Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7#ifndef __MM_INTERNAL_H
8#define __MM_INTERNAL_H
9
10#include <linux/fs.h>
11#include <linux/khugepaged.h>
12#include <linux/mm.h>
13#include <linux/mm_inline.h>
14#include <linux/pagemap.h>
15#include <linux/pagewalk.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/leafops.h>
19#include <linux/swap_cgroup.h>
20#include <linux/tracepoint-defs.h>
21
22/* Internal core VMA manipulation functions. */
23#include "vma.h"
24
25struct folio_batch;
26
27/*
28 * Maintains state across a page table move. The operation assumes both source
29 * and destination VMAs already exist and are specified by the user.
30 *
31 * Partial moves are permitted, but the old and new ranges must both reside
32 * within a VMA.
33 *
34 * mmap lock must be held in write and VMA write locks must be held on any VMA
35 * that is visible.
36 *
37 * Use the PAGETABLE_MOVE() macro to initialise this struct.
38 *
39 * The old_addr and new_addr fields are updated as the page table move is
40 * executed.
41 *
42 * NOTE: The page table move is affected by reading from [old_addr, old_end),
43 * and old_addr may be updated for better page table alignment, so len_in
44 * represents the length of the range being copied as specified by the user.
45 */
46struct pagetable_move_control {
47 struct vm_area_struct *old; /* Source VMA. */
48 struct vm_area_struct *new; /* Destination VMA. */
49 unsigned long old_addr; /* Address from which the move begins. */
50 unsigned long old_end; /* Exclusive address at which old range ends. */
51 unsigned long new_addr; /* Address to move page tables to. */
52 unsigned long len_in; /* Bytes to remap specified by user. */
53
54 bool need_rmap_locks; /* Do rmap locks need to be taken? */
55 bool for_stack; /* Is this an early temp stack being moved? */
56};
57
58#define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
59 struct pagetable_move_control name = { \
60 .old = old_, \
61 .new = new_, \
62 .old_addr = old_addr_, \
63 .old_end = (old_addr_) + (len_), \
64 .new_addr = new_addr_, \
65 .len_in = len_, \
66 }
67
68/*
69 * The set of flags that only affect watermark checking and reclaim
70 * behaviour. This is used by the MM to obey the caller constraints
71 * about IO, FS and watermark checking while ignoring placement
72 * hints such as HIGHMEM usage.
73 */
74#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77 __GFP_NOLOCKDEP)
78
79/* The GFP flags allowed during early boot */
80#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81
82/* Control allocation cpuset and node placement constraints */
83#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84
85/* Do not use these with a slab allocator */
86#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87
88/*
89 * Different from WARN_ON_ONCE(), no warning will be issued
90 * when we specify __GFP_NOWARN.
91 */
92#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
93 static bool __section(".data..once") __warned; \
94 int __ret_warn_once = !!(cond); \
95 \
96 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97 __warned = true; \
98 WARN_ON(1); \
99 } \
100 unlikely(__ret_warn_once); \
101})
102
103void page_writeback_init(void);
104
105/*
106 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
109 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110 */
111#define ENTIRELY_MAPPED 0x800000
112#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
113
114/*
115 * Flags passed to __show_mem() and show_free_areas() to suppress output in
116 * various contexts.
117 */
118#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
119
120/*
121 * How many individual pages have an elevated _mapcount. Excludes
122 * the folio's entire_mapcount.
123 *
124 * Don't use this function outside of debugging code.
125 */
126static inline int folio_nr_pages_mapped(const struct folio *folio)
127{
128 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129 return -1;
130 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131}
132
133/*
134 * Retrieve the first entry of a folio based on a provided entry within the
135 * folio. We cannot rely on folio->swap as there is no guarantee that it has
136 * been initialized. Used for calling arch_swap_restore()
137 */
138static inline swp_entry_t folio_swap(swp_entry_t entry,
139 const struct folio *folio)
140{
141 swp_entry_t swap = {
142 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143 };
144
145 return swap;
146}
147
148static inline void *folio_raw_mapping(const struct folio *folio)
149{
150 unsigned long mapping = (unsigned long)folio->mapping;
151
152 return (void *)(mapping & ~FOLIO_MAPPING_FLAGS);
153}
154
155/*
156 * This is a file-backed mapping, and is about to be memory mapped - invoke its
157 * mmap hook and safely handle error conditions. On error, VMA hooks will be
158 * mutated.
159 *
160 * @file: File which backs the mapping.
161 * @vma: VMA which we are mapping.
162 *
163 * Returns: 0 if success, error otherwise.
164 */
165static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166{
167 int err = vfs_mmap(file, vma);
168
169 if (likely(!err))
170 return 0;
171
172 /*
173 * OK, we tried to call the file hook for mmap(), but an error
174 * arose. The mapping is in an inconsistent state and we most not invoke
175 * any further hooks on it.
176 */
177 vma->vm_ops = &vma_dummy_vm_ops;
178
179 return err;
180}
181
182/*
183 * If the VMA has a close hook then close it, and since closing it might leave
184 * it in an inconsistent state which makes the use of any hooks suspect, clear
185 * them down by installing dummy empty hooks.
186 */
187static inline void vma_close(struct vm_area_struct *vma)
188{
189 if (vma->vm_ops && vma->vm_ops->close) {
190 vma->vm_ops->close(vma);
191
192 /*
193 * The mapping is in an inconsistent state, and no further hooks
194 * may be invoked upon it.
195 */
196 vma->vm_ops = &vma_dummy_vm_ops;
197 }
198}
199
200#ifdef CONFIG_MMU
201
202/* Flags for folio_pte_batch(). */
203typedef int __bitwise fpb_t;
204
205/* Compare PTEs respecting the dirty bit. */
206#define FPB_RESPECT_DIRTY ((__force fpb_t)BIT(0))
207
208/* Compare PTEs respecting the soft-dirty bit. */
209#define FPB_RESPECT_SOFT_DIRTY ((__force fpb_t)BIT(1))
210
211/* Compare PTEs respecting the writable bit. */
212#define FPB_RESPECT_WRITE ((__force fpb_t)BIT(2))
213
214/*
215 * Merge PTE write bits: if any PTE in the batch is writable, modify the
216 * PTE at @ptentp to be writable.
217 */
218#define FPB_MERGE_WRITE ((__force fpb_t)BIT(3))
219
220/*
221 * Merge PTE young and dirty bits: if any PTE in the batch is young or dirty,
222 * modify the PTE at @ptentp to be young or dirty, respectively.
223 */
224#define FPB_MERGE_YOUNG_DIRTY ((__force fpb_t)BIT(4))
225
226static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
227{
228 if (!(flags & FPB_RESPECT_DIRTY))
229 pte = pte_mkclean(pte);
230 if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY)))
231 pte = pte_clear_soft_dirty(pte);
232 if (likely(!(flags & FPB_RESPECT_WRITE)))
233 pte = pte_wrprotect(pte);
234 return pte_mkold(pte);
235}
236
237/**
238 * folio_pte_batch_flags - detect a PTE batch for a large folio
239 * @folio: The large folio to detect a PTE batch for.
240 * @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL.
241 * @ptep: Page table pointer for the first entry.
242 * @ptentp: Pointer to a COPY of the first page table entry whose flags this
243 * function updates based on @flags if appropriate.
244 * @max_nr: The maximum number of table entries to consider.
245 * @flags: Flags to modify the PTE batch semantics.
246 *
247 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
248 * pages of the same large folio in a single VMA and a single page table.
249 *
250 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
251 * the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set)
252 * and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set).
253 *
254 * @ptep must map any page of the folio. max_nr must be at least one and
255 * must be limited by the caller so scanning cannot exceed a single VMA and
256 * a single page table.
257 *
258 * Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will
259 * be updated: it's crucial that a pointer to a COPY of the first
260 * page table entry, obtained through ptep_get(), is provided as @ptentp.
261 *
262 * This function will be inlined to optimize based on the input parameters;
263 * consider using folio_pte_batch() instead if applicable.
264 *
265 * Return: the number of table entries in the batch.
266 */
267static inline unsigned int folio_pte_batch_flags(struct folio *folio,
268 struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp,
269 unsigned int max_nr, fpb_t flags)
270{
271 bool any_writable = false, any_young = false, any_dirty = false;
272 pte_t expected_pte, pte = *ptentp;
273 unsigned int nr, cur_nr;
274
275 VM_WARN_ON_FOLIO(!pte_present(pte), folio);
276 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
277 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
278 /*
279 * Ensure this is a pointer to a copy not a pointer into a page table.
280 * If this is a stack value, it won't be a valid virtual address, but
281 * that's fine because it also cannot be pointing into the page table.
282 */
283 VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp)));
284
285 /* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
286 max_nr = min_t(unsigned long, max_nr,
287 folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
288
289 nr = pte_batch_hint(ptep, pte);
290 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
291 ptep = ptep + nr;
292
293 while (nr < max_nr) {
294 pte = ptep_get(ptep);
295
296 if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte))
297 break;
298
299 if (flags & FPB_MERGE_WRITE)
300 any_writable |= pte_write(pte);
301 if (flags & FPB_MERGE_YOUNG_DIRTY) {
302 any_young |= pte_young(pte);
303 any_dirty |= pte_dirty(pte);
304 }
305
306 cur_nr = pte_batch_hint(ptep, pte);
307 expected_pte = pte_advance_pfn(expected_pte, cur_nr);
308 ptep += cur_nr;
309 nr += cur_nr;
310 }
311
312 if (any_writable)
313 *ptentp = pte_mkwrite(*ptentp, vma);
314 if (any_young)
315 *ptentp = pte_mkyoung(*ptentp);
316 if (any_dirty)
317 *ptentp = pte_mkdirty(*ptentp);
318
319 return min(nr, max_nr);
320}
321
322unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
323 unsigned int max_nr);
324
325/**
326 * pte_move_swp_offset - Move the swap entry offset field of a swap pte
327 * forward or backward by delta
328 * @pte: The initial pte state; must be a swap entry
329 * @delta: The direction and the offset we are moving; forward if delta
330 * is positive; backward if delta is negative
331 *
332 * Moves the swap offset, while maintaining all other fields, including
333 * swap type, and any swp pte bits. The resulting pte is returned.
334 */
335static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
336{
337 const softleaf_t entry = softleaf_from_pte(pte);
338 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
339 (swp_offset(entry) + delta)));
340
341 if (pte_swp_soft_dirty(pte))
342 new = pte_swp_mksoft_dirty(new);
343 if (pte_swp_exclusive(pte))
344 new = pte_swp_mkexclusive(new);
345 if (pte_swp_uffd_wp(pte))
346 new = pte_swp_mkuffd_wp(new);
347
348 return new;
349}
350
351
352/**
353 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
354 * @pte: The initial pte state; must be a swap entry.
355 *
356 * Increments the swap offset, while maintaining all other fields, including
357 * swap type, and any swp pte bits. The resulting pte is returned.
358 */
359static inline pte_t pte_next_swp_offset(pte_t pte)
360{
361 return pte_move_swp_offset(pte, 1);
362}
363
364/**
365 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
366 * @start_ptep: Page table pointer for the first entry.
367 * @max_nr: The maximum number of table entries to consider.
368 * @pte: Page table entry for the first entry.
369 *
370 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
371 * containing swap entries all with consecutive offsets and targeting the same
372 * swap type, all with matching swp pte bits.
373 *
374 * max_nr must be at least one and must be limited by the caller so scanning
375 * cannot exceed a single page table.
376 *
377 * Return: the number of table entries in the batch.
378 */
379static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
380{
381 pte_t expected_pte = pte_next_swp_offset(pte);
382 const pte_t *end_ptep = start_ptep + max_nr;
383 const softleaf_t entry = softleaf_from_pte(pte);
384 pte_t *ptep = start_ptep + 1;
385 unsigned short cgroup_id;
386
387 VM_WARN_ON(max_nr < 1);
388 VM_WARN_ON(!softleaf_is_swap(entry));
389
390 cgroup_id = lookup_swap_cgroup_id(entry);
391 while (ptep < end_ptep) {
392 softleaf_t entry;
393
394 pte = ptep_get(ptep);
395
396 if (!pte_same(pte, expected_pte))
397 break;
398 entry = softleaf_from_pte(pte);
399 if (lookup_swap_cgroup_id(entry) != cgroup_id)
400 break;
401 expected_pte = pte_next_swp_offset(expected_pte);
402 ptep++;
403 }
404
405 return ptep - start_ptep;
406}
407#endif /* CONFIG_MMU */
408
409void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
410 int nr_throttled);
411static inline void acct_reclaim_writeback(struct folio *folio)
412{
413 pg_data_t *pgdat = folio_pgdat(folio);
414 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
415
416 if (nr_throttled)
417 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
418}
419
420static inline void wake_throttle_isolated(pg_data_t *pgdat)
421{
422 wait_queue_head_t *wqh;
423
424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
425 if (waitqueue_active(wqh))
426 wake_up(wqh);
427}
428
429vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
430static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
431{
432 vm_fault_t ret = __vmf_anon_prepare(vmf);
433
434 if (unlikely(ret & VM_FAULT_RETRY))
435 vma_end_read(vmf->vma);
436 return ret;
437}
438
439vm_fault_t do_swap_page(struct vm_fault *vmf);
440void folio_rotate_reclaimable(struct folio *folio);
441bool __folio_end_writeback(struct folio *folio);
442void deactivate_file_folio(struct folio *folio);
443void folio_activate(struct folio *folio);
444
445void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
446 struct vm_area_struct *start_vma, unsigned long floor,
447 unsigned long ceiling, bool mm_wr_locked);
448void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
449
450struct zap_details;
451void unmap_page_range(struct mmu_gather *tlb,
452 struct vm_area_struct *vma,
453 unsigned long addr, unsigned long end,
454 struct zap_details *details);
455void zap_page_range_single_batched(struct mmu_gather *tlb,
456 struct vm_area_struct *vma, unsigned long addr,
457 unsigned long size, struct zap_details *details);
458int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
459 gfp_t gfp);
460
461void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
462void force_page_cache_ra(struct readahead_control *, unsigned long nr);
463static inline void force_page_cache_readahead(struct address_space *mapping,
464 struct file *file, pgoff_t index, unsigned long nr_to_read)
465{
466 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
467 force_page_cache_ra(&ractl, nr_to_read);
468}
469
470unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
471 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
472unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
473 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
474void filemap_free_folio(struct address_space *mapping, struct folio *folio);
475int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
476bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
477 loff_t end);
478long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
479unsigned long mapping_try_invalidate(struct address_space *mapping,
480 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
481
482/**
483 * folio_evictable - Test whether a folio is evictable.
484 * @folio: The folio to test.
485 *
486 * Test whether @folio is evictable -- i.e., should be placed on
487 * active/inactive lists vs unevictable list.
488 *
489 * Reasons folio might not be evictable:
490 * 1. folio's mapping marked unevictable
491 * 2. One of the pages in the folio is part of an mlocked VMA
492 */
493static inline bool folio_evictable(struct folio *folio)
494{
495 bool ret;
496
497 /* Prevent address_space of inode and swap cache from being freed */
498 rcu_read_lock();
499 ret = !mapping_unevictable(folio_mapping(folio)) &&
500 !folio_test_mlocked(folio);
501 rcu_read_unlock();
502 return ret;
503}
504
505/*
506 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
507 * a count of one.
508 */
509static inline void set_page_refcounted(struct page *page)
510{
511 VM_BUG_ON_PAGE(PageTail(page), page);
512 VM_BUG_ON_PAGE(page_ref_count(page), page);
513 set_page_count(page, 1);
514}
515
516/*
517 * Return true if a folio needs ->release_folio() calling upon it.
518 */
519static inline bool folio_needs_release(struct folio *folio)
520{
521 struct address_space *mapping = folio_mapping(folio);
522
523 return folio_has_private(folio) ||
524 (mapping && mapping_release_always(mapping));
525}
526
527extern unsigned long highest_memmap_pfn;
528
529/*
530 * Maximum number of reclaim retries without progress before the OOM
531 * killer is consider the only way forward.
532 */
533#define MAX_RECLAIM_RETRIES 16
534
535/*
536 * in mm/vmscan.c:
537 */
538bool folio_isolate_lru(struct folio *folio);
539void folio_putback_lru(struct folio *folio);
540extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
541int user_proactive_reclaim(char *buf,
542 struct mem_cgroup *memcg, pg_data_t *pgdat);
543
544/*
545 * in mm/rmap.c:
546 */
547pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
548
549/*
550 * in mm/page_alloc.c
551 */
552#define K(x) ((x) << (PAGE_SHIFT-10))
553
554extern char * const zone_names[MAX_NR_ZONES];
555
556/* perform sanity checks on struct pages being allocated or freed */
557DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
558
559extern int min_free_kbytes;
560extern int defrag_mode;
561
562void setup_per_zone_wmarks(void);
563void calculate_min_free_kbytes(void);
564int __meminit init_per_zone_wmark_min(void);
565void page_alloc_sysctl_init(void);
566
567/*
568 * Structure for holding the mostly immutable allocation parameters passed
569 * between functions involved in allocations, including the alloc_pages*
570 * family of functions.
571 *
572 * nodemask, migratetype and highest_zoneidx are initialized only once in
573 * __alloc_pages() and then never change.
574 *
575 * zonelist, preferred_zone and highest_zoneidx are set first in
576 * __alloc_pages() for the fast path, and might be later changed
577 * in __alloc_pages_slowpath(). All other functions pass the whole structure
578 * by a const pointer.
579 */
580struct alloc_context {
581 struct zonelist *zonelist;
582 nodemask_t *nodemask;
583 struct zoneref *preferred_zoneref;
584 int migratetype;
585
586 /*
587 * highest_zoneidx represents highest usable zone index of
588 * the allocation request. Due to the nature of the zone,
589 * memory on lower zone than the highest_zoneidx will be
590 * protected by lowmem_reserve[highest_zoneidx].
591 *
592 * highest_zoneidx is also used by reclaim/compaction to limit
593 * the target zone since higher zone than this index cannot be
594 * usable for this allocation request.
595 */
596 enum zone_type highest_zoneidx;
597 bool spread_dirty_pages;
598};
599
600/*
601 * This function returns the order of a free page in the buddy system. In
602 * general, page_zone(page)->lock must be held by the caller to prevent the
603 * page from being allocated in parallel and returning garbage as the order.
604 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
605 * page cannot be allocated or merged in parallel. Alternatively, it must
606 * handle invalid values gracefully, and use buddy_order_unsafe() below.
607 */
608static inline unsigned int buddy_order(struct page *page)
609{
610 /* PageBuddy() must be checked by the caller */
611 return page_private(page);
612}
613
614/*
615 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
616 * PageBuddy() should be checked first by the caller to minimize race window,
617 * and invalid values must be handled gracefully.
618 *
619 * READ_ONCE is used so that if the caller assigns the result into a local
620 * variable and e.g. tests it for valid range before using, the compiler cannot
621 * decide to remove the variable and inline the page_private(page) multiple
622 * times, potentially observing different values in the tests and the actual
623 * use of the result.
624 */
625#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
626
627/*
628 * This function checks whether a page is free && is the buddy
629 * we can coalesce a page and its buddy if
630 * (a) the buddy is not in a hole (check before calling!) &&
631 * (b) the buddy is in the buddy system &&
632 * (c) a page and its buddy have the same order &&
633 * (d) a page and its buddy are in the same zone.
634 *
635 * For recording whether a page is in the buddy system, we set PageBuddy.
636 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
637 *
638 * For recording page's order, we use page_private(page).
639 */
640static inline bool page_is_buddy(struct page *page, struct page *buddy,
641 unsigned int order)
642{
643 if (!page_is_guard(buddy) && !PageBuddy(buddy))
644 return false;
645
646 if (buddy_order(buddy) != order)
647 return false;
648
649 /*
650 * zone check is done late to avoid uselessly calculating
651 * zone/node ids for pages that could never merge.
652 */
653 if (page_zone_id(page) != page_zone_id(buddy))
654 return false;
655
656 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
657
658 return true;
659}
660
661/*
662 * Locate the struct page for both the matching buddy in our
663 * pair (buddy1) and the combined O(n+1) page they form (page).
664 *
665 * 1) Any buddy B1 will have an order O twin B2 which satisfies
666 * the following equation:
667 * B2 = B1 ^ (1 << O)
668 * For example, if the starting buddy (buddy2) is #8 its order
669 * 1 buddy is #10:
670 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
671 *
672 * 2) Any buddy B will have an order O+1 parent P which
673 * satisfies the following equation:
674 * P = B & ~(1 << O)
675 *
676 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
677 */
678static inline unsigned long
679__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
680{
681 return page_pfn ^ (1 << order);
682}
683
684/*
685 * Find the buddy of @page and validate it.
686 * @page: The input page
687 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
688 * function is used in the performance-critical __free_one_page().
689 * @order: The order of the page
690 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
691 * page_to_pfn().
692 *
693 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
694 * not the same as @page. The validation is necessary before use it.
695 *
696 * Return: the found buddy page or NULL if not found.
697 */
698static inline struct page *find_buddy_page_pfn(struct page *page,
699 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
700{
701 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
702 struct page *buddy;
703
704 buddy = page + (__buddy_pfn - pfn);
705 if (buddy_pfn)
706 *buddy_pfn = __buddy_pfn;
707
708 if (page_is_buddy(page, buddy, order))
709 return buddy;
710 return NULL;
711}
712
713extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
714 unsigned long end_pfn, struct zone *zone);
715
716static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
717 unsigned long end_pfn, struct zone *zone)
718{
719 if (zone->contiguous)
720 return pfn_to_page(start_pfn);
721
722 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
723}
724
725void set_zone_contiguous(struct zone *zone);
726bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
727 unsigned long nr_pages);
728
729static inline void clear_zone_contiguous(struct zone *zone)
730{
731 zone->contiguous = false;
732}
733
734extern int __isolate_free_page(struct page *page, unsigned int order);
735extern void __putback_isolated_page(struct page *page, unsigned int order,
736 int mt);
737extern void memblock_free_pages(struct page *page, unsigned long pfn,
738 unsigned int order);
739extern void __free_pages_core(struct page *page, unsigned int order,
740 enum meminit_context context);
741
742/*
743 * This will have no effect, other than possibly generating a warning, if the
744 * caller passes in a non-large folio.
745 */
746static inline void folio_set_order(struct folio *folio, unsigned int order)
747{
748 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
749 return;
750 VM_WARN_ON_ONCE(order > MAX_FOLIO_ORDER);
751
752 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
753#ifdef NR_PAGES_IN_LARGE_FOLIO
754 folio->_nr_pages = 1U << order;
755#endif
756}
757
758bool __folio_unqueue_deferred_split(struct folio *folio);
759static inline bool folio_unqueue_deferred_split(struct folio *folio)
760{
761 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
762 return false;
763
764 /*
765 * At this point, there is no one trying to add the folio to
766 * deferred_list. If folio is not in deferred_list, it's safe
767 * to check without acquiring the split_queue_lock.
768 */
769 if (data_race(list_empty(&folio->_deferred_list)))
770 return false;
771
772 return __folio_unqueue_deferred_split(folio);
773}
774
775static inline struct folio *page_rmappable_folio(struct page *page)
776{
777 struct folio *folio = (struct folio *)page;
778
779 if (folio && folio_test_large(folio))
780 folio_set_large_rmappable(folio);
781 return folio;
782}
783
784static inline void prep_compound_head(struct page *page, unsigned int order)
785{
786 struct folio *folio = (struct folio *)page;
787
788 folio_set_order(folio, order);
789 atomic_set(&folio->_large_mapcount, -1);
790 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
791 atomic_set(&folio->_nr_pages_mapped, 0);
792 if (IS_ENABLED(CONFIG_MM_ID)) {
793 folio->_mm_ids = 0;
794 folio->_mm_id_mapcount[0] = -1;
795 folio->_mm_id_mapcount[1] = -1;
796 }
797 if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
798 atomic_set(&folio->_pincount, 0);
799 atomic_set(&folio->_entire_mapcount, -1);
800 }
801 if (order > 1)
802 INIT_LIST_HEAD(&folio->_deferred_list);
803}
804
805static inline void prep_compound_tail(struct page *head, int tail_idx)
806{
807 struct page *p = head + tail_idx;
808
809 p->mapping = TAIL_MAPPING;
810 set_compound_head(p, head);
811 set_page_private(p, 0);
812}
813
814void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
815extern bool free_pages_prepare(struct page *page, unsigned int order);
816
817extern int user_min_free_kbytes;
818
819struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
820 nodemask_t *);
821#define __alloc_frozen_pages(...) \
822 alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
823void free_frozen_pages(struct page *page, unsigned int order);
824void free_unref_folios(struct folio_batch *fbatch);
825
826#ifdef CONFIG_NUMA
827struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
828#else
829static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
830{
831 return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
832}
833#endif
834
835#define alloc_frozen_pages(...) \
836 alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
837
838struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order);
839#define alloc_frozen_pages_nolock(...) \
840 alloc_hooks(alloc_frozen_pages_nolock_noprof(__VA_ARGS__))
841
842extern void zone_pcp_reset(struct zone *zone);
843extern void zone_pcp_disable(struct zone *zone);
844extern void zone_pcp_enable(struct zone *zone);
845extern void zone_pcp_init(struct zone *zone);
846
847extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
848 phys_addr_t min_addr,
849 int nid, bool exact_nid);
850
851void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
852 unsigned long, enum meminit_context, struct vmem_altmap *, int,
853 bool);
854
855#if defined CONFIG_COMPACTION || defined CONFIG_CMA
856
857/*
858 * in mm/compaction.c
859 */
860/*
861 * compact_control is used to track pages being migrated and the free pages
862 * they are being migrated to during memory compaction. The free_pfn starts
863 * at the end of a zone and migrate_pfn begins at the start. Movable pages
864 * are moved to the end of a zone during a compaction run and the run
865 * completes when free_pfn <= migrate_pfn
866 */
867struct compact_control {
868 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
869 struct list_head migratepages; /* List of pages being migrated */
870 unsigned int nr_freepages; /* Number of isolated free pages */
871 unsigned int nr_migratepages; /* Number of pages to migrate */
872 unsigned long free_pfn; /* isolate_freepages search base */
873 /*
874 * Acts as an in/out parameter to page isolation for migration.
875 * isolate_migratepages uses it as a search base.
876 * isolate_migratepages_block will update the value to the next pfn
877 * after the last isolated one.
878 */
879 unsigned long migrate_pfn;
880 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
881 struct zone *zone;
882 unsigned long total_migrate_scanned;
883 unsigned long total_free_scanned;
884 unsigned short fast_search_fail;/* failures to use free list searches */
885 short search_order; /* order to start a fast search at */
886 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
887 int order; /* order a direct compactor needs */
888 int migratetype; /* migratetype of direct compactor */
889 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
890 const int highest_zoneidx; /* zone index of a direct compactor */
891 enum migrate_mode mode; /* Async or sync migration mode */
892 bool ignore_skip_hint; /* Scan blocks even if marked skip */
893 bool no_set_skip_hint; /* Don't mark blocks for skipping */
894 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
895 bool direct_compaction; /* False from kcompactd or /proc/... */
896 bool proactive_compaction; /* kcompactd proactive compaction */
897 bool whole_zone; /* Whole zone should/has been scanned */
898 bool contended; /* Signal lock contention */
899 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
900 * when there are potentially transient
901 * isolation or migration failures to
902 * ensure forward progress.
903 */
904 bool alloc_contig; /* alloc_contig_range allocation */
905};
906
907/*
908 * Used in direct compaction when a page should be taken from the freelists
909 * immediately when one is created during the free path.
910 */
911struct capture_control {
912 struct compact_control *cc;
913 struct page *page;
914};
915
916unsigned long
917isolate_freepages_range(struct compact_control *cc,
918 unsigned long start_pfn, unsigned long end_pfn);
919int
920isolate_migratepages_range(struct compact_control *cc,
921 unsigned long low_pfn, unsigned long end_pfn);
922
923/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
924void init_cma_reserved_pageblock(struct page *page);
925
926#endif /* CONFIG_COMPACTION || CONFIG_CMA */
927
928struct cma;
929
930#ifdef CONFIG_CMA
931void *cma_reserve_early(struct cma *cma, unsigned long size);
932void init_cma_pageblock(struct page *page);
933#else
934static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
935{
936 return NULL;
937}
938static inline void init_cma_pageblock(struct page *page)
939{
940}
941#endif
942
943
944int find_suitable_fallback(struct free_area *area, unsigned int order,
945 int migratetype, bool claimable);
946
947static inline bool free_area_empty(struct free_area *area, int migratetype)
948{
949 return list_empty(&area->free_list[migratetype]);
950}
951
952/* mm/util.c */
953struct anon_vma *folio_anon_vma(const struct folio *folio);
954
955#ifdef CONFIG_MMU
956void unmap_mapping_folio(struct folio *folio);
957extern long populate_vma_page_range(struct vm_area_struct *vma,
958 unsigned long start, unsigned long end, int *locked);
959extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
960 unsigned long end, bool write, int *locked);
961bool mlock_future_ok(const struct mm_struct *mm, vm_flags_t vm_flags,
962 unsigned long bytes);
963
964/*
965 * NOTE: This function can't tell whether the folio is "fully mapped" in the
966 * range.
967 * "fully mapped" means all the pages of folio is associated with the page
968 * table of range while this function just check whether the folio range is
969 * within the range [start, end). Function caller needs to do page table
970 * check if it cares about the page table association.
971 *
972 * Typical usage (like mlock or madvise) is:
973 * Caller knows at least 1 page of folio is associated with page table of VMA
974 * and the range [start, end) is intersect with the VMA range. Caller wants
975 * to know whether the folio is fully associated with the range. It calls
976 * this function to check whether the folio is in the range first. Then checks
977 * the page table to know whether the folio is fully mapped to the range.
978 */
979static inline bool
980folio_within_range(struct folio *folio, struct vm_area_struct *vma,
981 unsigned long start, unsigned long end)
982{
983 pgoff_t pgoff, addr;
984 unsigned long vma_pglen = vma_pages(vma);
985
986 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
987 if (start > end)
988 return false;
989
990 if (start < vma->vm_start)
991 start = vma->vm_start;
992
993 if (end > vma->vm_end)
994 end = vma->vm_end;
995
996 pgoff = folio_pgoff(folio);
997
998 /* if folio start address is not in vma range */
999 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
1000 return false;
1001
1002 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1003
1004 return !(addr < start || end - addr < folio_size(folio));
1005}
1006
1007static inline bool
1008folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
1009{
1010 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
1011}
1012
1013/*
1014 * mlock_vma_folio() and munlock_vma_folio():
1015 * should be called with vma's mmap_lock held for read or write,
1016 * under page table lock for the pte/pmd being added or removed.
1017 *
1018 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
1019 * the end of folio_remove_rmap_*(); but new anon folios are managed by
1020 * folio_add_lru_vma() calling mlock_new_folio().
1021 */
1022void mlock_folio(struct folio *folio);
1023static inline void mlock_vma_folio(struct folio *folio,
1024 struct vm_area_struct *vma)
1025{
1026 /*
1027 * The VM_SPECIAL check here serves two purposes.
1028 * 1) VM_IO check prevents migration from double-counting during mlock.
1029 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1030 * is never left set on a VM_SPECIAL vma, there is an interval while
1031 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1032 * still be set while VM_SPECIAL bits are added: so ignore it then.
1033 */
1034 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1035 mlock_folio(folio);
1036}
1037
1038void munlock_folio(struct folio *folio);
1039static inline void munlock_vma_folio(struct folio *folio,
1040 struct vm_area_struct *vma)
1041{
1042 /*
1043 * munlock if the function is called. Ideally, we should only
1044 * do munlock if any page of folio is unmapped from VMA and
1045 * cause folio not fully mapped to VMA.
1046 *
1047 * But it's not easy to confirm that's the situation. So we
1048 * always munlock the folio and page reclaim will correct it
1049 * if it's wrong.
1050 */
1051 if (unlikely(vma->vm_flags & VM_LOCKED))
1052 munlock_folio(folio);
1053}
1054
1055void mlock_new_folio(struct folio *folio);
1056bool need_mlock_drain(int cpu);
1057void mlock_drain_local(void);
1058void mlock_drain_remote(int cpu);
1059
1060extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1061
1062/**
1063 * vma_address - Find the virtual address a page range is mapped at
1064 * @vma: The vma which maps this object.
1065 * @pgoff: The page offset within its object.
1066 * @nr_pages: The number of pages to consider.
1067 *
1068 * If any page in this range is mapped by this VMA, return the first address
1069 * where any of these pages appear. Otherwise, return -EFAULT.
1070 */
1071static inline unsigned long vma_address(const struct vm_area_struct *vma,
1072 pgoff_t pgoff, unsigned long nr_pages)
1073{
1074 unsigned long address;
1075
1076 if (pgoff >= vma->vm_pgoff) {
1077 address = vma->vm_start +
1078 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1079 /* Check for address beyond vma (or wrapped through 0?) */
1080 if (address < vma->vm_start || address >= vma->vm_end)
1081 address = -EFAULT;
1082 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1083 /* Test above avoids possibility of wrap to 0 on 32-bit */
1084 address = vma->vm_start;
1085 } else {
1086 address = -EFAULT;
1087 }
1088 return address;
1089}
1090
1091/*
1092 * Then at what user virtual address will none of the range be found in vma?
1093 * Assumes that vma_address() already returned a good starting address.
1094 */
1095static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1096{
1097 struct vm_area_struct *vma = pvmw->vma;
1098 pgoff_t pgoff;
1099 unsigned long address;
1100
1101 /* Common case, plus ->pgoff is invalid for KSM */
1102 if (pvmw->nr_pages == 1)
1103 return pvmw->address + PAGE_SIZE;
1104
1105 pgoff = pvmw->pgoff + pvmw->nr_pages;
1106 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1107 /* Check for address beyond vma (or wrapped through 0?) */
1108 if (address < vma->vm_start || address > vma->vm_end)
1109 address = vma->vm_end;
1110 return address;
1111}
1112
1113static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1114 struct file *fpin)
1115{
1116 int flags = vmf->flags;
1117
1118 if (fpin)
1119 return fpin;
1120
1121 /*
1122 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1123 * anything, so we only pin the file and drop the mmap_lock if only
1124 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1125 */
1126 if (fault_flag_allow_retry_first(flags) &&
1127 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1128 fpin = get_file(vmf->vma->vm_file);
1129 release_fault_lock(vmf);
1130 }
1131 return fpin;
1132}
1133#else /* !CONFIG_MMU */
1134static inline void unmap_mapping_folio(struct folio *folio) { }
1135static inline void mlock_new_folio(struct folio *folio) { }
1136static inline bool need_mlock_drain(int cpu) { return false; }
1137static inline void mlock_drain_local(void) { }
1138static inline void mlock_drain_remote(int cpu) { }
1139static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1140{
1141}
1142#endif /* !CONFIG_MMU */
1143
1144/* Memory initialisation debug and verification */
1145#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1146DECLARE_STATIC_KEY_TRUE(deferred_pages);
1147
1148bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1149#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1150
1151void init_deferred_page(unsigned long pfn, int nid);
1152
1153enum mminit_level {
1154 MMINIT_WARNING,
1155 MMINIT_VERIFY,
1156 MMINIT_TRACE
1157};
1158
1159#ifdef CONFIG_DEBUG_MEMORY_INIT
1160
1161extern int mminit_loglevel;
1162
1163#define mminit_dprintk(level, prefix, fmt, arg...) \
1164do { \
1165 if (level < mminit_loglevel) { \
1166 if (level <= MMINIT_WARNING) \
1167 pr_warn("mminit::" prefix " " fmt, ##arg); \
1168 else \
1169 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1170 } \
1171} while (0)
1172
1173extern void mminit_verify_pageflags_layout(void);
1174extern void mminit_verify_zonelist(void);
1175#else
1176
1177static inline void mminit_dprintk(enum mminit_level level,
1178 const char *prefix, const char *fmt, ...)
1179{
1180}
1181
1182static inline void mminit_verify_pageflags_layout(void)
1183{
1184}
1185
1186static inline void mminit_verify_zonelist(void)
1187{
1188}
1189#endif /* CONFIG_DEBUG_MEMORY_INIT */
1190
1191#define NODE_RECLAIM_NOSCAN -2
1192#define NODE_RECLAIM_FULL -1
1193#define NODE_RECLAIM_SOME 0
1194#define NODE_RECLAIM_SUCCESS 1
1195
1196#ifdef CONFIG_NUMA
1197extern int node_reclaim_mode;
1198
1199extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1200extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1201#else
1202#define node_reclaim_mode 0
1203
1204static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1205 unsigned int order)
1206{
1207 return NODE_RECLAIM_NOSCAN;
1208}
1209static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1210{
1211 return NUMA_NO_NODE;
1212}
1213#endif
1214
1215static inline bool node_reclaim_enabled(void)
1216{
1217 /* Is any node_reclaim_mode bit set? */
1218 return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1219}
1220
1221/*
1222 * mm/memory-failure.c
1223 */
1224#ifdef CONFIG_MEMORY_FAILURE
1225int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1226void shake_folio(struct folio *folio);
1227typedef int hwpoison_filter_func_t(struct page *p);
1228void hwpoison_filter_register(hwpoison_filter_func_t *filter);
1229void hwpoison_filter_unregister(void);
1230
1231#define MAGIC_HWPOISON 0x48575053U /* HWPS */
1232void SetPageHWPoisonTakenOff(struct page *page);
1233void ClearPageHWPoisonTakenOff(struct page *page);
1234bool take_page_off_buddy(struct page *page);
1235bool put_page_back_buddy(struct page *page);
1236struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1237void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1238 struct vm_area_struct *vma, struct list_head *to_kill,
1239 unsigned long ksm_addr);
1240unsigned long page_mapped_in_vma(const struct page *page,
1241 struct vm_area_struct *vma);
1242
1243#else
1244static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1245{
1246 return -EBUSY;
1247}
1248#endif
1249
1250extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1251 unsigned long, unsigned long,
1252 unsigned long, unsigned long);
1253
1254extern void set_pageblock_order(void);
1255unsigned long reclaim_pages(struct list_head *folio_list);
1256unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1257 struct list_head *folio_list);
1258/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1259#define ALLOC_WMARK_MIN WMARK_MIN
1260#define ALLOC_WMARK_LOW WMARK_LOW
1261#define ALLOC_WMARK_HIGH WMARK_HIGH
1262#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1263
1264/* Mask to get the watermark bits */
1265#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1266
1267/*
1268 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1269 * cannot assume a reduced access to memory reserves is sufficient for
1270 * !MMU
1271 */
1272#ifdef CONFIG_MMU
1273#define ALLOC_OOM 0x08
1274#else
1275#define ALLOC_OOM ALLOC_NO_WATERMARKS
1276#endif
1277
1278#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1279 * to 25% of the min watermark or
1280 * 62.5% if __GFP_HIGH is set.
1281 */
1282#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1283 * of the min watermark.
1284 */
1285#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1286#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1287#ifdef CONFIG_ZONE_DMA32
1288#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1289#else
1290#define ALLOC_NOFRAGMENT 0x0
1291#endif
1292#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1293#define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */
1294#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1295
1296/* Flags that allow allocations below the min watermark. */
1297#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1298
1299enum ttu_flags;
1300struct tlbflush_unmap_batch;
1301
1302
1303/*
1304 * only for MM internal work items which do not depend on
1305 * any allocations or locks which might depend on allocations
1306 */
1307extern struct workqueue_struct *mm_percpu_wq;
1308
1309#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1310void try_to_unmap_flush(void);
1311void try_to_unmap_flush_dirty(void);
1312void flush_tlb_batched_pending(struct mm_struct *mm);
1313#else
1314static inline void try_to_unmap_flush(void)
1315{
1316}
1317static inline void try_to_unmap_flush_dirty(void)
1318{
1319}
1320static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1321{
1322}
1323#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1324
1325extern const struct trace_print_flags pageflag_names[];
1326extern const struct trace_print_flags vmaflag_names[];
1327extern const struct trace_print_flags gfpflag_names[];
1328
1329void setup_zone_pageset(struct zone *zone);
1330
1331struct migration_target_control {
1332 int nid; /* preferred node id */
1333 nodemask_t *nmask;
1334 gfp_t gfp_mask;
1335 enum migrate_reason reason;
1336};
1337
1338/*
1339 * mm/filemap.c
1340 */
1341size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1342 struct folio *folio, loff_t fpos, size_t size);
1343
1344/*
1345 * mm/vmalloc.c
1346 */
1347#ifdef CONFIG_MMU
1348void __init vmalloc_init(void);
1349int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1350 pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask);
1351unsigned int get_vm_area_page_order(struct vm_struct *vm);
1352#else
1353static inline void vmalloc_init(void)
1354{
1355}
1356
1357static inline
1358int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1359 pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask)
1360{
1361 return -EINVAL;
1362}
1363#endif
1364
1365int __must_check __vmap_pages_range_noflush(unsigned long addr,
1366 unsigned long end, pgprot_t prot,
1367 struct page **pages, unsigned int page_shift);
1368
1369void vunmap_range_noflush(unsigned long start, unsigned long end);
1370
1371void __vunmap_range_noflush(unsigned long start, unsigned long end);
1372
1373static inline bool vma_is_single_threaded_private(struct vm_area_struct *vma)
1374{
1375 if (vma->vm_flags & VM_SHARED)
1376 return false;
1377
1378 return atomic_read(&vma->vm_mm->mm_users) == 1;
1379}
1380
1381#ifdef CONFIG_NUMA_BALANCING
1382bool folio_can_map_prot_numa(struct folio *folio, struct vm_area_struct *vma,
1383 bool is_private_single_threaded);
1384
1385#else
1386static inline bool folio_can_map_prot_numa(struct folio *folio,
1387 struct vm_area_struct *vma, bool is_private_single_threaded)
1388{
1389 return false;
1390}
1391#endif
1392
1393int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1394 unsigned long addr, int *flags, bool writable,
1395 int *last_cpupid);
1396
1397void free_zone_device_folio(struct folio *folio);
1398int migrate_device_coherent_folio(struct folio *folio);
1399
1400struct vm_struct *__get_vm_area_node(unsigned long size,
1401 unsigned long align, unsigned long shift,
1402 unsigned long vm_flags, unsigned long start,
1403 unsigned long end, int node, gfp_t gfp_mask,
1404 const void *caller);
1405
1406/*
1407 * mm/gup.c
1408 */
1409int __must_check try_grab_folio(struct folio *folio, int refs,
1410 unsigned int flags);
1411
1412/*
1413 * mm/huge_memory.c
1414 */
1415void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1416 pud_t *pud, bool write);
1417bool touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1418 pmd_t *pmd, bool write);
1419
1420/*
1421 * Parses a string with mem suffixes into its order. Useful to parse kernel
1422 * parameters.
1423 */
1424static inline int get_order_from_str(const char *size_str,
1425 unsigned long valid_orders)
1426{
1427 unsigned long size;
1428 char *endptr;
1429 int order;
1430
1431 size = memparse(size_str, &endptr);
1432
1433 if (!is_power_of_2(size))
1434 return -EINVAL;
1435 order = get_order(size);
1436 if (BIT(order) & ~valid_orders)
1437 return -EINVAL;
1438
1439 return order;
1440}
1441
1442enum {
1443 /* mark page accessed */
1444 FOLL_TOUCH = 1 << 16,
1445 /* a retry, previous pass started an IO */
1446 FOLL_TRIED = 1 << 17,
1447 /* we are working on non-current tsk/mm */
1448 FOLL_REMOTE = 1 << 18,
1449 /* pages must be released via unpin_user_page */
1450 FOLL_PIN = 1 << 19,
1451 /* gup_fast: prevent fall-back to slow gup */
1452 FOLL_FAST_ONLY = 1 << 20,
1453 /* allow unlocking the mmap lock */
1454 FOLL_UNLOCKABLE = 1 << 21,
1455 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1456 FOLL_MADV_POPULATE = 1 << 22,
1457};
1458
1459#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1460 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1461 FOLL_MADV_POPULATE)
1462
1463/*
1464 * Indicates for which pages that are write-protected in the page table,
1465 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1466 * GUP pin will remain consistent with the pages mapped into the page tables
1467 * of the MM.
1468 *
1469 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1470 * PageAnonExclusive() has to protect against concurrent GUP:
1471 * * Ordinary GUP: Using the PT lock
1472 * * GUP-fast and fork(): mm->write_protect_seq
1473 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1474 * folio_try_share_anon_rmap_*()
1475 *
1476 * Must be called with the (sub)page that's actually referenced via the
1477 * page table entry, which might not necessarily be the head page for a
1478 * PTE-mapped THP.
1479 *
1480 * If the vma is NULL, we're coming from the GUP-fast path and might have
1481 * to fallback to the slow path just to lookup the vma.
1482 */
1483static inline bool gup_must_unshare(struct vm_area_struct *vma,
1484 unsigned int flags, struct page *page)
1485{
1486 /*
1487 * FOLL_WRITE is implicitly handled correctly as the page table entry
1488 * has to be writable -- and if it references (part of) an anonymous
1489 * folio, that part is required to be marked exclusive.
1490 */
1491 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1492 return false;
1493 /*
1494 * Note: PageAnon(page) is stable until the page is actually getting
1495 * freed.
1496 */
1497 if (!PageAnon(page)) {
1498 /*
1499 * We only care about R/O long-term pining: R/O short-term
1500 * pinning does not have the semantics to observe successive
1501 * changes through the process page tables.
1502 */
1503 if (!(flags & FOLL_LONGTERM))
1504 return false;
1505
1506 /* We really need the vma ... */
1507 if (!vma)
1508 return true;
1509
1510 /*
1511 * ... because we only care about writable private ("COW")
1512 * mappings where we have to break COW early.
1513 */
1514 return is_cow_mapping(vma->vm_flags);
1515 }
1516
1517 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1518 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1519 smp_rmb();
1520
1521 /*
1522 * Note that KSM pages cannot be exclusive, and consequently,
1523 * cannot get pinned.
1524 */
1525 return !PageAnonExclusive(page);
1526}
1527
1528extern bool mirrored_kernelcore;
1529bool memblock_has_mirror(void);
1530void memblock_free_all(void);
1531
1532static __always_inline void vma_set_range(struct vm_area_struct *vma,
1533 unsigned long start, unsigned long end,
1534 pgoff_t pgoff)
1535{
1536 vma->vm_start = start;
1537 vma->vm_end = end;
1538 vma->vm_pgoff = pgoff;
1539}
1540
1541static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1542{
1543 /*
1544 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1545 * enablements, because when without soft-dirty being compiled in,
1546 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1547 * will be constantly true.
1548 */
1549 if (!pgtable_supports_soft_dirty())
1550 return false;
1551
1552 /*
1553 * Soft-dirty is kind of special: its tracking is enabled when the
1554 * vma flags not set.
1555 */
1556 return !(vma->vm_flags & VM_SOFTDIRTY);
1557}
1558
1559static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1560{
1561 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1562}
1563
1564static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1565{
1566 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1567}
1568
1569void __meminit __init_single_page(struct page *page, unsigned long pfn,
1570 unsigned long zone, int nid);
1571void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1572
1573/* shrinker related functions */
1574unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1575 int priority);
1576
1577int shmem_add_to_page_cache(struct folio *folio,
1578 struct address_space *mapping,
1579 pgoff_t index, void *expected, gfp_t gfp);
1580int shmem_inode_acct_blocks(struct inode *inode, long pages);
1581bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped);
1582
1583#ifdef CONFIG_SHRINKER_DEBUG
1584static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1585 struct shrinker *shrinker, const char *fmt, va_list ap)
1586{
1587 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1588
1589 return shrinker->name ? 0 : -ENOMEM;
1590}
1591
1592static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1593{
1594 kfree_const(shrinker->name);
1595 shrinker->name = NULL;
1596}
1597
1598extern int shrinker_debugfs_add(struct shrinker *shrinker);
1599extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1600 int *debugfs_id);
1601extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1602 int debugfs_id);
1603#else /* CONFIG_SHRINKER_DEBUG */
1604static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1605{
1606 return 0;
1607}
1608static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1609 const char *fmt, va_list ap)
1610{
1611 return 0;
1612}
1613static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1614{
1615}
1616static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1617 int *debugfs_id)
1618{
1619 *debugfs_id = -1;
1620 return NULL;
1621}
1622static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1623 int debugfs_id)
1624{
1625}
1626#endif /* CONFIG_SHRINKER_DEBUG */
1627
1628/* Only track the nodes of mappings with shadow entries */
1629void workingset_update_node(struct xa_node *node);
1630extern struct list_lru shadow_nodes;
1631#define mapping_set_update(xas, mapping) do { \
1632 if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \
1633 xas_set_update(xas, workingset_update_node); \
1634 xas_set_lru(xas, &shadow_nodes); \
1635 } \
1636} while (0)
1637
1638/* mremap.c */
1639unsigned long move_page_tables(struct pagetable_move_control *pmc);
1640
1641#ifdef CONFIG_UNACCEPTED_MEMORY
1642void accept_page(struct page *page);
1643#else /* CONFIG_UNACCEPTED_MEMORY */
1644static inline void accept_page(struct page *page)
1645{
1646}
1647#endif /* CONFIG_UNACCEPTED_MEMORY */
1648
1649/* pagewalk.c */
1650int walk_page_range_mm_unsafe(struct mm_struct *mm, unsigned long start,
1651 unsigned long end, const struct mm_walk_ops *ops,
1652 void *private);
1653int walk_page_range_vma_unsafe(struct vm_area_struct *vma, unsigned long start,
1654 unsigned long end, const struct mm_walk_ops *ops,
1655 void *private);
1656int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1657 unsigned long end, const struct mm_walk_ops *ops,
1658 pgd_t *pgd, void *private);
1659
1660/* pt_reclaim.c */
1661bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1662void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1663 pmd_t pmdval);
1664void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1665 struct mmu_gather *tlb);
1666
1667#ifdef CONFIG_PT_RECLAIM
1668bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1669 struct zap_details *details);
1670#else
1671static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1672 struct zap_details *details)
1673{
1674 return false;
1675}
1676#endif /* CONFIG_PT_RECLAIM */
1677
1678void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1679int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1680
1681void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn);
1682int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
1683 unsigned long pfn, unsigned long size, pgprot_t pgprot);
1684
1685static inline void io_remap_pfn_range_prepare(struct vm_area_desc *desc,
1686 unsigned long orig_pfn, unsigned long size)
1687{
1688 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1689
1690 return remap_pfn_range_prepare(desc, pfn);
1691}
1692
1693static inline int io_remap_pfn_range_complete(struct vm_area_struct *vma,
1694 unsigned long addr, unsigned long orig_pfn, unsigned long size,
1695 pgprot_t orig_prot)
1696{
1697 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1698 const pgprot_t prot = pgprot_decrypted(orig_prot);
1699
1700 return remap_pfn_range_complete(vma, addr, pfn, size, prot);
1701}
1702
1703#endif /* __MM_INTERNAL_H */