at v6.19 879 lines 26 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10#include <linux/mm.h> 11#include <linux/gfp.h> 12#include <linux/kernel_stat.h> 13#include <linux/mempolicy.h> 14#include <linux/swap.h> 15#include <linux/leafops.h> 16#include <linux/init.h> 17#include <linux/pagemap.h> 18#include <linux/pagevec.h> 19#include <linux/backing-dev.h> 20#include <linux/blkdev.h> 21#include <linux/migrate.h> 22#include <linux/vmalloc.h> 23#include <linux/huge_mm.h> 24#include <linux/shmem_fs.h> 25#include "internal.h" 26#include "swap_table.h" 27#include "swap.h" 28 29/* 30 * swapper_space is a fiction, retained to simplify the path through 31 * vmscan's shrink_folio_list. 32 */ 33static const struct address_space_operations swap_aops = { 34 .dirty_folio = noop_dirty_folio, 35#ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37#endif 38}; 39 40struct address_space swap_space __read_mostly = { 41 .a_ops = &swap_aops, 42}; 43 44static bool enable_vma_readahead __read_mostly = true; 45 46#define SWAP_RA_ORDER_CEILING 5 47 48#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 49#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 50#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 51#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 52 53#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 54#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 55#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 56 57#define SWAP_RA_VAL(addr, win, hits) \ 58 (((addr) & PAGE_MASK) | \ 59 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 60 ((hits) & SWAP_RA_HITS_MASK)) 61 62/* Initial readahead hits is 4 to start up with a small window */ 63#define GET_SWAP_RA_VAL(vma) \ 64 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 65 66static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 67 68void show_swap_cache_info(void) 69{ 70 printk("%lu pages in swap cache\n", total_swapcache_pages()); 71 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 72 printk("Total swap = %lukB\n", K(total_swap_pages)); 73} 74 75/** 76 * swap_cache_get_folio - Looks up a folio in the swap cache. 77 * @entry: swap entry used for the lookup. 78 * 79 * A found folio will be returned unlocked and with its refcount increased. 80 * 81 * Context: Caller must ensure @entry is valid and protect the swap device 82 * with reference count or locks. 83 * Return: Returns the found folio on success, NULL otherwise. The caller 84 * must lock nd check if the folio still matches the swap entry before 85 * use (e.g., folio_matches_swap_entry). 86 */ 87struct folio *swap_cache_get_folio(swp_entry_t entry) 88{ 89 unsigned long swp_tb; 90 struct folio *folio; 91 92 for (;;) { 93 swp_tb = swap_table_get(__swap_entry_to_cluster(entry), 94 swp_cluster_offset(entry)); 95 if (!swp_tb_is_folio(swp_tb)) 96 return NULL; 97 folio = swp_tb_to_folio(swp_tb); 98 if (likely(folio_try_get(folio))) 99 return folio; 100 } 101 102 return NULL; 103} 104 105/** 106 * swap_cache_get_shadow - Looks up a shadow in the swap cache. 107 * @entry: swap entry used for the lookup. 108 * 109 * Context: Caller must ensure @entry is valid and protect the swap device 110 * with reference count or locks. 111 * Return: Returns either NULL or an XA_VALUE (shadow). 112 */ 113void *swap_cache_get_shadow(swp_entry_t entry) 114{ 115 unsigned long swp_tb; 116 117 swp_tb = swap_table_get(__swap_entry_to_cluster(entry), 118 swp_cluster_offset(entry)); 119 if (swp_tb_is_shadow(swp_tb)) 120 return swp_tb_to_shadow(swp_tb); 121 return NULL; 122} 123 124/** 125 * swap_cache_add_folio - Add a folio into the swap cache. 126 * @folio: The folio to be added. 127 * @entry: The swap entry corresponding to the folio. 128 * @gfp: gfp_mask for XArray node allocation. 129 * @shadowp: If a shadow is found, return the shadow. 130 * 131 * Context: Caller must ensure @entry is valid and protect the swap device 132 * with reference count or locks. 133 * The caller also needs to update the corresponding swap_map slots with 134 * SWAP_HAS_CACHE bit to avoid race or conflict. 135 */ 136void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp) 137{ 138 void *shadow = NULL; 139 unsigned long old_tb, new_tb; 140 struct swap_cluster_info *ci; 141 unsigned int ci_start, ci_off, ci_end; 142 unsigned long nr_pages = folio_nr_pages(folio); 143 144 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 145 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); 146 VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio); 147 148 new_tb = folio_to_swp_tb(folio); 149 ci_start = swp_cluster_offset(entry); 150 ci_end = ci_start + nr_pages; 151 ci_off = ci_start; 152 ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry)); 153 do { 154 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 155 WARN_ON_ONCE(swp_tb_is_folio(old_tb)); 156 if (swp_tb_is_shadow(old_tb)) 157 shadow = swp_tb_to_shadow(old_tb); 158 } while (++ci_off < ci_end); 159 160 folio_ref_add(folio, nr_pages); 161 folio_set_swapcache(folio); 162 folio->swap = entry; 163 swap_cluster_unlock(ci); 164 165 node_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 166 lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr_pages); 167 168 if (shadowp) 169 *shadowp = shadow; 170} 171 172/** 173 * __swap_cache_del_folio - Removes a folio from the swap cache. 174 * @ci: The locked swap cluster. 175 * @folio: The folio. 176 * @entry: The first swap entry that the folio corresponds to. 177 * @shadow: shadow value to be filled in the swap cache. 178 * 179 * Removes a folio from the swap cache and fills a shadow in place. 180 * This won't put the folio's refcount. The caller has to do that. 181 * 182 * Context: Caller must ensure the folio is locked and in the swap cache 183 * using the index of @entry, and lock the cluster that holds the entries. 184 */ 185void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio, 186 swp_entry_t entry, void *shadow) 187{ 188 unsigned long old_tb, new_tb; 189 unsigned int ci_start, ci_off, ci_end; 190 unsigned long nr_pages = folio_nr_pages(folio); 191 192 VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci); 193 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 194 VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio); 195 VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio); 196 197 new_tb = shadow_swp_to_tb(shadow); 198 ci_start = swp_cluster_offset(entry); 199 ci_end = ci_start + nr_pages; 200 ci_off = ci_start; 201 do { 202 /* If shadow is NULL, we sets an empty shadow */ 203 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 204 WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || 205 swp_tb_to_folio(old_tb) != folio); 206 } while (++ci_off < ci_end); 207 208 folio->swap.val = 0; 209 folio_clear_swapcache(folio); 210 node_stat_mod_folio(folio, NR_FILE_PAGES, -nr_pages); 211 lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr_pages); 212} 213 214/** 215 * swap_cache_del_folio - Removes a folio from the swap cache. 216 * @folio: The folio. 217 * 218 * Same as __swap_cache_del_folio, but handles lock and refcount. The 219 * caller must ensure the folio is either clean or has a swap count 220 * equal to zero, or it may cause data loss. 221 * 222 * Context: Caller must ensure the folio is locked and in the swap cache. 223 */ 224void swap_cache_del_folio(struct folio *folio) 225{ 226 struct swap_cluster_info *ci; 227 swp_entry_t entry = folio->swap; 228 229 ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry)); 230 __swap_cache_del_folio(ci, folio, entry, NULL); 231 swap_cluster_unlock(ci); 232 233 put_swap_folio(folio, entry); 234 folio_ref_sub(folio, folio_nr_pages(folio)); 235} 236 237/** 238 * __swap_cache_replace_folio - Replace a folio in the swap cache. 239 * @ci: The locked swap cluster. 240 * @old: The old folio to be replaced. 241 * @new: The new folio. 242 * 243 * Replace an existing folio in the swap cache with a new folio. The 244 * caller is responsible for setting up the new folio's flag and swap 245 * entries. Replacement will take the new folio's swap entry value as 246 * the starting offset to override all slots covered by the new folio. 247 * 248 * Context: Caller must ensure both folios are locked, and lock the 249 * cluster that holds the old folio to be replaced. 250 */ 251void __swap_cache_replace_folio(struct swap_cluster_info *ci, 252 struct folio *old, struct folio *new) 253{ 254 swp_entry_t entry = new->swap; 255 unsigned long nr_pages = folio_nr_pages(new); 256 unsigned int ci_off = swp_cluster_offset(entry); 257 unsigned int ci_end = ci_off + nr_pages; 258 unsigned long old_tb, new_tb; 259 260 VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new)); 261 VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new)); 262 VM_WARN_ON_ONCE(!entry.val); 263 264 /* Swap cache still stores N entries instead of a high-order entry */ 265 new_tb = folio_to_swp_tb(new); 266 do { 267 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 268 WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old); 269 } while (++ci_off < ci_end); 270 271 /* 272 * If the old folio is partially replaced (e.g., splitting a large 273 * folio, the old folio is shrunk, and new split sub folios replace 274 * the shrunk part), ensure the new folio doesn't overlap it. 275 */ 276 if (IS_ENABLED(CONFIG_DEBUG_VM) && 277 folio_order(old) != folio_order(new)) { 278 ci_off = swp_cluster_offset(old->swap); 279 ci_end = ci_off + folio_nr_pages(old); 280 while (ci_off++ < ci_end) 281 WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old); 282 } 283} 284 285/** 286 * swap_cache_clear_shadow - Clears a set of shadows in the swap cache. 287 * @entry: The starting index entry. 288 * @nr_ents: How many slots need to be cleared. 289 * 290 * Context: Caller must ensure the range is valid, all in one single cluster, 291 * not occupied by any folio, and lock the cluster. 292 */ 293void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents) 294{ 295 struct swap_cluster_info *ci = __swap_entry_to_cluster(entry); 296 unsigned int ci_off = swp_cluster_offset(entry), ci_end; 297 unsigned long old; 298 299 ci_end = ci_off + nr_ents; 300 do { 301 old = __swap_table_xchg(ci, ci_off, null_to_swp_tb()); 302 WARN_ON_ONCE(swp_tb_is_folio(old)); 303 } while (++ci_off < ci_end); 304} 305 306/* 307 * If we are the only user, then try to free up the swap cache. 308 * 309 * Its ok to check the swapcache flag without the folio lock 310 * here because we are going to recheck again inside 311 * folio_free_swap() _with_ the lock. 312 * - Marcelo 313 */ 314void free_swap_cache(struct folio *folio) 315{ 316 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 317 folio_trylock(folio)) { 318 folio_free_swap(folio); 319 folio_unlock(folio); 320 } 321} 322 323/* 324 * Freeing a folio and also freeing any swap cache associated with 325 * this folio if it is the last user. 326 */ 327void free_folio_and_swap_cache(struct folio *folio) 328{ 329 free_swap_cache(folio); 330 if (!is_huge_zero_folio(folio)) 331 folio_put(folio); 332} 333 334/* 335 * Passed an array of pages, drop them all from swapcache and then release 336 * them. They are removed from the LRU and freed if this is their last use. 337 */ 338void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 339{ 340 struct folio_batch folios; 341 unsigned int refs[PAGEVEC_SIZE]; 342 343 folio_batch_init(&folios); 344 for (int i = 0; i < nr; i++) { 345 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 346 347 free_swap_cache(folio); 348 refs[folios.nr] = 1; 349 if (unlikely(encoded_page_flags(pages[i]) & 350 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 351 refs[folios.nr] = encoded_nr_pages(pages[++i]); 352 353 if (folio_batch_add(&folios, folio) == 0) 354 folios_put_refs(&folios, refs); 355 } 356 if (folios.nr) 357 folios_put_refs(&folios, refs); 358} 359 360static inline bool swap_use_vma_readahead(void) 361{ 362 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 363} 364 365/** 366 * swap_update_readahead - Update the readahead statistics of VMA or globally. 367 * @folio: the swap cache folio that just got hit. 368 * @vma: the VMA that should be updated, could be NULL for global update. 369 * @addr: the addr that triggered the swapin, ignored if @vma is NULL. 370 */ 371void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma, 372 unsigned long addr) 373{ 374 bool readahead, vma_ra = swap_use_vma_readahead(); 375 376 /* 377 * At the moment, we don't support PG_readahead for anon THP 378 * so let's bail out rather than confusing the readahead stat. 379 */ 380 if (unlikely(folio_test_large(folio))) 381 return; 382 383 readahead = folio_test_clear_readahead(folio); 384 if (vma && vma_ra) { 385 unsigned long ra_val; 386 int win, hits; 387 388 ra_val = GET_SWAP_RA_VAL(vma); 389 win = SWAP_RA_WIN(ra_val); 390 hits = SWAP_RA_HITS(ra_val); 391 if (readahead) 392 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 393 atomic_long_set(&vma->swap_readahead_info, 394 SWAP_RA_VAL(addr, win, hits)); 395 } 396 397 if (readahead) { 398 count_vm_event(SWAP_RA_HIT); 399 if (!vma || !vma_ra) 400 atomic_inc(&swapin_readahead_hits); 401 } 402} 403 404struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 405 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 406 bool skip_if_exists) 407{ 408 struct swap_info_struct *si = __swap_entry_to_info(entry); 409 struct folio *folio; 410 struct folio *new_folio = NULL; 411 struct folio *result = NULL; 412 void *shadow = NULL; 413 414 *new_page_allocated = false; 415 for (;;) { 416 int err; 417 418 /* 419 * Check the swap cache first, if a cached folio is found, 420 * return it unlocked. The caller will lock and check it. 421 */ 422 folio = swap_cache_get_folio(entry); 423 if (folio) 424 goto got_folio; 425 426 /* 427 * Just skip read ahead for unused swap slot. 428 */ 429 if (!swap_entry_swapped(si, entry)) 430 goto put_and_return; 431 432 /* 433 * Get a new folio to read into from swap. Allocate it now if 434 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, 435 * when -EEXIST will cause any racers to loop around until we 436 * add it to cache. 437 */ 438 if (!new_folio) { 439 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 440 if (!new_folio) 441 goto put_and_return; 442 } 443 444 /* 445 * Swap entry may have been freed since our caller observed it. 446 */ 447 err = swapcache_prepare(entry, 1); 448 if (!err) 449 break; 450 else if (err != -EEXIST) 451 goto put_and_return; 452 453 /* 454 * Protect against a recursive call to __read_swap_cache_async() 455 * on the same entry waiting forever here because SWAP_HAS_CACHE 456 * is set but the folio is not the swap cache yet. This can 457 * happen today if mem_cgroup_swapin_charge_folio() below 458 * triggers reclaim through zswap, which may call 459 * __read_swap_cache_async() in the writeback path. 460 */ 461 if (skip_if_exists) 462 goto put_and_return; 463 464 /* 465 * We might race against __swap_cache_del_folio(), and 466 * stumble across a swap_map entry whose SWAP_HAS_CACHE 467 * has not yet been cleared. Or race against another 468 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 469 * in swap_map, but not yet added its folio to swap cache. 470 */ 471 schedule_timeout_uninterruptible(1); 472 } 473 474 /* 475 * The swap entry is ours to swap in. Prepare the new folio. 476 */ 477 __folio_set_locked(new_folio); 478 __folio_set_swapbacked(new_folio); 479 480 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) 481 goto fail_unlock; 482 483 swap_cache_add_folio(new_folio, entry, &shadow); 484 memcg1_swapin(entry, 1); 485 486 if (shadow) 487 workingset_refault(new_folio, shadow); 488 489 /* Caller will initiate read into locked new_folio */ 490 folio_add_lru(new_folio); 491 *new_page_allocated = true; 492 folio = new_folio; 493got_folio: 494 result = folio; 495 goto put_and_return; 496 497fail_unlock: 498 put_swap_folio(new_folio, entry); 499 folio_unlock(new_folio); 500put_and_return: 501 if (!(*new_page_allocated) && new_folio) 502 folio_put(new_folio); 503 return result; 504} 505 506/* 507 * Locate a page of swap in physical memory, reserving swap cache space 508 * and reading the disk if it is not already cached. 509 * A failure return means that either the page allocation failed or that 510 * the swap entry is no longer in use. 511 */ 512struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 513 struct vm_area_struct *vma, unsigned long addr, 514 struct swap_iocb **plug) 515{ 516 struct swap_info_struct *si; 517 bool page_allocated; 518 struct mempolicy *mpol; 519 pgoff_t ilx; 520 struct folio *folio; 521 522 si = get_swap_device(entry); 523 if (!si) 524 return NULL; 525 526 mpol = get_vma_policy(vma, addr, 0, &ilx); 527 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 528 &page_allocated, false); 529 mpol_cond_put(mpol); 530 531 if (page_allocated) 532 swap_read_folio(folio, plug); 533 534 put_swap_device(si); 535 return folio; 536} 537 538static unsigned int __swapin_nr_pages(unsigned long prev_offset, 539 unsigned long offset, 540 int hits, 541 int max_pages, 542 int prev_win) 543{ 544 unsigned int pages, last_ra; 545 546 /* 547 * This heuristic has been found to work well on both sequential and 548 * random loads, swapping to hard disk or to SSD: please don't ask 549 * what the "+ 2" means, it just happens to work well, that's all. 550 */ 551 pages = hits + 2; 552 if (pages == 2) { 553 /* 554 * We can have no readahead hits to judge by: but must not get 555 * stuck here forever, so check for an adjacent offset instead 556 * (and don't even bother to check whether swap type is same). 557 */ 558 if (offset != prev_offset + 1 && offset != prev_offset - 1) 559 pages = 1; 560 } else { 561 unsigned int roundup = 4; 562 while (roundup < pages) 563 roundup <<= 1; 564 pages = roundup; 565 } 566 567 if (pages > max_pages) 568 pages = max_pages; 569 570 /* Don't shrink readahead too fast */ 571 last_ra = prev_win / 2; 572 if (pages < last_ra) 573 pages = last_ra; 574 575 return pages; 576} 577 578static unsigned long swapin_nr_pages(unsigned long offset) 579{ 580 static unsigned long prev_offset; 581 unsigned int hits, pages, max_pages; 582 static atomic_t last_readahead_pages; 583 584 max_pages = 1 << READ_ONCE(page_cluster); 585 if (max_pages <= 1) 586 return 1; 587 588 hits = atomic_xchg(&swapin_readahead_hits, 0); 589 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 590 max_pages, 591 atomic_read(&last_readahead_pages)); 592 if (!hits) 593 WRITE_ONCE(prev_offset, offset); 594 atomic_set(&last_readahead_pages, pages); 595 596 return pages; 597} 598 599/** 600 * swap_cluster_readahead - swap in pages in hope we need them soon 601 * @entry: swap entry of this memory 602 * @gfp_mask: memory allocation flags 603 * @mpol: NUMA memory allocation policy to be applied 604 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 605 * 606 * Returns the struct folio for entry and addr, after queueing swapin. 607 * 608 * Primitive swap readahead code. We simply read an aligned block of 609 * (1 << page_cluster) entries in the swap area. This method is chosen 610 * because it doesn't cost us any seek time. We also make sure to queue 611 * the 'original' request together with the readahead ones... 612 * 613 * Note: it is intentional that the same NUMA policy and interleave index 614 * are used for every page of the readahead: neighbouring pages on swap 615 * are fairly likely to have been swapped out from the same node. 616 */ 617struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 618 struct mempolicy *mpol, pgoff_t ilx) 619{ 620 struct folio *folio; 621 unsigned long entry_offset = swp_offset(entry); 622 unsigned long offset = entry_offset; 623 unsigned long start_offset, end_offset; 624 unsigned long mask; 625 struct swap_info_struct *si = __swap_entry_to_info(entry); 626 struct blk_plug plug; 627 struct swap_iocb *splug = NULL; 628 bool page_allocated; 629 630 mask = swapin_nr_pages(offset) - 1; 631 if (!mask) 632 goto skip; 633 634 /* Read a page_cluster sized and aligned cluster around offset. */ 635 start_offset = offset & ~mask; 636 end_offset = offset | mask; 637 if (!start_offset) /* First page is swap header. */ 638 start_offset++; 639 if (end_offset >= si->max) 640 end_offset = si->max - 1; 641 642 blk_start_plug(&plug); 643 for (offset = start_offset; offset <= end_offset ; offset++) { 644 /* Ok, do the async read-ahead now */ 645 folio = __read_swap_cache_async( 646 swp_entry(swp_type(entry), offset), 647 gfp_mask, mpol, ilx, &page_allocated, false); 648 if (!folio) 649 continue; 650 if (page_allocated) { 651 swap_read_folio(folio, &splug); 652 if (offset != entry_offset) { 653 folio_set_readahead(folio); 654 count_vm_event(SWAP_RA); 655 } 656 } 657 folio_put(folio); 658 } 659 blk_finish_plug(&plug); 660 swap_read_unplug(splug); 661 lru_add_drain(); /* Push any new pages onto the LRU now */ 662skip: 663 /* The page was likely read above, so no need for plugging here */ 664 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 665 &page_allocated, false); 666 if (unlikely(page_allocated)) 667 swap_read_folio(folio, NULL); 668 return folio; 669} 670 671static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 672 unsigned long *end) 673{ 674 struct vm_area_struct *vma = vmf->vma; 675 unsigned long ra_val; 676 unsigned long faddr, prev_faddr, left, right; 677 unsigned int max_win, hits, prev_win, win; 678 679 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 680 if (max_win == 1) 681 return 1; 682 683 faddr = vmf->address; 684 ra_val = GET_SWAP_RA_VAL(vma); 685 prev_faddr = SWAP_RA_ADDR(ra_val); 686 prev_win = SWAP_RA_WIN(ra_val); 687 hits = SWAP_RA_HITS(ra_val); 688 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 689 max_win, prev_win); 690 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 691 if (win == 1) 692 return 1; 693 694 if (faddr == prev_faddr + PAGE_SIZE) 695 left = faddr; 696 else if (prev_faddr == faddr + PAGE_SIZE) 697 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 698 else 699 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 700 right = left + (win << PAGE_SHIFT); 701 if ((long)left < 0) 702 left = 0; 703 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 704 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 705 706 return win; 707} 708 709/** 710 * swap_vma_readahead - swap in pages in hope we need them soon 711 * @targ_entry: swap entry of the targeted memory 712 * @gfp_mask: memory allocation flags 713 * @mpol: NUMA memory allocation policy to be applied 714 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 715 * @vmf: fault information 716 * 717 * Returns the struct folio for entry and addr, after queueing swapin. 718 * 719 * Primitive swap readahead code. We simply read in a few pages whose 720 * virtual addresses are around the fault address in the same vma. 721 * 722 * Caller must hold read mmap_lock if vmf->vma is not NULL. 723 * 724 */ 725static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 726 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 727{ 728 struct blk_plug plug; 729 struct swap_iocb *splug = NULL; 730 struct folio *folio; 731 pte_t *pte = NULL, pentry; 732 int win; 733 unsigned long start, end, addr; 734 pgoff_t ilx; 735 bool page_allocated; 736 737 win = swap_vma_ra_win(vmf, &start, &end); 738 if (win == 1) 739 goto skip; 740 741 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 742 743 blk_start_plug(&plug); 744 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 745 struct swap_info_struct *si = NULL; 746 softleaf_t entry; 747 748 if (!pte++) { 749 pte = pte_offset_map(vmf->pmd, addr); 750 if (!pte) 751 break; 752 } 753 pentry = ptep_get_lockless(pte); 754 entry = softleaf_from_pte(pentry); 755 756 if (!softleaf_is_swap(entry)) 757 continue; 758 pte_unmap(pte); 759 pte = NULL; 760 /* 761 * Readahead entry may come from a device that we are not 762 * holding a reference to, try to grab a reference, or skip. 763 */ 764 if (swp_type(entry) != swp_type(targ_entry)) { 765 si = get_swap_device(entry); 766 if (!si) 767 continue; 768 } 769 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 770 &page_allocated, false); 771 if (si) 772 put_swap_device(si); 773 if (!folio) 774 continue; 775 if (page_allocated) { 776 swap_read_folio(folio, &splug); 777 if (addr != vmf->address) { 778 folio_set_readahead(folio); 779 count_vm_event(SWAP_RA); 780 } 781 } 782 folio_put(folio); 783 } 784 if (pte) 785 pte_unmap(pte); 786 blk_finish_plug(&plug); 787 swap_read_unplug(splug); 788 lru_add_drain(); 789skip: 790 /* The folio was likely read above, so no need for plugging here */ 791 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 792 &page_allocated, false); 793 if (unlikely(page_allocated)) 794 swap_read_folio(folio, NULL); 795 return folio; 796} 797 798/** 799 * swapin_readahead - swap in pages in hope we need them soon 800 * @entry: swap entry of this memory 801 * @gfp_mask: memory allocation flags 802 * @vmf: fault information 803 * 804 * Returns the struct folio for entry and addr, after queueing swapin. 805 * 806 * It's a main entry function for swap readahead. By the configuration, 807 * it will read ahead blocks by cluster-based(ie, physical disk based) 808 * or vma-based(ie, virtual address based on faulty address) readahead. 809 */ 810struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 811 struct vm_fault *vmf) 812{ 813 struct mempolicy *mpol; 814 pgoff_t ilx; 815 struct folio *folio; 816 817 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 818 folio = swap_use_vma_readahead() ? 819 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 820 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 821 mpol_cond_put(mpol); 822 823 return folio; 824} 825 826#ifdef CONFIG_SYSFS 827static ssize_t vma_ra_enabled_show(struct kobject *kobj, 828 struct kobj_attribute *attr, char *buf) 829{ 830 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); 831} 832static ssize_t vma_ra_enabled_store(struct kobject *kobj, 833 struct kobj_attribute *attr, 834 const char *buf, size_t count) 835{ 836 ssize_t ret; 837 838 ret = kstrtobool(buf, &enable_vma_readahead); 839 if (ret) 840 return ret; 841 842 return count; 843} 844static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 845 846static struct attribute *swap_attrs[] = { 847 &vma_ra_enabled_attr.attr, 848 NULL, 849}; 850 851static const struct attribute_group swap_attr_group = { 852 .attrs = swap_attrs, 853}; 854 855static int __init swap_init(void) 856{ 857 int err; 858 struct kobject *swap_kobj; 859 860 swap_kobj = kobject_create_and_add("swap", mm_kobj); 861 if (!swap_kobj) { 862 pr_err("failed to create swap kobject\n"); 863 return -ENOMEM; 864 } 865 err = sysfs_create_group(swap_kobj, &swap_attr_group); 866 if (err) { 867 pr_err("failed to register swap group\n"); 868 goto delete_obj; 869 } 870 /* Swap cache writeback is LRU based, no tags for it */ 871 mapping_set_no_writeback_tags(&swap_space); 872 return 0; 873 874delete_obj: 875 kobject_put(swap_kobj); 876 return err; 877} 878subsys_initcall(swap_init); 879#endif