at v6.19 6031 lines 163 kB view raw
1/* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24#include <linux/fs.h> 25#include <linux/init.h> 26#include <linux/vfs.h> 27#include <linux/mount.h> 28#include <linux/ramfs.h> 29#include <linux/pagemap.h> 30#include <linux/file.h> 31#include <linux/fileattr.h> 32#include <linux/mm.h> 33#include <linux/random.h> 34#include <linux/sched/signal.h> 35#include <linux/export.h> 36#include <linux/shmem_fs.h> 37#include <linux/swap.h> 38#include <linux/uio.h> 39#include <linux/hugetlb.h> 40#include <linux/fs_parser.h> 41#include <linux/swapfile.h> 42#include <linux/iversion.h> 43#include <linux/unicode.h> 44#include "swap.h" 45 46static struct vfsmount *shm_mnt __ro_after_init; 47 48#ifdef CONFIG_SHMEM 49/* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55#include <linux/xattr.h> 56#include <linux/exportfs.h> 57#include <linux/posix_acl.h> 58#include <linux/posix_acl_xattr.h> 59#include <linux/mman.h> 60#include <linux/string.h> 61#include <linux/slab.h> 62#include <linux/backing-dev.h> 63#include <linux/writeback.h> 64#include <linux/pagevec.h> 65#include <linux/percpu_counter.h> 66#include <linux/falloc.h> 67#include <linux/splice.h> 68#include <linux/security.h> 69#include <linux/leafops.h> 70#include <linux/mempolicy.h> 71#include <linux/namei.h> 72#include <linux/ctype.h> 73#include <linux/migrate.h> 74#include <linux/highmem.h> 75#include <linux/seq_file.h> 76#include <linux/magic.h> 77#include <linux/syscalls.h> 78#include <linux/fcntl.h> 79#include <uapi/linux/memfd.h> 80#include <linux/rmap.h> 81#include <linux/uuid.h> 82#include <linux/quotaops.h> 83#include <linux/rcupdate_wait.h> 84 85#include <linux/uaccess.h> 86 87#include "internal.h" 88 89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91/* Pretend that each entry is of this size in directory's i_size */ 92#define BOGO_DIRENT_SIZE 20 93 94/* Pretend that one inode + its dentry occupy this much memory */ 95#define BOGO_INODE_SIZE 1024 96 97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98#define SHORT_SYMLINK_LEN 128 99 100/* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111}; 112 113struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126#if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129#endif 130#define SHMEM_SEEN_BLOCKS 1 131#define SHMEM_SEEN_INODES 2 132#define SHMEM_SEEN_HUGE 4 133#define SHMEM_SEEN_INUMS 8 134#define SHMEM_SEEN_QUOTA 16 135}; 136 137#ifdef CONFIG_TRANSPARENT_HUGEPAGE 138static unsigned long huge_shmem_orders_always __read_mostly; 139static unsigned long huge_shmem_orders_madvise __read_mostly; 140static unsigned long huge_shmem_orders_inherit __read_mostly; 141static unsigned long huge_shmem_orders_within_size __read_mostly; 142static bool shmem_orders_configured __initdata; 143#endif 144 145#ifdef CONFIG_TMPFS 146static unsigned long shmem_default_max_blocks(void) 147{ 148 return totalram_pages() / 2; 149} 150 151static unsigned long shmem_default_max_inodes(void) 152{ 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157} 158#endif 159 160static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165{ 166 return sb->s_fs_info; 167} 168 169/* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175static inline int shmem_acct_size(unsigned long flags, loff_t size) 176{ 177 return (flags & SHMEM_F_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179} 180 181static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182{ 183 if (!(flags & SHMEM_F_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185} 186 187static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189{ 190 if (!(flags & SHMEM_F_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198} 199 200/* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206static inline int shmem_acct_blocks(unsigned long flags, long pages) 207{ 208 if (!(flags & SHMEM_F_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213} 214 215static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216{ 217 if (flags & SHMEM_F_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219} 220 221int shmem_inode_acct_blocks(struct inode *inode, long pages) 222{ 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252} 253 254static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255{ 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265} 266 267static const struct super_operations shmem_ops; 268static const struct address_space_operations shmem_aops; 269static const struct file_operations shmem_file_operations; 270static const struct inode_operations shmem_inode_operations; 271static const struct inode_operations shmem_dir_inode_operations; 272static const struct inode_operations shmem_special_inode_operations; 273static const struct vm_operations_struct shmem_vm_ops; 274static const struct vm_operations_struct shmem_anon_vm_ops; 275static struct file_system_type shmem_fs_type; 276 277bool shmem_mapping(const struct address_space *mapping) 278{ 279 return mapping->a_ops == &shmem_aops; 280} 281EXPORT_SYMBOL_GPL(shmem_mapping); 282 283bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284{ 285 return vma->vm_ops == &shmem_anon_vm_ops; 286} 287 288bool vma_is_shmem(const struct vm_area_struct *vma) 289{ 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291} 292 293static LIST_HEAD(shmem_swaplist); 294static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296#ifdef CONFIG_TMPFS_QUOTA 297 298static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300{ 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321} 322 323static void shmem_disable_quotas(struct super_block *sb) 324{ 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329} 330 331static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332{ 333 return SHMEM_I(inode)->i_dquot; 334} 335#endif /* CONFIG_TMPFS_QUOTA */ 336 337/* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346#define SHMEM_INO_BATCH 1024 347static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348{ 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411} 412 413static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414{ 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421} 422 423/** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438{ 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468} 469 470bool shmem_charge(struct inode *inode, long pages) 471{ 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484} 485 486void shmem_uncharge(struct inode *inode, long pages) 487{ 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492} 493 494/* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499{ 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510} 511 512/* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522{ 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535} 536 537/* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551#define SHMEM_HUGE_NEVER 0 552#define SHMEM_HUGE_ALWAYS 1 553#define SHMEM_HUGE_WITHIN_SIZE 2 554#define SHMEM_HUGE_ADVISE 3 555 556/* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566#define SHMEM_HUGE_DENY (-1) 567#define SHMEM_HUGE_FORCE (-2) 568 569#ifdef CONFIG_TRANSPARENT_HUGEPAGE 570/* ifdef here to avoid bloating shmem.o when not necessary */ 571 572#if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 573#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 574#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 575#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 576#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 577#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 578#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 579#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 580#else 581#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 582#endif 583 584static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 585 586#undef SHMEM_HUGE_DEFAULT 587 588#if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 589#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 590#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 591#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 592#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 593#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 594#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 595#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 596#else 597#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 598#endif 599 600static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 601 602#undef TMPFS_HUGE_DEFAULT 603 604static unsigned int shmem_get_orders_within_size(struct inode *inode, 605 unsigned long within_size_orders, pgoff_t index, 606 loff_t write_end) 607{ 608 pgoff_t aligned_index; 609 unsigned long order; 610 loff_t i_size; 611 612 order = highest_order(within_size_orders); 613 while (within_size_orders) { 614 aligned_index = round_up(index + 1, 1 << order); 615 i_size = max(write_end, i_size_read(inode)); 616 i_size = round_up(i_size, PAGE_SIZE); 617 if (i_size >> PAGE_SHIFT >= aligned_index) 618 return within_size_orders; 619 620 order = next_order(&within_size_orders, order); 621 } 622 623 return 0; 624} 625 626static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 627 loff_t write_end, bool shmem_huge_force, 628 struct vm_area_struct *vma, 629 vm_flags_t vm_flags) 630{ 631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 632 0 : BIT(HPAGE_PMD_ORDER); 633 unsigned long within_size_orders; 634 635 if (!S_ISREG(inode->i_mode)) 636 return 0; 637 if (shmem_huge == SHMEM_HUGE_DENY) 638 return 0; 639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 640 return maybe_pmd_order; 641 642 /* 643 * The huge order allocation for anon shmem is controlled through 644 * the mTHP interface, so we still use PMD-sized huge order to 645 * check whether global control is enabled. 646 * 647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 648 * we will always try PMD-sized order first. If that failed, it will 649 * fall back to small large folios. 650 */ 651 switch (SHMEM_SB(inode->i_sb)->huge) { 652 case SHMEM_HUGE_ALWAYS: 653 return THP_ORDERS_ALL_FILE_DEFAULT; 654 case SHMEM_HUGE_WITHIN_SIZE: 655 within_size_orders = shmem_get_orders_within_size(inode, 656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 657 if (within_size_orders > 0) 658 return within_size_orders; 659 660 fallthrough; 661 case SHMEM_HUGE_ADVISE: 662 if (vm_flags & VM_HUGEPAGE) 663 return THP_ORDERS_ALL_FILE_DEFAULT; 664 fallthrough; 665 default: 666 return 0; 667 } 668} 669 670static int shmem_parse_huge(const char *str) 671{ 672 int huge; 673 674 if (!str) 675 return -EINVAL; 676 677 if (!strcmp(str, "never")) 678 huge = SHMEM_HUGE_NEVER; 679 else if (!strcmp(str, "always")) 680 huge = SHMEM_HUGE_ALWAYS; 681 else if (!strcmp(str, "within_size")) 682 huge = SHMEM_HUGE_WITHIN_SIZE; 683 else if (!strcmp(str, "advise")) 684 huge = SHMEM_HUGE_ADVISE; 685 else if (!strcmp(str, "deny")) 686 huge = SHMEM_HUGE_DENY; 687 else if (!strcmp(str, "force")) 688 huge = SHMEM_HUGE_FORCE; 689 else 690 return -EINVAL; 691 692 if (!has_transparent_hugepage() && 693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 694 return -EINVAL; 695 696 /* Do not override huge allocation policy with non-PMD sized mTHP */ 697 if (huge == SHMEM_HUGE_FORCE && 698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 699 return -EINVAL; 700 701 return huge; 702} 703 704#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 705static const char *shmem_format_huge(int huge) 706{ 707 switch (huge) { 708 case SHMEM_HUGE_NEVER: 709 return "never"; 710 case SHMEM_HUGE_ALWAYS: 711 return "always"; 712 case SHMEM_HUGE_WITHIN_SIZE: 713 return "within_size"; 714 case SHMEM_HUGE_ADVISE: 715 return "advise"; 716 case SHMEM_HUGE_DENY: 717 return "deny"; 718 case SHMEM_HUGE_FORCE: 719 return "force"; 720 default: 721 VM_BUG_ON(1); 722 return "bad_val"; 723 } 724} 725#endif 726 727static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 728 struct shrink_control *sc, unsigned long nr_to_free) 729{ 730 LIST_HEAD(list), *pos, *next; 731 struct inode *inode; 732 struct shmem_inode_info *info; 733 struct folio *folio; 734 unsigned long batch = sc ? sc->nr_to_scan : 128; 735 unsigned long split = 0, freed = 0; 736 737 if (list_empty(&sbinfo->shrinklist)) 738 return SHRINK_STOP; 739 740 spin_lock(&sbinfo->shrinklist_lock); 741 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 742 info = list_entry(pos, struct shmem_inode_info, shrinklist); 743 744 /* pin the inode */ 745 inode = igrab(&info->vfs_inode); 746 747 /* inode is about to be evicted */ 748 if (!inode) { 749 list_del_init(&info->shrinklist); 750 goto next; 751 } 752 753 list_move(&info->shrinklist, &list); 754next: 755 sbinfo->shrinklist_len--; 756 if (!--batch) 757 break; 758 } 759 spin_unlock(&sbinfo->shrinklist_lock); 760 761 list_for_each_safe(pos, next, &list) { 762 pgoff_t next, end; 763 loff_t i_size; 764 int ret; 765 766 info = list_entry(pos, struct shmem_inode_info, shrinklist); 767 inode = &info->vfs_inode; 768 769 if (nr_to_free && freed >= nr_to_free) 770 goto move_back; 771 772 i_size = i_size_read(inode); 773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 774 if (!folio || xa_is_value(folio)) 775 goto drop; 776 777 /* No large folio at the end of the file: nothing to split */ 778 if (!folio_test_large(folio)) { 779 folio_put(folio); 780 goto drop; 781 } 782 783 /* Check if there is anything to gain from splitting */ 784 next = folio_next_index(folio); 785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 786 if (end <= folio->index || end >= next) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* 792 * Move the inode on the list back to shrinklist if we failed 793 * to lock the page at this time. 794 * 795 * Waiting for the lock may lead to deadlock in the 796 * reclaim path. 797 */ 798 if (!folio_trylock(folio)) { 799 folio_put(folio); 800 goto move_back; 801 } 802 803 ret = split_folio(folio); 804 folio_unlock(folio); 805 folio_put(folio); 806 807 /* If split failed move the inode on the list back to shrinklist */ 808 if (ret) 809 goto move_back; 810 811 freed += next - end; 812 split++; 813drop: 814 list_del_init(&info->shrinklist); 815 goto put; 816move_back: 817 /* 818 * Make sure the inode is either on the global list or deleted 819 * from any local list before iput() since it could be deleted 820 * in another thread once we put the inode (then the local list 821 * is corrupted). 822 */ 823 spin_lock(&sbinfo->shrinklist_lock); 824 list_move(&info->shrinklist, &sbinfo->shrinklist); 825 sbinfo->shrinklist_len++; 826 spin_unlock(&sbinfo->shrinklist_lock); 827put: 828 iput(inode); 829 } 830 831 return split; 832} 833 834static long shmem_unused_huge_scan(struct super_block *sb, 835 struct shrink_control *sc) 836{ 837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 838 839 if (!READ_ONCE(sbinfo->shrinklist_len)) 840 return SHRINK_STOP; 841 842 return shmem_unused_huge_shrink(sbinfo, sc, 0); 843} 844 845static long shmem_unused_huge_count(struct super_block *sb, 846 struct shrink_control *sc) 847{ 848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 849 return READ_ONCE(sbinfo->shrinklist_len); 850} 851#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 852 853#define shmem_huge SHMEM_HUGE_DENY 854 855static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 856 struct shrink_control *sc, unsigned long nr_to_free) 857{ 858 return 0; 859} 860 861static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 862 loff_t write_end, bool shmem_huge_force, 863 struct vm_area_struct *vma, 864 vm_flags_t vm_flags) 865{ 866 return 0; 867} 868#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 869 870static void shmem_update_stats(struct folio *folio, int nr_pages) 871{ 872 if (folio_test_pmd_mappable(folio)) 873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 876} 877 878/* 879 * Somewhat like filemap_add_folio, but error if expected item has gone. 880 */ 881int shmem_add_to_page_cache(struct folio *folio, 882 struct address_space *mapping, 883 pgoff_t index, void *expected, gfp_t gfp) 884{ 885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 886 unsigned long nr = folio_nr_pages(folio); 887 swp_entry_t iter, swap; 888 void *entry; 889 890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 893 894 folio_ref_add(folio, nr); 895 folio->mapping = mapping; 896 folio->index = index; 897 898 gfp &= GFP_RECLAIM_MASK; 899 folio_throttle_swaprate(folio, gfp); 900 swap = radix_to_swp_entry(expected); 901 902 do { 903 iter = swap; 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 /* 907 * The range must either be empty, or filled with 908 * expected swap entries. Shmem swap entries are never 909 * partially freed without split of both entry and 910 * folio, so there shouldn't be any holes. 911 */ 912 if (!expected || entry != swp_to_radix_entry(iter)) { 913 xas_set_err(&xas, -EEXIST); 914 goto unlock; 915 } 916 iter.val += 1 << xas_get_order(&xas); 917 } 918 if (expected && iter.val - nr != swap.val) { 919 xas_set_err(&xas, -EEXIST); 920 goto unlock; 921 } 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 shmem_update_stats(folio, nr); 926 mapping->nrpages += nr; 927unlock: 928 xas_unlock_irq(&xas); 929 } while (xas_nomem(&xas, gfp)); 930 931 if (xas_error(&xas)) { 932 folio->mapping = NULL; 933 folio_ref_sub(folio, nr); 934 return xas_error(&xas); 935 } 936 937 return 0; 938} 939 940/* 941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 942 */ 943static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 944{ 945 struct address_space *mapping = folio->mapping; 946 long nr = folio_nr_pages(folio); 947 int error; 948 949 xa_lock_irq(&mapping->i_pages); 950 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 951 folio->mapping = NULL; 952 mapping->nrpages -= nr; 953 shmem_update_stats(folio, -nr); 954 xa_unlock_irq(&mapping->i_pages); 955 folio_put_refs(folio, nr); 956 BUG_ON(error); 957} 958 959/* 960 * Remove swap entry from page cache, free the swap and its page cache. Returns 961 * the number of pages being freed. 0 means entry not found in XArray (0 pages 962 * being freed). 963 */ 964static long shmem_free_swap(struct address_space *mapping, 965 pgoff_t index, pgoff_t end, void *radswap) 966{ 967 XA_STATE(xas, &mapping->i_pages, index); 968 unsigned int nr_pages = 0; 969 pgoff_t base; 970 void *entry; 971 972 xas_lock_irq(&xas); 973 entry = xas_load(&xas); 974 if (entry == radswap) { 975 nr_pages = 1 << xas_get_order(&xas); 976 base = round_down(xas.xa_index, nr_pages); 977 if (base < index || base + nr_pages - 1 > end) 978 nr_pages = 0; 979 else 980 xas_store(&xas, NULL); 981 } 982 xas_unlock_irq(&xas); 983 984 if (nr_pages) 985 free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages); 986 987 return nr_pages; 988} 989 990/* 991 * Determine (in bytes) how many of the shmem object's pages mapped by the 992 * given offsets are swapped out. 993 * 994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 995 * as long as the inode doesn't go away and racy results are not a problem. 996 */ 997unsigned long shmem_partial_swap_usage(struct address_space *mapping, 998 pgoff_t start, pgoff_t end) 999{ 1000 XA_STATE(xas, &mapping->i_pages, start); 1001 struct folio *folio; 1002 unsigned long swapped = 0; 1003 unsigned long max = end - 1; 1004 1005 rcu_read_lock(); 1006 xas_for_each(&xas, folio, max) { 1007 if (xas_retry(&xas, folio)) 1008 continue; 1009 if (xa_is_value(folio)) 1010 swapped += 1 << xas_get_order(&xas); 1011 if (xas.xa_index == max) 1012 break; 1013 if (need_resched()) { 1014 xas_pause(&xas); 1015 cond_resched_rcu(); 1016 } 1017 } 1018 rcu_read_unlock(); 1019 1020 return swapped << PAGE_SHIFT; 1021} 1022 1023/* 1024 * Determine (in bytes) how many of the shmem object's pages mapped by the 1025 * given vma is swapped out. 1026 * 1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1028 * as long as the inode doesn't go away and racy results are not a problem. 1029 */ 1030unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1031{ 1032 struct inode *inode = file_inode(vma->vm_file); 1033 struct shmem_inode_info *info = SHMEM_I(inode); 1034 struct address_space *mapping = inode->i_mapping; 1035 unsigned long swapped; 1036 1037 /* Be careful as we don't hold info->lock */ 1038 swapped = READ_ONCE(info->swapped); 1039 1040 /* 1041 * The easier cases are when the shmem object has nothing in swap, or 1042 * the vma maps it whole. Then we can simply use the stats that we 1043 * already track. 1044 */ 1045 if (!swapped) 1046 return 0; 1047 1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1049 return swapped << PAGE_SHIFT; 1050 1051 /* Here comes the more involved part */ 1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1053 vma->vm_pgoff + vma_pages(vma)); 1054} 1055 1056/* 1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1058 */ 1059void shmem_unlock_mapping(struct address_space *mapping) 1060{ 1061 struct folio_batch fbatch; 1062 pgoff_t index = 0; 1063 1064 folio_batch_init(&fbatch); 1065 /* 1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1067 */ 1068 while (!mapping_unevictable(mapping) && 1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1070 check_move_unevictable_folios(&fbatch); 1071 folio_batch_release(&fbatch); 1072 cond_resched(); 1073 } 1074} 1075 1076static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1077{ 1078 struct folio *folio; 1079 1080 /* 1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1082 * beyond i_size, and reports fallocated folios as holes. 1083 */ 1084 folio = filemap_get_entry(inode->i_mapping, index); 1085 if (!folio) 1086 return folio; 1087 if (!xa_is_value(folio)) { 1088 folio_lock(folio); 1089 if (folio->mapping == inode->i_mapping) 1090 return folio; 1091 /* The folio has been swapped out */ 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 } 1095 /* 1096 * But read a folio back from swap if any of it is within i_size 1097 * (although in some cases this is just a waste of time). 1098 */ 1099 folio = NULL; 1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1101 return folio; 1102} 1103 1104/* 1105 * Remove range of pages and swap entries from page cache, and free them. 1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1107 */ 1108static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1109 bool unfalloc) 1110{ 1111 struct address_space *mapping = inode->i_mapping; 1112 struct shmem_inode_info *info = SHMEM_I(inode); 1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1115 struct folio_batch fbatch; 1116 pgoff_t indices[PAGEVEC_SIZE]; 1117 struct folio *folio; 1118 bool same_folio; 1119 long nr_swaps_freed = 0; 1120 pgoff_t index; 1121 int i; 1122 1123 if (lend == -1) 1124 end = -1; /* unsigned, so actually very big */ 1125 1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1127 info->fallocend = start; 1128 1129 folio_batch_init(&fbatch); 1130 index = start; 1131 while (index < end && find_lock_entries(mapping, &index, end - 1, 1132 &fbatch, indices)) { 1133 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1134 folio = fbatch.folios[i]; 1135 1136 if (xa_is_value(folio)) { 1137 if (unfalloc) 1138 continue; 1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1140 end - 1, folio); 1141 continue; 1142 } 1143 1144 if (!unfalloc || !folio_test_uptodate(folio)) 1145 truncate_inode_folio(mapping, folio); 1146 folio_unlock(folio); 1147 } 1148 folio_batch_remove_exceptionals(&fbatch); 1149 folio_batch_release(&fbatch); 1150 cond_resched(); 1151 } 1152 1153 /* 1154 * When undoing a failed fallocate, we want none of the partial folio 1155 * zeroing and splitting below, but shall want to truncate the whole 1156 * folio when !uptodate indicates that it was added by this fallocate, 1157 * even when [lstart, lend] covers only a part of the folio. 1158 */ 1159 if (unfalloc) 1160 goto whole_folios; 1161 1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1164 if (folio) { 1165 same_folio = lend < folio_next_pos(folio); 1166 folio_mark_dirty(folio); 1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1168 start = folio_next_index(folio); 1169 if (same_folio) 1170 end = folio->index; 1171 } 1172 folio_unlock(folio); 1173 folio_put(folio); 1174 folio = NULL; 1175 } 1176 1177 if (!same_folio) 1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1179 if (folio) { 1180 folio_mark_dirty(folio); 1181 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1182 end = folio->index; 1183 folio_unlock(folio); 1184 folio_put(folio); 1185 } 1186 1187whole_folios: 1188 1189 index = start; 1190 while (index < end) { 1191 cond_resched(); 1192 1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1194 indices)) { 1195 /* If all gone or hole-punch or unfalloc, we're done */ 1196 if (index == start || end != -1) 1197 break; 1198 /* But if truncating, restart to make sure all gone */ 1199 index = start; 1200 continue; 1201 } 1202 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1203 folio = fbatch.folios[i]; 1204 1205 if (xa_is_value(folio)) { 1206 int order; 1207 long swaps_freed; 1208 1209 if (unfalloc) 1210 continue; 1211 swaps_freed = shmem_free_swap(mapping, indices[i], 1212 end - 1, folio); 1213 if (!swaps_freed) { 1214 pgoff_t base = indices[i]; 1215 1216 order = shmem_confirm_swap(mapping, indices[i], 1217 radix_to_swp_entry(folio)); 1218 /* 1219 * If found a large swap entry cross the end or start 1220 * border, skip it as the truncate_inode_partial_folio 1221 * above should have at least zerod its content once. 1222 */ 1223 if (order > 0) { 1224 base = round_down(base, 1 << order); 1225 if (base < start || base + (1 << order) > end) 1226 continue; 1227 } 1228 /* Swap was replaced by page or extended, retry */ 1229 index = base; 1230 break; 1231 } 1232 nr_swaps_freed += swaps_freed; 1233 continue; 1234 } 1235 1236 folio_lock(folio); 1237 1238 if (!unfalloc || !folio_test_uptodate(folio)) { 1239 if (folio_mapping(folio) != mapping) { 1240 /* Page was replaced by swap: retry */ 1241 folio_unlock(folio); 1242 index = indices[i]; 1243 break; 1244 } 1245 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1246 folio); 1247 1248 if (!folio_test_large(folio)) { 1249 truncate_inode_folio(mapping, folio); 1250 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1251 /* 1252 * If we split a page, reset the loop so 1253 * that we pick up the new sub pages. 1254 * Otherwise the THP was entirely 1255 * dropped or the target range was 1256 * zeroed, so just continue the loop as 1257 * is. 1258 */ 1259 if (!folio_test_large(folio)) { 1260 folio_unlock(folio); 1261 index = start; 1262 break; 1263 } 1264 } 1265 } 1266 folio_unlock(folio); 1267 } 1268 folio_batch_remove_exceptionals(&fbatch); 1269 folio_batch_release(&fbatch); 1270 } 1271 1272 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1273} 1274 1275void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1276{ 1277 shmem_undo_range(inode, lstart, lend, false); 1278 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1279 inode_inc_iversion(inode); 1280} 1281EXPORT_SYMBOL_GPL(shmem_truncate_range); 1282 1283static int shmem_getattr(struct mnt_idmap *idmap, 1284 const struct path *path, struct kstat *stat, 1285 u32 request_mask, unsigned int query_flags) 1286{ 1287 struct inode *inode = path->dentry->d_inode; 1288 struct shmem_inode_info *info = SHMEM_I(inode); 1289 1290 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1291 shmem_recalc_inode(inode, 0, 0); 1292 1293 if (info->fsflags & FS_APPEND_FL) 1294 stat->attributes |= STATX_ATTR_APPEND; 1295 if (info->fsflags & FS_IMMUTABLE_FL) 1296 stat->attributes |= STATX_ATTR_IMMUTABLE; 1297 if (info->fsflags & FS_NODUMP_FL) 1298 stat->attributes |= STATX_ATTR_NODUMP; 1299 stat->attributes_mask |= (STATX_ATTR_APPEND | 1300 STATX_ATTR_IMMUTABLE | 1301 STATX_ATTR_NODUMP); 1302 generic_fillattr(idmap, request_mask, inode, stat); 1303 1304 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1305 stat->blksize = HPAGE_PMD_SIZE; 1306 1307 if (request_mask & STATX_BTIME) { 1308 stat->result_mask |= STATX_BTIME; 1309 stat->btime.tv_sec = info->i_crtime.tv_sec; 1310 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1311 } 1312 1313 return 0; 1314} 1315 1316static int shmem_setattr(struct mnt_idmap *idmap, 1317 struct dentry *dentry, struct iattr *attr) 1318{ 1319 struct inode *inode = d_inode(dentry); 1320 struct shmem_inode_info *info = SHMEM_I(inode); 1321 int error; 1322 bool update_mtime = false; 1323 bool update_ctime = true; 1324 1325 error = setattr_prepare(idmap, dentry, attr); 1326 if (error) 1327 return error; 1328 1329 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1330 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1331 return -EPERM; 1332 } 1333 } 1334 1335 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1336 loff_t oldsize = inode->i_size; 1337 loff_t newsize = attr->ia_size; 1338 1339 /* protected by i_rwsem */ 1340 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1341 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1342 return -EPERM; 1343 1344 if (newsize != oldsize) { 1345 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1346 return -EPERM; 1347 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1348 oldsize, newsize); 1349 if (error) 1350 return error; 1351 i_size_write(inode, newsize); 1352 update_mtime = true; 1353 } else { 1354 update_ctime = false; 1355 } 1356 if (newsize <= oldsize) { 1357 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1358 if (oldsize > holebegin) 1359 unmap_mapping_range(inode->i_mapping, 1360 holebegin, 0, 1); 1361 if (info->alloced) 1362 shmem_truncate_range(inode, 1363 newsize, (loff_t)-1); 1364 /* unmap again to remove racily COWed private pages */ 1365 if (oldsize > holebegin) 1366 unmap_mapping_range(inode->i_mapping, 1367 holebegin, 0, 1); 1368 } 1369 } 1370 1371 if (is_quota_modification(idmap, inode, attr)) { 1372 error = dquot_initialize(inode); 1373 if (error) 1374 return error; 1375 } 1376 1377 /* Transfer quota accounting */ 1378 if (i_uid_needs_update(idmap, attr, inode) || 1379 i_gid_needs_update(idmap, attr, inode)) { 1380 error = dquot_transfer(idmap, inode, attr); 1381 if (error) 1382 return error; 1383 } 1384 1385 setattr_copy(idmap, inode, attr); 1386 if (attr->ia_valid & ATTR_MODE) 1387 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1388 if (!error && update_ctime) { 1389 inode_set_ctime_current(inode); 1390 if (update_mtime) 1391 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1392 inode_inc_iversion(inode); 1393 } 1394 return error; 1395} 1396 1397static void shmem_evict_inode(struct inode *inode) 1398{ 1399 struct shmem_inode_info *info = SHMEM_I(inode); 1400 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1401 size_t freed = 0; 1402 1403 if (shmem_mapping(inode->i_mapping)) { 1404 shmem_unacct_size(info->flags, inode->i_size); 1405 inode->i_size = 0; 1406 mapping_set_exiting(inode->i_mapping); 1407 shmem_truncate_range(inode, 0, (loff_t)-1); 1408 if (!list_empty(&info->shrinklist)) { 1409 spin_lock(&sbinfo->shrinklist_lock); 1410 if (!list_empty(&info->shrinklist)) { 1411 list_del_init(&info->shrinklist); 1412 sbinfo->shrinklist_len--; 1413 } 1414 spin_unlock(&sbinfo->shrinklist_lock); 1415 } 1416 while (!list_empty(&info->swaplist)) { 1417 /* Wait while shmem_unuse() is scanning this inode... */ 1418 wait_var_event(&info->stop_eviction, 1419 !atomic_read(&info->stop_eviction)); 1420 spin_lock(&shmem_swaplist_lock); 1421 /* ...but beware of the race if we peeked too early */ 1422 if (!atomic_read(&info->stop_eviction)) 1423 list_del_init(&info->swaplist); 1424 spin_unlock(&shmem_swaplist_lock); 1425 } 1426 } 1427 1428 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1429 shmem_free_inode(inode->i_sb, freed); 1430 WARN_ON(inode->i_blocks); 1431 clear_inode(inode); 1432#ifdef CONFIG_TMPFS_QUOTA 1433 dquot_free_inode(inode); 1434 dquot_drop(inode); 1435#endif 1436} 1437 1438static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1439 pgoff_t start, struct folio_batch *fbatch, 1440 pgoff_t *indices, unsigned int type) 1441{ 1442 XA_STATE(xas, &mapping->i_pages, start); 1443 struct folio *folio; 1444 swp_entry_t entry; 1445 1446 rcu_read_lock(); 1447 xas_for_each(&xas, folio, ULONG_MAX) { 1448 if (xas_retry(&xas, folio)) 1449 continue; 1450 1451 if (!xa_is_value(folio)) 1452 continue; 1453 1454 entry = radix_to_swp_entry(folio); 1455 /* 1456 * swapin error entries can be found in the mapping. But they're 1457 * deliberately ignored here as we've done everything we can do. 1458 */ 1459 if (swp_type(entry) != type) 1460 continue; 1461 1462 indices[folio_batch_count(fbatch)] = xas.xa_index; 1463 if (!folio_batch_add(fbatch, folio)) 1464 break; 1465 1466 if (need_resched()) { 1467 xas_pause(&xas); 1468 cond_resched_rcu(); 1469 } 1470 } 1471 rcu_read_unlock(); 1472 1473 return folio_batch_count(fbatch); 1474} 1475 1476/* 1477 * Move the swapped pages for an inode to page cache. Returns the count 1478 * of pages swapped in, or the error in case of failure. 1479 */ 1480static int shmem_unuse_swap_entries(struct inode *inode, 1481 struct folio_batch *fbatch, pgoff_t *indices) 1482{ 1483 int i = 0; 1484 int ret = 0; 1485 int error = 0; 1486 struct address_space *mapping = inode->i_mapping; 1487 1488 for (i = 0; i < folio_batch_count(fbatch); i++) { 1489 struct folio *folio = fbatch->folios[i]; 1490 1491 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1492 mapping_gfp_mask(mapping), NULL, NULL); 1493 if (error == 0) { 1494 folio_unlock(folio); 1495 folio_put(folio); 1496 ret++; 1497 } 1498 if (error == -ENOMEM) 1499 break; 1500 error = 0; 1501 } 1502 return error ? error : ret; 1503} 1504 1505/* 1506 * If swap found in inode, free it and move page from swapcache to filecache. 1507 */ 1508static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1509{ 1510 struct address_space *mapping = inode->i_mapping; 1511 pgoff_t start = 0; 1512 struct folio_batch fbatch; 1513 pgoff_t indices[PAGEVEC_SIZE]; 1514 int ret = 0; 1515 1516 do { 1517 folio_batch_init(&fbatch); 1518 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1519 indices, type)) { 1520 ret = 0; 1521 break; 1522 } 1523 1524 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1525 if (ret < 0) 1526 break; 1527 1528 start = indices[folio_batch_count(&fbatch) - 1]; 1529 } while (true); 1530 1531 return ret; 1532} 1533 1534/* 1535 * Read all the shared memory data that resides in the swap 1536 * device 'type' back into memory, so the swap device can be 1537 * unused. 1538 */ 1539int shmem_unuse(unsigned int type) 1540{ 1541 struct shmem_inode_info *info, *next; 1542 int error = 0; 1543 1544 if (list_empty(&shmem_swaplist)) 1545 return 0; 1546 1547 spin_lock(&shmem_swaplist_lock); 1548start_over: 1549 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1550 if (!info->swapped) { 1551 list_del_init(&info->swaplist); 1552 continue; 1553 } 1554 /* 1555 * Drop the swaplist mutex while searching the inode for swap; 1556 * but before doing so, make sure shmem_evict_inode() will not 1557 * remove placeholder inode from swaplist, nor let it be freed 1558 * (igrab() would protect from unlink, but not from unmount). 1559 */ 1560 atomic_inc(&info->stop_eviction); 1561 spin_unlock(&shmem_swaplist_lock); 1562 1563 error = shmem_unuse_inode(&info->vfs_inode, type); 1564 cond_resched(); 1565 1566 spin_lock(&shmem_swaplist_lock); 1567 if (atomic_dec_and_test(&info->stop_eviction)) 1568 wake_up_var(&info->stop_eviction); 1569 if (error) 1570 break; 1571 if (list_empty(&info->swaplist)) 1572 goto start_over; 1573 next = list_next_entry(info, swaplist); 1574 if (!info->swapped) 1575 list_del_init(&info->swaplist); 1576 } 1577 spin_unlock(&shmem_swaplist_lock); 1578 1579 return error; 1580} 1581 1582/** 1583 * shmem_writeout - Write the folio to swap 1584 * @folio: The folio to write 1585 * @plug: swap plug 1586 * @folio_list: list to put back folios on split 1587 * 1588 * Move the folio from the page cache to the swap cache. 1589 */ 1590int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1591 struct list_head *folio_list) 1592{ 1593 struct address_space *mapping = folio->mapping; 1594 struct inode *inode = mapping->host; 1595 struct shmem_inode_info *info = SHMEM_I(inode); 1596 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1597 pgoff_t index; 1598 int nr_pages; 1599 bool split = false; 1600 1601 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1602 goto redirty; 1603 1604 if (!total_swap_pages) 1605 goto redirty; 1606 1607 /* 1608 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1609 * split when swapping. 1610 * 1611 * And shrinkage of pages beyond i_size does not split swap, so 1612 * swapout of a large folio crossing i_size needs to split too 1613 * (unless fallocate has been used to preallocate beyond EOF). 1614 */ 1615 if (folio_test_large(folio)) { 1616 index = shmem_fallocend(inode, 1617 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1618 if ((index > folio->index && index < folio_next_index(folio)) || 1619 !IS_ENABLED(CONFIG_THP_SWAP)) 1620 split = true; 1621 } 1622 1623 if (split) { 1624try_split: 1625 /* Ensure the subpages are still dirty */ 1626 folio_test_set_dirty(folio); 1627 if (split_folio_to_list(folio, folio_list)) 1628 goto redirty; 1629 folio_clear_dirty(folio); 1630 } 1631 1632 index = folio->index; 1633 nr_pages = folio_nr_pages(folio); 1634 1635 /* 1636 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1637 * value into swapfile.c, the only way we can correctly account for a 1638 * fallocated folio arriving here is now to initialize it and write it. 1639 * 1640 * That's okay for a folio already fallocated earlier, but if we have 1641 * not yet completed the fallocation, then (a) we want to keep track 1642 * of this folio in case we have to undo it, and (b) it may not be a 1643 * good idea to continue anyway, once we're pushing into swap. So 1644 * reactivate the folio, and let shmem_fallocate() quit when too many. 1645 */ 1646 if (!folio_test_uptodate(folio)) { 1647 if (inode->i_private) { 1648 struct shmem_falloc *shmem_falloc; 1649 spin_lock(&inode->i_lock); 1650 shmem_falloc = inode->i_private; 1651 if (shmem_falloc && 1652 !shmem_falloc->waitq && 1653 index >= shmem_falloc->start && 1654 index < shmem_falloc->next) 1655 shmem_falloc->nr_unswapped += nr_pages; 1656 else 1657 shmem_falloc = NULL; 1658 spin_unlock(&inode->i_lock); 1659 if (shmem_falloc) 1660 goto redirty; 1661 } 1662 folio_zero_range(folio, 0, folio_size(folio)); 1663 flush_dcache_folio(folio); 1664 folio_mark_uptodate(folio); 1665 } 1666 1667 if (!folio_alloc_swap(folio)) { 1668 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1669 int error; 1670 1671 /* 1672 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1673 * if it's not already there. Do it now before the folio is 1674 * removed from page cache, when its pagelock no longer 1675 * protects the inode from eviction. And do it now, after 1676 * we've incremented swapped, because shmem_unuse() will 1677 * prune a !swapped inode from the swaplist. 1678 */ 1679 if (first_swapped) { 1680 spin_lock(&shmem_swaplist_lock); 1681 if (list_empty(&info->swaplist)) 1682 list_add(&info->swaplist, &shmem_swaplist); 1683 spin_unlock(&shmem_swaplist_lock); 1684 } 1685 1686 swap_shmem_alloc(folio->swap, nr_pages); 1687 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1688 1689 BUG_ON(folio_mapped(folio)); 1690 error = swap_writeout(folio, plug); 1691 if (error != AOP_WRITEPAGE_ACTIVATE) { 1692 /* folio has been unlocked */ 1693 return error; 1694 } 1695 1696 /* 1697 * The intention here is to avoid holding on to the swap when 1698 * zswap was unable to compress and unable to writeback; but 1699 * it will be appropriate if other reactivate cases are added. 1700 */ 1701 error = shmem_add_to_page_cache(folio, mapping, index, 1702 swp_to_radix_entry(folio->swap), 1703 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1704 /* Swap entry might be erased by racing shmem_free_swap() */ 1705 if (!error) { 1706 shmem_recalc_inode(inode, 0, -nr_pages); 1707 swap_free_nr(folio->swap, nr_pages); 1708 } 1709 1710 /* 1711 * The swap_cache_del_folio() below could be left for 1712 * shrink_folio_list()'s folio_free_swap() to dispose of; 1713 * but I'm a little nervous about letting this folio out of 1714 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1715 * e.g. folio_mapping(folio) might give an unexpected answer. 1716 */ 1717 swap_cache_del_folio(folio); 1718 goto redirty; 1719 } 1720 if (nr_pages > 1) 1721 goto try_split; 1722redirty: 1723 folio_mark_dirty(folio); 1724 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1725} 1726EXPORT_SYMBOL_GPL(shmem_writeout); 1727 1728#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1729static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1730{ 1731 char buffer[64]; 1732 1733 if (!mpol || mpol->mode == MPOL_DEFAULT) 1734 return; /* show nothing */ 1735 1736 mpol_to_str(buffer, sizeof(buffer), mpol); 1737 1738 seq_printf(seq, ",mpol=%s", buffer); 1739} 1740 1741static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1742{ 1743 struct mempolicy *mpol = NULL; 1744 if (sbinfo->mpol) { 1745 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1746 mpol = sbinfo->mpol; 1747 mpol_get(mpol); 1748 raw_spin_unlock(&sbinfo->stat_lock); 1749 } 1750 return mpol; 1751} 1752#else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1753static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1754{ 1755} 1756static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1757{ 1758 return NULL; 1759} 1760#endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1761 1762static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1763 pgoff_t index, unsigned int order, pgoff_t *ilx); 1764 1765static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1766 struct shmem_inode_info *info, pgoff_t index) 1767{ 1768 struct mempolicy *mpol; 1769 pgoff_t ilx; 1770 struct folio *folio; 1771 1772 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1773 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1774 mpol_cond_put(mpol); 1775 1776 return folio; 1777} 1778 1779/* 1780 * Make sure huge_gfp is always more limited than limit_gfp. 1781 * Some of the flags set permissions, while others set limitations. 1782 */ 1783static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1784{ 1785 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1786 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1787 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1788 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1789 1790 /* Allow allocations only from the originally specified zones. */ 1791 result |= zoneflags; 1792 1793 /* 1794 * Minimize the result gfp by taking the union with the deny flags, 1795 * and the intersection of the allow flags. 1796 */ 1797 result |= (limit_gfp & denyflags); 1798 result |= (huge_gfp & limit_gfp) & allowflags; 1799 1800 return result; 1801} 1802 1803#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1804bool shmem_hpage_pmd_enabled(void) 1805{ 1806 if (shmem_huge == SHMEM_HUGE_DENY) 1807 return false; 1808 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1809 return true; 1810 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1811 return true; 1812 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1813 return true; 1814 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1815 shmem_huge != SHMEM_HUGE_NEVER) 1816 return true; 1817 1818 return false; 1819} 1820 1821unsigned long shmem_allowable_huge_orders(struct inode *inode, 1822 struct vm_area_struct *vma, pgoff_t index, 1823 loff_t write_end, bool shmem_huge_force) 1824{ 1825 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1826 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1827 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1828 unsigned int global_orders; 1829 1830 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1831 return 0; 1832 1833 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1834 shmem_huge_force, vma, vm_flags); 1835 /* Tmpfs huge pages allocation */ 1836 if (!vma || !vma_is_anon_shmem(vma)) 1837 return global_orders; 1838 1839 /* 1840 * Following the 'deny' semantics of the top level, force the huge 1841 * option off from all mounts. 1842 */ 1843 if (shmem_huge == SHMEM_HUGE_DENY) 1844 return 0; 1845 1846 /* 1847 * Only allow inherit orders if the top-level value is 'force', which 1848 * means non-PMD sized THP can not override 'huge' mount option now. 1849 */ 1850 if (shmem_huge == SHMEM_HUGE_FORCE) 1851 return READ_ONCE(huge_shmem_orders_inherit); 1852 1853 /* Allow mTHP that will be fully within i_size. */ 1854 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1855 1856 if (vm_flags & VM_HUGEPAGE) 1857 mask |= READ_ONCE(huge_shmem_orders_madvise); 1858 1859 if (global_orders > 0) 1860 mask |= READ_ONCE(huge_shmem_orders_inherit); 1861 1862 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1863} 1864 1865static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1866 struct address_space *mapping, pgoff_t index, 1867 unsigned long orders) 1868{ 1869 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1870 pgoff_t aligned_index; 1871 unsigned long pages; 1872 int order; 1873 1874 if (vma) { 1875 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1876 if (!orders) 1877 return 0; 1878 } 1879 1880 /* Find the highest order that can add into the page cache */ 1881 order = highest_order(orders); 1882 while (orders) { 1883 pages = 1UL << order; 1884 aligned_index = round_down(index, pages); 1885 /* 1886 * Check for conflict before waiting on a huge allocation. 1887 * Conflict might be that a huge page has just been allocated 1888 * and added to page cache by a racing thread, or that there 1889 * is already at least one small page in the huge extent. 1890 * Be careful to retry when appropriate, but not forever! 1891 * Elsewhere -EEXIST would be the right code, but not here. 1892 */ 1893 if (!xa_find(&mapping->i_pages, &aligned_index, 1894 aligned_index + pages - 1, XA_PRESENT)) 1895 break; 1896 order = next_order(&orders, order); 1897 } 1898 1899 return orders; 1900} 1901#else 1902static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1903 struct address_space *mapping, pgoff_t index, 1904 unsigned long orders) 1905{ 1906 return 0; 1907} 1908#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1909 1910static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1911 struct shmem_inode_info *info, pgoff_t index) 1912{ 1913 struct mempolicy *mpol; 1914 pgoff_t ilx; 1915 struct folio *folio; 1916 1917 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1918 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1919 mpol_cond_put(mpol); 1920 1921 return folio; 1922} 1923 1924static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1925 gfp_t gfp, struct inode *inode, pgoff_t index, 1926 struct mm_struct *fault_mm, unsigned long orders) 1927{ 1928 struct address_space *mapping = inode->i_mapping; 1929 struct shmem_inode_info *info = SHMEM_I(inode); 1930 unsigned long suitable_orders = 0; 1931 struct folio *folio = NULL; 1932 pgoff_t aligned_index; 1933 long pages; 1934 int error, order; 1935 1936 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1937 orders = 0; 1938 1939 if (orders > 0) { 1940 suitable_orders = shmem_suitable_orders(inode, vmf, 1941 mapping, index, orders); 1942 1943 order = highest_order(suitable_orders); 1944 while (suitable_orders) { 1945 pages = 1UL << order; 1946 aligned_index = round_down(index, pages); 1947 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1948 if (folio) { 1949 index = aligned_index; 1950 goto allocated; 1951 } 1952 1953 if (pages == HPAGE_PMD_NR) 1954 count_vm_event(THP_FILE_FALLBACK); 1955 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1956 order = next_order(&suitable_orders, order); 1957 } 1958 } else { 1959 pages = 1; 1960 folio = shmem_alloc_folio(gfp, 0, info, index); 1961 } 1962 if (!folio) 1963 return ERR_PTR(-ENOMEM); 1964 1965allocated: 1966 __folio_set_locked(folio); 1967 __folio_set_swapbacked(folio); 1968 1969 gfp &= GFP_RECLAIM_MASK; 1970 error = mem_cgroup_charge(folio, fault_mm, gfp); 1971 if (error) { 1972 if (xa_find(&mapping->i_pages, &index, 1973 index + pages - 1, XA_PRESENT)) { 1974 error = -EEXIST; 1975 } else if (pages > 1) { 1976 if (pages == HPAGE_PMD_NR) { 1977 count_vm_event(THP_FILE_FALLBACK); 1978 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1979 } 1980 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1981 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1982 } 1983 goto unlock; 1984 } 1985 1986 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1987 if (error) 1988 goto unlock; 1989 1990 error = shmem_inode_acct_blocks(inode, pages); 1991 if (error) { 1992 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1993 long freed; 1994 /* 1995 * Try to reclaim some space by splitting a few 1996 * large folios beyond i_size on the filesystem. 1997 */ 1998 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1999 /* 2000 * And do a shmem_recalc_inode() to account for freed pages: 2001 * except our folio is there in cache, so not quite balanced. 2002 */ 2003 spin_lock(&info->lock); 2004 freed = pages + info->alloced - info->swapped - 2005 READ_ONCE(mapping->nrpages); 2006 if (freed > 0) 2007 info->alloced -= freed; 2008 spin_unlock(&info->lock); 2009 if (freed > 0) 2010 shmem_inode_unacct_blocks(inode, freed); 2011 error = shmem_inode_acct_blocks(inode, pages); 2012 if (error) { 2013 filemap_remove_folio(folio); 2014 goto unlock; 2015 } 2016 } 2017 2018 shmem_recalc_inode(inode, pages, 0); 2019 folio_add_lru(folio); 2020 return folio; 2021 2022unlock: 2023 folio_unlock(folio); 2024 folio_put(folio); 2025 return ERR_PTR(error); 2026} 2027 2028static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2029 struct vm_area_struct *vma, pgoff_t index, 2030 swp_entry_t entry, int order, gfp_t gfp) 2031{ 2032 struct shmem_inode_info *info = SHMEM_I(inode); 2033 int nr_pages = 1 << order; 2034 struct folio *new; 2035 gfp_t alloc_gfp; 2036 void *shadow; 2037 2038 /* 2039 * We have arrived here because our zones are constrained, so don't 2040 * limit chance of success with further cpuset and node constraints. 2041 */ 2042 gfp &= ~GFP_CONSTRAINT_MASK; 2043 alloc_gfp = gfp; 2044 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2045 if (WARN_ON_ONCE(order)) 2046 return ERR_PTR(-EINVAL); 2047 } else if (order) { 2048 /* 2049 * If uffd is active for the vma, we need per-page fault 2050 * fidelity to maintain the uffd semantics, then fallback 2051 * to swapin order-0 folio, as well as for zswap case. 2052 * Any existing sub folio in the swap cache also blocks 2053 * mTHP swapin. 2054 */ 2055 if ((vma && unlikely(userfaultfd_armed(vma))) || 2056 !zswap_never_enabled() || 2057 non_swapcache_batch(entry, nr_pages) != nr_pages) 2058 goto fallback; 2059 2060 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2061 } 2062retry: 2063 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2064 if (!new) { 2065 new = ERR_PTR(-ENOMEM); 2066 goto fallback; 2067 } 2068 2069 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2070 alloc_gfp, entry)) { 2071 folio_put(new); 2072 new = ERR_PTR(-ENOMEM); 2073 goto fallback; 2074 } 2075 2076 /* 2077 * Prevent parallel swapin from proceeding with the swap cache flag. 2078 * 2079 * Of course there is another possible concurrent scenario as well, 2080 * that is to say, the swap cache flag of a large folio has already 2081 * been set by swapcache_prepare(), while another thread may have 2082 * already split the large swap entry stored in the shmem mapping. 2083 * In this case, shmem_add_to_page_cache() will help identify the 2084 * concurrent swapin and return -EEXIST. 2085 */ 2086 if (swapcache_prepare(entry, nr_pages)) { 2087 folio_put(new); 2088 new = ERR_PTR(-EEXIST); 2089 /* Try smaller folio to avoid cache conflict */ 2090 goto fallback; 2091 } 2092 2093 __folio_set_locked(new); 2094 __folio_set_swapbacked(new); 2095 new->swap = entry; 2096 2097 memcg1_swapin(entry, nr_pages); 2098 shadow = swap_cache_get_shadow(entry); 2099 if (shadow) 2100 workingset_refault(new, shadow); 2101 folio_add_lru(new); 2102 swap_read_folio(new, NULL); 2103 return new; 2104fallback: 2105 /* Order 0 swapin failed, nothing to fallback to, abort */ 2106 if (!order) 2107 return new; 2108 entry.val += index - round_down(index, nr_pages); 2109 alloc_gfp = gfp; 2110 nr_pages = 1; 2111 order = 0; 2112 goto retry; 2113} 2114 2115/* 2116 * When a page is moved from swapcache to shmem filecache (either by the 2117 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2118 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2119 * ignorance of the mapping it belongs to. If that mapping has special 2120 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2121 * we may need to copy to a suitable page before moving to filecache. 2122 * 2123 * In a future release, this may well be extended to respect cpuset and 2124 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2125 * but for now it is a simple matter of zone. 2126 */ 2127static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2128{ 2129 return folio_zonenum(folio) > gfp_zone(gfp); 2130} 2131 2132static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2133 struct shmem_inode_info *info, pgoff_t index, 2134 struct vm_area_struct *vma) 2135{ 2136 struct swap_cluster_info *ci; 2137 struct folio *new, *old = *foliop; 2138 swp_entry_t entry = old->swap; 2139 int nr_pages = folio_nr_pages(old); 2140 int error = 0; 2141 2142 /* 2143 * We have arrived here because our zones are constrained, so don't 2144 * limit chance of success by further cpuset and node constraints. 2145 */ 2146 gfp &= ~GFP_CONSTRAINT_MASK; 2147#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2148 if (nr_pages > 1) { 2149 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2150 2151 gfp = limit_gfp_mask(huge_gfp, gfp); 2152 } 2153#endif 2154 2155 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2156 if (!new) 2157 return -ENOMEM; 2158 2159 folio_ref_add(new, nr_pages); 2160 folio_copy(new, old); 2161 flush_dcache_folio(new); 2162 2163 __folio_set_locked(new); 2164 __folio_set_swapbacked(new); 2165 folio_mark_uptodate(new); 2166 new->swap = entry; 2167 folio_set_swapcache(new); 2168 2169 ci = swap_cluster_get_and_lock_irq(old); 2170 __swap_cache_replace_folio(ci, old, new); 2171 mem_cgroup_replace_folio(old, new); 2172 shmem_update_stats(new, nr_pages); 2173 shmem_update_stats(old, -nr_pages); 2174 swap_cluster_unlock_irq(ci); 2175 2176 folio_add_lru(new); 2177 *foliop = new; 2178 2179 folio_clear_swapcache(old); 2180 old->private = NULL; 2181 2182 folio_unlock(old); 2183 /* 2184 * The old folio are removed from swap cache, drop the 'nr_pages' 2185 * reference, as well as one temporary reference getting from swap 2186 * cache. 2187 */ 2188 folio_put_refs(old, nr_pages + 1); 2189 return error; 2190} 2191 2192static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2193 struct folio *folio, swp_entry_t swap, 2194 bool skip_swapcache) 2195{ 2196 struct address_space *mapping = inode->i_mapping; 2197 swp_entry_t swapin_error; 2198 void *old; 2199 int nr_pages; 2200 2201 swapin_error = make_poisoned_swp_entry(); 2202 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2203 swp_to_radix_entry(swap), 2204 swp_to_radix_entry(swapin_error), 0); 2205 if (old != swp_to_radix_entry(swap)) 2206 return; 2207 2208 nr_pages = folio_nr_pages(folio); 2209 folio_wait_writeback(folio); 2210 if (!skip_swapcache) 2211 swap_cache_del_folio(folio); 2212 /* 2213 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2214 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2215 * in shmem_evict_inode(). 2216 */ 2217 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2218 swap_free_nr(swap, nr_pages); 2219} 2220 2221static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2222 swp_entry_t swap, gfp_t gfp) 2223{ 2224 struct address_space *mapping = inode->i_mapping; 2225 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2226 int split_order = 0; 2227 int i; 2228 2229 /* Convert user data gfp flags to xarray node gfp flags */ 2230 gfp &= GFP_RECLAIM_MASK; 2231 2232 for (;;) { 2233 void *old = NULL; 2234 int cur_order; 2235 pgoff_t swap_index; 2236 2237 xas_lock_irq(&xas); 2238 old = xas_load(&xas); 2239 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2240 xas_set_err(&xas, -EEXIST); 2241 goto unlock; 2242 } 2243 2244 cur_order = xas_get_order(&xas); 2245 if (!cur_order) 2246 goto unlock; 2247 2248 /* Try to split large swap entry in pagecache */ 2249 swap_index = round_down(index, 1 << cur_order); 2250 split_order = xas_try_split_min_order(cur_order); 2251 2252 while (cur_order > 0) { 2253 pgoff_t aligned_index = 2254 round_down(index, 1 << cur_order); 2255 pgoff_t swap_offset = aligned_index - swap_index; 2256 2257 xas_set_order(&xas, index, split_order); 2258 xas_try_split(&xas, old, cur_order); 2259 if (xas_error(&xas)) 2260 goto unlock; 2261 2262 /* 2263 * Re-set the swap entry after splitting, and the swap 2264 * offset of the original large entry must be continuous. 2265 */ 2266 for (i = 0; i < 1 << cur_order; 2267 i += (1 << split_order)) { 2268 swp_entry_t tmp; 2269 2270 tmp = swp_entry(swp_type(swap), 2271 swp_offset(swap) + swap_offset + 2272 i); 2273 __xa_store(&mapping->i_pages, aligned_index + i, 2274 swp_to_radix_entry(tmp), 0); 2275 } 2276 cur_order = split_order; 2277 split_order = xas_try_split_min_order(split_order); 2278 } 2279 2280unlock: 2281 xas_unlock_irq(&xas); 2282 2283 if (!xas_nomem(&xas, gfp)) 2284 break; 2285 } 2286 2287 if (xas_error(&xas)) 2288 return xas_error(&xas); 2289 2290 return 0; 2291} 2292 2293/* 2294 * Swap in the folio pointed to by *foliop. 2295 * Caller has to make sure that *foliop contains a valid swapped folio. 2296 * Returns 0 and the folio in foliop if success. On failure, returns the 2297 * error code and NULL in *foliop. 2298 */ 2299static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2300 struct folio **foliop, enum sgp_type sgp, 2301 gfp_t gfp, struct vm_area_struct *vma, 2302 vm_fault_t *fault_type) 2303{ 2304 struct address_space *mapping = inode->i_mapping; 2305 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2306 struct shmem_inode_info *info = SHMEM_I(inode); 2307 swp_entry_t swap; 2308 softleaf_t index_entry; 2309 struct swap_info_struct *si; 2310 struct folio *folio = NULL; 2311 bool skip_swapcache = false; 2312 int error, nr_pages, order; 2313 pgoff_t offset; 2314 2315 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2316 index_entry = radix_to_swp_entry(*foliop); 2317 swap = index_entry; 2318 *foliop = NULL; 2319 2320 if (softleaf_is_poison_marker(index_entry)) 2321 return -EIO; 2322 2323 si = get_swap_device(index_entry); 2324 order = shmem_confirm_swap(mapping, index, index_entry); 2325 if (unlikely(!si)) { 2326 if (order < 0) 2327 return -EEXIST; 2328 else 2329 return -EINVAL; 2330 } 2331 if (unlikely(order < 0)) { 2332 put_swap_device(si); 2333 return -EEXIST; 2334 } 2335 2336 /* index may point to the middle of a large entry, get the sub entry */ 2337 if (order) { 2338 offset = index - round_down(index, 1 << order); 2339 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2340 } 2341 2342 /* Look it up and read it in.. */ 2343 folio = swap_cache_get_folio(swap); 2344 if (!folio) { 2345 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2346 /* Direct swapin skipping swap cache & readahead */ 2347 folio = shmem_swap_alloc_folio(inode, vma, index, 2348 index_entry, order, gfp); 2349 if (IS_ERR(folio)) { 2350 error = PTR_ERR(folio); 2351 folio = NULL; 2352 goto failed; 2353 } 2354 skip_swapcache = true; 2355 } else { 2356 /* Cached swapin only supports order 0 folio */ 2357 folio = shmem_swapin_cluster(swap, gfp, info, index); 2358 if (!folio) { 2359 error = -ENOMEM; 2360 goto failed; 2361 } 2362 } 2363 if (fault_type) { 2364 *fault_type |= VM_FAULT_MAJOR; 2365 count_vm_event(PGMAJFAULT); 2366 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2367 } 2368 } else { 2369 swap_update_readahead(folio, NULL, 0); 2370 } 2371 2372 if (order > folio_order(folio)) { 2373 /* 2374 * Swapin may get smaller folios due to various reasons: 2375 * It may fallback to order 0 due to memory pressure or race, 2376 * swap readahead may swap in order 0 folios into swapcache 2377 * asynchronously, while the shmem mapping can still stores 2378 * large swap entries. In such cases, we should split the 2379 * large swap entry to prevent possible data corruption. 2380 */ 2381 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2382 if (error) 2383 goto failed_nolock; 2384 } 2385 2386 /* 2387 * If the folio is large, round down swap and index by folio size. 2388 * No matter what race occurs, the swap layer ensures we either get 2389 * a valid folio that has its swap entry aligned by size, or a 2390 * temporarily invalid one which we'll abort very soon and retry. 2391 * 2392 * shmem_add_to_page_cache ensures the whole range contains expected 2393 * entries and prevents any corruption, so any race split is fine 2394 * too, it will succeed as long as the entries are still there. 2395 */ 2396 nr_pages = folio_nr_pages(folio); 2397 if (nr_pages > 1) { 2398 swap.val = round_down(swap.val, nr_pages); 2399 index = round_down(index, nr_pages); 2400 } 2401 2402 /* 2403 * We have to do this with the folio locked to prevent races. 2404 * The shmem_confirm_swap below only checks if the first swap 2405 * entry matches the folio, that's enough to ensure the folio 2406 * is not used outside of shmem, as shmem swap entries 2407 * and swap cache folios are never partially freed. 2408 */ 2409 folio_lock(folio); 2410 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2411 shmem_confirm_swap(mapping, index, swap) < 0 || 2412 folio->swap.val != swap.val) { 2413 error = -EEXIST; 2414 goto unlock; 2415 } 2416 if (!folio_test_uptodate(folio)) { 2417 error = -EIO; 2418 goto failed; 2419 } 2420 folio_wait_writeback(folio); 2421 2422 /* 2423 * Some architectures may have to restore extra metadata to the 2424 * folio after reading from swap. 2425 */ 2426 arch_swap_restore(folio_swap(swap, folio), folio); 2427 2428 if (shmem_should_replace_folio(folio, gfp)) { 2429 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2430 if (error) 2431 goto failed; 2432 } 2433 2434 error = shmem_add_to_page_cache(folio, mapping, index, 2435 swp_to_radix_entry(swap), gfp); 2436 if (error) 2437 goto failed; 2438 2439 shmem_recalc_inode(inode, 0, -nr_pages); 2440 2441 if (sgp == SGP_WRITE) 2442 folio_mark_accessed(folio); 2443 2444 if (skip_swapcache) { 2445 folio->swap.val = 0; 2446 swapcache_clear(si, swap, nr_pages); 2447 } else { 2448 swap_cache_del_folio(folio); 2449 } 2450 folio_mark_dirty(folio); 2451 swap_free_nr(swap, nr_pages); 2452 put_swap_device(si); 2453 2454 *foliop = folio; 2455 return 0; 2456failed: 2457 if (shmem_confirm_swap(mapping, index, swap) < 0) 2458 error = -EEXIST; 2459 if (error == -EIO) 2460 shmem_set_folio_swapin_error(inode, index, folio, swap, 2461 skip_swapcache); 2462unlock: 2463 if (folio) 2464 folio_unlock(folio); 2465failed_nolock: 2466 if (skip_swapcache) 2467 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2468 if (folio) 2469 folio_put(folio); 2470 put_swap_device(si); 2471 2472 return error; 2473} 2474 2475/* 2476 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2477 * 2478 * If we allocate a new one we do not mark it dirty. That's up to the 2479 * vm. If we swap it in we mark it dirty since we also free the swap 2480 * entry since a page cannot live in both the swap and page cache. 2481 * 2482 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2483 */ 2484static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2485 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2486 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2487{ 2488 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2489 struct mm_struct *fault_mm; 2490 struct folio *folio; 2491 int error; 2492 bool alloced; 2493 unsigned long orders = 0; 2494 2495 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2496 return -EINVAL; 2497 2498 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2499 return -EFBIG; 2500repeat: 2501 if (sgp <= SGP_CACHE && 2502 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2503 return -EINVAL; 2504 2505 alloced = false; 2506 fault_mm = vma ? vma->vm_mm : NULL; 2507 2508 folio = filemap_get_entry(inode->i_mapping, index); 2509 if (folio && vma && userfaultfd_minor(vma)) { 2510 if (!xa_is_value(folio)) 2511 folio_put(folio); 2512 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2513 return 0; 2514 } 2515 2516 if (xa_is_value(folio)) { 2517 error = shmem_swapin_folio(inode, index, &folio, 2518 sgp, gfp, vma, fault_type); 2519 if (error == -EEXIST) 2520 goto repeat; 2521 2522 *foliop = folio; 2523 return error; 2524 } 2525 2526 if (folio) { 2527 folio_lock(folio); 2528 2529 /* Has the folio been truncated or swapped out? */ 2530 if (unlikely(folio->mapping != inode->i_mapping)) { 2531 folio_unlock(folio); 2532 folio_put(folio); 2533 goto repeat; 2534 } 2535 if (sgp == SGP_WRITE) 2536 folio_mark_accessed(folio); 2537 if (folio_test_uptodate(folio)) 2538 goto out; 2539 /* fallocated folio */ 2540 if (sgp != SGP_READ) 2541 goto clear; 2542 folio_unlock(folio); 2543 folio_put(folio); 2544 } 2545 2546 /* 2547 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2548 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2549 */ 2550 *foliop = NULL; 2551 if (sgp == SGP_READ) 2552 return 0; 2553 if (sgp == SGP_NOALLOC) 2554 return -ENOENT; 2555 2556 /* 2557 * Fast cache lookup and swap lookup did not find it: allocate. 2558 */ 2559 2560 if (vma && userfaultfd_missing(vma)) { 2561 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2562 return 0; 2563 } 2564 2565 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2566 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2567 if (orders > 0) { 2568 gfp_t huge_gfp; 2569 2570 huge_gfp = vma_thp_gfp_mask(vma); 2571 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2572 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2573 inode, index, fault_mm, orders); 2574 if (!IS_ERR(folio)) { 2575 if (folio_test_pmd_mappable(folio)) 2576 count_vm_event(THP_FILE_ALLOC); 2577 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2578 goto alloced; 2579 } 2580 if (PTR_ERR(folio) == -EEXIST) 2581 goto repeat; 2582 } 2583 2584 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2585 if (IS_ERR(folio)) { 2586 error = PTR_ERR(folio); 2587 if (error == -EEXIST) 2588 goto repeat; 2589 folio = NULL; 2590 goto unlock; 2591 } 2592 2593alloced: 2594 alloced = true; 2595 if (folio_test_large(folio) && 2596 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2597 folio_next_index(folio)) { 2598 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2599 struct shmem_inode_info *info = SHMEM_I(inode); 2600 /* 2601 * Part of the large folio is beyond i_size: subject 2602 * to shrink under memory pressure. 2603 */ 2604 spin_lock(&sbinfo->shrinklist_lock); 2605 /* 2606 * _careful to defend against unlocked access to 2607 * ->shrink_list in shmem_unused_huge_shrink() 2608 */ 2609 if (list_empty_careful(&info->shrinklist)) { 2610 list_add_tail(&info->shrinklist, 2611 &sbinfo->shrinklist); 2612 sbinfo->shrinklist_len++; 2613 } 2614 spin_unlock(&sbinfo->shrinklist_lock); 2615 } 2616 2617 if (sgp == SGP_WRITE) 2618 folio_set_referenced(folio); 2619 /* 2620 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2621 */ 2622 if (sgp == SGP_FALLOC) 2623 sgp = SGP_WRITE; 2624clear: 2625 /* 2626 * Let SGP_WRITE caller clear ends if write does not fill folio; 2627 * but SGP_FALLOC on a folio fallocated earlier must initialize 2628 * it now, lest undo on failure cancel our earlier guarantee. 2629 */ 2630 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2631 long i, n = folio_nr_pages(folio); 2632 2633 for (i = 0; i < n; i++) 2634 clear_highpage(folio_page(folio, i)); 2635 flush_dcache_folio(folio); 2636 folio_mark_uptodate(folio); 2637 } 2638 2639 /* Perhaps the file has been truncated since we checked */ 2640 if (sgp <= SGP_CACHE && 2641 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2642 error = -EINVAL; 2643 goto unlock; 2644 } 2645out: 2646 *foliop = folio; 2647 return 0; 2648 2649 /* 2650 * Error recovery. 2651 */ 2652unlock: 2653 if (alloced) 2654 filemap_remove_folio(folio); 2655 shmem_recalc_inode(inode, 0, 0); 2656 if (folio) { 2657 folio_unlock(folio); 2658 folio_put(folio); 2659 } 2660 return error; 2661} 2662 2663/** 2664 * shmem_get_folio - find, and lock a shmem folio. 2665 * @inode: inode to search 2666 * @index: the page index. 2667 * @write_end: end of a write, could extend inode size 2668 * @foliop: pointer to the folio if found 2669 * @sgp: SGP_* flags to control behavior 2670 * 2671 * Looks up the page cache entry at @inode & @index. If a folio is 2672 * present, it is returned locked with an increased refcount. 2673 * 2674 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2675 * before unlocking the folio to ensure that the folio is not reclaimed. 2676 * There is no need to reserve space before calling folio_mark_dirty(). 2677 * 2678 * When no folio is found, the behavior depends on @sgp: 2679 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2680 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2681 * - for all other flags a new folio is allocated, inserted into the 2682 * page cache and returned locked in @foliop. 2683 * 2684 * Context: May sleep. 2685 * Return: 0 if successful, else a negative error code. 2686 */ 2687int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2688 struct folio **foliop, enum sgp_type sgp) 2689{ 2690 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2691 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2692} 2693EXPORT_SYMBOL_GPL(shmem_get_folio); 2694 2695/* 2696 * This is like autoremove_wake_function, but it removes the wait queue 2697 * entry unconditionally - even if something else had already woken the 2698 * target. 2699 */ 2700static int synchronous_wake_function(wait_queue_entry_t *wait, 2701 unsigned int mode, int sync, void *key) 2702{ 2703 int ret = default_wake_function(wait, mode, sync, key); 2704 list_del_init(&wait->entry); 2705 return ret; 2706} 2707 2708/* 2709 * Trinity finds that probing a hole which tmpfs is punching can 2710 * prevent the hole-punch from ever completing: which in turn 2711 * locks writers out with its hold on i_rwsem. So refrain from 2712 * faulting pages into the hole while it's being punched. Although 2713 * shmem_undo_range() does remove the additions, it may be unable to 2714 * keep up, as each new page needs its own unmap_mapping_range() call, 2715 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2716 * 2717 * It does not matter if we sometimes reach this check just before the 2718 * hole-punch begins, so that one fault then races with the punch: 2719 * we just need to make racing faults a rare case. 2720 * 2721 * The implementation below would be much simpler if we just used a 2722 * standard mutex or completion: but we cannot take i_rwsem in fault, 2723 * and bloating every shmem inode for this unlikely case would be sad. 2724 */ 2725static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2726{ 2727 struct shmem_falloc *shmem_falloc; 2728 struct file *fpin = NULL; 2729 vm_fault_t ret = 0; 2730 2731 spin_lock(&inode->i_lock); 2732 shmem_falloc = inode->i_private; 2733 if (shmem_falloc && 2734 shmem_falloc->waitq && 2735 vmf->pgoff >= shmem_falloc->start && 2736 vmf->pgoff < shmem_falloc->next) { 2737 wait_queue_head_t *shmem_falloc_waitq; 2738 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2739 2740 ret = VM_FAULT_NOPAGE; 2741 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2742 shmem_falloc_waitq = shmem_falloc->waitq; 2743 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2744 TASK_UNINTERRUPTIBLE); 2745 spin_unlock(&inode->i_lock); 2746 schedule(); 2747 2748 /* 2749 * shmem_falloc_waitq points into the shmem_fallocate() 2750 * stack of the hole-punching task: shmem_falloc_waitq 2751 * is usually invalid by the time we reach here, but 2752 * finish_wait() does not dereference it in that case; 2753 * though i_lock needed lest racing with wake_up_all(). 2754 */ 2755 spin_lock(&inode->i_lock); 2756 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2757 } 2758 spin_unlock(&inode->i_lock); 2759 if (fpin) { 2760 fput(fpin); 2761 ret = VM_FAULT_RETRY; 2762 } 2763 return ret; 2764} 2765 2766static vm_fault_t shmem_fault(struct vm_fault *vmf) 2767{ 2768 struct inode *inode = file_inode(vmf->vma->vm_file); 2769 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2770 struct folio *folio = NULL; 2771 vm_fault_t ret = 0; 2772 int err; 2773 2774 /* 2775 * Trinity finds that probing a hole which tmpfs is punching can 2776 * prevent the hole-punch from ever completing: noted in i_private. 2777 */ 2778 if (unlikely(inode->i_private)) { 2779 ret = shmem_falloc_wait(vmf, inode); 2780 if (ret) 2781 return ret; 2782 } 2783 2784 WARN_ON_ONCE(vmf->page != NULL); 2785 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2786 gfp, vmf, &ret); 2787 if (err) 2788 return vmf_error(err); 2789 if (folio) { 2790 vmf->page = folio_file_page(folio, vmf->pgoff); 2791 ret |= VM_FAULT_LOCKED; 2792 } 2793 return ret; 2794} 2795 2796unsigned long shmem_get_unmapped_area(struct file *file, 2797 unsigned long uaddr, unsigned long len, 2798 unsigned long pgoff, unsigned long flags) 2799{ 2800 unsigned long addr; 2801 unsigned long offset; 2802 unsigned long inflated_len; 2803 unsigned long inflated_addr; 2804 unsigned long inflated_offset; 2805 unsigned long hpage_size; 2806 2807 if (len > TASK_SIZE) 2808 return -ENOMEM; 2809 2810 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2811 2812 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2813 return addr; 2814 if (IS_ERR_VALUE(addr)) 2815 return addr; 2816 if (addr & ~PAGE_MASK) 2817 return addr; 2818 if (addr > TASK_SIZE - len) 2819 return addr; 2820 2821 if (shmem_huge == SHMEM_HUGE_DENY) 2822 return addr; 2823 if (flags & MAP_FIXED) 2824 return addr; 2825 /* 2826 * Our priority is to support MAP_SHARED mapped hugely; 2827 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2828 * But if caller specified an address hint and we allocated area there 2829 * successfully, respect that as before. 2830 */ 2831 if (uaddr == addr) 2832 return addr; 2833 2834 hpage_size = HPAGE_PMD_SIZE; 2835 if (shmem_huge != SHMEM_HUGE_FORCE) { 2836 struct super_block *sb; 2837 unsigned long __maybe_unused hpage_orders; 2838 int order = 0; 2839 2840 if (file) { 2841 VM_BUG_ON(file->f_op != &shmem_file_operations); 2842 sb = file_inode(file)->i_sb; 2843 } else { 2844 /* 2845 * Called directly from mm/mmap.c, or drivers/char/mem.c 2846 * for "/dev/zero", to create a shared anonymous object. 2847 */ 2848 if (IS_ERR(shm_mnt)) 2849 return addr; 2850 sb = shm_mnt->mnt_sb; 2851 2852 /* 2853 * Find the highest mTHP order used for anonymous shmem to 2854 * provide a suitable alignment address. 2855 */ 2856#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2857 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2858 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2859 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2860 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2861 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2862 2863 if (hpage_orders > 0) { 2864 order = highest_order(hpage_orders); 2865 hpage_size = PAGE_SIZE << order; 2866 } 2867#endif 2868 } 2869 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2870 return addr; 2871 } 2872 2873 if (len < hpage_size) 2874 return addr; 2875 2876 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2877 if (offset && offset + len < 2 * hpage_size) 2878 return addr; 2879 if ((addr & (hpage_size - 1)) == offset) 2880 return addr; 2881 2882 inflated_len = len + hpage_size - PAGE_SIZE; 2883 if (inflated_len > TASK_SIZE) 2884 return addr; 2885 if (inflated_len < len) 2886 return addr; 2887 2888 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2889 if (IS_ERR_VALUE(inflated_addr)) 2890 return addr; 2891 if (inflated_addr & ~PAGE_MASK) 2892 return addr; 2893 2894 inflated_offset = inflated_addr & (hpage_size - 1); 2895 inflated_addr += offset - inflated_offset; 2896 if (inflated_offset > offset) 2897 inflated_addr += hpage_size; 2898 2899 if (inflated_addr > TASK_SIZE - len) 2900 return addr; 2901 return inflated_addr; 2902} 2903 2904#ifdef CONFIG_NUMA 2905static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2906{ 2907 struct inode *inode = file_inode(vma->vm_file); 2908 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2909} 2910 2911static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2912 unsigned long addr, pgoff_t *ilx) 2913{ 2914 struct inode *inode = file_inode(vma->vm_file); 2915 pgoff_t index; 2916 2917 /* 2918 * Bias interleave by inode number to distribute better across nodes; 2919 * but this interface is independent of which page order is used, so 2920 * supplies only that bias, letting caller apply the offset (adjusted 2921 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2922 */ 2923 *ilx = inode->i_ino; 2924 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2925 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2926} 2927 2928static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2929 pgoff_t index, unsigned int order, pgoff_t *ilx) 2930{ 2931 struct mempolicy *mpol; 2932 2933 /* Bias interleave by inode number to distribute better across nodes */ 2934 *ilx = info->vfs_inode.i_ino + (index >> order); 2935 2936 mpol = mpol_shared_policy_lookup(&info->policy, index); 2937 return mpol ? mpol : get_task_policy(current); 2938} 2939#else 2940static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2941 pgoff_t index, unsigned int order, pgoff_t *ilx) 2942{ 2943 *ilx = 0; 2944 return NULL; 2945} 2946#endif /* CONFIG_NUMA */ 2947 2948int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2949{ 2950 struct inode *inode = file_inode(file); 2951 struct shmem_inode_info *info = SHMEM_I(inode); 2952 int retval = -ENOMEM; 2953 2954 /* 2955 * What serializes the accesses to info->flags? 2956 * ipc_lock_object() when called from shmctl_do_lock(), 2957 * no serialization needed when called from shm_destroy(). 2958 */ 2959 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2960 if (!user_shm_lock(inode->i_size, ucounts)) 2961 goto out_nomem; 2962 info->flags |= SHMEM_F_LOCKED; 2963 mapping_set_unevictable(file->f_mapping); 2964 } 2965 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2966 user_shm_unlock(inode->i_size, ucounts); 2967 info->flags &= ~SHMEM_F_LOCKED; 2968 mapping_clear_unevictable(file->f_mapping); 2969 } 2970 retval = 0; 2971 2972out_nomem: 2973 return retval; 2974} 2975 2976static int shmem_mmap_prepare(struct vm_area_desc *desc) 2977{ 2978 struct file *file = desc->file; 2979 struct inode *inode = file_inode(file); 2980 2981 file_accessed(file); 2982 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2983 if (inode->i_nlink) 2984 desc->vm_ops = &shmem_vm_ops; 2985 else 2986 desc->vm_ops = &shmem_anon_vm_ops; 2987 return 0; 2988} 2989 2990static int shmem_file_open(struct inode *inode, struct file *file) 2991{ 2992 file->f_mode |= FMODE_CAN_ODIRECT; 2993 return generic_file_open(inode, file); 2994} 2995 2996#ifdef CONFIG_TMPFS_XATTR 2997static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2998 2999#if IS_ENABLED(CONFIG_UNICODE) 3000/* 3001 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 3002 * 3003 * The casefold file attribute needs some special checks. I can just be added to 3004 * an empty dir, and can't be removed from a non-empty dir. 3005 */ 3006static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3007 struct dentry *dentry, unsigned int *i_flags) 3008{ 3009 unsigned int old = inode->i_flags; 3010 struct super_block *sb = inode->i_sb; 3011 3012 if (fsflags & FS_CASEFOLD_FL) { 3013 if (!(old & S_CASEFOLD)) { 3014 if (!sb->s_encoding) 3015 return -EOPNOTSUPP; 3016 3017 if (!S_ISDIR(inode->i_mode)) 3018 return -ENOTDIR; 3019 3020 if (dentry && !simple_empty(dentry)) 3021 return -ENOTEMPTY; 3022 } 3023 3024 *i_flags = *i_flags | S_CASEFOLD; 3025 } else if (old & S_CASEFOLD) { 3026 if (dentry && !simple_empty(dentry)) 3027 return -ENOTEMPTY; 3028 } 3029 3030 return 0; 3031} 3032#else 3033static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3034 struct dentry *dentry, unsigned int *i_flags) 3035{ 3036 if (fsflags & FS_CASEFOLD_FL) 3037 return -EOPNOTSUPP; 3038 3039 return 0; 3040} 3041#endif 3042 3043/* 3044 * chattr's fsflags are unrelated to extended attributes, 3045 * but tmpfs has chosen to enable them under the same config option. 3046 */ 3047static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3048{ 3049 unsigned int i_flags = 0; 3050 int ret; 3051 3052 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3053 if (ret) 3054 return ret; 3055 3056 if (fsflags & FS_NOATIME_FL) 3057 i_flags |= S_NOATIME; 3058 if (fsflags & FS_APPEND_FL) 3059 i_flags |= S_APPEND; 3060 if (fsflags & FS_IMMUTABLE_FL) 3061 i_flags |= S_IMMUTABLE; 3062 /* 3063 * But FS_NODUMP_FL does not require any action in i_flags. 3064 */ 3065 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3066 3067 return 0; 3068} 3069#else 3070static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3071{ 3072} 3073#define shmem_initxattrs NULL 3074#endif 3075 3076static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3077{ 3078 return &SHMEM_I(inode)->dir_offsets; 3079} 3080 3081static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3082 struct super_block *sb, 3083 struct inode *dir, umode_t mode, 3084 dev_t dev, unsigned long flags) 3085{ 3086 struct inode *inode; 3087 struct shmem_inode_info *info; 3088 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3089 ino_t ino; 3090 int err; 3091 3092 err = shmem_reserve_inode(sb, &ino); 3093 if (err) 3094 return ERR_PTR(err); 3095 3096 inode = new_inode(sb); 3097 if (!inode) { 3098 shmem_free_inode(sb, 0); 3099 return ERR_PTR(-ENOSPC); 3100 } 3101 3102 inode->i_ino = ino; 3103 inode_init_owner(idmap, inode, dir, mode); 3104 inode->i_blocks = 0; 3105 simple_inode_init_ts(inode); 3106 inode->i_generation = get_random_u32(); 3107 info = SHMEM_I(inode); 3108 memset(info, 0, (char *)inode - (char *)info); 3109 spin_lock_init(&info->lock); 3110 atomic_set(&info->stop_eviction, 0); 3111 info->seals = F_SEAL_SEAL; 3112 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 3113 info->i_crtime = inode_get_mtime(inode); 3114 info->fsflags = (dir == NULL) ? 0 : 3115 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3116 if (info->fsflags) 3117 shmem_set_inode_flags(inode, info->fsflags, NULL); 3118 INIT_LIST_HEAD(&info->shrinklist); 3119 INIT_LIST_HEAD(&info->swaplist); 3120 simple_xattrs_init(&info->xattrs); 3121 cache_no_acl(inode); 3122 if (sbinfo->noswap) 3123 mapping_set_unevictable(inode->i_mapping); 3124 3125 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3126 if (sbinfo->huge) 3127 mapping_set_large_folios(inode->i_mapping); 3128 3129 switch (mode & S_IFMT) { 3130 default: 3131 inode->i_op = &shmem_special_inode_operations; 3132 init_special_inode(inode, mode, dev); 3133 break; 3134 case S_IFREG: 3135 inode->i_mapping->a_ops = &shmem_aops; 3136 inode->i_op = &shmem_inode_operations; 3137 inode->i_fop = &shmem_file_operations; 3138 mpol_shared_policy_init(&info->policy, 3139 shmem_get_sbmpol(sbinfo)); 3140 break; 3141 case S_IFDIR: 3142 inc_nlink(inode); 3143 /* Some things misbehave if size == 0 on a directory */ 3144 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3145 inode->i_op = &shmem_dir_inode_operations; 3146 inode->i_fop = &simple_offset_dir_operations; 3147 simple_offset_init(shmem_get_offset_ctx(inode)); 3148 break; 3149 case S_IFLNK: 3150 /* 3151 * Must not load anything in the rbtree, 3152 * mpol_free_shared_policy will not be called. 3153 */ 3154 mpol_shared_policy_init(&info->policy, NULL); 3155 break; 3156 } 3157 3158 lockdep_annotate_inode_mutex_key(inode); 3159 return inode; 3160} 3161 3162#ifdef CONFIG_TMPFS_QUOTA 3163static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3164 struct super_block *sb, struct inode *dir, 3165 umode_t mode, dev_t dev, unsigned long flags) 3166{ 3167 int err; 3168 struct inode *inode; 3169 3170 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3171 if (IS_ERR(inode)) 3172 return inode; 3173 3174 err = dquot_initialize(inode); 3175 if (err) 3176 goto errout; 3177 3178 err = dquot_alloc_inode(inode); 3179 if (err) { 3180 dquot_drop(inode); 3181 goto errout; 3182 } 3183 return inode; 3184 3185errout: 3186 inode->i_flags |= S_NOQUOTA; 3187 iput(inode); 3188 return ERR_PTR(err); 3189} 3190#else 3191static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3192 struct super_block *sb, struct inode *dir, 3193 umode_t mode, dev_t dev, unsigned long flags) 3194{ 3195 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3196} 3197#endif /* CONFIG_TMPFS_QUOTA */ 3198 3199#ifdef CONFIG_USERFAULTFD 3200int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3201 struct vm_area_struct *dst_vma, 3202 unsigned long dst_addr, 3203 unsigned long src_addr, 3204 uffd_flags_t flags, 3205 struct folio **foliop) 3206{ 3207 struct inode *inode = file_inode(dst_vma->vm_file); 3208 struct shmem_inode_info *info = SHMEM_I(inode); 3209 struct address_space *mapping = inode->i_mapping; 3210 gfp_t gfp = mapping_gfp_mask(mapping); 3211 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3212 void *page_kaddr; 3213 struct folio *folio; 3214 int ret; 3215 pgoff_t max_off; 3216 3217 if (shmem_inode_acct_blocks(inode, 1)) { 3218 /* 3219 * We may have got a page, returned -ENOENT triggering a retry, 3220 * and now we find ourselves with -ENOMEM. Release the page, to 3221 * avoid a BUG_ON in our caller. 3222 */ 3223 if (unlikely(*foliop)) { 3224 folio_put(*foliop); 3225 *foliop = NULL; 3226 } 3227 return -ENOMEM; 3228 } 3229 3230 if (!*foliop) { 3231 ret = -ENOMEM; 3232 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3233 if (!folio) 3234 goto out_unacct_blocks; 3235 3236 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3237 page_kaddr = kmap_local_folio(folio, 0); 3238 /* 3239 * The read mmap_lock is held here. Despite the 3240 * mmap_lock being read recursive a deadlock is still 3241 * possible if a writer has taken a lock. For example: 3242 * 3243 * process A thread 1 takes read lock on own mmap_lock 3244 * process A thread 2 calls mmap, blocks taking write lock 3245 * process B thread 1 takes page fault, read lock on own mmap lock 3246 * process B thread 2 calls mmap, blocks taking write lock 3247 * process A thread 1 blocks taking read lock on process B 3248 * process B thread 1 blocks taking read lock on process A 3249 * 3250 * Disable page faults to prevent potential deadlock 3251 * and retry the copy outside the mmap_lock. 3252 */ 3253 pagefault_disable(); 3254 ret = copy_from_user(page_kaddr, 3255 (const void __user *)src_addr, 3256 PAGE_SIZE); 3257 pagefault_enable(); 3258 kunmap_local(page_kaddr); 3259 3260 /* fallback to copy_from_user outside mmap_lock */ 3261 if (unlikely(ret)) { 3262 *foliop = folio; 3263 ret = -ENOENT; 3264 /* don't free the page */ 3265 goto out_unacct_blocks; 3266 } 3267 3268 flush_dcache_folio(folio); 3269 } else { /* ZEROPAGE */ 3270 clear_user_highpage(&folio->page, dst_addr); 3271 } 3272 } else { 3273 folio = *foliop; 3274 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3275 *foliop = NULL; 3276 } 3277 3278 VM_BUG_ON(folio_test_locked(folio)); 3279 VM_BUG_ON(folio_test_swapbacked(folio)); 3280 __folio_set_locked(folio); 3281 __folio_set_swapbacked(folio); 3282 __folio_mark_uptodate(folio); 3283 3284 ret = -EFAULT; 3285 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3286 if (unlikely(pgoff >= max_off)) 3287 goto out_release; 3288 3289 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3290 if (ret) 3291 goto out_release; 3292 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3293 if (ret) 3294 goto out_release; 3295 3296 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3297 &folio->page, true, flags); 3298 if (ret) 3299 goto out_delete_from_cache; 3300 3301 shmem_recalc_inode(inode, 1, 0); 3302 folio_unlock(folio); 3303 return 0; 3304out_delete_from_cache: 3305 filemap_remove_folio(folio); 3306out_release: 3307 folio_unlock(folio); 3308 folio_put(folio); 3309out_unacct_blocks: 3310 shmem_inode_unacct_blocks(inode, 1); 3311 return ret; 3312} 3313#endif /* CONFIG_USERFAULTFD */ 3314 3315#ifdef CONFIG_TMPFS 3316static const struct inode_operations shmem_symlink_inode_operations; 3317static const struct inode_operations shmem_short_symlink_operations; 3318 3319static int 3320shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3321 loff_t pos, unsigned len, 3322 struct folio **foliop, void **fsdata) 3323{ 3324 struct inode *inode = mapping->host; 3325 struct shmem_inode_info *info = SHMEM_I(inode); 3326 pgoff_t index = pos >> PAGE_SHIFT; 3327 struct folio *folio; 3328 int ret = 0; 3329 3330 /* i_rwsem is held by caller */ 3331 if (unlikely(info->seals & (F_SEAL_GROW | 3332 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3333 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3334 return -EPERM; 3335 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3336 return -EPERM; 3337 } 3338 3339 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3340 pos + len > inode->i_size)) 3341 return -EPERM; 3342 3343 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3344 if (ret) 3345 return ret; 3346 3347 if (folio_contain_hwpoisoned_page(folio)) { 3348 folio_unlock(folio); 3349 folio_put(folio); 3350 return -EIO; 3351 } 3352 3353 *foliop = folio; 3354 return 0; 3355} 3356 3357static int 3358shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3359 loff_t pos, unsigned len, unsigned copied, 3360 struct folio *folio, void *fsdata) 3361{ 3362 struct inode *inode = mapping->host; 3363 3364 if (pos + copied > inode->i_size) 3365 i_size_write(inode, pos + copied); 3366 3367 if (!folio_test_uptodate(folio)) { 3368 if (copied < folio_size(folio)) { 3369 size_t from = offset_in_folio(folio, pos); 3370 folio_zero_segments(folio, 0, from, 3371 from + copied, folio_size(folio)); 3372 } 3373 folio_mark_uptodate(folio); 3374 } 3375 folio_mark_dirty(folio); 3376 folio_unlock(folio); 3377 folio_put(folio); 3378 3379 return copied; 3380} 3381 3382static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3383{ 3384 struct file *file = iocb->ki_filp; 3385 struct inode *inode = file_inode(file); 3386 struct address_space *mapping = inode->i_mapping; 3387 pgoff_t index; 3388 unsigned long offset; 3389 int error = 0; 3390 ssize_t retval = 0; 3391 3392 for (;;) { 3393 struct folio *folio = NULL; 3394 struct page *page = NULL; 3395 unsigned long nr, ret; 3396 loff_t end_offset, i_size = i_size_read(inode); 3397 bool fallback_page_copy = false; 3398 size_t fsize; 3399 3400 if (unlikely(iocb->ki_pos >= i_size)) 3401 break; 3402 3403 index = iocb->ki_pos >> PAGE_SHIFT; 3404 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3405 if (error) { 3406 if (error == -EINVAL) 3407 error = 0; 3408 break; 3409 } 3410 if (folio) { 3411 folio_unlock(folio); 3412 3413 page = folio_file_page(folio, index); 3414 if (PageHWPoison(page)) { 3415 folio_put(folio); 3416 error = -EIO; 3417 break; 3418 } 3419 3420 if (folio_test_large(folio) && 3421 folio_test_has_hwpoisoned(folio)) 3422 fallback_page_copy = true; 3423 } 3424 3425 /* 3426 * We must evaluate after, since reads (unlike writes) 3427 * are called without i_rwsem protection against truncate 3428 */ 3429 i_size = i_size_read(inode); 3430 if (unlikely(iocb->ki_pos >= i_size)) { 3431 if (folio) 3432 folio_put(folio); 3433 break; 3434 } 3435 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3436 if (folio && likely(!fallback_page_copy)) 3437 fsize = folio_size(folio); 3438 else 3439 fsize = PAGE_SIZE; 3440 offset = iocb->ki_pos & (fsize - 1); 3441 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3442 3443 if (folio) { 3444 /* 3445 * If users can be writing to this page using arbitrary 3446 * virtual addresses, take care about potential aliasing 3447 * before reading the page on the kernel side. 3448 */ 3449 if (mapping_writably_mapped(mapping)) { 3450 if (likely(!fallback_page_copy)) 3451 flush_dcache_folio(folio); 3452 else 3453 flush_dcache_page(page); 3454 } 3455 3456 /* 3457 * Mark the folio accessed if we read the beginning. 3458 */ 3459 if (!offset) 3460 folio_mark_accessed(folio); 3461 /* 3462 * Ok, we have the page, and it's up-to-date, so 3463 * now we can copy it to user space... 3464 */ 3465 if (likely(!fallback_page_copy)) 3466 ret = copy_folio_to_iter(folio, offset, nr, to); 3467 else 3468 ret = copy_page_to_iter(page, offset, nr, to); 3469 folio_put(folio); 3470 } else if (user_backed_iter(to)) { 3471 /* 3472 * Copy to user tends to be so well optimized, but 3473 * clear_user() not so much, that it is noticeably 3474 * faster to copy the zero page instead of clearing. 3475 */ 3476 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3477 } else { 3478 /* 3479 * But submitting the same page twice in a row to 3480 * splice() - or others? - can result in confusion: 3481 * so don't attempt that optimization on pipes etc. 3482 */ 3483 ret = iov_iter_zero(nr, to); 3484 } 3485 3486 retval += ret; 3487 iocb->ki_pos += ret; 3488 3489 if (!iov_iter_count(to)) 3490 break; 3491 if (ret < nr) { 3492 error = -EFAULT; 3493 break; 3494 } 3495 cond_resched(); 3496 } 3497 3498 file_accessed(file); 3499 return retval ? retval : error; 3500} 3501 3502static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3503{ 3504 struct file *file = iocb->ki_filp; 3505 struct inode *inode = file->f_mapping->host; 3506 ssize_t ret; 3507 3508 inode_lock(inode); 3509 ret = generic_write_checks(iocb, from); 3510 if (ret <= 0) 3511 goto unlock; 3512 ret = file_remove_privs(file); 3513 if (ret) 3514 goto unlock; 3515 ret = file_update_time(file); 3516 if (ret) 3517 goto unlock; 3518 ret = generic_perform_write(iocb, from); 3519unlock: 3520 inode_unlock(inode); 3521 return ret; 3522} 3523 3524static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3525 struct pipe_buffer *buf) 3526{ 3527 return true; 3528} 3529 3530static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3531 struct pipe_buffer *buf) 3532{ 3533} 3534 3535static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3536 struct pipe_buffer *buf) 3537{ 3538 return false; 3539} 3540 3541static const struct pipe_buf_operations zero_pipe_buf_ops = { 3542 .release = zero_pipe_buf_release, 3543 .try_steal = zero_pipe_buf_try_steal, 3544 .get = zero_pipe_buf_get, 3545}; 3546 3547static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3548 loff_t fpos, size_t size) 3549{ 3550 size_t offset = fpos & ~PAGE_MASK; 3551 3552 size = min_t(size_t, size, PAGE_SIZE - offset); 3553 3554 if (!pipe_is_full(pipe)) { 3555 struct pipe_buffer *buf = pipe_head_buf(pipe); 3556 3557 *buf = (struct pipe_buffer) { 3558 .ops = &zero_pipe_buf_ops, 3559 .page = ZERO_PAGE(0), 3560 .offset = offset, 3561 .len = size, 3562 }; 3563 pipe->head++; 3564 } 3565 3566 return size; 3567} 3568 3569static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3570 struct pipe_inode_info *pipe, 3571 size_t len, unsigned int flags) 3572{ 3573 struct inode *inode = file_inode(in); 3574 struct address_space *mapping = inode->i_mapping; 3575 struct folio *folio = NULL; 3576 size_t total_spliced = 0, used, npages, n, part; 3577 loff_t isize; 3578 int error = 0; 3579 3580 /* Work out how much data we can actually add into the pipe */ 3581 used = pipe_buf_usage(pipe); 3582 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3583 len = min_t(size_t, len, npages * PAGE_SIZE); 3584 3585 do { 3586 bool fallback_page_splice = false; 3587 struct page *page = NULL; 3588 pgoff_t index; 3589 size_t size; 3590 3591 if (*ppos >= i_size_read(inode)) 3592 break; 3593 3594 index = *ppos >> PAGE_SHIFT; 3595 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3596 if (error) { 3597 if (error == -EINVAL) 3598 error = 0; 3599 break; 3600 } 3601 if (folio) { 3602 folio_unlock(folio); 3603 3604 page = folio_file_page(folio, index); 3605 if (PageHWPoison(page)) { 3606 error = -EIO; 3607 break; 3608 } 3609 3610 if (folio_test_large(folio) && 3611 folio_test_has_hwpoisoned(folio)) 3612 fallback_page_splice = true; 3613 } 3614 3615 /* 3616 * i_size must be checked after we know the pages are Uptodate. 3617 * 3618 * Checking i_size after the check allows us to calculate 3619 * the correct value for "nr", which means the zero-filled 3620 * part of the page is not copied back to userspace (unless 3621 * another truncate extends the file - this is desired though). 3622 */ 3623 isize = i_size_read(inode); 3624 if (unlikely(*ppos >= isize)) 3625 break; 3626 /* 3627 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3628 * pages. 3629 */ 3630 size = len; 3631 if (unlikely(fallback_page_splice)) { 3632 size_t offset = *ppos & ~PAGE_MASK; 3633 3634 size = umin(size, PAGE_SIZE - offset); 3635 } 3636 part = min_t(loff_t, isize - *ppos, size); 3637 3638 if (folio) { 3639 /* 3640 * If users can be writing to this page using arbitrary 3641 * virtual addresses, take care about potential aliasing 3642 * before reading the page on the kernel side. 3643 */ 3644 if (mapping_writably_mapped(mapping)) { 3645 if (likely(!fallback_page_splice)) 3646 flush_dcache_folio(folio); 3647 else 3648 flush_dcache_page(page); 3649 } 3650 folio_mark_accessed(folio); 3651 /* 3652 * Ok, we have the page, and it's up-to-date, so we can 3653 * now splice it into the pipe. 3654 */ 3655 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3656 folio_put(folio); 3657 folio = NULL; 3658 } else { 3659 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3660 } 3661 3662 if (!n) 3663 break; 3664 len -= n; 3665 total_spliced += n; 3666 *ppos += n; 3667 in->f_ra.prev_pos = *ppos; 3668 if (pipe_is_full(pipe)) 3669 break; 3670 3671 cond_resched(); 3672 } while (len); 3673 3674 if (folio) 3675 folio_put(folio); 3676 3677 file_accessed(in); 3678 return total_spliced ? total_spliced : error; 3679} 3680 3681static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3682{ 3683 struct address_space *mapping = file->f_mapping; 3684 struct inode *inode = mapping->host; 3685 3686 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3687 return generic_file_llseek_size(file, offset, whence, 3688 MAX_LFS_FILESIZE, i_size_read(inode)); 3689 if (offset < 0) 3690 return -ENXIO; 3691 3692 inode_lock(inode); 3693 /* We're holding i_rwsem so we can access i_size directly */ 3694 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3695 if (offset >= 0) 3696 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3697 inode_unlock(inode); 3698 return offset; 3699} 3700 3701static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3702 loff_t len) 3703{ 3704 struct inode *inode = file_inode(file); 3705 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3706 struct shmem_inode_info *info = SHMEM_I(inode); 3707 struct shmem_falloc shmem_falloc; 3708 pgoff_t start, index, end, undo_fallocend; 3709 int error; 3710 3711 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3712 return -EOPNOTSUPP; 3713 3714 inode_lock(inode); 3715 3716 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3717 error = -EPERM; 3718 goto out; 3719 } 3720 3721 if (mode & FALLOC_FL_PUNCH_HOLE) { 3722 struct address_space *mapping = file->f_mapping; 3723 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3724 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3725 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3726 3727 /* protected by i_rwsem */ 3728 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3729 error = -EPERM; 3730 goto out; 3731 } 3732 3733 shmem_falloc.waitq = &shmem_falloc_waitq; 3734 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3735 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3736 spin_lock(&inode->i_lock); 3737 inode->i_private = &shmem_falloc; 3738 spin_unlock(&inode->i_lock); 3739 3740 if ((u64)unmap_end > (u64)unmap_start) 3741 unmap_mapping_range(mapping, unmap_start, 3742 1 + unmap_end - unmap_start, 0); 3743 shmem_truncate_range(inode, offset, offset + len - 1); 3744 /* No need to unmap again: hole-punching leaves COWed pages */ 3745 3746 spin_lock(&inode->i_lock); 3747 inode->i_private = NULL; 3748 wake_up_all(&shmem_falloc_waitq); 3749 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3750 spin_unlock(&inode->i_lock); 3751 error = 0; 3752 goto out; 3753 } 3754 3755 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3756 error = inode_newsize_ok(inode, offset + len); 3757 if (error) 3758 goto out; 3759 3760 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3761 error = -EPERM; 3762 goto out; 3763 } 3764 3765 start = offset >> PAGE_SHIFT; 3766 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3767 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3768 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3769 error = -ENOSPC; 3770 goto out; 3771 } 3772 3773 shmem_falloc.waitq = NULL; 3774 shmem_falloc.start = start; 3775 shmem_falloc.next = start; 3776 shmem_falloc.nr_falloced = 0; 3777 shmem_falloc.nr_unswapped = 0; 3778 spin_lock(&inode->i_lock); 3779 inode->i_private = &shmem_falloc; 3780 spin_unlock(&inode->i_lock); 3781 3782 /* 3783 * info->fallocend is only relevant when huge pages might be 3784 * involved: to prevent split_huge_page() freeing fallocated 3785 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3786 */ 3787 undo_fallocend = info->fallocend; 3788 if (info->fallocend < end) 3789 info->fallocend = end; 3790 3791 for (index = start; index < end; ) { 3792 struct folio *folio; 3793 3794 /* 3795 * Check for fatal signal so that we abort early in OOM 3796 * situations. We don't want to abort in case of non-fatal 3797 * signals as large fallocate can take noticeable time and 3798 * e.g. periodic timers may result in fallocate constantly 3799 * restarting. 3800 */ 3801 if (fatal_signal_pending(current)) 3802 error = -EINTR; 3803 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3804 error = -ENOMEM; 3805 else 3806 error = shmem_get_folio(inode, index, offset + len, 3807 &folio, SGP_FALLOC); 3808 if (error) { 3809 info->fallocend = undo_fallocend; 3810 /* Remove the !uptodate folios we added */ 3811 if (index > start) { 3812 shmem_undo_range(inode, 3813 (loff_t)start << PAGE_SHIFT, 3814 ((loff_t)index << PAGE_SHIFT) - 1, true); 3815 } 3816 goto undone; 3817 } 3818 3819 /* 3820 * Here is a more important optimization than it appears: 3821 * a second SGP_FALLOC on the same large folio will clear it, 3822 * making it uptodate and un-undoable if we fail later. 3823 */ 3824 index = folio_next_index(folio); 3825 /* Beware 32-bit wraparound */ 3826 if (!index) 3827 index--; 3828 3829 /* 3830 * Inform shmem_writeout() how far we have reached. 3831 * No need for lock or barrier: we have the page lock. 3832 */ 3833 if (!folio_test_uptodate(folio)) 3834 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3835 shmem_falloc.next = index; 3836 3837 /* 3838 * If !uptodate, leave it that way so that freeable folios 3839 * can be recognized if we need to rollback on error later. 3840 * But mark it dirty so that memory pressure will swap rather 3841 * than free the folios we are allocating (and SGP_CACHE folios 3842 * might still be clean: we now need to mark those dirty too). 3843 */ 3844 folio_mark_dirty(folio); 3845 folio_unlock(folio); 3846 folio_put(folio); 3847 cond_resched(); 3848 } 3849 3850 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3851 i_size_write(inode, offset + len); 3852undone: 3853 spin_lock(&inode->i_lock); 3854 inode->i_private = NULL; 3855 spin_unlock(&inode->i_lock); 3856out: 3857 if (!error) 3858 file_modified(file); 3859 inode_unlock(inode); 3860 return error; 3861} 3862 3863static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3864{ 3865 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3866 3867 buf->f_type = TMPFS_MAGIC; 3868 buf->f_bsize = PAGE_SIZE; 3869 buf->f_namelen = NAME_MAX; 3870 if (sbinfo->max_blocks) { 3871 buf->f_blocks = sbinfo->max_blocks; 3872 buf->f_bavail = 3873 buf->f_bfree = sbinfo->max_blocks - 3874 percpu_counter_sum(&sbinfo->used_blocks); 3875 } 3876 if (sbinfo->max_inodes) { 3877 buf->f_files = sbinfo->max_inodes; 3878 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3879 } 3880 /* else leave those fields 0 like simple_statfs */ 3881 3882 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3883 3884 return 0; 3885} 3886 3887/* 3888 * File creation. Allocate an inode, and we're done.. 3889 */ 3890static int 3891shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3892 struct dentry *dentry, umode_t mode, dev_t dev) 3893{ 3894 struct inode *inode; 3895 int error; 3896 3897 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3898 return -EINVAL; 3899 3900 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3901 if (IS_ERR(inode)) 3902 return PTR_ERR(inode); 3903 3904 error = simple_acl_create(dir, inode); 3905 if (error) 3906 goto out_iput; 3907 error = security_inode_init_security(inode, dir, &dentry->d_name, 3908 shmem_initxattrs, NULL); 3909 if (error && error != -EOPNOTSUPP) 3910 goto out_iput; 3911 3912 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3913 if (error) 3914 goto out_iput; 3915 3916 dir->i_size += BOGO_DIRENT_SIZE; 3917 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3918 inode_inc_iversion(dir); 3919 3920 d_make_persistent(dentry, inode); 3921 return error; 3922 3923out_iput: 3924 iput(inode); 3925 return error; 3926} 3927 3928static int 3929shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3930 struct file *file, umode_t mode) 3931{ 3932 struct inode *inode; 3933 int error; 3934 3935 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3936 if (IS_ERR(inode)) { 3937 error = PTR_ERR(inode); 3938 goto err_out; 3939 } 3940 error = security_inode_init_security(inode, dir, NULL, 3941 shmem_initxattrs, NULL); 3942 if (error && error != -EOPNOTSUPP) 3943 goto out_iput; 3944 error = simple_acl_create(dir, inode); 3945 if (error) 3946 goto out_iput; 3947 d_tmpfile(file, inode); 3948 3949err_out: 3950 return finish_open_simple(file, error); 3951out_iput: 3952 iput(inode); 3953 return error; 3954} 3955 3956static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3957 struct dentry *dentry, umode_t mode) 3958{ 3959 int error; 3960 3961 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3962 if (error) 3963 return ERR_PTR(error); 3964 inc_nlink(dir); 3965 return NULL; 3966} 3967 3968static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3969 struct dentry *dentry, umode_t mode, bool excl) 3970{ 3971 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3972} 3973 3974/* 3975 * Link a file.. 3976 */ 3977static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3978 struct dentry *dentry) 3979{ 3980 struct inode *inode = d_inode(old_dentry); 3981 int ret; 3982 3983 /* 3984 * No ordinary (disk based) filesystem counts links as inodes; 3985 * but each new link needs a new dentry, pinning lowmem, and 3986 * tmpfs dentries cannot be pruned until they are unlinked. 3987 * But if an O_TMPFILE file is linked into the tmpfs, the 3988 * first link must skip that, to get the accounting right. 3989 */ 3990 if (inode->i_nlink) { 3991 ret = shmem_reserve_inode(inode->i_sb, NULL); 3992 if (ret) 3993 return ret; 3994 } 3995 3996 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3997 if (ret) { 3998 if (inode->i_nlink) 3999 shmem_free_inode(inode->i_sb, 0); 4000 return ret; 4001 } 4002 4003 dir->i_size += BOGO_DIRENT_SIZE; 4004 inode_inc_iversion(dir); 4005 return simple_link(old_dentry, dir, dentry); 4006} 4007 4008static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4009{ 4010 struct inode *inode = d_inode(dentry); 4011 4012 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4013 shmem_free_inode(inode->i_sb, 0); 4014 4015 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4016 4017 dir->i_size -= BOGO_DIRENT_SIZE; 4018 inode_inc_iversion(dir); 4019 simple_unlink(dir, dentry); 4020 4021 /* 4022 * For now, VFS can't deal with case-insensitive negative dentries, so 4023 * we invalidate them 4024 */ 4025 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4026 d_invalidate(dentry); 4027 4028 return 0; 4029} 4030 4031static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4032{ 4033 if (!simple_empty(dentry)) 4034 return -ENOTEMPTY; 4035 4036 drop_nlink(d_inode(dentry)); 4037 drop_nlink(dir); 4038 return shmem_unlink(dir, dentry); 4039} 4040 4041static int shmem_whiteout(struct mnt_idmap *idmap, 4042 struct inode *old_dir, struct dentry *old_dentry) 4043{ 4044 struct dentry *whiteout; 4045 int error; 4046 4047 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4048 if (!whiteout) 4049 return -ENOMEM; 4050 error = shmem_mknod(idmap, old_dir, whiteout, 4051 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4052 dput(whiteout); 4053 return error; 4054} 4055 4056/* 4057 * The VFS layer already does all the dentry stuff for rename, 4058 * we just have to decrement the usage count for the target if 4059 * it exists so that the VFS layer correctly free's it when it 4060 * gets overwritten. 4061 */ 4062static int shmem_rename2(struct mnt_idmap *idmap, 4063 struct inode *old_dir, struct dentry *old_dentry, 4064 struct inode *new_dir, struct dentry *new_dentry, 4065 unsigned int flags) 4066{ 4067 struct inode *inode = d_inode(old_dentry); 4068 int they_are_dirs = S_ISDIR(inode->i_mode); 4069 bool had_offset = false; 4070 int error; 4071 4072 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4073 return -EINVAL; 4074 4075 if (flags & RENAME_EXCHANGE) 4076 return simple_offset_rename_exchange(old_dir, old_dentry, 4077 new_dir, new_dentry); 4078 4079 if (!simple_empty(new_dentry)) 4080 return -ENOTEMPTY; 4081 4082 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4083 if (error == -EBUSY) 4084 had_offset = true; 4085 else if (unlikely(error)) 4086 return error; 4087 4088 if (flags & RENAME_WHITEOUT) { 4089 error = shmem_whiteout(idmap, old_dir, old_dentry); 4090 if (error) { 4091 if (!had_offset) 4092 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4093 new_dentry); 4094 return error; 4095 } 4096 } 4097 4098 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4099 if (d_really_is_positive(new_dentry)) { 4100 (void) shmem_unlink(new_dir, new_dentry); 4101 if (they_are_dirs) { 4102 drop_nlink(d_inode(new_dentry)); 4103 drop_nlink(old_dir); 4104 } 4105 } else if (they_are_dirs) { 4106 drop_nlink(old_dir); 4107 inc_nlink(new_dir); 4108 } 4109 4110 old_dir->i_size -= BOGO_DIRENT_SIZE; 4111 new_dir->i_size += BOGO_DIRENT_SIZE; 4112 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4113 inode_inc_iversion(old_dir); 4114 inode_inc_iversion(new_dir); 4115 return 0; 4116} 4117 4118static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4119 struct dentry *dentry, const char *symname) 4120{ 4121 int error; 4122 int len; 4123 struct inode *inode; 4124 struct folio *folio; 4125 char *link; 4126 4127 len = strlen(symname) + 1; 4128 if (len > PAGE_SIZE) 4129 return -ENAMETOOLONG; 4130 4131 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4132 VM_NORESERVE); 4133 if (IS_ERR(inode)) 4134 return PTR_ERR(inode); 4135 4136 error = security_inode_init_security(inode, dir, &dentry->d_name, 4137 shmem_initxattrs, NULL); 4138 if (error && error != -EOPNOTSUPP) 4139 goto out_iput; 4140 4141 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4142 if (error) 4143 goto out_iput; 4144 4145 inode->i_size = len-1; 4146 if (len <= SHORT_SYMLINK_LEN) { 4147 link = kmemdup(symname, len, GFP_KERNEL); 4148 if (!link) { 4149 error = -ENOMEM; 4150 goto out_remove_offset; 4151 } 4152 inode->i_op = &shmem_short_symlink_operations; 4153 inode_set_cached_link(inode, link, len - 1); 4154 } else { 4155 inode_nohighmem(inode); 4156 inode->i_mapping->a_ops = &shmem_aops; 4157 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4158 if (error) 4159 goto out_remove_offset; 4160 inode->i_op = &shmem_symlink_inode_operations; 4161 memcpy(folio_address(folio), symname, len); 4162 folio_mark_uptodate(folio); 4163 folio_mark_dirty(folio); 4164 folio_unlock(folio); 4165 folio_put(folio); 4166 } 4167 dir->i_size += BOGO_DIRENT_SIZE; 4168 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4169 inode_inc_iversion(dir); 4170 d_make_persistent(dentry, inode); 4171 return 0; 4172 4173out_remove_offset: 4174 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4175out_iput: 4176 iput(inode); 4177 return error; 4178} 4179 4180static void shmem_put_link(void *arg) 4181{ 4182 folio_mark_accessed(arg); 4183 folio_put(arg); 4184} 4185 4186static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4187 struct delayed_call *done) 4188{ 4189 struct folio *folio = NULL; 4190 int error; 4191 4192 if (!dentry) { 4193 folio = filemap_get_folio(inode->i_mapping, 0); 4194 if (IS_ERR(folio)) 4195 return ERR_PTR(-ECHILD); 4196 if (PageHWPoison(folio_page(folio, 0)) || 4197 !folio_test_uptodate(folio)) { 4198 folio_put(folio); 4199 return ERR_PTR(-ECHILD); 4200 } 4201 } else { 4202 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4203 if (error) 4204 return ERR_PTR(error); 4205 if (!folio) 4206 return ERR_PTR(-ECHILD); 4207 if (PageHWPoison(folio_page(folio, 0))) { 4208 folio_unlock(folio); 4209 folio_put(folio); 4210 return ERR_PTR(-ECHILD); 4211 } 4212 folio_unlock(folio); 4213 } 4214 set_delayed_call(done, shmem_put_link, folio); 4215 return folio_address(folio); 4216} 4217 4218#ifdef CONFIG_TMPFS_XATTR 4219 4220static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4221{ 4222 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4223 4224 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4225 4226 return 0; 4227} 4228 4229static int shmem_fileattr_set(struct mnt_idmap *idmap, 4230 struct dentry *dentry, struct file_kattr *fa) 4231{ 4232 struct inode *inode = d_inode(dentry); 4233 struct shmem_inode_info *info = SHMEM_I(inode); 4234 int ret, flags; 4235 4236 if (fileattr_has_fsx(fa)) 4237 return -EOPNOTSUPP; 4238 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4239 return -EOPNOTSUPP; 4240 4241 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4242 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4243 4244 ret = shmem_set_inode_flags(inode, flags, dentry); 4245 4246 if (ret) 4247 return ret; 4248 4249 info->fsflags = flags; 4250 4251 inode_set_ctime_current(inode); 4252 inode_inc_iversion(inode); 4253 return 0; 4254} 4255 4256/* 4257 * Superblocks without xattr inode operations may get some security.* xattr 4258 * support from the LSM "for free". As soon as we have any other xattrs 4259 * like ACLs, we also need to implement the security.* handlers at 4260 * filesystem level, though. 4261 */ 4262 4263/* 4264 * Callback for security_inode_init_security() for acquiring xattrs. 4265 */ 4266static int shmem_initxattrs(struct inode *inode, 4267 const struct xattr *xattr_array, void *fs_info) 4268{ 4269 struct shmem_inode_info *info = SHMEM_I(inode); 4270 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4271 const struct xattr *xattr; 4272 struct simple_xattr *new_xattr; 4273 size_t ispace = 0; 4274 size_t len; 4275 4276 if (sbinfo->max_inodes) { 4277 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4278 ispace += simple_xattr_space(xattr->name, 4279 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4280 } 4281 if (ispace) { 4282 raw_spin_lock(&sbinfo->stat_lock); 4283 if (sbinfo->free_ispace < ispace) 4284 ispace = 0; 4285 else 4286 sbinfo->free_ispace -= ispace; 4287 raw_spin_unlock(&sbinfo->stat_lock); 4288 if (!ispace) 4289 return -ENOSPC; 4290 } 4291 } 4292 4293 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4294 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4295 if (!new_xattr) 4296 break; 4297 4298 len = strlen(xattr->name) + 1; 4299 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4300 GFP_KERNEL_ACCOUNT); 4301 if (!new_xattr->name) { 4302 kvfree(new_xattr); 4303 break; 4304 } 4305 4306 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4307 XATTR_SECURITY_PREFIX_LEN); 4308 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4309 xattr->name, len); 4310 4311 simple_xattr_add(&info->xattrs, new_xattr); 4312 } 4313 4314 if (xattr->name != NULL) { 4315 if (ispace) { 4316 raw_spin_lock(&sbinfo->stat_lock); 4317 sbinfo->free_ispace += ispace; 4318 raw_spin_unlock(&sbinfo->stat_lock); 4319 } 4320 simple_xattrs_free(&info->xattrs, NULL); 4321 return -ENOMEM; 4322 } 4323 4324 return 0; 4325} 4326 4327static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4328 struct dentry *unused, struct inode *inode, 4329 const char *name, void *buffer, size_t size) 4330{ 4331 struct shmem_inode_info *info = SHMEM_I(inode); 4332 4333 name = xattr_full_name(handler, name); 4334 return simple_xattr_get(&info->xattrs, name, buffer, size); 4335} 4336 4337static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4338 struct mnt_idmap *idmap, 4339 struct dentry *unused, struct inode *inode, 4340 const char *name, const void *value, 4341 size_t size, int flags) 4342{ 4343 struct shmem_inode_info *info = SHMEM_I(inode); 4344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4345 struct simple_xattr *old_xattr; 4346 size_t ispace = 0; 4347 4348 name = xattr_full_name(handler, name); 4349 if (value && sbinfo->max_inodes) { 4350 ispace = simple_xattr_space(name, size); 4351 raw_spin_lock(&sbinfo->stat_lock); 4352 if (sbinfo->free_ispace < ispace) 4353 ispace = 0; 4354 else 4355 sbinfo->free_ispace -= ispace; 4356 raw_spin_unlock(&sbinfo->stat_lock); 4357 if (!ispace) 4358 return -ENOSPC; 4359 } 4360 4361 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4362 if (!IS_ERR(old_xattr)) { 4363 ispace = 0; 4364 if (old_xattr && sbinfo->max_inodes) 4365 ispace = simple_xattr_space(old_xattr->name, 4366 old_xattr->size); 4367 simple_xattr_free(old_xattr); 4368 old_xattr = NULL; 4369 inode_set_ctime_current(inode); 4370 inode_inc_iversion(inode); 4371 } 4372 if (ispace) { 4373 raw_spin_lock(&sbinfo->stat_lock); 4374 sbinfo->free_ispace += ispace; 4375 raw_spin_unlock(&sbinfo->stat_lock); 4376 } 4377 return PTR_ERR(old_xattr); 4378} 4379 4380static const struct xattr_handler shmem_security_xattr_handler = { 4381 .prefix = XATTR_SECURITY_PREFIX, 4382 .get = shmem_xattr_handler_get, 4383 .set = shmem_xattr_handler_set, 4384}; 4385 4386static const struct xattr_handler shmem_trusted_xattr_handler = { 4387 .prefix = XATTR_TRUSTED_PREFIX, 4388 .get = shmem_xattr_handler_get, 4389 .set = shmem_xattr_handler_set, 4390}; 4391 4392static const struct xattr_handler shmem_user_xattr_handler = { 4393 .prefix = XATTR_USER_PREFIX, 4394 .get = shmem_xattr_handler_get, 4395 .set = shmem_xattr_handler_set, 4396}; 4397 4398static const struct xattr_handler * const shmem_xattr_handlers[] = { 4399 &shmem_security_xattr_handler, 4400 &shmem_trusted_xattr_handler, 4401 &shmem_user_xattr_handler, 4402 NULL 4403}; 4404 4405static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4406{ 4407 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4408 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4409} 4410#endif /* CONFIG_TMPFS_XATTR */ 4411 4412static const struct inode_operations shmem_short_symlink_operations = { 4413 .getattr = shmem_getattr, 4414 .setattr = shmem_setattr, 4415 .get_link = simple_get_link, 4416#ifdef CONFIG_TMPFS_XATTR 4417 .listxattr = shmem_listxattr, 4418#endif 4419}; 4420 4421static const struct inode_operations shmem_symlink_inode_operations = { 4422 .getattr = shmem_getattr, 4423 .setattr = shmem_setattr, 4424 .get_link = shmem_get_link, 4425#ifdef CONFIG_TMPFS_XATTR 4426 .listxattr = shmem_listxattr, 4427#endif 4428}; 4429 4430static struct dentry *shmem_get_parent(struct dentry *child) 4431{ 4432 return ERR_PTR(-ESTALE); 4433} 4434 4435static int shmem_match(struct inode *ino, void *vfh) 4436{ 4437 __u32 *fh = vfh; 4438 __u64 inum = fh[2]; 4439 inum = (inum << 32) | fh[1]; 4440 return ino->i_ino == inum && fh[0] == ino->i_generation; 4441} 4442 4443/* Find any alias of inode, but prefer a hashed alias */ 4444static struct dentry *shmem_find_alias(struct inode *inode) 4445{ 4446 struct dentry *alias = d_find_alias(inode); 4447 4448 return alias ?: d_find_any_alias(inode); 4449} 4450 4451static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4452 struct fid *fid, int fh_len, int fh_type) 4453{ 4454 struct inode *inode; 4455 struct dentry *dentry = NULL; 4456 u64 inum; 4457 4458 if (fh_len < 3) 4459 return NULL; 4460 4461 inum = fid->raw[2]; 4462 inum = (inum << 32) | fid->raw[1]; 4463 4464 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4465 shmem_match, fid->raw); 4466 if (inode) { 4467 dentry = shmem_find_alias(inode); 4468 iput(inode); 4469 } 4470 4471 return dentry; 4472} 4473 4474static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4475 struct inode *parent) 4476{ 4477 if (*len < 3) { 4478 *len = 3; 4479 return FILEID_INVALID; 4480 } 4481 4482 if (inode_unhashed(inode)) { 4483 /* Unfortunately insert_inode_hash is not idempotent, 4484 * so as we hash inodes here rather than at creation 4485 * time, we need a lock to ensure we only try 4486 * to do it once 4487 */ 4488 static DEFINE_SPINLOCK(lock); 4489 spin_lock(&lock); 4490 if (inode_unhashed(inode)) 4491 __insert_inode_hash(inode, 4492 inode->i_ino + inode->i_generation); 4493 spin_unlock(&lock); 4494 } 4495 4496 fh[0] = inode->i_generation; 4497 fh[1] = inode->i_ino; 4498 fh[2] = ((__u64)inode->i_ino) >> 32; 4499 4500 *len = 3; 4501 return 1; 4502} 4503 4504static const struct export_operations shmem_export_ops = { 4505 .get_parent = shmem_get_parent, 4506 .encode_fh = shmem_encode_fh, 4507 .fh_to_dentry = shmem_fh_to_dentry, 4508}; 4509 4510enum shmem_param { 4511 Opt_gid, 4512 Opt_huge, 4513 Opt_mode, 4514 Opt_mpol, 4515 Opt_nr_blocks, 4516 Opt_nr_inodes, 4517 Opt_size, 4518 Opt_uid, 4519 Opt_inode32, 4520 Opt_inode64, 4521 Opt_noswap, 4522 Opt_quota, 4523 Opt_usrquota, 4524 Opt_grpquota, 4525 Opt_usrquota_block_hardlimit, 4526 Opt_usrquota_inode_hardlimit, 4527 Opt_grpquota_block_hardlimit, 4528 Opt_grpquota_inode_hardlimit, 4529 Opt_casefold_version, 4530 Opt_casefold, 4531 Opt_strict_encoding, 4532}; 4533 4534static const struct constant_table shmem_param_enums_huge[] = { 4535 {"never", SHMEM_HUGE_NEVER }, 4536 {"always", SHMEM_HUGE_ALWAYS }, 4537 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4538 {"advise", SHMEM_HUGE_ADVISE }, 4539 {} 4540}; 4541 4542const struct fs_parameter_spec shmem_fs_parameters[] = { 4543 fsparam_gid ("gid", Opt_gid), 4544 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4545 fsparam_u32oct("mode", Opt_mode), 4546 fsparam_string("mpol", Opt_mpol), 4547 fsparam_string("nr_blocks", Opt_nr_blocks), 4548 fsparam_string("nr_inodes", Opt_nr_inodes), 4549 fsparam_string("size", Opt_size), 4550 fsparam_uid ("uid", Opt_uid), 4551 fsparam_flag ("inode32", Opt_inode32), 4552 fsparam_flag ("inode64", Opt_inode64), 4553 fsparam_flag ("noswap", Opt_noswap), 4554#ifdef CONFIG_TMPFS_QUOTA 4555 fsparam_flag ("quota", Opt_quota), 4556 fsparam_flag ("usrquota", Opt_usrquota), 4557 fsparam_flag ("grpquota", Opt_grpquota), 4558 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4559 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4560 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4561 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4562#endif 4563 fsparam_string("casefold", Opt_casefold_version), 4564 fsparam_flag ("casefold", Opt_casefold), 4565 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4566 {} 4567}; 4568 4569#if IS_ENABLED(CONFIG_UNICODE) 4570static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4571 bool latest_version) 4572{ 4573 struct shmem_options *ctx = fc->fs_private; 4574 int version = UTF8_LATEST; 4575 struct unicode_map *encoding; 4576 char *version_str = param->string + 5; 4577 4578 if (!latest_version) { 4579 if (strncmp(param->string, "utf8-", 5)) 4580 return invalfc(fc, "Only UTF-8 encodings are supported " 4581 "in the format: utf8-<version number>"); 4582 4583 version = utf8_parse_version(version_str); 4584 if (version < 0) 4585 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4586 } 4587 4588 encoding = utf8_load(version); 4589 4590 if (IS_ERR(encoding)) { 4591 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4592 unicode_major(version), unicode_minor(version), 4593 unicode_rev(version)); 4594 } 4595 4596 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4597 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4598 4599 ctx->encoding = encoding; 4600 4601 return 0; 4602} 4603#else 4604static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4605 bool latest_version) 4606{ 4607 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4608} 4609#endif 4610 4611static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4612{ 4613 struct shmem_options *ctx = fc->fs_private; 4614 struct fs_parse_result result; 4615 unsigned long long size; 4616 char *rest; 4617 int opt; 4618 kuid_t kuid; 4619 kgid_t kgid; 4620 4621 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4622 if (opt < 0) 4623 return opt; 4624 4625 switch (opt) { 4626 case Opt_size: 4627 size = memparse(param->string, &rest); 4628 if (*rest == '%') { 4629 size <<= PAGE_SHIFT; 4630 size *= totalram_pages(); 4631 do_div(size, 100); 4632 rest++; 4633 } 4634 if (*rest) 4635 goto bad_value; 4636 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4637 ctx->seen |= SHMEM_SEEN_BLOCKS; 4638 break; 4639 case Opt_nr_blocks: 4640 ctx->blocks = memparse(param->string, &rest); 4641 if (*rest || ctx->blocks > LONG_MAX) 4642 goto bad_value; 4643 ctx->seen |= SHMEM_SEEN_BLOCKS; 4644 break; 4645 case Opt_nr_inodes: 4646 ctx->inodes = memparse(param->string, &rest); 4647 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4648 goto bad_value; 4649 ctx->seen |= SHMEM_SEEN_INODES; 4650 break; 4651 case Opt_mode: 4652 ctx->mode = result.uint_32 & 07777; 4653 break; 4654 case Opt_uid: 4655 kuid = result.uid; 4656 4657 /* 4658 * The requested uid must be representable in the 4659 * filesystem's idmapping. 4660 */ 4661 if (!kuid_has_mapping(fc->user_ns, kuid)) 4662 goto bad_value; 4663 4664 ctx->uid = kuid; 4665 break; 4666 case Opt_gid: 4667 kgid = result.gid; 4668 4669 /* 4670 * The requested gid must be representable in the 4671 * filesystem's idmapping. 4672 */ 4673 if (!kgid_has_mapping(fc->user_ns, kgid)) 4674 goto bad_value; 4675 4676 ctx->gid = kgid; 4677 break; 4678 case Opt_huge: 4679 ctx->huge = result.uint_32; 4680 if (ctx->huge != SHMEM_HUGE_NEVER && 4681 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4682 has_transparent_hugepage())) 4683 goto unsupported_parameter; 4684 ctx->seen |= SHMEM_SEEN_HUGE; 4685 break; 4686 case Opt_mpol: 4687 if (IS_ENABLED(CONFIG_NUMA)) { 4688 mpol_put(ctx->mpol); 4689 ctx->mpol = NULL; 4690 if (mpol_parse_str(param->string, &ctx->mpol)) 4691 goto bad_value; 4692 break; 4693 } 4694 goto unsupported_parameter; 4695 case Opt_inode32: 4696 ctx->full_inums = false; 4697 ctx->seen |= SHMEM_SEEN_INUMS; 4698 break; 4699 case Opt_inode64: 4700 if (sizeof(ino_t) < 8) { 4701 return invalfc(fc, 4702 "Cannot use inode64 with <64bit inums in kernel\n"); 4703 } 4704 ctx->full_inums = true; 4705 ctx->seen |= SHMEM_SEEN_INUMS; 4706 break; 4707 case Opt_noswap: 4708 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4709 return invalfc(fc, 4710 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4711 } 4712 ctx->noswap = true; 4713 break; 4714 case Opt_quota: 4715 if (fc->user_ns != &init_user_ns) 4716 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4717 ctx->seen |= SHMEM_SEEN_QUOTA; 4718 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4719 break; 4720 case Opt_usrquota: 4721 if (fc->user_ns != &init_user_ns) 4722 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4723 ctx->seen |= SHMEM_SEEN_QUOTA; 4724 ctx->quota_types |= QTYPE_MASK_USR; 4725 break; 4726 case Opt_grpquota: 4727 if (fc->user_ns != &init_user_ns) 4728 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4729 ctx->seen |= SHMEM_SEEN_QUOTA; 4730 ctx->quota_types |= QTYPE_MASK_GRP; 4731 break; 4732 case Opt_usrquota_block_hardlimit: 4733 size = memparse(param->string, &rest); 4734 if (*rest || !size) 4735 goto bad_value; 4736 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4737 return invalfc(fc, 4738 "User quota block hardlimit too large."); 4739 ctx->qlimits.usrquota_bhardlimit = size; 4740 break; 4741 case Opt_grpquota_block_hardlimit: 4742 size = memparse(param->string, &rest); 4743 if (*rest || !size) 4744 goto bad_value; 4745 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4746 return invalfc(fc, 4747 "Group quota block hardlimit too large."); 4748 ctx->qlimits.grpquota_bhardlimit = size; 4749 break; 4750 case Opt_usrquota_inode_hardlimit: 4751 size = memparse(param->string, &rest); 4752 if (*rest || !size) 4753 goto bad_value; 4754 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4755 return invalfc(fc, 4756 "User quota inode hardlimit too large."); 4757 ctx->qlimits.usrquota_ihardlimit = size; 4758 break; 4759 case Opt_grpquota_inode_hardlimit: 4760 size = memparse(param->string, &rest); 4761 if (*rest || !size) 4762 goto bad_value; 4763 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4764 return invalfc(fc, 4765 "Group quota inode hardlimit too large."); 4766 ctx->qlimits.grpquota_ihardlimit = size; 4767 break; 4768 case Opt_casefold_version: 4769 return shmem_parse_opt_casefold(fc, param, false); 4770 case Opt_casefold: 4771 return shmem_parse_opt_casefold(fc, param, true); 4772 case Opt_strict_encoding: 4773#if IS_ENABLED(CONFIG_UNICODE) 4774 ctx->strict_encoding = true; 4775 break; 4776#else 4777 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4778#endif 4779 } 4780 return 0; 4781 4782unsupported_parameter: 4783 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4784bad_value: 4785 return invalfc(fc, "Bad value for '%s'", param->key); 4786} 4787 4788static char *shmem_next_opt(char **s) 4789{ 4790 char *sbegin = *s; 4791 char *p; 4792 4793 if (sbegin == NULL) 4794 return NULL; 4795 4796 /* 4797 * NUL-terminate this option: unfortunately, 4798 * mount options form a comma-separated list, 4799 * but mpol's nodelist may also contain commas. 4800 */ 4801 for (;;) { 4802 p = strchr(*s, ','); 4803 if (p == NULL) 4804 break; 4805 *s = p + 1; 4806 if (!isdigit(*(p+1))) { 4807 *p = '\0'; 4808 return sbegin; 4809 } 4810 } 4811 4812 *s = NULL; 4813 return sbegin; 4814} 4815 4816static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4817{ 4818 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4819} 4820 4821/* 4822 * Reconfigure a shmem filesystem. 4823 */ 4824static int shmem_reconfigure(struct fs_context *fc) 4825{ 4826 struct shmem_options *ctx = fc->fs_private; 4827 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4828 unsigned long used_isp; 4829 struct mempolicy *mpol = NULL; 4830 const char *err; 4831 4832 raw_spin_lock(&sbinfo->stat_lock); 4833 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4834 4835 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4836 if (!sbinfo->max_blocks) { 4837 err = "Cannot retroactively limit size"; 4838 goto out; 4839 } 4840 if (percpu_counter_compare(&sbinfo->used_blocks, 4841 ctx->blocks) > 0) { 4842 err = "Too small a size for current use"; 4843 goto out; 4844 } 4845 } 4846 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4847 if (!sbinfo->max_inodes) { 4848 err = "Cannot retroactively limit inodes"; 4849 goto out; 4850 } 4851 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4852 err = "Too few inodes for current use"; 4853 goto out; 4854 } 4855 } 4856 4857 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4858 sbinfo->next_ino > UINT_MAX) { 4859 err = "Current inum too high to switch to 32-bit inums"; 4860 goto out; 4861 } 4862 4863 /* 4864 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4865 * counterpart for (re-)enabling swap. 4866 */ 4867 if (ctx->noswap && !sbinfo->noswap) { 4868 err = "Cannot disable swap on remount"; 4869 goto out; 4870 } 4871 4872 if (ctx->seen & SHMEM_SEEN_QUOTA && 4873 !sb_any_quota_loaded(fc->root->d_sb)) { 4874 err = "Cannot enable quota on remount"; 4875 goto out; 4876 } 4877 4878#ifdef CONFIG_TMPFS_QUOTA 4879#define CHANGED_LIMIT(name) \ 4880 (ctx->qlimits.name## hardlimit && \ 4881 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4882 4883 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4884 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4885 err = "Cannot change global quota limit on remount"; 4886 goto out; 4887 } 4888#endif /* CONFIG_TMPFS_QUOTA */ 4889 4890 if (ctx->seen & SHMEM_SEEN_HUGE) 4891 sbinfo->huge = ctx->huge; 4892 if (ctx->seen & SHMEM_SEEN_INUMS) 4893 sbinfo->full_inums = ctx->full_inums; 4894 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4895 sbinfo->max_blocks = ctx->blocks; 4896 if (ctx->seen & SHMEM_SEEN_INODES) { 4897 sbinfo->max_inodes = ctx->inodes; 4898 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4899 } 4900 4901 /* 4902 * Preserve previous mempolicy unless mpol remount option was specified. 4903 */ 4904 if (ctx->mpol) { 4905 mpol = sbinfo->mpol; 4906 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4907 ctx->mpol = NULL; 4908 } 4909 4910 if (ctx->noswap) 4911 sbinfo->noswap = true; 4912 4913 raw_spin_unlock(&sbinfo->stat_lock); 4914 mpol_put(mpol); 4915 return 0; 4916out: 4917 raw_spin_unlock(&sbinfo->stat_lock); 4918 return invalfc(fc, "%s", err); 4919} 4920 4921static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4922{ 4923 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4924 struct mempolicy *mpol; 4925 4926 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4927 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4928 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4929 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4930 if (sbinfo->mode != (0777 | S_ISVTX)) 4931 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4932 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4933 seq_printf(seq, ",uid=%u", 4934 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4935 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4936 seq_printf(seq, ",gid=%u", 4937 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4938 4939 /* 4940 * Showing inode{64,32} might be useful even if it's the system default, 4941 * since then people don't have to resort to checking both here and 4942 * /proc/config.gz to confirm 64-bit inums were successfully applied 4943 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4944 * 4945 * We hide it when inode64 isn't the default and we are using 32-bit 4946 * inodes, since that probably just means the feature isn't even under 4947 * consideration. 4948 * 4949 * As such: 4950 * 4951 * +-----------------+-----------------+ 4952 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4953 * +------------------+-----------------+-----------------+ 4954 * | full_inums=true | show | show | 4955 * | full_inums=false | show | hide | 4956 * +------------------+-----------------+-----------------+ 4957 * 4958 */ 4959 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4960 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4961#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4962 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4963 if (sbinfo->huge) 4964 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4965#endif 4966 mpol = shmem_get_sbmpol(sbinfo); 4967 shmem_show_mpol(seq, mpol); 4968 mpol_put(mpol); 4969 if (sbinfo->noswap) 4970 seq_printf(seq, ",noswap"); 4971#ifdef CONFIG_TMPFS_QUOTA 4972 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4973 seq_printf(seq, ",usrquota"); 4974 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4975 seq_printf(seq, ",grpquota"); 4976 if (sbinfo->qlimits.usrquota_bhardlimit) 4977 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4978 sbinfo->qlimits.usrquota_bhardlimit); 4979 if (sbinfo->qlimits.grpquota_bhardlimit) 4980 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4981 sbinfo->qlimits.grpquota_bhardlimit); 4982 if (sbinfo->qlimits.usrquota_ihardlimit) 4983 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4984 sbinfo->qlimits.usrquota_ihardlimit); 4985 if (sbinfo->qlimits.grpquota_ihardlimit) 4986 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4987 sbinfo->qlimits.grpquota_ihardlimit); 4988#endif 4989 return 0; 4990} 4991 4992#endif /* CONFIG_TMPFS */ 4993 4994static void shmem_put_super(struct super_block *sb) 4995{ 4996 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4997 4998#if IS_ENABLED(CONFIG_UNICODE) 4999 if (sb->s_encoding) 5000 utf8_unload(sb->s_encoding); 5001#endif 5002 5003#ifdef CONFIG_TMPFS_QUOTA 5004 shmem_disable_quotas(sb); 5005#endif 5006 free_percpu(sbinfo->ino_batch); 5007 percpu_counter_destroy(&sbinfo->used_blocks); 5008 mpol_put(sbinfo->mpol); 5009 kfree(sbinfo); 5010 sb->s_fs_info = NULL; 5011} 5012 5013#if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5014static const struct dentry_operations shmem_ci_dentry_ops = { 5015 .d_hash = generic_ci_d_hash, 5016 .d_compare = generic_ci_d_compare, 5017}; 5018#endif 5019 5020static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5021{ 5022 struct shmem_options *ctx = fc->fs_private; 5023 struct inode *inode; 5024 struct shmem_sb_info *sbinfo; 5025 int error = -ENOMEM; 5026 5027 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5028 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5029 L1_CACHE_BYTES), GFP_KERNEL); 5030 if (!sbinfo) 5031 return error; 5032 5033 sb->s_fs_info = sbinfo; 5034 5035#ifdef CONFIG_TMPFS 5036 /* 5037 * Per default we only allow half of the physical ram per 5038 * tmpfs instance, limiting inodes to one per page of lowmem; 5039 * but the internal instance is left unlimited. 5040 */ 5041 if (!(sb->s_flags & SB_KERNMOUNT)) { 5042 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5043 ctx->blocks = shmem_default_max_blocks(); 5044 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5045 ctx->inodes = shmem_default_max_inodes(); 5046 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5047 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5048 sbinfo->noswap = ctx->noswap; 5049 } else { 5050 sb->s_flags |= SB_NOUSER; 5051 } 5052 sb->s_export_op = &shmem_export_ops; 5053 sb->s_flags |= SB_NOSEC; 5054 5055#if IS_ENABLED(CONFIG_UNICODE) 5056 if (!ctx->encoding && ctx->strict_encoding) { 5057 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5058 error = -EINVAL; 5059 goto failed; 5060 } 5061 5062 if (ctx->encoding) { 5063 sb->s_encoding = ctx->encoding; 5064 set_default_d_op(sb, &shmem_ci_dentry_ops); 5065 if (ctx->strict_encoding) 5066 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5067 } 5068#endif 5069 5070#else 5071 sb->s_flags |= SB_NOUSER; 5072#endif /* CONFIG_TMPFS */ 5073 sb->s_d_flags |= DCACHE_DONTCACHE; 5074 sbinfo->max_blocks = ctx->blocks; 5075 sbinfo->max_inodes = ctx->inodes; 5076 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5077 if (sb->s_flags & SB_KERNMOUNT) { 5078 sbinfo->ino_batch = alloc_percpu(ino_t); 5079 if (!sbinfo->ino_batch) 5080 goto failed; 5081 } 5082 sbinfo->uid = ctx->uid; 5083 sbinfo->gid = ctx->gid; 5084 sbinfo->full_inums = ctx->full_inums; 5085 sbinfo->mode = ctx->mode; 5086#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5087 if (ctx->seen & SHMEM_SEEN_HUGE) 5088 sbinfo->huge = ctx->huge; 5089 else 5090 sbinfo->huge = tmpfs_huge; 5091#endif 5092 sbinfo->mpol = ctx->mpol; 5093 ctx->mpol = NULL; 5094 5095 raw_spin_lock_init(&sbinfo->stat_lock); 5096 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5097 goto failed; 5098 spin_lock_init(&sbinfo->shrinklist_lock); 5099 INIT_LIST_HEAD(&sbinfo->shrinklist); 5100 5101 sb->s_maxbytes = MAX_LFS_FILESIZE; 5102 sb->s_blocksize = PAGE_SIZE; 5103 sb->s_blocksize_bits = PAGE_SHIFT; 5104 sb->s_magic = TMPFS_MAGIC; 5105 sb->s_op = &shmem_ops; 5106 sb->s_time_gran = 1; 5107#ifdef CONFIG_TMPFS_XATTR 5108 sb->s_xattr = shmem_xattr_handlers; 5109#endif 5110#ifdef CONFIG_TMPFS_POSIX_ACL 5111 sb->s_flags |= SB_POSIXACL; 5112#endif 5113 uuid_t uuid; 5114 uuid_gen(&uuid); 5115 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5116 5117#ifdef CONFIG_TMPFS_QUOTA 5118 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5119 sb->dq_op = &shmem_quota_operations; 5120 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5121 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5122 5123 /* Copy the default limits from ctx into sbinfo */ 5124 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5125 sizeof(struct shmem_quota_limits)); 5126 5127 if (shmem_enable_quotas(sb, ctx->quota_types)) 5128 goto failed; 5129 } 5130#endif /* CONFIG_TMPFS_QUOTA */ 5131 5132 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5133 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5134 if (IS_ERR(inode)) { 5135 error = PTR_ERR(inode); 5136 goto failed; 5137 } 5138 inode->i_uid = sbinfo->uid; 5139 inode->i_gid = sbinfo->gid; 5140 sb->s_root = d_make_root(inode); 5141 if (!sb->s_root) 5142 goto failed; 5143 return 0; 5144 5145failed: 5146 shmem_put_super(sb); 5147 return error; 5148} 5149 5150static int shmem_get_tree(struct fs_context *fc) 5151{ 5152 return get_tree_nodev(fc, shmem_fill_super); 5153} 5154 5155static void shmem_free_fc(struct fs_context *fc) 5156{ 5157 struct shmem_options *ctx = fc->fs_private; 5158 5159 if (ctx) { 5160 mpol_put(ctx->mpol); 5161 kfree(ctx); 5162 } 5163} 5164 5165static const struct fs_context_operations shmem_fs_context_ops = { 5166 .free = shmem_free_fc, 5167 .get_tree = shmem_get_tree, 5168#ifdef CONFIG_TMPFS 5169 .parse_monolithic = shmem_parse_monolithic, 5170 .parse_param = shmem_parse_one, 5171 .reconfigure = shmem_reconfigure, 5172#endif 5173}; 5174 5175static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5176 5177static struct inode *shmem_alloc_inode(struct super_block *sb) 5178{ 5179 struct shmem_inode_info *info; 5180 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5181 if (!info) 5182 return NULL; 5183 return &info->vfs_inode; 5184} 5185 5186static void shmem_free_in_core_inode(struct inode *inode) 5187{ 5188 if (S_ISLNK(inode->i_mode)) 5189 kfree(inode->i_link); 5190 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5191} 5192 5193static void shmem_destroy_inode(struct inode *inode) 5194{ 5195 if (S_ISREG(inode->i_mode)) 5196 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5197 if (S_ISDIR(inode->i_mode)) 5198 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5199} 5200 5201static void shmem_init_inode(void *foo) 5202{ 5203 struct shmem_inode_info *info = foo; 5204 inode_init_once(&info->vfs_inode); 5205} 5206 5207static void __init shmem_init_inodecache(void) 5208{ 5209 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5210 sizeof(struct shmem_inode_info), 5211 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5212} 5213 5214static void __init shmem_destroy_inodecache(void) 5215{ 5216 kmem_cache_destroy(shmem_inode_cachep); 5217} 5218 5219/* Keep the page in page cache instead of truncating it */ 5220static int shmem_error_remove_folio(struct address_space *mapping, 5221 struct folio *folio) 5222{ 5223 return 0; 5224} 5225 5226static const struct address_space_operations shmem_aops = { 5227 .dirty_folio = noop_dirty_folio, 5228#ifdef CONFIG_TMPFS 5229 .write_begin = shmem_write_begin, 5230 .write_end = shmem_write_end, 5231#endif 5232#ifdef CONFIG_MIGRATION 5233 .migrate_folio = migrate_folio, 5234#endif 5235 .error_remove_folio = shmem_error_remove_folio, 5236}; 5237 5238static const struct file_operations shmem_file_operations = { 5239 .mmap_prepare = shmem_mmap_prepare, 5240 .open = shmem_file_open, 5241 .get_unmapped_area = shmem_get_unmapped_area, 5242#ifdef CONFIG_TMPFS 5243 .llseek = shmem_file_llseek, 5244 .read_iter = shmem_file_read_iter, 5245 .write_iter = shmem_file_write_iter, 5246 .fsync = noop_fsync, 5247 .splice_read = shmem_file_splice_read, 5248 .splice_write = iter_file_splice_write, 5249 .fallocate = shmem_fallocate, 5250#endif 5251}; 5252 5253static const struct inode_operations shmem_inode_operations = { 5254 .getattr = shmem_getattr, 5255 .setattr = shmem_setattr, 5256#ifdef CONFIG_TMPFS_XATTR 5257 .listxattr = shmem_listxattr, 5258 .set_acl = simple_set_acl, 5259 .fileattr_get = shmem_fileattr_get, 5260 .fileattr_set = shmem_fileattr_set, 5261#endif 5262}; 5263 5264static const struct inode_operations shmem_dir_inode_operations = { 5265#ifdef CONFIG_TMPFS 5266 .getattr = shmem_getattr, 5267 .create = shmem_create, 5268 .lookup = simple_lookup, 5269 .link = shmem_link, 5270 .unlink = shmem_unlink, 5271 .symlink = shmem_symlink, 5272 .mkdir = shmem_mkdir, 5273 .rmdir = shmem_rmdir, 5274 .mknod = shmem_mknod, 5275 .rename = shmem_rename2, 5276 .tmpfile = shmem_tmpfile, 5277 .get_offset_ctx = shmem_get_offset_ctx, 5278#endif 5279#ifdef CONFIG_TMPFS_XATTR 5280 .listxattr = shmem_listxattr, 5281 .fileattr_get = shmem_fileattr_get, 5282 .fileattr_set = shmem_fileattr_set, 5283#endif 5284#ifdef CONFIG_TMPFS_POSIX_ACL 5285 .setattr = shmem_setattr, 5286 .set_acl = simple_set_acl, 5287#endif 5288}; 5289 5290static const struct inode_operations shmem_special_inode_operations = { 5291 .getattr = shmem_getattr, 5292#ifdef CONFIG_TMPFS_XATTR 5293 .listxattr = shmem_listxattr, 5294#endif 5295#ifdef CONFIG_TMPFS_POSIX_ACL 5296 .setattr = shmem_setattr, 5297 .set_acl = simple_set_acl, 5298#endif 5299}; 5300 5301static const struct super_operations shmem_ops = { 5302 .alloc_inode = shmem_alloc_inode, 5303 .free_inode = shmem_free_in_core_inode, 5304 .destroy_inode = shmem_destroy_inode, 5305#ifdef CONFIG_TMPFS 5306 .statfs = shmem_statfs, 5307 .show_options = shmem_show_options, 5308#endif 5309#ifdef CONFIG_TMPFS_QUOTA 5310 .get_dquots = shmem_get_dquots, 5311#endif 5312 .evict_inode = shmem_evict_inode, 5313 .drop_inode = inode_just_drop, 5314 .put_super = shmem_put_super, 5315#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5316 .nr_cached_objects = shmem_unused_huge_count, 5317 .free_cached_objects = shmem_unused_huge_scan, 5318#endif 5319}; 5320 5321static const struct vm_operations_struct shmem_vm_ops = { 5322 .fault = shmem_fault, 5323 .map_pages = filemap_map_pages, 5324#ifdef CONFIG_NUMA 5325 .set_policy = shmem_set_policy, 5326 .get_policy = shmem_get_policy, 5327#endif 5328}; 5329 5330static const struct vm_operations_struct shmem_anon_vm_ops = { 5331 .fault = shmem_fault, 5332 .map_pages = filemap_map_pages, 5333#ifdef CONFIG_NUMA 5334 .set_policy = shmem_set_policy, 5335 .get_policy = shmem_get_policy, 5336#endif 5337}; 5338 5339int shmem_init_fs_context(struct fs_context *fc) 5340{ 5341 struct shmem_options *ctx; 5342 5343 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5344 if (!ctx) 5345 return -ENOMEM; 5346 5347 ctx->mode = 0777 | S_ISVTX; 5348 ctx->uid = current_fsuid(); 5349 ctx->gid = current_fsgid(); 5350 5351#if IS_ENABLED(CONFIG_UNICODE) 5352 ctx->encoding = NULL; 5353#endif 5354 5355 fc->fs_private = ctx; 5356 fc->ops = &shmem_fs_context_ops; 5357#ifdef CONFIG_TMPFS 5358 fc->sb_flags |= SB_I_VERSION; 5359#endif 5360 return 0; 5361} 5362 5363static struct file_system_type shmem_fs_type = { 5364 .owner = THIS_MODULE, 5365 .name = "tmpfs", 5366 .init_fs_context = shmem_init_fs_context, 5367#ifdef CONFIG_TMPFS 5368 .parameters = shmem_fs_parameters, 5369#endif 5370 .kill_sb = kill_anon_super, 5371 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5372}; 5373 5374#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5375 5376#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5377{ \ 5378 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5379 .show = _show, \ 5380 .store = _store, \ 5381} 5382 5383#define TMPFS_ATTR_W(_name, _store) \ 5384 static struct kobj_attribute tmpfs_attr_##_name = \ 5385 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5386 5387#define TMPFS_ATTR_RW(_name, _show, _store) \ 5388 static struct kobj_attribute tmpfs_attr_##_name = \ 5389 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5390 5391#define TMPFS_ATTR_RO(_name, _show) \ 5392 static struct kobj_attribute tmpfs_attr_##_name = \ 5393 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5394 5395#if IS_ENABLED(CONFIG_UNICODE) 5396static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5397 char *buf) 5398{ 5399 return sysfs_emit(buf, "supported\n"); 5400} 5401TMPFS_ATTR_RO(casefold, casefold_show); 5402#endif 5403 5404static struct attribute *tmpfs_attributes[] = { 5405#if IS_ENABLED(CONFIG_UNICODE) 5406 &tmpfs_attr_casefold.attr, 5407#endif 5408 NULL 5409}; 5410 5411static const struct attribute_group tmpfs_attribute_group = { 5412 .attrs = tmpfs_attributes, 5413 .name = "features" 5414}; 5415 5416static struct kobject *tmpfs_kobj; 5417 5418static int __init tmpfs_sysfs_init(void) 5419{ 5420 int ret; 5421 5422 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5423 if (!tmpfs_kobj) 5424 return -ENOMEM; 5425 5426 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5427 if (ret) 5428 kobject_put(tmpfs_kobj); 5429 5430 return ret; 5431} 5432#endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5433 5434void __init shmem_init(void) 5435{ 5436 int error; 5437 5438 shmem_init_inodecache(); 5439 5440#ifdef CONFIG_TMPFS_QUOTA 5441 register_quota_format(&shmem_quota_format); 5442#endif 5443 5444 error = register_filesystem(&shmem_fs_type); 5445 if (error) { 5446 pr_err("Could not register tmpfs\n"); 5447 goto out2; 5448 } 5449 5450 shm_mnt = kern_mount(&shmem_fs_type); 5451 if (IS_ERR(shm_mnt)) { 5452 error = PTR_ERR(shm_mnt); 5453 pr_err("Could not kern_mount tmpfs\n"); 5454 goto out1; 5455 } 5456 5457#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5458 error = tmpfs_sysfs_init(); 5459 if (error) { 5460 pr_err("Could not init tmpfs sysfs\n"); 5461 goto out1; 5462 } 5463#endif 5464 5465#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5466 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5467 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5468 else 5469 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5470 5471 /* 5472 * Default to setting PMD-sized THP to inherit the global setting and 5473 * disable all other multi-size THPs. 5474 */ 5475 if (!shmem_orders_configured) 5476 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5477#endif 5478 return; 5479 5480out1: 5481 unregister_filesystem(&shmem_fs_type); 5482out2: 5483#ifdef CONFIG_TMPFS_QUOTA 5484 unregister_quota_format(&shmem_quota_format); 5485#endif 5486 shmem_destroy_inodecache(); 5487 shm_mnt = ERR_PTR(error); 5488} 5489 5490#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5491static ssize_t shmem_enabled_show(struct kobject *kobj, 5492 struct kobj_attribute *attr, char *buf) 5493{ 5494 static const int values[] = { 5495 SHMEM_HUGE_ALWAYS, 5496 SHMEM_HUGE_WITHIN_SIZE, 5497 SHMEM_HUGE_ADVISE, 5498 SHMEM_HUGE_NEVER, 5499 SHMEM_HUGE_DENY, 5500 SHMEM_HUGE_FORCE, 5501 }; 5502 int len = 0; 5503 int i; 5504 5505 for (i = 0; i < ARRAY_SIZE(values); i++) { 5506 len += sysfs_emit_at(buf, len, 5507 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5508 i ? " " : "", shmem_format_huge(values[i])); 5509 } 5510 len += sysfs_emit_at(buf, len, "\n"); 5511 5512 return len; 5513} 5514 5515static ssize_t shmem_enabled_store(struct kobject *kobj, 5516 struct kobj_attribute *attr, const char *buf, size_t count) 5517{ 5518 char tmp[16]; 5519 int huge, err; 5520 5521 if (count + 1 > sizeof(tmp)) 5522 return -EINVAL; 5523 memcpy(tmp, buf, count); 5524 tmp[count] = '\0'; 5525 if (count && tmp[count - 1] == '\n') 5526 tmp[count - 1] = '\0'; 5527 5528 huge = shmem_parse_huge(tmp); 5529 if (huge == -EINVAL) 5530 return huge; 5531 5532 shmem_huge = huge; 5533 if (shmem_huge > SHMEM_HUGE_DENY) 5534 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5535 5536 err = start_stop_khugepaged(); 5537 return err ? err : count; 5538} 5539 5540struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5541static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5542 5543static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5544 struct kobj_attribute *attr, char *buf) 5545{ 5546 int order = to_thpsize(kobj)->order; 5547 const char *output; 5548 5549 if (test_bit(order, &huge_shmem_orders_always)) 5550 output = "[always] inherit within_size advise never"; 5551 else if (test_bit(order, &huge_shmem_orders_inherit)) 5552 output = "always [inherit] within_size advise never"; 5553 else if (test_bit(order, &huge_shmem_orders_within_size)) 5554 output = "always inherit [within_size] advise never"; 5555 else if (test_bit(order, &huge_shmem_orders_madvise)) 5556 output = "always inherit within_size [advise] never"; 5557 else 5558 output = "always inherit within_size advise [never]"; 5559 5560 return sysfs_emit(buf, "%s\n", output); 5561} 5562 5563static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5564 struct kobj_attribute *attr, 5565 const char *buf, size_t count) 5566{ 5567 int order = to_thpsize(kobj)->order; 5568 ssize_t ret = count; 5569 5570 if (sysfs_streq(buf, "always")) { 5571 spin_lock(&huge_shmem_orders_lock); 5572 clear_bit(order, &huge_shmem_orders_inherit); 5573 clear_bit(order, &huge_shmem_orders_madvise); 5574 clear_bit(order, &huge_shmem_orders_within_size); 5575 set_bit(order, &huge_shmem_orders_always); 5576 spin_unlock(&huge_shmem_orders_lock); 5577 } else if (sysfs_streq(buf, "inherit")) { 5578 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5579 if (shmem_huge == SHMEM_HUGE_FORCE && 5580 order != HPAGE_PMD_ORDER) 5581 return -EINVAL; 5582 5583 spin_lock(&huge_shmem_orders_lock); 5584 clear_bit(order, &huge_shmem_orders_always); 5585 clear_bit(order, &huge_shmem_orders_madvise); 5586 clear_bit(order, &huge_shmem_orders_within_size); 5587 set_bit(order, &huge_shmem_orders_inherit); 5588 spin_unlock(&huge_shmem_orders_lock); 5589 } else if (sysfs_streq(buf, "within_size")) { 5590 spin_lock(&huge_shmem_orders_lock); 5591 clear_bit(order, &huge_shmem_orders_always); 5592 clear_bit(order, &huge_shmem_orders_inherit); 5593 clear_bit(order, &huge_shmem_orders_madvise); 5594 set_bit(order, &huge_shmem_orders_within_size); 5595 spin_unlock(&huge_shmem_orders_lock); 5596 } else if (sysfs_streq(buf, "advise")) { 5597 spin_lock(&huge_shmem_orders_lock); 5598 clear_bit(order, &huge_shmem_orders_always); 5599 clear_bit(order, &huge_shmem_orders_inherit); 5600 clear_bit(order, &huge_shmem_orders_within_size); 5601 set_bit(order, &huge_shmem_orders_madvise); 5602 spin_unlock(&huge_shmem_orders_lock); 5603 } else if (sysfs_streq(buf, "never")) { 5604 spin_lock(&huge_shmem_orders_lock); 5605 clear_bit(order, &huge_shmem_orders_always); 5606 clear_bit(order, &huge_shmem_orders_inherit); 5607 clear_bit(order, &huge_shmem_orders_within_size); 5608 clear_bit(order, &huge_shmem_orders_madvise); 5609 spin_unlock(&huge_shmem_orders_lock); 5610 } else { 5611 ret = -EINVAL; 5612 } 5613 5614 if (ret > 0) { 5615 int err = start_stop_khugepaged(); 5616 5617 if (err) 5618 ret = err; 5619 } 5620 return ret; 5621} 5622 5623struct kobj_attribute thpsize_shmem_enabled_attr = 5624 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5625#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5626 5627#if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5628 5629static int __init setup_transparent_hugepage_shmem(char *str) 5630{ 5631 int huge; 5632 5633 huge = shmem_parse_huge(str); 5634 if (huge == -EINVAL) { 5635 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5636 return huge; 5637 } 5638 5639 shmem_huge = huge; 5640 return 1; 5641} 5642__setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5643 5644static int __init setup_transparent_hugepage_tmpfs(char *str) 5645{ 5646 int huge; 5647 5648 huge = shmem_parse_huge(str); 5649 if (huge < 0) { 5650 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5651 return huge; 5652 } 5653 5654 tmpfs_huge = huge; 5655 return 1; 5656} 5657__setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5658 5659static char str_dup[PAGE_SIZE] __initdata; 5660static int __init setup_thp_shmem(char *str) 5661{ 5662 char *token, *range, *policy, *subtoken; 5663 unsigned long always, inherit, madvise, within_size; 5664 char *start_size, *end_size; 5665 int start, end, nr; 5666 char *p; 5667 5668 if (!str || strlen(str) + 1 > PAGE_SIZE) 5669 goto err; 5670 strscpy(str_dup, str); 5671 5672 always = huge_shmem_orders_always; 5673 inherit = huge_shmem_orders_inherit; 5674 madvise = huge_shmem_orders_madvise; 5675 within_size = huge_shmem_orders_within_size; 5676 p = str_dup; 5677 while ((token = strsep(&p, ";")) != NULL) { 5678 range = strsep(&token, ":"); 5679 policy = token; 5680 5681 if (!policy) 5682 goto err; 5683 5684 while ((subtoken = strsep(&range, ",")) != NULL) { 5685 if (strchr(subtoken, '-')) { 5686 start_size = strsep(&subtoken, "-"); 5687 end_size = subtoken; 5688 5689 start = get_order_from_str(start_size, 5690 THP_ORDERS_ALL_FILE_DEFAULT); 5691 end = get_order_from_str(end_size, 5692 THP_ORDERS_ALL_FILE_DEFAULT); 5693 } else { 5694 start_size = end_size = subtoken; 5695 start = end = get_order_from_str(subtoken, 5696 THP_ORDERS_ALL_FILE_DEFAULT); 5697 } 5698 5699 if (start < 0) { 5700 pr_err("invalid size %s in thp_shmem boot parameter\n", 5701 start_size); 5702 goto err; 5703 } 5704 5705 if (end < 0) { 5706 pr_err("invalid size %s in thp_shmem boot parameter\n", 5707 end_size); 5708 goto err; 5709 } 5710 5711 if (start > end) 5712 goto err; 5713 5714 nr = end - start + 1; 5715 if (!strcmp(policy, "always")) { 5716 bitmap_set(&always, start, nr); 5717 bitmap_clear(&inherit, start, nr); 5718 bitmap_clear(&madvise, start, nr); 5719 bitmap_clear(&within_size, start, nr); 5720 } else if (!strcmp(policy, "advise")) { 5721 bitmap_set(&madvise, start, nr); 5722 bitmap_clear(&inherit, start, nr); 5723 bitmap_clear(&always, start, nr); 5724 bitmap_clear(&within_size, start, nr); 5725 } else if (!strcmp(policy, "inherit")) { 5726 bitmap_set(&inherit, start, nr); 5727 bitmap_clear(&madvise, start, nr); 5728 bitmap_clear(&always, start, nr); 5729 bitmap_clear(&within_size, start, nr); 5730 } else if (!strcmp(policy, "within_size")) { 5731 bitmap_set(&within_size, start, nr); 5732 bitmap_clear(&inherit, start, nr); 5733 bitmap_clear(&madvise, start, nr); 5734 bitmap_clear(&always, start, nr); 5735 } else if (!strcmp(policy, "never")) { 5736 bitmap_clear(&inherit, start, nr); 5737 bitmap_clear(&madvise, start, nr); 5738 bitmap_clear(&always, start, nr); 5739 bitmap_clear(&within_size, start, nr); 5740 } else { 5741 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5742 goto err; 5743 } 5744 } 5745 } 5746 5747 huge_shmem_orders_always = always; 5748 huge_shmem_orders_madvise = madvise; 5749 huge_shmem_orders_inherit = inherit; 5750 huge_shmem_orders_within_size = within_size; 5751 shmem_orders_configured = true; 5752 return 1; 5753 5754err: 5755 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5756 return 0; 5757} 5758__setup("thp_shmem=", setup_thp_shmem); 5759 5760#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5761 5762#else /* !CONFIG_SHMEM */ 5763 5764/* 5765 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5766 * 5767 * This is intended for small system where the benefits of the full 5768 * shmem code (swap-backed and resource-limited) are outweighed by 5769 * their complexity. On systems without swap this code should be 5770 * effectively equivalent, but much lighter weight. 5771 */ 5772 5773static struct file_system_type shmem_fs_type = { 5774 .name = "tmpfs", 5775 .init_fs_context = ramfs_init_fs_context, 5776 .parameters = ramfs_fs_parameters, 5777 .kill_sb = ramfs_kill_sb, 5778 .fs_flags = FS_USERNS_MOUNT, 5779}; 5780 5781void __init shmem_init(void) 5782{ 5783 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5784 5785 shm_mnt = kern_mount(&shmem_fs_type); 5786 BUG_ON(IS_ERR(shm_mnt)); 5787} 5788 5789int shmem_unuse(unsigned int type) 5790{ 5791 return 0; 5792} 5793 5794int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5795{ 5796 return 0; 5797} 5798 5799void shmem_unlock_mapping(struct address_space *mapping) 5800{ 5801} 5802 5803#ifdef CONFIG_MMU 5804unsigned long shmem_get_unmapped_area(struct file *file, 5805 unsigned long addr, unsigned long len, 5806 unsigned long pgoff, unsigned long flags) 5807{ 5808 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5809} 5810#endif 5811 5812void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5813{ 5814 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5815} 5816EXPORT_SYMBOL_GPL(shmem_truncate_range); 5817 5818#define shmem_vm_ops generic_file_vm_ops 5819#define shmem_anon_vm_ops generic_file_vm_ops 5820#define shmem_file_operations ramfs_file_operations 5821 5822static inline int shmem_acct_size(unsigned long flags, loff_t size) 5823{ 5824 return 0; 5825} 5826 5827static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5828{ 5829} 5830 5831static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5832 struct super_block *sb, struct inode *dir, 5833 umode_t mode, dev_t dev, unsigned long flags) 5834{ 5835 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5836 return inode ? inode : ERR_PTR(-ENOSPC); 5837} 5838 5839#endif /* CONFIG_SHMEM */ 5840 5841/* common code */ 5842 5843static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5844 loff_t size, unsigned long vm_flags, 5845 unsigned int i_flags) 5846{ 5847 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 5848 struct inode *inode; 5849 struct file *res; 5850 5851 if (IS_ERR(mnt)) 5852 return ERR_CAST(mnt); 5853 5854 if (size < 0 || size > MAX_LFS_FILESIZE) 5855 return ERR_PTR(-EINVAL); 5856 5857 if (is_idmapped_mnt(mnt)) 5858 return ERR_PTR(-EINVAL); 5859 5860 if (shmem_acct_size(flags, size)) 5861 return ERR_PTR(-ENOMEM); 5862 5863 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5864 S_IFREG | S_IRWXUGO, 0, vm_flags); 5865 if (IS_ERR(inode)) { 5866 shmem_unacct_size(flags, size); 5867 return ERR_CAST(inode); 5868 } 5869 inode->i_flags |= i_flags; 5870 inode->i_size = size; 5871 clear_nlink(inode); /* It is unlinked */ 5872 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5873 if (!IS_ERR(res)) 5874 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5875 &shmem_file_operations); 5876 if (IS_ERR(res)) 5877 iput(inode); 5878 return res; 5879} 5880 5881/** 5882 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5883 * kernel internal. There will be NO LSM permission checks against the 5884 * underlying inode. So users of this interface must do LSM checks at a 5885 * higher layer. The users are the big_key and shm implementations. LSM 5886 * checks are provided at the key or shm level rather than the inode. 5887 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5888 * @size: size to be set for the file 5889 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5890 */ 5891struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5892{ 5893 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5894} 5895EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5896 5897/** 5898 * shmem_file_setup - get an unlinked file living in tmpfs 5899 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5900 * @size: size to be set for the file 5901 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5902 */ 5903struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5904{ 5905 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5906} 5907EXPORT_SYMBOL_GPL(shmem_file_setup); 5908 5909/** 5910 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5911 * @mnt: the tmpfs mount where the file will be created 5912 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5913 * @size: size to be set for the file 5914 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5915 */ 5916struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5917 loff_t size, unsigned long flags) 5918{ 5919 return __shmem_file_setup(mnt, name, size, flags, 0); 5920} 5921EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5922 5923static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags) 5924{ 5925 loff_t size = end - start; 5926 5927 /* 5928 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5929 * between XFS directory reading and selinux: since this file is only 5930 * accessible to the user through its mapping, use S_PRIVATE flag to 5931 * bypass file security, in the same way as shmem_kernel_file_setup(). 5932 */ 5933 return shmem_kernel_file_setup("dev/zero", size, vm_flags); 5934} 5935 5936/** 5937 * shmem_zero_setup - setup a shared anonymous mapping 5938 * @vma: the vma to be mmapped is prepared by do_mmap 5939 * Returns: 0 on success, or error 5940 */ 5941int shmem_zero_setup(struct vm_area_struct *vma) 5942{ 5943 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags); 5944 5945 if (IS_ERR(file)) 5946 return PTR_ERR(file); 5947 5948 if (vma->vm_file) 5949 fput(vma->vm_file); 5950 vma->vm_file = file; 5951 vma->vm_ops = &shmem_anon_vm_ops; 5952 5953 return 0; 5954} 5955 5956/** 5957 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5958 * descriptor for convenience. 5959 * @desc: Describes VMA 5960 * Returns: 0 on success, or error 5961 */ 5962int shmem_zero_setup_desc(struct vm_area_desc *desc) 5963{ 5964 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags); 5965 5966 if (IS_ERR(file)) 5967 return PTR_ERR(file); 5968 5969 desc->vm_file = file; 5970 desc->vm_ops = &shmem_anon_vm_ops; 5971 5972 return 0; 5973} 5974 5975/** 5976 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5977 * @mapping: the folio's address_space 5978 * @index: the folio index 5979 * @gfp: the page allocator flags to use if allocating 5980 * 5981 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5982 * with any new page allocations done using the specified allocation flags. 5983 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5984 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5985 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5986 * 5987 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5988 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5989 */ 5990struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5991 pgoff_t index, gfp_t gfp) 5992{ 5993#ifdef CONFIG_SHMEM 5994 struct inode *inode = mapping->host; 5995 struct folio *folio; 5996 int error; 5997 5998 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5999 &folio, SGP_CACHE, gfp, NULL, NULL); 6000 if (error) 6001 return ERR_PTR(error); 6002 6003 folio_unlock(folio); 6004 return folio; 6005#else 6006 /* 6007 * The tiny !SHMEM case uses ramfs without swap 6008 */ 6009 return mapping_read_folio_gfp(mapping, index, gfp); 6010#endif 6011} 6012EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6013 6014struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6015 pgoff_t index, gfp_t gfp) 6016{ 6017 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6018 struct page *page; 6019 6020 if (IS_ERR(folio)) 6021 return &folio->page; 6022 6023 page = folio_file_page(folio, index); 6024 if (PageHWPoison(page)) { 6025 folio_put(folio); 6026 return ERR_PTR(-EIO); 6027 } 6028 6029 return page; 6030} 6031EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);