping; 1808 1809 if (file) { 1810 mapping = file->f_mapping; 1811 i_mmap_lock_write(mapping); 1812 __vma_link_file(vma, mapping); 1813 if (!hold_rmap_lock) 1814 i_mmap_unlock_write(mapping); 1815 } 1816} 1817 1818static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1819{ 1820 VMA_ITERATOR(vmi, mm, 0); 1821 1822 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1823 if (vma_iter_prealloc(&vmi, vma)) 1824 return -ENOMEM; 1825 1826 vma_start_write(vma); 1827 vma_iter_store_new(&vmi, vma); 1828 vma_link_file(vma, /* hold_rmap_lock= */false); 1829 mm->map_count++; 1830 validate_mm(mm); 1831 return 0; 1832} 1833 1834/* 1835 * Copy the vma structure to a new location in the same mm, 1836 * prior to moving page table entries, to effect an mremap move. 1837 */ 1838struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1839 unsigned long addr, unsigned long len, pgoff_t pgoff, 1840 bool *need_rmap_locks) 1841{ 1842 struct vm_area_struct *vma = *vmap; 1843 unsigned long vma_start = vma->vm_start; 1844 struct mm_struct *mm = vma->vm_mm; 1845 struct vm_area_struct *new_vma; 1846 bool faulted_in_anon_vma = true; 1847 VMA_ITERATOR(vmi, mm, addr); 1848 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1849 1850 /* 1851 * If anonymous vma has not yet been faulted, update new pgoff 1852 * to match new location, to increase its chance of merging. 1853 */ 1854 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1855 pgoff = addr >> PAGE_SHIFT; 1856 faulted_in_anon_vma = false; 1857 } 1858 1859 /* 1860 * If the VMA we are copying might contain a uprobe PTE, ensure 1861 * that we do not establish one upon merge. Otherwise, when mremap() 1862 * moves page tables, it will orphan the newly created PTE. 1863 */ 1864 if (vma->vm_file) 1865 vmg.skip_vma_uprobe = true; 1866 1867 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1868 if (new_vma && new_vma->vm_start < addr + len) 1869 return NULL; /* should never get here */ 1870 1871 vmg.pgoff = pgoff; 1872 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1873 new_vma = vma_merge_copied_range(&vmg); 1874 1875 if (new_vma) { 1876 /* 1877 * Source vma may have been merged into new_vma 1878 */ 1879 if (unlikely(vma_start >= new_vma->vm_start && 1880 vma_start < new_vma->vm_end)) { 1881 /* 1882 * The only way we can get a vma_merge with 1883 * self during an mremap is if the vma hasn't 1884 * been faulted in yet and we were allowed to 1885 * reset the dst vma->vm_pgoff to the 1886 * destination address of the mremap to allow 1887 * the merge to happen. mremap must change the 1888 * vm_pgoff linearity between src and dst vmas 1889 * (in turn preventing a vma_merge) to be 1890 * safe. It is only safe to keep the vm_pgoff 1891 * linear if there are no pages mapped yet. 1892 */ 1893 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1894 *vmap = vma = new_vma; 1895 } 1896 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1897 } else { 1898 new_vma = vm_area_dup(vma); 1899 if (!new_vma) 1900 goto out; 1901 vma_set_range(new_vma, addr, addr + len, pgoff); 1902 if (vma_dup_policy(vma, new_vma)) 1903 goto out_free_vma; 1904 if (anon_vma_clone(new_vma, vma)) 1905 goto out_free_mempol; 1906 if (new_vma->vm_file) 1907 get_file(new_vma->vm_file); 1908 if (new_vma->vm_ops && new_vma->vm_ops->open) 1909 new_vma->vm_ops->open(new_vma); 1910 if (vma_link(mm, new_vma)) 1911 goto out_vma_link; 1912 *need_rmap_locks = false; 1913 } 1914 return new_vma; 1915 1916out_vma_link: 1917 fixup_hugetlb_reservations(new_vma); 1918 vma_close(new_vma); 1919 1920 if (new_vma->vm_file) 1921 fput(new_vma->vm_file); 1922 1923 unlink_anon_vmas(new_vma); 1924out_free_mempol: 1925 mpol_put(vma_policy(new_vma)); 1926out_free_vma: 1927 vm_area_free(new_vma); 1928out: 1929 return NULL; 1930} 1931 1932/* 1933 * Rough compatibility check to quickly see if it's even worth looking 1934 * at sharing an anon_vma. 1935 * 1936 * They need to have the same vm_file, and the flags can only differ 1937 * in things that mprotect may change. 1938 * 1939 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1940 * we can merge the two vma's. For example, we refuse to merge a vma if 1941 * there is a vm_ops->close() function, because that indicates that the 1942 * driver is doing some kind of reference counting. But that doesn't 1943 * really matter for the anon_vma sharing case. 1944 */ 1945static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1946{ 1947 return a->vm_end == b->vm_start && 1948 mpol_equal(vma_policy(a), vma_policy(b)) && 1949 a->vm_file == b->vm_file && 1950 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) && 1951 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1952} 1953 1954/* 1955 * Do some basic sanity checking to see if we can re-use the anon_vma 1956 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1957 * the same as 'old', the other will be the new one that is trying 1958 * to share the anon_vma. 1959 * 1960 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1961 * the anon_vma of 'old' is concurrently in the process of being set up 1962 * by another page fault trying to merge _that_. But that's ok: if it 1963 * is being set up, that automatically means that it will be a singleton 1964 * acceptable for merging, so we can do all of this optimistically. But 1965 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1966 * 1967 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1968 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1969 * is to return an anon_vma that is "complex" due to having gone through 1970 * a fork). 1971 * 1972 * We also make sure that the two vma's are compatible (adjacent, 1973 * and with the same memory policies). That's all stable, even with just 1974 * a read lock on the mmap_lock. 1975 */ 1976static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1977 struct vm_area_struct *a, 1978 struct vm_area_struct *b) 1979{ 1980 if (anon_vma_compatible(a, b)) { 1981 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1982 1983 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1984 return anon_vma; 1985 } 1986 return NULL; 1987} 1988 1989/* 1990 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1991 * neighbouring vmas for a suitable anon_vma, before it goes off 1992 * to allocate a new anon_vma. It checks because a repetitive 1993 * sequence of mprotects and faults may otherwise lead to distinct 1994 * anon_vmas being allocated, preventing vma merge in subsequent 1995 * mprotect. 1996 */ 1997struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1998{ 1999 struct anon_vma *anon_vma = NULL; 2000 struct vm_area_struct *prev, *next; 2001 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 2002 2003 /* Try next first. */ 2004 next = vma_iter_load(&vmi); 2005 if (next) { 2006 anon_vma = reusable_anon_vma(next, vma, next); 2007 if (anon_vma) 2008 return anon_vma; 2009 } 2010 2011 prev = vma_prev(&vmi); 2012 VM_BUG_ON_VMA(prev != vma, vma); 2013 prev = vma_prev(&vmi); 2014 /* Try prev next. */ 2015 if (prev) 2016 anon_vma = reusable_anon_vma(prev, prev, vma); 2017 2018 /* 2019 * We might reach here with anon_vma == NULL if we can't find 2020 * any reusable anon_vma. 2021 * There's no absolute need to look only at touching neighbours: 2022 * we could search further afield for "compatible" anon_vmas. 2023 * But it would probably just be a waste of time searching, 2024 * or lead to too many vmas hanging off the same anon_vma. 2025 * We're trying to allow mprotect remerging later on, 2026 * not trying to minimize memory used for anon_vmas. 2027 */ 2028 return anon_vma; 2029} 2030 2031static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 2032{ 2033 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 2034} 2035 2036static bool vma_is_shared_writable(struct vm_area_struct *vma) 2037{ 2038 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 2039 (VM_WRITE | VM_SHARED); 2040} 2041 2042static bool vma_fs_can_writeback(struct vm_area_struct *vma) 2043{ 2044 /* No managed pages to writeback. */ 2045 if (vma->vm_flags & VM_PFNMAP) 2046 return false; 2047 2048 return vma->vm_file && vma->vm_file->f_mapping && 2049 mapping_can_writeback(vma->vm_file->f_mapping); 2050} 2051 2052/* 2053 * Does this VMA require the underlying folios to have their dirty state 2054 * tracked? 2055 */ 2056bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2057{ 2058 /* Only shared, writable VMAs require dirty tracking. */ 2059 if (!vma_is_shared_writable(vma)) 2060 return false; 2061 2062 /* Does the filesystem need to be notified? */ 2063 if (vm_ops_needs_writenotify(vma->vm_ops)) 2064 return true; 2065 2066 /* 2067 * Even if the filesystem doesn't indicate a need for writenotify, if it 2068 * can writeback, dirty tracking is still required. 2069 */ 2070 return vma_fs_can_writeback(vma); 2071} 2072 2073/* 2074 * Some shared mappings will want the pages marked read-only 2075 * to track write events. If so, we'll downgrade vm_page_prot 2076 * to the private version (using protection_map[] without the 2077 * VM_SHARED bit). 2078 */ 2079bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2080{ 2081 /* If it was private or non-writable, the write bit is already clear */ 2082 if (!vma_is_shared_writable(vma)) 2083 return false; 2084 2085 /* The backer wishes to know when pages are first written to? */ 2086 if (vm_ops_needs_writenotify(vma->vm_ops)) 2087 return true; 2088 2089 /* The open routine did something to the protections that pgprot_modify 2090 * won't preserve? */ 2091 if (pgprot_val(vm_page_prot) != 2092 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2093 return false; 2094 2095 /* 2096 * Do we need to track softdirty? hugetlb does not support softdirty 2097 * tracking yet. 2098 */ 2099 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2100 return true; 2101 2102 /* Do we need write faults for uffd-wp tracking? */ 2103 if (userfaultfd_wp(vma)) 2104 return true; 2105 2106 /* Can the mapping track the dirty pages? */ 2107 return vma_fs_can_writeback(vma); 2108} 2109 2110static DEFINE_MUTEX(mm_all_locks_mutex); 2111 2112static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2113{ 2114 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2115 /* 2116 * The LSB of head.next can't change from under us 2117 * because we hold the mm_all_locks_mutex. 2118 */ 2119 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2120 /* 2121 * We can safely modify head.next after taking the 2122 * anon_vma->root->rwsem. If some other vma in this mm shares 2123 * the same anon_vma we won't take it again. 2124 * 2125 * No need of atomic instructions here, head.next 2126 * can't change from under us thanks to the 2127 * anon_vma->root->rwsem. 2128 */ 2129 if (__test_and_set_bit(0, (unsigned long *) 2130 &anon_vma->root->rb_root.rb_root.rb_node)) 2131 BUG(); 2132 } 2133} 2134 2135static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2136{ 2137 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2138 /* 2139 * AS_MM_ALL_LOCKS can't change from under us because 2140 * we hold the mm_all_locks_mutex. 2141 * 2142 * Operations on ->flags have to be atomic because 2143 * even if AS_MM_ALL_LOCKS is stable thanks to the 2144 * mm_all_locks_mutex, there may be other cpus 2145 * changing other bitflags in parallel to us. 2146 */ 2147 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2148 BUG(); 2149 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2150 } 2151} 2152 2153/* 2154 * This operation locks against the VM for all pte/vma/mm related 2155 * operations that could ever happen on a certain mm. This includes 2156 * vmtruncate, try_to_unmap, and all page faults. 2157 * 2158 * The caller must take the mmap_lock in write mode before calling 2159 * mm_take_all_locks(). The caller isn't allowed to release the 2160 * mmap_lock until mm_drop_all_locks() returns. 2161 * 2162 * mmap_lock in write mode is required in order to block all operations 2163 * that could modify pagetables and free pages without need of 2164 * altering the vma layout. It's also needed in write mode to avoid new 2165 * anon_vmas to be associated with existing vmas. 2166 * 2167 * A single task can't take more than one mm_take_all_locks() in a row 2168 * or it would deadlock. 2169 * 2170 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2171 * mapping->flags avoid to take the same lock twice, if more than one 2172 * vma in this mm is backed by the same anon_vma or address_space. 2173 * 2174 * We take locks in following order, accordingly to comment at beginning 2175 * of mm/rmap.c: 2176 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2177 * hugetlb mapping); 2178 * - all vmas marked locked 2179 * - all i_mmap_rwsem locks; 2180 * - all anon_vma->rwseml 2181 * 2182 * We can take all locks within these types randomly because the VM code 2183 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2184 * mm_all_locks_mutex. 2185 * 2186 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2187 * that may have to take thousand of locks. 2188 * 2189 * mm_take_all_locks() can fail if it's interrupted by signals. 2190 */ 2191int mm_take_all_locks(struct mm_struct *mm) 2192{ 2193 struct vm_area_struct *vma; 2194 struct anon_vma_chain *avc; 2195 VMA_ITERATOR(vmi, mm, 0); 2196 2197 mmap_assert_write_locked(mm); 2198 2199 mutex_lock(&mm_all_locks_mutex); 2200 2201 /* 2202 * vma_start_write() does not have a complement in mm_drop_all_locks() 2203 * because vma_start_write() is always asymmetrical; it marks a VMA as 2204 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2205 * is reached. 2206 */ 2207 for_each_vma(vmi, vma) { 2208 if (signal_pending(current)) 2209 goto out_unlock; 2210 vma_start_write(vma); 2211 } 2212 2213 vma_iter_init(&vmi, mm, 0); 2214 for_each_vma(vmi, vma) { 2215 if (signal_pending(current)) 2216 goto out_unlock; 2217 if (vma->vm_file && vma->vm_file->f_mapping && 2218 is_vm_hugetlb_page(vma)) 2219 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2220 } 2221 2222 vma_iter_init(&vmi, mm, 0); 2223 for_each_vma(vmi, vma) { 2224 if (signal_pending(current)) 2225 goto out_unlock; 2226 if (vma->vm_file && vma->vm_file->f_mapping && 2227 !is_vm_hugetlb_page(vma)) 2228 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2229 } 2230 2231 vma_iter_init(&vmi, mm, 0); 2232 for_each_vma(vmi, vma) { 2233 if (signal_pending(current)) 2234 goto out_unlock; 2235 if (vma->anon_vma) 2236 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2237 vm_lock_anon_vma(mm, avc->anon_vma); 2238 } 2239 2240 return 0; 2241 2242out_unlock: 2243 mm_drop_all_locks(mm); 2244 return -EINTR; 2245} 2246 2247static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2248{ 2249 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2250 /* 2251 * The LSB of head.next can't change to 0 from under 2252 * us because we hold the mm_all_locks_mutex. 2253 * 2254 * We must however clear the bitflag before unlocking 2255 * the vma so the users using the anon_vma->rb_root will 2256 * never see our bitflag. 2257 * 2258 * No need of atomic instructions here, head.next 2259 * can't change from under us until we release the 2260 * anon_vma->root->rwsem. 2261 */ 2262 if (!__test_and_clear_bit(0, (unsigned long *) 2263 &anon_vma->root->rb_root.rb_root.rb_node)) 2264 BUG(); 2265 anon_vma_unlock_write(anon_vma); 2266 } 2267} 2268 2269static void vm_unlock_mapping(struct address_space *mapping) 2270{ 2271 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2272 /* 2273 * AS_MM_ALL_LOCKS can't change to 0 from under us 2274 * because we hold the mm_all_locks_mutex. 2275 */ 2276 i_mmap_unlock_write(mapping); 2277 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2278 &mapping->flags)) 2279 BUG(); 2280 } 2281} 2282 2283/* 2284 * The mmap_lock cannot be released by the caller until 2285 * mm_drop_all_locks() returns. 2286 */ 2287void mm_drop_all_locks(struct mm_struct *mm) 2288{ 2289 struct vm_area_struct *vma; 2290 struct anon_vma_chain *avc; 2291 VMA_ITERATOR(vmi, mm, 0); 2292 2293 mmap_assert_write_locked(mm); 2294 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2295 2296 for_each_vma(vmi, vma) { 2297 if (vma->anon_vma) 2298 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2299 vm_unlock_anon_vma(avc->anon_vma); 2300 if (vma->vm_file && vma->vm_file->f_mapping) 2301 vm_unlock_mapping(vma->vm_file->f_mapping); 2302 } 2303 2304 mutex_unlock(&mm_all_locks_mutex); 2305} 2306 2307/* 2308 * We account for memory if it's a private writeable mapping, 2309 * not hugepages and VM_NORESERVE wasn't set. 2310 */ 2311static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2312{ 2313 /* 2314 * hugetlb has its own accounting separate from the core VM 2315 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2316 */ 2317 if (file && is_file_hugepages(file)) 2318 return false; 2319 2320 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2321} 2322 2323/* 2324 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2325 * operation. 2326 * @vms: The vma unmap structure 2327 * @mas_detach: The maple state with the detached maple tree 2328 * 2329 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2330 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2331 * have been called), then a NULL is written over the vmas and the vmas are 2332 * removed (munmap() completed). 2333 */ 2334static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2335 struct ma_state *mas_detach) 2336{ 2337 struct ma_state *mas = &vms->vmi->mas; 2338 2339 if (!vms->nr_pages) 2340 return; 2341 2342 if (vms->clear_ptes) 2343 return reattach_vmas(mas_detach); 2344 2345 /* 2346 * Aborting cannot just call the vm_ops open() because they are often 2347 * not symmetrical and state data has been lost. Resort to the old 2348 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2349 */ 2350 mas_set_range(mas, vms->start, vms->end - 1); 2351 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2352 /* Clean up the insertion of the unfortunate gap */ 2353 vms_complete_munmap_vmas(vms, mas_detach); 2354} 2355 2356static void update_ksm_flags(struct mmap_state *map) 2357{ 2358 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags); 2359} 2360 2361static void set_desc_from_map(struct vm_area_desc *desc, 2362 const struct mmap_state *map) 2363{ 2364 desc->start = map->addr; 2365 desc->end = map->end; 2366 2367 desc->pgoff = map->pgoff; 2368 desc->vm_file = map->file; 2369 desc->vm_flags = map->vm_flags; 2370 desc->page_prot = map->page_prot; 2371} 2372 2373/* 2374 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be 2375 * unmapped once the map operation is completed, check limits, account mapping 2376 * and clean up any pre-existing VMAs. 2377 * 2378 * As a result it sets up the @map and @desc objects. 2379 * 2380 * @map: Mapping state. 2381 * @desc: VMA descriptor 2382 * @uf: Userfaultfd context list. 2383 * 2384 * Returns: 0 on success, error code otherwise. 2385 */ 2386static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc, 2387 struct list_head *uf) 2388{ 2389 int error; 2390 struct vma_iterator *vmi = map->vmi; 2391 struct vma_munmap_struct *vms = &map->vms; 2392 2393 /* Find the first overlapping VMA and initialise unmap state. */ 2394 vms->vma = vma_find(vmi, map->end); 2395 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2396 /* unlock = */ false); 2397 2398 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2399 if (vms->vma) { 2400 mt_init_flags(&map->mt_detach, 2401 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2402 mt_on_stack(map->mt_detach); 2403 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2404 /* Prepare to unmap any existing mapping in the area */ 2405 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2406 if (error) { 2407 /* On error VMAs will already have been reattached. */ 2408 vms->nr_pages = 0; 2409 return error; 2410 } 2411 2412 map->next = vms->next; 2413 map->prev = vms->prev; 2414 } else { 2415 map->next = vma_iter_next_rewind(vmi, &map->prev); 2416 } 2417 2418 /* Check against address space limit. */ 2419 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages)) 2420 return -ENOMEM; 2421 2422 /* Private writable mapping: check memory availability. */ 2423 if (accountable_mapping(map->file, map->vm_flags)) { 2424 map->charged = map->pglen; 2425 map->charged -= vms->nr_accounted; 2426 if (map->charged) { 2427 error = security_vm_enough_memory_mm(map->mm, map->charged); 2428 if (error) 2429 return error; 2430 } 2431 2432 vms->nr_accounted = 0; 2433 map->vm_flags |= VM_ACCOUNT; 2434 } 2435 2436 /* 2437 * Clear PTEs while the vma is still in the tree so that rmap 2438 * cannot race with the freeing later in the truncate scenario. 2439 * This is also needed for mmap_file(), which is why vm_ops 2440 * close function is called. 2441 */ 2442 vms_clean_up_area(vms, &map->mas_detach); 2443 2444 set_desc_from_map(desc, map); 2445 return 0; 2446} 2447 2448 2449static int __mmap_new_file_vma(struct mmap_state *map, 2450 struct vm_area_struct *vma) 2451{ 2452 struct vma_iterator *vmi = map->vmi; 2453 int error; 2454 2455 vma->vm_file = map->file; 2456 if (!map->file_doesnt_need_get) 2457 get_file(map->file); 2458 2459 if (!map->file->f_op->mmap) 2460 return 0; 2461 2462 error = mmap_file(vma->vm_file, vma); 2463 if (error) { 2464 fput(vma->vm_file); 2465 vma->vm_file = NULL; 2466 2467 vma_iter_set(vmi, vma->vm_end); 2468 /* Undo any partial mapping done by a device driver. */ 2469 unmap_region(&vmi->mas, vma, map->prev, map->next); 2470 2471 return error; 2472 } 2473 2474 /* Drivers cannot alter the address of the VMA. */ 2475 WARN_ON_ONCE(map->addr != vma->vm_start); 2476 /* 2477 * Drivers should not permit writability when previously it was 2478 * disallowed. 2479 */ 2480 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags && 2481 !(map->vm_flags & VM_MAYWRITE) && 2482 (vma->vm_flags & VM_MAYWRITE)); 2483 2484 map->file = vma->vm_file; 2485 map->vm_flags = vma->vm_flags; 2486 2487 return 0; 2488} 2489 2490/* 2491 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2492 * possible. 2493 * 2494 * @map: Mapping state. 2495 * @vmap: Output pointer for the new VMA. 2496 * 2497 * Returns: Zero on success, or an error. 2498 */ 2499static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2500{ 2501 struct vma_iterator *vmi = map->vmi; 2502 int error = 0; 2503 struct vm_area_struct *vma; 2504 2505 /* 2506 * Determine the object being mapped and call the appropriate 2507 * specific mapper. the address has already been validated, but 2508 * not unmapped, but the maps are removed from the list. 2509 */ 2510 vma = vm_area_alloc(map->mm); 2511 if (!vma) 2512 return -ENOMEM; 2513 2514 vma_iter_config(vmi, map->addr, map->end); 2515 vma_set_range(vma, map->addr, map->end, map->pgoff); 2516 vm_flags_init(vma, map->vm_flags); 2517 vma->vm_page_prot = map->page_prot; 2518 2519 if (vma_iter_prealloc(vmi, vma)) { 2520 error = -ENOMEM; 2521 goto free_vma; 2522 } 2523 2524 if (map->file) 2525 error = __mmap_new_file_vma(map, vma); 2526 else if (map->vm_flags & VM_SHARED) 2527 error = shmem_zero_setup(vma); 2528 else 2529 vma_set_anonymous(vma); 2530 2531 if (error) 2532 goto free_iter_vma; 2533 2534 if (!map->check_ksm_early) { 2535 update_ksm_flags(map); 2536 vm_flags_init(vma, map->vm_flags); 2537 } 2538 2539#ifdef CONFIG_SPARC64 2540 /* TODO: Fix SPARC ADI! */ 2541 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags)); 2542#endif 2543 2544 /* Lock the VMA since it is modified after insertion into VMA tree */ 2545 vma_start_write(vma); 2546 vma_iter_store_new(vmi, vma); 2547 map->mm->map_count++; 2548 vma_link_file(vma, map->hold_file_rmap_lock); 2549 2550 /* 2551 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2552 * call covers the non-merge case. 2553 */ 2554 if (!vma_is_anonymous(vma)) 2555 khugepaged_enter_vma(vma, map->vm_flags); 2556 *vmap = vma; 2557 return 0; 2558 2559free_iter_vma: 2560 vma_iter_free(vmi); 2561free_vma: 2562 vm_area_free(vma); 2563 return error; 2564} 2565 2566/* 2567 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2568 * statistics, handle locking and finalise the VMA. 2569 * 2570 * @map: Mapping state. 2571 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2572 */ 2573static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2574{ 2575 struct mm_struct *mm = map->mm; 2576 vm_flags_t vm_flags = vma->vm_flags; 2577 2578 perf_event_mmap(vma); 2579 2580 /* Unmap any existing mapping in the area. */ 2581 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2582 2583 vm_stat_account(mm, vma->vm_flags, map->pglen); 2584 if (vm_flags & VM_LOCKED) { 2585 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2586 is_vm_hugetlb_page(vma) || 2587 vma == get_gate_vma(mm)) 2588 vm_flags_clear(vma, VM_LOCKED_MASK); 2589 else 2590 mm->locked_vm += map->pglen; 2591 } 2592 2593 if (vma->vm_file) 2594 uprobe_mmap(vma); 2595 2596 /* 2597 * New (or expanded) vma always get soft dirty status. 2598 * Otherwise user-space soft-dirty page tracker won't 2599 * be able to distinguish situation when vma area unmapped, 2600 * then new mapped in-place (which must be aimed as 2601 * a completely new data area). 2602 */ 2603 if (pgtable_supports_soft_dirty()) 2604 vm_flags_set(vma, VM_SOFTDIRTY); 2605 2606 vma_set_page_prot(vma); 2607} 2608 2609static void call_action_prepare(struct mmap_state *map, 2610 struct vm_area_desc *desc) 2611{ 2612 struct mmap_action *action = &desc->action; 2613 2614 mmap_action_prepare(action, desc); 2615 2616 if (action->hide_from_rmap_until_complete) 2617 map->hold_file_rmap_lock = true; 2618} 2619 2620/* 2621 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that 2622 * specifies it. 2623 * 2624 * This is called prior to any merge attempt, and updates whitelisted fields 2625 * that are permitted to be updated by the caller. 2626 * 2627 * All but user-defined fields will be pre-populated with original values. 2628 * 2629 * Returns 0 on success, or an error code otherwise. 2630 */ 2631static int call_mmap_prepare(struct mmap_state *map, 2632 struct vm_area_desc *desc) 2633{ 2634 int err; 2635 2636 /* Invoke the hook. */ 2637 err = vfs_mmap_prepare(map->file, desc); 2638 if (err) 2639 return err; 2640 2641 call_action_prepare(map, desc); 2642 2643 /* Update fields permitted to be changed. */ 2644 map->pgoff = desc->pgoff; 2645 if (desc->vm_file != map->file) { 2646 map->file_doesnt_need_get = true; 2647 map->file = desc->vm_file; 2648 } 2649 map->vm_flags = desc->vm_flags; 2650 map->page_prot = desc->page_prot; 2651 /* User-defined fields. */ 2652 map->vm_ops = desc->vm_ops; 2653 map->vm_private_data = desc->private_data; 2654 2655 return 0; 2656} 2657 2658static void set_vma_user_defined_fields(struct vm_area_struct *vma, 2659 struct mmap_state *map) 2660{ 2661 if (map->vm_ops) 2662 vma->vm_ops = map->vm_ops; 2663 vma->vm_private_data = map->vm_private_data; 2664} 2665 2666/* 2667 * Are we guaranteed no driver can change state such as to preclude KSM merging? 2668 * If so, let's set the KSM mergeable flag early so we don't break VMA merging. 2669 */ 2670static bool can_set_ksm_flags_early(struct mmap_state *map) 2671{ 2672 struct file *file = map->file; 2673 2674 /* Anonymous mappings have no driver which can change them. */ 2675 if (!file) 2676 return true; 2677 2678 /* 2679 * If .mmap_prepare() is specified, then the driver will have already 2680 * manipulated state prior to updating KSM flags. So no need to worry 2681 * about mmap callbacks modifying VMA flags after the KSM flag has been 2682 * updated here, which could otherwise affect KSM eligibility. 2683 */ 2684 if (file->f_op->mmap_prepare) 2685 return true; 2686 2687 /* shmem is safe. */ 2688 if (shmem_file(file)) 2689 return true; 2690 2691 /* Any other .mmap callback is not safe. */ 2692 return false; 2693} 2694 2695static int call_action_complete(struct mmap_state *map, 2696 struct vm_area_desc *desc, 2697 struct vm_area_struct *vma) 2698{ 2699 struct mmap_action *action = &desc->action; 2700 int ret; 2701 2702 ret = mmap_action_complete(action, vma); 2703 2704 /* If we held the file rmap we need to release it. */ 2705 if (map->hold_file_rmap_lock) { 2706 struct file *file = vma->vm_file; 2707 2708 i_mmap_unlock_write(file->f_mapping); 2709 } 2710 return ret; 2711} 2712 2713static unsigned long __mmap_region(struct file *file, unsigned long addr, 2714 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2715 struct list_head *uf) 2716{ 2717 struct mm_struct *mm = current->mm; 2718 struct vm_area_struct *vma = NULL; 2719 bool have_mmap_prepare = file && file->f_op->mmap_prepare; 2720 VMA_ITERATOR(vmi, mm, addr); 2721 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2722 struct vm_area_desc desc = { 2723 .mm = mm, 2724 .file = file, 2725 .action = { 2726 .type = MMAP_NOTHING, /* Default to no further action. */ 2727 }, 2728 }; 2729 bool allocated_new = false; 2730 int error; 2731 2732 map.check_ksm_early = can_set_ksm_flags_early(&map); 2733 2734 error = __mmap_setup(&map, &desc, uf); 2735 if (!error && have_mmap_prepare) 2736 error = call_mmap_prepare(&map, &desc); 2737 if (error) 2738 goto abort_munmap; 2739 2740 if (map.check_ksm_early) 2741 update_ksm_flags(&map); 2742 2743 /* Attempt to merge with adjacent VMAs... */ 2744 if (map.prev || map.next) { 2745 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2746 2747 vma = vma_merge_new_range(&vmg); 2748 } 2749 2750 /* ...but if we can't, allocate a new VMA. */ 2751 if (!vma) { 2752 error = __mmap_new_vma(&map, &vma); 2753 if (error) 2754 goto unacct_error; 2755 allocated_new = true; 2756 } 2757 2758 if (have_mmap_prepare) 2759 set_vma_user_defined_fields(vma, &map); 2760 2761 __mmap_complete(&map, vma); 2762 2763 if (have_mmap_prepare && allocated_new) { 2764 error = call_action_complete(&map, &desc, vma); 2765 2766 if (error) 2767 return error; 2768 } 2769 2770 return addr; 2771 2772 /* Accounting was done by __mmap_setup(). */ 2773unacct_error: 2774 if (map.charged) 2775 vm_unacct_memory(map.charged); 2776abort_munmap: 2777 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2778 return error; 2779} 2780 2781/** 2782 * mmap_region() - Actually perform the userland mapping of a VMA into 2783 * current->mm with known, aligned and overflow-checked @addr and @len, and 2784 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2785 * 2786 * This is an internal memory management function, and should not be used 2787 * directly. 2788 * 2789 * The caller must write-lock current->mm->mmap_lock. 2790 * 2791 * @file: If a file-backed mapping, a pointer to the struct file describing the 2792 * file to be mapped, otherwise NULL. 2793 * @addr: The page-aligned address at which to perform the mapping. 2794 * @len: The page-aligned, non-zero, length of the mapping. 2795 * @vm_flags: The VMA flags which should be applied to the mapping. 2796 * @pgoff: If @file is specified, the page offset into the file, if not then 2797 * the virtual page offset in memory of the anonymous mapping. 2798 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2799 * events. 2800 * 2801 * Returns: Either an error, or the address at which the requested mapping has 2802 * been performed. 2803 */ 2804unsigned long mmap_region(struct file *file, unsigned long addr, 2805 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2806 struct list_head *uf) 2807{ 2808 unsigned long ret; 2809 bool writable_file_mapping = false; 2810 2811 mmap_assert_write_locked(current->mm); 2812 2813 /* Check to see if MDWE is applicable. */ 2814 if (map_deny_write_exec(vm_flags, vm_flags)) 2815 return -EACCES; 2816 2817 /* Allow architectures to sanity-check the vm_flags. */ 2818 if (!arch_validate_flags(vm_flags)) 2819 return -EINVAL; 2820 2821 /* Map writable and ensure this isn't a sealed memfd. */ 2822 if (file && is_shared_maywrite(vm_flags)) { 2823 int error = mapping_map_writable(file->f_mapping); 2824 2825 if (error) 2826 return error; 2827 writable_file_mapping = true; 2828 } 2829 2830 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2831 2832 /* Clear our write mapping regardless of error. */ 2833 if (writable_file_mapping) 2834 mapping_unmap_writable(file->f_mapping); 2835 2836 validate_mm(current->mm); 2837 return ret; 2838} 2839 2840/* 2841 * do_brk_flags() - Increase the brk vma if the flags match. 2842 * @vmi: The vma iterator 2843 * @addr: The start address 2844 * @len: The length of the increase 2845 * @vma: The vma, 2846 * @vm_flags: The VMA Flags 2847 * 2848 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2849 * do not match then create a new anonymous VMA. Eventually we may be able to 2850 * do some brk-specific accounting here. 2851 */ 2852int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2853 unsigned long addr, unsigned long len, vm_flags_t vm_flags) 2854{ 2855 struct mm_struct *mm = current->mm; 2856 2857 /* 2858 * Check against address space limits by the changed size 2859 * Note: This happens *after* clearing old mappings in some code paths. 2860 */ 2861 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2862 vm_flags = ksm_vma_flags(mm, NULL, vm_flags); 2863 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) 2864 return -ENOMEM; 2865 2866 if (mm->map_count > sysctl_max_map_count) 2867 return -ENOMEM; 2868 2869 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2870 return -ENOMEM; 2871 2872 /* 2873 * Expand the existing vma if possible; Note that singular lists do not 2874 * occur after forking, so the expand will only happen on new VMAs. 2875 */ 2876 if (vma && vma->vm_end == addr) { 2877 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr)); 2878 2879 vmg.prev = vma; 2880 /* vmi is positioned at prev, which this mode expects. */ 2881 vmg.just_expand = true; 2882 2883 if (vma_merge_new_range(&vmg)) 2884 goto out; 2885 else if (vmg_nomem(&vmg)) 2886 goto unacct_fail; 2887 } 2888 2889 if (vma) 2890 vma_iter_next_range(vmi); 2891 /* create a vma struct for an anonymous mapping */ 2892 vma = vm_area_alloc(mm); 2893 if (!vma) 2894 goto unacct_fail; 2895 2896 vma_set_anonymous(vma); 2897 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2898 vm_flags_init(vma, vm_flags); 2899 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2900 vma_start_write(vma); 2901 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2902 goto mas_store_fail; 2903 2904 mm->map_count++; 2905 validate_mm(mm); 2906out: 2907 perf_event_mmap(vma); 2908 mm->total_vm += len >> PAGE_SHIFT; 2909 mm->data_vm += len >> PAGE_SHIFT; 2910 if (vm_flags & VM_LOCKED) 2911 mm->locked_vm += (len >> PAGE_SHIFT); 2912 if (pgtable_supports_soft_dirty()) 2913 vm_flags_set(vma, VM_SOFTDIRTY); 2914 return 0; 2915 2916mas_store_fail: 2917 vm_area_free(vma); 2918unacct_fail: 2919 vm_unacct_memory(len >> PAGE_SHIFT); 2920 return -ENOMEM; 2921} 2922 2923/** 2924 * unmapped_area() - Find an area between the low_limit and the high_limit with 2925 * the correct alignment and offset, all from @info. Note: current->mm is used 2926 * for the search. 2927 * 2928 * @info: The unmapped area information including the range [low_limit - 2929 * high_limit), the alignment offset and mask. 2930 * 2931 * Return: A memory address or -ENOMEM. 2932 */ 2933unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2934{ 2935 unsigned long length, gap; 2936 unsigned long low_limit, high_limit; 2937 struct vm_area_struct *tmp; 2938 VMA_ITERATOR(vmi, current->mm, 0); 2939 2940 /* Adjust search length to account for worst case alignment overhead */ 2941 length = info->length + info->align_mask + info->start_gap; 2942 if (length < info->length) 2943 return -ENOMEM; 2944 2945 low_limit = info->low_limit; 2946 if (low_limit < mmap_min_addr) 2947 low_limit = mmap_min_addr; 2948 high_limit = info->high_limit; 2949retry: 2950 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2951 return -ENOMEM; 2952 2953 /* 2954 * Adjust for the gap first so it doesn't interfere with the 2955 * later alignment. The first step is the minimum needed to 2956 * fulill the start gap, the next steps is the minimum to align 2957 * that. It is the minimum needed to fulill both. 2958 */ 2959 gap = vma_iter_addr(&vmi) + info->start_gap; 2960 gap += (info->align_offset - gap) & info->align_mask; 2961 tmp = vma_next(&vmi); 2962 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2963 if (vm_start_gap(tmp) < gap + length - 1) { 2964 low_limit = tmp->vm_end; 2965 vma_iter_reset(&vmi); 2966 goto retry; 2967 } 2968 } else { 2969 tmp = vma_prev(&vmi); 2970 if (tmp && vm_end_gap(tmp) > gap) { 2971 low_limit = vm_end_gap(tmp); 2972 vma_iter_reset(&vmi); 2973 goto retry; 2974 } 2975 } 2976 2977 return gap; 2978} 2979 2980/** 2981 * unmapped_area_topdown() - Find an area between the low_limit and the 2982 * high_limit with the correct alignment and offset at the highest available 2983 * address, all from @info. Note: current->mm is used for the search. 2984 * 2985 * @info: The unmapped area information including the range [low_limit - 2986 * high_limit), the alignment offset and mask. 2987 * 2988 * Return: A memory address or -ENOMEM. 2989 */ 2990unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2991{ 2992 unsigned long length, gap, gap_end; 2993 unsigned long low_limit, high_limit; 2994 struct vm_area_struct *tmp; 2995 VMA_ITERATOR(vmi, current->mm, 0); 2996 2997 /* Adjust search length to account for worst case alignment overhead */ 2998 length = info->length + info->align_mask + info->start_gap; 2999 if (length < info->length) 3000 return -ENOMEM; 3001 3002 low_limit = info->low_limit; 3003 if (low_limit < mmap_min_addr) 3004 low_limit = mmap_min_addr; 3005 high_limit = info->high_limit; 3006retry: 3007 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 3008 return -ENOMEM; 3009 3010 gap = vma_iter_end(&vmi) - info->length; 3011 gap -= (gap - info->align_offset) & info->align_mask; 3012 gap_end = vma_iter_end(&vmi); 3013 tmp = vma_next(&vmi); 3014 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 3015 if (vm_start_gap(tmp) < gap_end) { 3016 high_limit = vm_start_gap(tmp); 3017 vma_iter_reset(&vmi); 3018 goto retry; 3019 } 3020 } else { 3021 tmp = vma_prev(&vmi); 3022 if (tmp && vm_end_gap(tmp) > gap) { 3023 high_limit = tmp->vm_start; 3024 vma_iter_reset(&vmi); 3025 goto retry; 3026 } 3027 } 3028 3029 return gap; 3030} 3031 3032/* 3033 * Verify that the stack growth is acceptable and 3034 * update accounting. This is shared with both the 3035 * grow-up and grow-down cases. 3036 */ 3037static int acct_stack_growth(struct vm_area_struct *vma, 3038 unsigned long size, unsigned long grow) 3039{ 3040 struct mm_struct *mm = vma->vm_mm; 3041 unsigned long new_start; 3042 3043 /* address space limit tests */ 3044 if (!may_expand_vm(mm, vma->vm_flags, grow)) 3045 return -ENOMEM; 3046 3047 /* Stack limit test */ 3048 if (size > rlimit(RLIMIT_STACK)) 3049 return -ENOMEM; 3050 3051 /* mlock limit tests */ 3052 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 3053 return -ENOMEM; 3054 3055 /* Check to ensure the stack will not grow into a hugetlb-only region */ 3056 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 3057 vma->vm_end - size; 3058 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 3059 return -EFAULT; 3060 3061 /* 3062 * Overcommit.. This must be the final test, as it will 3063 * update security statistics. 3064 */ 3065 if (security_vm_enough_memory_mm(mm, grow)) 3066 return -ENOMEM; 3067 3068 return 0; 3069} 3070 3071#if defined(CONFIG_STACK_GROWSUP) 3072/* 3073 * PA-RISC uses this for its stack. 3074 * vma is the last one with address > vma->vm_end. Have to extend vma. 3075 */ 3076int expand_upwards(struct vm_area_struct *vma, unsigned long address) 3077{ 3078 struct mm_struct *mm = vma->vm_mm; 3079 struct vm_area_struct *next; 3080 unsigned long gap_addr; 3081 int error = 0; 3082 VMA_ITERATOR(vmi, mm, vma->vm_start); 3083 3084 if (!(vma->vm_flags & VM_GROWSUP)) 3085 return -EFAULT; 3086 3087 mmap_assert_write_locked(mm); 3088 3089 /* Guard against exceeding limits of the address space. */ 3090 address &= PAGE_MASK; 3091 if (address >= (TASK_SIZE & PAGE_MASK)) 3092 return -ENOMEM; 3093 address += PAGE_SIZE; 3094 3095 /* Enforce stack_guard_gap */ 3096 gap_addr = address + stack_guard_gap; 3097 3098 /* Guard against overflow */ 3099 if (gap_addr < address || gap_addr > TASK_SIZE) 3100 gap_addr = TASK_SIZE; 3101 3102 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 3103 if (next && vma_is_accessible(next)) { 3104 if (!(next->vm_flags & VM_GROWSUP)) 3105 return -ENOMEM; 3106 /* Check that both stack segments have the same anon_vma? */ 3107 } 3108 3109 if (next) 3110 vma_iter_prev_range_limit(&vmi, address); 3111 3112 vma_iter_config(&vmi, vma->vm_start, address); 3113 if (vma_iter_prealloc(&vmi, vma)) 3114 return -ENOMEM; 3115 3116 /* We must make sure the anon_vma is allocated. */ 3117 if (unlikely(anon_vma_prepare(vma))) { 3118 vma_iter_free(&vmi); 3119 return -ENOMEM; 3120 } 3121 3122 /* Lock the VMA before expanding to prevent concurrent page faults */ 3123 vma_start_write(vma); 3124 /* We update the anon VMA tree. */ 3125 anon_vma_lock_write(vma->anon_vma); 3126 3127 /* Somebody else might have raced and expanded it already */ 3128 if (address > vma->vm_end) { 3129 unsigned long size, grow; 3130 3131 size = address - vma->vm_start; 3132 grow = (address - vma->vm_end) >> PAGE_SHIFT; 3133 3134 error = -ENOMEM; 3135 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 3136 error = acct_stack_growth(vma, size, grow); 3137 if (!error) { 3138 if (vma->vm_flags & VM_LOCKED) 3139 mm->locked_vm += grow; 3140 vm_stat_account(mm, vma->vm_flags, grow); 3141 anon_vma_interval_tree_pre_update_vma(vma); 3142 vma->vm_end = address; 3143 /* Overwrite old entry in mtree. */ 3144 vma_iter_store_overwrite(&vmi, vma); 3145 anon_vma_interval_tree_post_update_vma(vma); 3146 3147 perf_event_mmap(vma); 3148 } 3149 } 3150 } 3151 anon_vma_unlock_write(vma->anon_vma); 3152 vma_iter_free(&vmi); 3153 validate_mm(mm); 3154 return error; 3155} 3156#endif /* CONFIG_STACK_GROWSUP */ 3157 3158/* 3159 * vma is the first one with address < vma->vm_start. Have to extend vma. 3160 * mmap_lock held for writing. 3161 */ 3162int expand_downwards(struct vm_area_struct *vma, unsigned long address) 3163{ 3164 struct mm_struct *mm = vma->vm_mm; 3165 struct vm_area_struct *prev; 3166 int error = 0; 3167 VMA_ITERATOR(vmi, mm, vma->vm_start); 3168 3169 if (!(vma->vm_flags & VM_GROWSDOWN)) 3170 return -EFAULT; 3171 3172 mmap_assert_write_locked(mm); 3173 3174 address &= PAGE_MASK; 3175 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 3176 return -EPERM; 3177 3178 /* Enforce stack_guard_gap */ 3179 prev = vma_prev(&vmi); 3180 /* Check that both stack segments have the same anon_vma? */ 3181 if (prev) { 3182 if (!(prev->vm_flags & VM_GROWSDOWN) && 3183 vma_is_accessible(prev) && 3184 (address - prev->vm_end < stack_guard_gap)) 3185 return -ENOMEM; 3186 } 3187 3188 if (prev) 3189 vma_iter_next_range_limit(&vmi, vma->vm_start); 3190 3191 vma_iter_config(&vmi, address, vma->vm_end); 3192 if (vma_iter_prealloc(&vmi, vma)) 3193 return -ENOMEM; 3194 3195 /* We must make sure the anon_vma is allocated. */ 3196 if (unlikely(anon_vma_prepare(vma))) { 3197 vma_iter_free(&vmi); 3198 return -ENOMEM; 3199 } 3200 3201 /* Lock the VMA before expanding to prevent concurrent page faults */ 3202 vma_start_write(vma); 3203 /* We update the anon VMA tree. */ 3204 anon_vma_lock_write(vma->anon_vma); 3205 3206 /* Somebody else might have raced and expanded it already */ 3207 if (address < vma->vm_start) { 3208 unsigned long size, grow; 3209 3210 size = vma->vm_end - address; 3211 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3212 3213 error = -ENOMEM; 3214 if (grow <= vma->vm_pgoff) { 3215 error = acct_stack_growth(vma, size, grow); 3216 if (!error) { 3217 if (vma->vm_flags & VM_LOCKED) 3218 mm->locked_vm += grow; 3219 vm_stat_account(mm, vma->vm_flags, grow); 3220 anon_vma_interval_tree_pre_update_vma(vma); 3221 vma->vm_start = address; 3222 vma->vm_pgoff -= grow; 3223 /* Overwrite old entry in mtree. */ 3224 vma_iter_store_overwrite(&vmi, vma); 3225 anon_vma_interval_tree_post_update_vma(vma); 3226 3227 perf_event_mmap(vma); 3228 } 3229 } 3230 } 3231 anon_vma_unlock_write(vma->anon_vma); 3232 vma_iter_free(&vmi); 3233 validate_mm(mm); 3234 return error; 3235} 3236 3237int __vm_munmap(unsigned long start, size_t len, bool unlock) 3238{ 3239 int ret; 3240 struct mm_struct *mm = current->mm; 3241 LIST_HEAD(uf); 3242 VMA_ITERATOR(vmi, mm, start); 3243 3244 if (mmap_write_lock_killable(mm)) 3245 return -EINTR; 3246 3247 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3248 if (ret || !unlock) 3249 mmap_write_unlock(mm); 3250 3251 userfaultfd_unmap_complete(mm, &uf); 3252 return ret; 3253} 3254 3255/* Insert vm structure into process list sorted by address 3256 * and into the inode's i_mmap tree. If vm_file is non-NULL 3257 * then i_mmap_rwsem is taken here. 3258 */ 3259int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3260{ 3261 unsigned long charged = vma_pages(vma); 3262 3263 3264 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3265 return -ENOMEM; 3266 3267 if ((vma->vm_flags & VM_ACCOUNT) && 3268 security_vm_enough_memory_mm(mm, charged)) 3269 return -ENOMEM; 3270 3271 /* 3272 * The vm_pgoff of a purely anonymous vma should be irrelevant 3273 * until its first write fault, when page's anon_vma and index 3274 * are set. But now set the vm_pgoff it will almost certainly 3275 * end up with (unless mremap moves it elsewhere before that 3276 * first wfault), so /proc/pid/maps tells a consistent story. 3277 * 3278 * By setting it to reflect the virtual start address of the 3279 * vma, merges and splits can happen in a seamless way, just 3280 * using the existing file pgoff checks and manipulations. 3281 * Similarly in do_mmap and in do_brk_flags. 3282 */ 3283 if (vma_is_anonymous(vma)) { 3284 BUG_ON(vma->anon_vma); 3285 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3286 } 3287 3288 if (vma_link(mm, vma)) { 3289 if (vma->vm_flags & VM_ACCOUNT) 3290 vm_unacct_memory(charged); 3291 return -ENOMEM; 3292 } 3293 3294 return 0; 3295}