at v6.19 3395 lines 84 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2#include <linux/pagewalk.h> 3#include <linux/mm_inline.h> 4#include <linux/hugetlb.h> 5#include <linux/huge_mm.h> 6#include <linux/mount.h> 7#include <linux/ksm.h> 8#include <linux/seq_file.h> 9#include <linux/highmem.h> 10#include <linux/ptrace.h> 11#include <linux/slab.h> 12#include <linux/pagemap.h> 13#include <linux/mempolicy.h> 14#include <linux/rmap.h> 15#include <linux/swap.h> 16#include <linux/sched/mm.h> 17#include <linux/leafops.h> 18#include <linux/mmu_notifier.h> 19#include <linux/page_idle.h> 20#include <linux/shmem_fs.h> 21#include <linux/uaccess.h> 22#include <linux/pkeys.h> 23#include <linux/minmax.h> 24#include <linux/overflow.h> 25#include <linux/buildid.h> 26 27#include <asm/elf.h> 28#include <asm/tlb.h> 29#include <asm/tlbflush.h> 30#include "internal.h" 31 32#define SENTINEL_VMA_END -1 33#define SENTINEL_VMA_GATE -2 34 35#define SEQ_PUT_DEC(str, val) \ 36 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 37void task_mem(struct seq_file *m, struct mm_struct *mm) 38{ 39 unsigned long text, lib, swap, anon, file, shmem; 40 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 41 42 anon = get_mm_counter_sum(mm, MM_ANONPAGES); 43 file = get_mm_counter_sum(mm, MM_FILEPAGES); 44 shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES); 45 46 /* 47 * Note: to minimize their overhead, mm maintains hiwater_vm and 48 * hiwater_rss only when about to *lower* total_vm or rss. Any 49 * collector of these hiwater stats must therefore get total_vm 50 * and rss too, which will usually be the higher. Barriers? not 51 * worth the effort, such snapshots can always be inconsistent. 52 */ 53 hiwater_vm = total_vm = mm->total_vm; 54 if (hiwater_vm < mm->hiwater_vm) 55 hiwater_vm = mm->hiwater_vm; 56 hiwater_rss = total_rss = anon + file + shmem; 57 if (hiwater_rss < mm->hiwater_rss) 58 hiwater_rss = mm->hiwater_rss; 59 60 /* split executable areas between text and lib */ 61 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 62 text = min(text, mm->exec_vm << PAGE_SHIFT); 63 lib = (mm->exec_vm << PAGE_SHIFT) - text; 64 65 swap = get_mm_counter_sum(mm, MM_SWAPENTS); 66 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 67 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 68 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 69 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 70 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 71 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 72 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 73 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 74 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 75 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 76 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 77 seq_put_decimal_ull_width(m, 78 " kB\nVmExe:\t", text >> 10, 8); 79 seq_put_decimal_ull_width(m, 80 " kB\nVmLib:\t", lib >> 10, 8); 81 seq_put_decimal_ull_width(m, 82 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 83 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 84 seq_puts(m, " kB\n"); 85 hugetlb_report_usage(m, mm); 86} 87#undef SEQ_PUT_DEC 88 89unsigned long task_vsize(struct mm_struct *mm) 90{ 91 return PAGE_SIZE * mm->total_vm; 92} 93 94unsigned long task_statm(struct mm_struct *mm, 95 unsigned long *shared, unsigned long *text, 96 unsigned long *data, unsigned long *resident) 97{ 98 *shared = get_mm_counter_sum(mm, MM_FILEPAGES) + 99 get_mm_counter_sum(mm, MM_SHMEMPAGES); 100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 101 >> PAGE_SHIFT; 102 *data = mm->data_vm + mm->stack_vm; 103 *resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES); 104 return mm->total_vm; 105} 106 107#ifdef CONFIG_NUMA 108/* 109 * Save get_task_policy() for show_numa_map(). 110 */ 111static void hold_task_mempolicy(struct proc_maps_private *priv) 112{ 113 struct task_struct *task = priv->task; 114 115 task_lock(task); 116 priv->task_mempolicy = get_task_policy(task); 117 mpol_get(priv->task_mempolicy); 118 task_unlock(task); 119} 120static void release_task_mempolicy(struct proc_maps_private *priv) 121{ 122 mpol_put(priv->task_mempolicy); 123} 124#else 125static void hold_task_mempolicy(struct proc_maps_private *priv) 126{ 127} 128static void release_task_mempolicy(struct proc_maps_private *priv) 129{ 130} 131#endif 132 133#ifdef CONFIG_PER_VMA_LOCK 134 135static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx) 136{ 137 lock_ctx->locked_vma = NULL; 138 lock_ctx->mmap_locked = false; 139} 140 141static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx) 142{ 143 if (lock_ctx->locked_vma) { 144 vma_end_read(lock_ctx->locked_vma); 145 lock_ctx->locked_vma = NULL; 146 } 147} 148 149static const struct seq_operations proc_pid_maps_op; 150 151static inline bool lock_vma_range(struct seq_file *m, 152 struct proc_maps_locking_ctx *lock_ctx) 153{ 154 /* 155 * smaps and numa_maps perform page table walk, therefore require 156 * mmap_lock but maps can be read with locking just the vma and 157 * walking the vma tree under rcu read protection. 158 */ 159 if (m->op != &proc_pid_maps_op) { 160 if (mmap_read_lock_killable(lock_ctx->mm)) 161 return false; 162 163 lock_ctx->mmap_locked = true; 164 } else { 165 rcu_read_lock(); 166 reset_lock_ctx(lock_ctx); 167 } 168 169 return true; 170} 171 172static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 173{ 174 if (lock_ctx->mmap_locked) { 175 mmap_read_unlock(lock_ctx->mm); 176 } else { 177 unlock_ctx_vma(lock_ctx); 178 rcu_read_unlock(); 179 } 180} 181 182static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 183 loff_t last_pos) 184{ 185 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 186 struct vm_area_struct *vma; 187 188 if (lock_ctx->mmap_locked) 189 return vma_next(&priv->iter); 190 191 unlock_ctx_vma(lock_ctx); 192 vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos); 193 if (!IS_ERR_OR_NULL(vma)) 194 lock_ctx->locked_vma = vma; 195 196 return vma; 197} 198 199static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 200 loff_t pos) 201{ 202 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 203 204 if (lock_ctx->mmap_locked) 205 return false; 206 207 rcu_read_unlock(); 208 mmap_read_lock(lock_ctx->mm); 209 /* Reinitialize the iterator after taking mmap_lock */ 210 vma_iter_set(&priv->iter, pos); 211 lock_ctx->mmap_locked = true; 212 213 return true; 214} 215 216#else /* CONFIG_PER_VMA_LOCK */ 217 218static inline bool lock_vma_range(struct seq_file *m, 219 struct proc_maps_locking_ctx *lock_ctx) 220{ 221 return mmap_read_lock_killable(lock_ctx->mm) == 0; 222} 223 224static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 225{ 226 mmap_read_unlock(lock_ctx->mm); 227} 228 229static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 230 loff_t last_pos) 231{ 232 return vma_next(&priv->iter); 233} 234 235static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 236 loff_t pos) 237{ 238 return false; 239} 240 241#endif /* CONFIG_PER_VMA_LOCK */ 242 243static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos) 244{ 245 struct proc_maps_private *priv = m->private; 246 struct vm_area_struct *vma; 247 248retry: 249 vma = get_next_vma(priv, *ppos); 250 /* EINTR of EAGAIN is possible */ 251 if (IS_ERR(vma)) { 252 if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos)) 253 goto retry; 254 255 return vma; 256 } 257 258 /* Store previous position to be able to restart if needed */ 259 priv->last_pos = *ppos; 260 if (vma) { 261 /* 262 * Track the end of the reported vma to ensure position changes 263 * even if previous vma was merged with the next vma and we 264 * found the extended vma with the same vm_start. 265 */ 266 *ppos = vma->vm_end; 267 } else { 268 *ppos = SENTINEL_VMA_GATE; 269 vma = get_gate_vma(priv->lock_ctx.mm); 270 } 271 272 return vma; 273} 274 275static void *m_start(struct seq_file *m, loff_t *ppos) 276{ 277 struct proc_maps_private *priv = m->private; 278 struct proc_maps_locking_ctx *lock_ctx; 279 loff_t last_addr = *ppos; 280 struct mm_struct *mm; 281 282 /* See m_next(). Zero at the start or after lseek. */ 283 if (last_addr == SENTINEL_VMA_END) 284 return NULL; 285 286 priv->task = get_proc_task(priv->inode); 287 if (!priv->task) 288 return ERR_PTR(-ESRCH); 289 290 lock_ctx = &priv->lock_ctx; 291 mm = lock_ctx->mm; 292 if (!mm || !mmget_not_zero(mm)) { 293 put_task_struct(priv->task); 294 priv->task = NULL; 295 return NULL; 296 } 297 298 if (!lock_vma_range(m, lock_ctx)) { 299 mmput(mm); 300 put_task_struct(priv->task); 301 priv->task = NULL; 302 return ERR_PTR(-EINTR); 303 } 304 305 /* 306 * Reset current position if last_addr was set before 307 * and it's not a sentinel. 308 */ 309 if (last_addr > 0) 310 *ppos = last_addr = priv->last_pos; 311 vma_iter_init(&priv->iter, mm, (unsigned long)last_addr); 312 hold_task_mempolicy(priv); 313 if (last_addr == SENTINEL_VMA_GATE) 314 return get_gate_vma(mm); 315 316 return proc_get_vma(m, ppos); 317} 318 319static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 320{ 321 if (*ppos == SENTINEL_VMA_GATE) { 322 *ppos = SENTINEL_VMA_END; 323 return NULL; 324 } 325 return proc_get_vma(m, ppos); 326} 327 328static void m_stop(struct seq_file *m, void *v) 329{ 330 struct proc_maps_private *priv = m->private; 331 struct mm_struct *mm = priv->lock_ctx.mm; 332 333 if (!priv->task) 334 return; 335 336 release_task_mempolicy(priv); 337 unlock_vma_range(&priv->lock_ctx); 338 mmput(mm); 339 put_task_struct(priv->task); 340 priv->task = NULL; 341} 342 343static int proc_maps_open(struct inode *inode, struct file *file, 344 const struct seq_operations *ops, int psize) 345{ 346 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 347 348 if (!priv) 349 return -ENOMEM; 350 351 priv->inode = inode; 352 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 353 if (IS_ERR(priv->lock_ctx.mm)) { 354 int err = PTR_ERR(priv->lock_ctx.mm); 355 356 seq_release_private(inode, file); 357 return err; 358 } 359 360 return 0; 361} 362 363static int proc_map_release(struct inode *inode, struct file *file) 364{ 365 struct seq_file *seq = file->private_data; 366 struct proc_maps_private *priv = seq->private; 367 368 if (priv->lock_ctx.mm) 369 mmdrop(priv->lock_ctx.mm); 370 371 return seq_release_private(inode, file); 372} 373 374static int do_maps_open(struct inode *inode, struct file *file, 375 const struct seq_operations *ops) 376{ 377 return proc_maps_open(inode, file, ops, 378 sizeof(struct proc_maps_private)); 379} 380 381static void get_vma_name(struct vm_area_struct *vma, 382 const struct path **path, 383 const char **name, 384 const char **name_fmt) 385{ 386 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL; 387 388 *name = NULL; 389 *path = NULL; 390 *name_fmt = NULL; 391 392 /* 393 * Print the dentry name for named mappings, and a 394 * special [heap] marker for the heap: 395 */ 396 if (vma->vm_file) { 397 /* 398 * If user named this anon shared memory via 399 * prctl(PR_SET_VMA ..., use the provided name. 400 */ 401 if (anon_name) { 402 *name_fmt = "[anon_shmem:%s]"; 403 *name = anon_name->name; 404 } else { 405 *path = file_user_path(vma->vm_file); 406 } 407 return; 408 } 409 410 if (vma->vm_ops && vma->vm_ops->name) { 411 *name = vma->vm_ops->name(vma); 412 if (*name) 413 return; 414 } 415 416 *name = arch_vma_name(vma); 417 if (*name) 418 return; 419 420 if (!vma->vm_mm) { 421 *name = "[vdso]"; 422 return; 423 } 424 425 if (vma_is_initial_heap(vma)) { 426 *name = "[heap]"; 427 return; 428 } 429 430 if (vma_is_initial_stack(vma)) { 431 *name = "[stack]"; 432 return; 433 } 434 435 if (anon_name) { 436 *name_fmt = "[anon:%s]"; 437 *name = anon_name->name; 438 return; 439 } 440} 441 442static void show_vma_header_prefix(struct seq_file *m, 443 unsigned long start, unsigned long end, 444 vm_flags_t flags, unsigned long long pgoff, 445 dev_t dev, unsigned long ino) 446{ 447 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 448 seq_put_hex_ll(m, NULL, start, 8); 449 seq_put_hex_ll(m, "-", end, 8); 450 seq_putc(m, ' '); 451 seq_putc(m, flags & VM_READ ? 'r' : '-'); 452 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 453 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 454 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 455 seq_put_hex_ll(m, " ", pgoff, 8); 456 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 457 seq_put_hex_ll(m, ":", MINOR(dev), 2); 458 seq_put_decimal_ull(m, " ", ino); 459 seq_putc(m, ' '); 460} 461 462static void 463show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 464{ 465 const struct path *path; 466 const char *name_fmt, *name; 467 vm_flags_t flags = vma->vm_flags; 468 unsigned long ino = 0; 469 unsigned long long pgoff = 0; 470 unsigned long start, end; 471 dev_t dev = 0; 472 473 if (vma->vm_file) { 474 const struct inode *inode = file_user_inode(vma->vm_file); 475 476 dev = inode->i_sb->s_dev; 477 ino = inode->i_ino; 478 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 479 } 480 481 start = vma->vm_start; 482 end = vma->vm_end; 483 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 484 485 get_vma_name(vma, &path, &name, &name_fmt); 486 if (path) { 487 seq_pad(m, ' '); 488 seq_path(m, path, "\n"); 489 } else if (name_fmt) { 490 seq_pad(m, ' '); 491 seq_printf(m, name_fmt, name); 492 } else if (name) { 493 seq_pad(m, ' '); 494 seq_puts(m, name); 495 } 496 seq_putc(m, '\n'); 497} 498 499static int show_map(struct seq_file *m, void *v) 500{ 501 show_map_vma(m, v); 502 return 0; 503} 504 505static const struct seq_operations proc_pid_maps_op = { 506 .start = m_start, 507 .next = m_next, 508 .stop = m_stop, 509 .show = show_map 510}; 511 512static int pid_maps_open(struct inode *inode, struct file *file) 513{ 514 return do_maps_open(inode, file, &proc_pid_maps_op); 515} 516 517#define PROCMAP_QUERY_VMA_FLAGS ( \ 518 PROCMAP_QUERY_VMA_READABLE | \ 519 PROCMAP_QUERY_VMA_WRITABLE | \ 520 PROCMAP_QUERY_VMA_EXECUTABLE | \ 521 PROCMAP_QUERY_VMA_SHARED \ 522) 523 524#define PROCMAP_QUERY_VALID_FLAGS_MASK ( \ 525 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \ 526 PROCMAP_QUERY_FILE_BACKED_VMA | \ 527 PROCMAP_QUERY_VMA_FLAGS \ 528) 529 530#ifdef CONFIG_PER_VMA_LOCK 531 532static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 533{ 534 reset_lock_ctx(lock_ctx); 535 536 return 0; 537} 538 539static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 540{ 541 if (lock_ctx->mmap_locked) { 542 mmap_read_unlock(lock_ctx->mm); 543 lock_ctx->mmap_locked = false; 544 } else { 545 unlock_ctx_vma(lock_ctx); 546 } 547} 548 549static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 550 unsigned long addr) 551{ 552 struct mm_struct *mm = lock_ctx->mm; 553 struct vm_area_struct *vma; 554 struct vma_iterator vmi; 555 556 if (lock_ctx->mmap_locked) 557 return find_vma(mm, addr); 558 559 /* Unlock previously locked VMA and find the next one under RCU */ 560 unlock_ctx_vma(lock_ctx); 561 rcu_read_lock(); 562 vma_iter_init(&vmi, mm, addr); 563 vma = lock_next_vma(mm, &vmi, addr); 564 rcu_read_unlock(); 565 566 if (!vma) 567 return NULL; 568 569 if (!IS_ERR(vma)) { 570 lock_ctx->locked_vma = vma; 571 return vma; 572 } 573 574 if (PTR_ERR(vma) == -EAGAIN) { 575 /* Fallback to mmap_lock on vma->vm_refcnt overflow */ 576 mmap_read_lock(mm); 577 vma = find_vma(mm, addr); 578 lock_ctx->mmap_locked = true; 579 } 580 581 return vma; 582} 583 584#else /* CONFIG_PER_VMA_LOCK */ 585 586static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 587{ 588 return mmap_read_lock_killable(lock_ctx->mm); 589} 590 591static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 592{ 593 mmap_read_unlock(lock_ctx->mm); 594} 595 596static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 597 unsigned long addr) 598{ 599 return find_vma(lock_ctx->mm, addr); 600} 601 602#endif /* CONFIG_PER_VMA_LOCK */ 603 604static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx, 605 unsigned long addr, u32 flags) 606{ 607 struct vm_area_struct *vma; 608 609next_vma: 610 vma = query_vma_find_by_addr(lock_ctx, addr); 611 if (IS_ERR(vma)) 612 return vma; 613 614 if (!vma) 615 goto no_vma; 616 617 /* user requested only file-backed VMA, keep iterating */ 618 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file) 619 goto skip_vma; 620 621 /* VMA permissions should satisfy query flags */ 622 if (flags & PROCMAP_QUERY_VMA_FLAGS) { 623 u32 perm = 0; 624 625 if (flags & PROCMAP_QUERY_VMA_READABLE) 626 perm |= VM_READ; 627 if (flags & PROCMAP_QUERY_VMA_WRITABLE) 628 perm |= VM_WRITE; 629 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE) 630 perm |= VM_EXEC; 631 if (flags & PROCMAP_QUERY_VMA_SHARED) 632 perm |= VM_MAYSHARE; 633 634 if ((vma->vm_flags & perm) != perm) 635 goto skip_vma; 636 } 637 638 /* found covering VMA or user is OK with the matching next VMA */ 639 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr) 640 return vma; 641 642skip_vma: 643 /* 644 * If the user needs closest matching VMA, keep iterating. 645 */ 646 addr = vma->vm_end; 647 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) 648 goto next_vma; 649 650no_vma: 651 return ERR_PTR(-ENOENT); 652} 653 654static int do_procmap_query(struct mm_struct *mm, void __user *uarg) 655{ 656 struct proc_maps_locking_ctx lock_ctx = { .mm = mm }; 657 struct procmap_query karg; 658 struct vm_area_struct *vma; 659 struct file *vm_file = NULL; 660 const char *name = NULL; 661 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL; 662 __u64 usize; 663 int err; 664 665 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize))) 666 return -EFAULT; 667 /* argument struct can never be that large, reject abuse */ 668 if (usize > PAGE_SIZE) 669 return -E2BIG; 670 /* argument struct should have at least query_flags and query_addr fields */ 671 if (usize < offsetofend(struct procmap_query, query_addr)) 672 return -EINVAL; 673 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 674 if (err) 675 return err; 676 677 /* reject unknown flags */ 678 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK) 679 return -EINVAL; 680 /* either both buffer address and size are set, or both should be zero */ 681 if (!!karg.vma_name_size != !!karg.vma_name_addr) 682 return -EINVAL; 683 if (!!karg.build_id_size != !!karg.build_id_addr) 684 return -EINVAL; 685 686 if (!mm || !mmget_not_zero(mm)) 687 return -ESRCH; 688 689 err = query_vma_setup(&lock_ctx); 690 if (err) { 691 mmput(mm); 692 return err; 693 } 694 695 vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags); 696 if (IS_ERR(vma)) { 697 err = PTR_ERR(vma); 698 vma = NULL; 699 goto out; 700 } 701 702 karg.vma_start = vma->vm_start; 703 karg.vma_end = vma->vm_end; 704 705 karg.vma_flags = 0; 706 if (vma->vm_flags & VM_READ) 707 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE; 708 if (vma->vm_flags & VM_WRITE) 709 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE; 710 if (vma->vm_flags & VM_EXEC) 711 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE; 712 if (vma->vm_flags & VM_MAYSHARE) 713 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED; 714 715 karg.vma_page_size = vma_kernel_pagesize(vma); 716 717 if (vma->vm_file) { 718 const struct inode *inode = file_user_inode(vma->vm_file); 719 720 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT; 721 karg.dev_major = MAJOR(inode->i_sb->s_dev); 722 karg.dev_minor = MINOR(inode->i_sb->s_dev); 723 karg.inode = inode->i_ino; 724 } else { 725 karg.vma_offset = 0; 726 karg.dev_major = 0; 727 karg.dev_minor = 0; 728 karg.inode = 0; 729 } 730 731 if (karg.vma_name_size) { 732 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size); 733 const struct path *path; 734 const char *name_fmt; 735 size_t name_sz = 0; 736 737 get_vma_name(vma, &path, &name, &name_fmt); 738 739 if (path || name_fmt || name) { 740 name_buf = kmalloc(name_buf_sz, GFP_KERNEL); 741 if (!name_buf) { 742 err = -ENOMEM; 743 goto out; 744 } 745 } 746 if (path) { 747 name = d_path(path, name_buf, name_buf_sz); 748 if (IS_ERR(name)) { 749 err = PTR_ERR(name); 750 goto out; 751 } 752 name_sz = name_buf + name_buf_sz - name; 753 } else if (name || name_fmt) { 754 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name); 755 name = name_buf; 756 } 757 if (name_sz > name_buf_sz) { 758 err = -ENAMETOOLONG; 759 goto out; 760 } 761 karg.vma_name_size = name_sz; 762 } 763 764 if (karg.build_id_size && vma->vm_file) 765 vm_file = get_file(vma->vm_file); 766 767 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */ 768 query_vma_teardown(&lock_ctx); 769 mmput(mm); 770 771 if (karg.build_id_size) { 772 __u32 build_id_sz; 773 774 if (vm_file) 775 err = build_id_parse_file(vm_file, build_id_buf, &build_id_sz); 776 else 777 err = -ENOENT; 778 if (err) { 779 karg.build_id_size = 0; 780 } else { 781 if (karg.build_id_size < build_id_sz) { 782 err = -ENAMETOOLONG; 783 goto out; 784 } 785 karg.build_id_size = build_id_sz; 786 } 787 } 788 789 if (vm_file) 790 fput(vm_file); 791 792 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr), 793 name, karg.vma_name_size)) { 794 kfree(name_buf); 795 return -EFAULT; 796 } 797 kfree(name_buf); 798 799 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr), 800 build_id_buf, karg.build_id_size)) 801 return -EFAULT; 802 803 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize))) 804 return -EFAULT; 805 806 return 0; 807 808out: 809 query_vma_teardown(&lock_ctx); 810 mmput(mm); 811 if (vm_file) 812 fput(vm_file); 813 kfree(name_buf); 814 return err; 815} 816 817static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 818{ 819 struct seq_file *seq = file->private_data; 820 struct proc_maps_private *priv = seq->private; 821 822 switch (cmd) { 823 case PROCMAP_QUERY: 824 /* priv->lock_ctx.mm is set during file open operation */ 825 return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg); 826 default: 827 return -ENOIOCTLCMD; 828 } 829} 830 831const struct file_operations proc_pid_maps_operations = { 832 .open = pid_maps_open, 833 .read = seq_read, 834 .llseek = seq_lseek, 835 .release = proc_map_release, 836 .unlocked_ioctl = procfs_procmap_ioctl, 837 .compat_ioctl = compat_ptr_ioctl, 838}; 839 840/* 841 * Proportional Set Size(PSS): my share of RSS. 842 * 843 * PSS of a process is the count of pages it has in memory, where each 844 * page is divided by the number of processes sharing it. So if a 845 * process has 1000 pages all to itself, and 1000 shared with one other 846 * process, its PSS will be 1500. 847 * 848 * To keep (accumulated) division errors low, we adopt a 64bit 849 * fixed-point pss counter to minimize division errors. So (pss >> 850 * PSS_SHIFT) would be the real byte count. 851 * 852 * A shift of 12 before division means (assuming 4K page size): 853 * - 1M 3-user-pages add up to 8KB errors; 854 * - supports mapcount up to 2^24, or 16M; 855 * - supports PSS up to 2^52 bytes, or 4PB. 856 */ 857#define PSS_SHIFT 12 858 859#ifdef CONFIG_PROC_PAGE_MONITOR 860struct mem_size_stats { 861 unsigned long resident; 862 unsigned long shared_clean; 863 unsigned long shared_dirty; 864 unsigned long private_clean; 865 unsigned long private_dirty; 866 unsigned long referenced; 867 unsigned long anonymous; 868 unsigned long lazyfree; 869 unsigned long anonymous_thp; 870 unsigned long shmem_thp; 871 unsigned long file_thp; 872 unsigned long swap; 873 unsigned long shared_hugetlb; 874 unsigned long private_hugetlb; 875 unsigned long ksm; 876 u64 pss; 877 u64 pss_anon; 878 u64 pss_file; 879 u64 pss_shmem; 880 u64 pss_dirty; 881 u64 pss_locked; 882 u64 swap_pss; 883}; 884 885static void smaps_page_accumulate(struct mem_size_stats *mss, 886 struct folio *folio, unsigned long size, unsigned long pss, 887 bool dirty, bool locked, bool private) 888{ 889 mss->pss += pss; 890 891 if (folio_test_anon(folio)) 892 mss->pss_anon += pss; 893 else if (folio_test_swapbacked(folio)) 894 mss->pss_shmem += pss; 895 else 896 mss->pss_file += pss; 897 898 if (locked) 899 mss->pss_locked += pss; 900 901 if (dirty || folio_test_dirty(folio)) { 902 mss->pss_dirty += pss; 903 if (private) 904 mss->private_dirty += size; 905 else 906 mss->shared_dirty += size; 907 } else { 908 if (private) 909 mss->private_clean += size; 910 else 911 mss->shared_clean += size; 912 } 913} 914 915static void smaps_account(struct mem_size_stats *mss, struct page *page, 916 bool compound, bool young, bool dirty, bool locked, 917 bool present) 918{ 919 struct folio *folio = page_folio(page); 920 int i, nr = compound ? compound_nr(page) : 1; 921 unsigned long size = nr * PAGE_SIZE; 922 bool exclusive; 923 int mapcount; 924 925 /* 926 * First accumulate quantities that depend only on |size| and the type 927 * of the compound page. 928 */ 929 if (folio_test_anon(folio)) { 930 mss->anonymous += size; 931 if (!folio_test_swapbacked(folio) && !dirty && 932 !folio_test_dirty(folio)) 933 mss->lazyfree += size; 934 } 935 936 if (folio_test_ksm(folio)) 937 mss->ksm += size; 938 939 mss->resident += size; 940 /* Accumulate the size in pages that have been accessed. */ 941 if (young || folio_test_young(folio) || folio_test_referenced(folio)) 942 mss->referenced += size; 943 944 /* 945 * Then accumulate quantities that may depend on sharing, or that may 946 * differ page-by-page. 947 * 948 * refcount == 1 for present entries guarantees that the folio is mapped 949 * exactly once. For large folios this implies that exactly one 950 * PTE/PMD/... maps (a part of) this folio. 951 * 952 * Treat all non-present entries (where relying on the mapcount and 953 * refcount doesn't make sense) as "maybe shared, but not sure how 954 * often". We treat device private entries as being fake-present. 955 * 956 * Note that it would not be safe to read the mapcount especially for 957 * pages referenced by migration entries, even with the PTL held. 958 */ 959 if (folio_ref_count(folio) == 1 || !present) { 960 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT, 961 dirty, locked, present); 962 return; 963 } 964 965 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 966 mapcount = folio_average_page_mapcount(folio); 967 exclusive = !folio_maybe_mapped_shared(folio); 968 } 969 970 /* 971 * We obtain a snapshot of the mapcount. Without holding the folio lock 972 * this snapshot can be slightly wrong as we cannot always read the 973 * mapcount atomically. 974 */ 975 for (i = 0; i < nr; i++, page++) { 976 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 977 978 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) { 979 mapcount = folio_precise_page_mapcount(folio, page); 980 exclusive = mapcount < 2; 981 } 982 983 if (mapcount >= 2) 984 pss /= mapcount; 985 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss, 986 dirty, locked, exclusive); 987 } 988} 989 990#ifdef CONFIG_SHMEM 991static int smaps_pte_hole(unsigned long addr, unsigned long end, 992 __always_unused int depth, struct mm_walk *walk) 993{ 994 struct mem_size_stats *mss = walk->private; 995 struct vm_area_struct *vma = walk->vma; 996 997 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 998 linear_page_index(vma, addr), 999 linear_page_index(vma, end)); 1000 1001 return 0; 1002} 1003#else 1004#define smaps_pte_hole NULL 1005#endif /* CONFIG_SHMEM */ 1006 1007static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 1008{ 1009#ifdef CONFIG_SHMEM 1010 if (walk->ops->pte_hole) { 1011 /* depth is not used */ 1012 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 1013 } 1014#endif 1015} 1016 1017static void smaps_pte_entry(pte_t *pte, unsigned long addr, 1018 struct mm_walk *walk) 1019{ 1020 struct mem_size_stats *mss = walk->private; 1021 struct vm_area_struct *vma = walk->vma; 1022 bool locked = !!(vma->vm_flags & VM_LOCKED); 1023 struct page *page = NULL; 1024 bool present = false, young = false, dirty = false; 1025 pte_t ptent = ptep_get(pte); 1026 1027 if (pte_present(ptent)) { 1028 page = vm_normal_page(vma, addr, ptent); 1029 young = pte_young(ptent); 1030 dirty = pte_dirty(ptent); 1031 present = true; 1032 } else if (pte_none(ptent)) { 1033 smaps_pte_hole_lookup(addr, walk); 1034 } else { 1035 const softleaf_t entry = softleaf_from_pte(ptent); 1036 1037 if (softleaf_is_swap(entry)) { 1038 int mapcount; 1039 1040 mss->swap += PAGE_SIZE; 1041 mapcount = swp_swapcount(entry); 1042 if (mapcount >= 2) { 1043 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 1044 1045 do_div(pss_delta, mapcount); 1046 mss->swap_pss += pss_delta; 1047 } else { 1048 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 1049 } 1050 } else if (softleaf_has_pfn(entry)) { 1051 if (softleaf_is_device_private(entry)) 1052 present = true; 1053 page = softleaf_to_page(entry); 1054 } 1055 } 1056 1057 if (!page) 1058 return; 1059 1060 smaps_account(mss, page, false, young, dirty, locked, present); 1061} 1062 1063#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1064static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1065 struct mm_walk *walk) 1066{ 1067 struct mem_size_stats *mss = walk->private; 1068 struct vm_area_struct *vma = walk->vma; 1069 bool locked = !!(vma->vm_flags & VM_LOCKED); 1070 struct page *page = NULL; 1071 bool present = false; 1072 struct folio *folio; 1073 1074 if (pmd_none(*pmd)) 1075 return; 1076 if (pmd_present(*pmd)) { 1077 page = vm_normal_page_pmd(vma, addr, *pmd); 1078 present = true; 1079 } else if (unlikely(thp_migration_supported())) { 1080 const softleaf_t entry = softleaf_from_pmd(*pmd); 1081 1082 if (softleaf_has_pfn(entry)) 1083 page = softleaf_to_page(entry); 1084 } 1085 if (IS_ERR_OR_NULL(page)) 1086 return; 1087 folio = page_folio(page); 1088 if (folio_test_anon(folio)) 1089 mss->anonymous_thp += HPAGE_PMD_SIZE; 1090 else if (folio_test_swapbacked(folio)) 1091 mss->shmem_thp += HPAGE_PMD_SIZE; 1092 else if (folio_is_zone_device(folio)) 1093 /* pass */; 1094 else 1095 mss->file_thp += HPAGE_PMD_SIZE; 1096 1097 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 1098 locked, present); 1099} 1100#else 1101static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1102 struct mm_walk *walk) 1103{ 1104} 1105#endif 1106 1107static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 1108 struct mm_walk *walk) 1109{ 1110 struct vm_area_struct *vma = walk->vma; 1111 pte_t *pte; 1112 spinlock_t *ptl; 1113 1114 ptl = pmd_trans_huge_lock(pmd, vma); 1115 if (ptl) { 1116 smaps_pmd_entry(pmd, addr, walk); 1117 spin_unlock(ptl); 1118 goto out; 1119 } 1120 1121 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1122 if (!pte) { 1123 walk->action = ACTION_AGAIN; 1124 return 0; 1125 } 1126 for (; addr != end; pte++, addr += PAGE_SIZE) 1127 smaps_pte_entry(pte, addr, walk); 1128 pte_unmap_unlock(pte - 1, ptl); 1129out: 1130 cond_resched(); 1131 return 0; 1132} 1133 1134static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 1135{ 1136 /* 1137 * Don't forget to update Documentation/ on changes. 1138 * 1139 * The length of the second argument of mnemonics[] 1140 * needs to be 3 instead of previously set 2 1141 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3]) 1142 * to avoid spurious 1143 * -Werror=unterminated-string-initialization warning 1144 * with GCC 15 1145 */ 1146 static const char mnemonics[BITS_PER_LONG][3] = { 1147 /* 1148 * In case if we meet a flag we don't know about. 1149 */ 1150 [0 ... (BITS_PER_LONG-1)] = "??", 1151 1152 [ilog2(VM_READ)] = "rd", 1153 [ilog2(VM_WRITE)] = "wr", 1154 [ilog2(VM_EXEC)] = "ex", 1155 [ilog2(VM_SHARED)] = "sh", 1156 [ilog2(VM_MAYREAD)] = "mr", 1157 [ilog2(VM_MAYWRITE)] = "mw", 1158 [ilog2(VM_MAYEXEC)] = "me", 1159 [ilog2(VM_MAYSHARE)] = "ms", 1160 [ilog2(VM_GROWSDOWN)] = "gd", 1161 [ilog2(VM_PFNMAP)] = "pf", 1162 [ilog2(VM_MAYBE_GUARD)] = "gu", 1163 [ilog2(VM_LOCKED)] = "lo", 1164 [ilog2(VM_IO)] = "io", 1165 [ilog2(VM_SEQ_READ)] = "sr", 1166 [ilog2(VM_RAND_READ)] = "rr", 1167 [ilog2(VM_DONTCOPY)] = "dc", 1168 [ilog2(VM_DONTEXPAND)] = "de", 1169 [ilog2(VM_LOCKONFAULT)] = "lf", 1170 [ilog2(VM_ACCOUNT)] = "ac", 1171 [ilog2(VM_NORESERVE)] = "nr", 1172 [ilog2(VM_HUGETLB)] = "ht", 1173 [ilog2(VM_SYNC)] = "sf", 1174 [ilog2(VM_ARCH_1)] = "ar", 1175 [ilog2(VM_WIPEONFORK)] = "wf", 1176 [ilog2(VM_DONTDUMP)] = "dd", 1177#ifdef CONFIG_ARM64_BTI 1178 [ilog2(VM_ARM64_BTI)] = "bt", 1179#endif 1180#ifdef CONFIG_MEM_SOFT_DIRTY 1181 [ilog2(VM_SOFTDIRTY)] = "sd", 1182#endif 1183 [ilog2(VM_MIXEDMAP)] = "mm", 1184 [ilog2(VM_HUGEPAGE)] = "hg", 1185 [ilog2(VM_NOHUGEPAGE)] = "nh", 1186 [ilog2(VM_MERGEABLE)] = "mg", 1187 [ilog2(VM_UFFD_MISSING)]= "um", 1188 [ilog2(VM_UFFD_WP)] = "uw", 1189#ifdef CONFIG_ARM64_MTE 1190 [ilog2(VM_MTE)] = "mt", 1191 [ilog2(VM_MTE_ALLOWED)] = "", 1192#endif 1193#ifdef CONFIG_ARCH_HAS_PKEYS 1194 /* These come out via ProtectionKey: */ 1195 [ilog2(VM_PKEY_BIT0)] = "", 1196 [ilog2(VM_PKEY_BIT1)] = "", 1197 [ilog2(VM_PKEY_BIT2)] = "", 1198#if CONFIG_ARCH_PKEY_BITS > 3 1199 [ilog2(VM_PKEY_BIT3)] = "", 1200#endif 1201#if CONFIG_ARCH_PKEY_BITS > 4 1202 [ilog2(VM_PKEY_BIT4)] = "", 1203#endif 1204#endif /* CONFIG_ARCH_HAS_PKEYS */ 1205#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1206 [ilog2(VM_UFFD_MINOR)] = "ui", 1207#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 1208#ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK 1209 [ilog2(VM_SHADOW_STACK)] = "ss", 1210#endif 1211#if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 1212 [ilog2(VM_DROPPABLE)] = "dp", 1213#endif 1214#ifdef CONFIG_64BIT 1215 [ilog2(VM_SEALED)] = "sl", 1216#endif 1217 }; 1218 size_t i; 1219 1220 seq_puts(m, "VmFlags: "); 1221 for (i = 0; i < BITS_PER_LONG; i++) { 1222 if (!mnemonics[i][0]) 1223 continue; 1224 if (vma->vm_flags & (1UL << i)) 1225 seq_printf(m, "%s ", mnemonics[i]); 1226 } 1227 seq_putc(m, '\n'); 1228} 1229 1230#ifdef CONFIG_HUGETLB_PAGE 1231static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 1232 unsigned long addr, unsigned long end, 1233 struct mm_walk *walk) 1234{ 1235 struct mem_size_stats *mss = walk->private; 1236 struct vm_area_struct *vma = walk->vma; 1237 struct folio *folio = NULL; 1238 bool present = false; 1239 spinlock_t *ptl; 1240 pte_t ptent; 1241 1242 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 1243 ptent = huge_ptep_get(walk->mm, addr, pte); 1244 if (pte_present(ptent)) { 1245 folio = page_folio(pte_page(ptent)); 1246 present = true; 1247 } else { 1248 const softleaf_t entry = softleaf_from_pte(ptent); 1249 1250 if (softleaf_has_pfn(entry)) 1251 folio = softleaf_to_folio(entry); 1252 } 1253 1254 if (folio) { 1255 /* We treat non-present entries as "maybe shared". */ 1256 if (!present || folio_maybe_mapped_shared(folio) || 1257 hugetlb_pmd_shared(pte)) 1258 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 1259 else 1260 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 1261 } 1262 spin_unlock(ptl); 1263 return 0; 1264} 1265#else 1266#define smaps_hugetlb_range NULL 1267#endif /* HUGETLB_PAGE */ 1268 1269static const struct mm_walk_ops smaps_walk_ops = { 1270 .pmd_entry = smaps_pte_range, 1271 .hugetlb_entry = smaps_hugetlb_range, 1272 .walk_lock = PGWALK_RDLOCK, 1273}; 1274 1275static const struct mm_walk_ops smaps_shmem_walk_ops = { 1276 .pmd_entry = smaps_pte_range, 1277 .hugetlb_entry = smaps_hugetlb_range, 1278 .pte_hole = smaps_pte_hole, 1279 .walk_lock = PGWALK_RDLOCK, 1280}; 1281 1282/* 1283 * Gather mem stats from @vma with the indicated beginning 1284 * address @start, and keep them in @mss. 1285 * 1286 * Use vm_start of @vma as the beginning address if @start is 0. 1287 */ 1288static void smap_gather_stats(struct vm_area_struct *vma, 1289 struct mem_size_stats *mss, unsigned long start) 1290{ 1291 const struct mm_walk_ops *ops = &smaps_walk_ops; 1292 1293 /* Invalid start */ 1294 if (start >= vma->vm_end) 1295 return; 1296 1297 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 1298 /* 1299 * For shared or readonly shmem mappings we know that all 1300 * swapped out pages belong to the shmem object, and we can 1301 * obtain the swap value much more efficiently. For private 1302 * writable mappings, we might have COW pages that are 1303 * not affected by the parent swapped out pages of the shmem 1304 * object, so we have to distinguish them during the page walk. 1305 * Unless we know that the shmem object (or the part mapped by 1306 * our VMA) has no swapped out pages at all. 1307 */ 1308 unsigned long shmem_swapped = shmem_swap_usage(vma); 1309 1310 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 1311 !(vma->vm_flags & VM_WRITE))) { 1312 mss->swap += shmem_swapped; 1313 } else { 1314 ops = &smaps_shmem_walk_ops; 1315 } 1316 } 1317 1318 /* mmap_lock is held in m_start */ 1319 if (!start) 1320 walk_page_vma(vma, ops, mss); 1321 else 1322 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 1323} 1324 1325#define SEQ_PUT_DEC(str, val) \ 1326 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 1327 1328/* Show the contents common for smaps and smaps_rollup */ 1329static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 1330 bool rollup_mode) 1331{ 1332 SEQ_PUT_DEC("Rss: ", mss->resident); 1333 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 1334 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 1335 if (rollup_mode) { 1336 /* 1337 * These are meaningful only for smaps_rollup, otherwise two of 1338 * them are zero, and the other one is the same as Pss. 1339 */ 1340 SEQ_PUT_DEC(" kB\nPss_Anon: ", 1341 mss->pss_anon >> PSS_SHIFT); 1342 SEQ_PUT_DEC(" kB\nPss_File: ", 1343 mss->pss_file >> PSS_SHIFT); 1344 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 1345 mss->pss_shmem >> PSS_SHIFT); 1346 } 1347 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 1348 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 1349 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 1350 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 1351 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 1352 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 1353 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 1354 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 1355 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 1356 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 1357 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 1358 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 1359 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 1360 mss->private_hugetlb >> 10, 7); 1361 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 1362 SEQ_PUT_DEC(" kB\nSwapPss: ", 1363 mss->swap_pss >> PSS_SHIFT); 1364 SEQ_PUT_DEC(" kB\nLocked: ", 1365 mss->pss_locked >> PSS_SHIFT); 1366 seq_puts(m, " kB\n"); 1367} 1368 1369static int show_smap(struct seq_file *m, void *v) 1370{ 1371 struct vm_area_struct *vma = v; 1372 struct mem_size_stats mss = {}; 1373 1374 smap_gather_stats(vma, &mss, 0); 1375 1376 show_map_vma(m, vma); 1377 1378 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 1379 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 1380 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 1381 seq_puts(m, " kB\n"); 1382 1383 __show_smap(m, &mss, false); 1384 1385 seq_printf(m, "THPeligible: %8u\n", 1386 !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS, 1387 THP_ORDERS_ALL)); 1388 1389 if (arch_pkeys_enabled()) 1390 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1391 show_smap_vma_flags(m, vma); 1392 1393 return 0; 1394} 1395 1396static int show_smaps_rollup(struct seq_file *m, void *v) 1397{ 1398 struct proc_maps_private *priv = m->private; 1399 struct mem_size_stats mss = {}; 1400 struct mm_struct *mm = priv->lock_ctx.mm; 1401 struct vm_area_struct *vma; 1402 unsigned long vma_start = 0, last_vma_end = 0; 1403 int ret = 0; 1404 VMA_ITERATOR(vmi, mm, 0); 1405 1406 priv->task = get_proc_task(priv->inode); 1407 if (!priv->task) 1408 return -ESRCH; 1409 1410 if (!mm || !mmget_not_zero(mm)) { 1411 ret = -ESRCH; 1412 goto out_put_task; 1413 } 1414 1415 ret = mmap_read_lock_killable(mm); 1416 if (ret) 1417 goto out_put_mm; 1418 1419 hold_task_mempolicy(priv); 1420 vma = vma_next(&vmi); 1421 1422 if (unlikely(!vma)) 1423 goto empty_set; 1424 1425 vma_start = vma->vm_start; 1426 do { 1427 smap_gather_stats(vma, &mss, 0); 1428 last_vma_end = vma->vm_end; 1429 1430 /* 1431 * Release mmap_lock temporarily if someone wants to 1432 * access it for write request. 1433 */ 1434 if (mmap_lock_is_contended(mm)) { 1435 vma_iter_invalidate(&vmi); 1436 mmap_read_unlock(mm); 1437 ret = mmap_read_lock_killable(mm); 1438 if (ret) { 1439 release_task_mempolicy(priv); 1440 goto out_put_mm; 1441 } 1442 1443 /* 1444 * After dropping the lock, there are four cases to 1445 * consider. See the following example for explanation. 1446 * 1447 * +------+------+-----------+ 1448 * | VMA1 | VMA2 | VMA3 | 1449 * +------+------+-----------+ 1450 * | | | | 1451 * 4k 8k 16k 400k 1452 * 1453 * Suppose we drop the lock after reading VMA2 due to 1454 * contention, then we get: 1455 * 1456 * last_vma_end = 16k 1457 * 1458 * 1) VMA2 is freed, but VMA3 exists: 1459 * 1460 * vma_next(vmi) will return VMA3. 1461 * In this case, just continue from VMA3. 1462 * 1463 * 2) VMA2 still exists: 1464 * 1465 * vma_next(vmi) will return VMA3. 1466 * In this case, just continue from VMA3. 1467 * 1468 * 3) No more VMAs can be found: 1469 * 1470 * vma_next(vmi) will return NULL. 1471 * No more things to do, just break. 1472 * 1473 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 1474 * 1475 * vma_next(vmi) will return VMA' whose range 1476 * contains last_vma_end. 1477 * Iterate VMA' from last_vma_end. 1478 */ 1479 vma = vma_next(&vmi); 1480 /* Case 3 above */ 1481 if (!vma) 1482 break; 1483 1484 /* Case 1 and 2 above */ 1485 if (vma->vm_start >= last_vma_end) { 1486 smap_gather_stats(vma, &mss, 0); 1487 last_vma_end = vma->vm_end; 1488 continue; 1489 } 1490 1491 /* Case 4 above */ 1492 if (vma->vm_end > last_vma_end) { 1493 smap_gather_stats(vma, &mss, last_vma_end); 1494 last_vma_end = vma->vm_end; 1495 } 1496 } 1497 } for_each_vma(vmi, vma); 1498 1499empty_set: 1500 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 1501 seq_pad(m, ' '); 1502 seq_puts(m, "[rollup]\n"); 1503 1504 __show_smap(m, &mss, true); 1505 1506 release_task_mempolicy(priv); 1507 mmap_read_unlock(mm); 1508 1509out_put_mm: 1510 mmput(mm); 1511out_put_task: 1512 put_task_struct(priv->task); 1513 priv->task = NULL; 1514 1515 return ret; 1516} 1517#undef SEQ_PUT_DEC 1518 1519static const struct seq_operations proc_pid_smaps_op = { 1520 .start = m_start, 1521 .next = m_next, 1522 .stop = m_stop, 1523 .show = show_smap 1524}; 1525 1526static int pid_smaps_open(struct inode *inode, struct file *file) 1527{ 1528 return do_maps_open(inode, file, &proc_pid_smaps_op); 1529} 1530 1531static int smaps_rollup_open(struct inode *inode, struct file *file) 1532{ 1533 int ret; 1534 struct proc_maps_private *priv; 1535 1536 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1537 if (!priv) 1538 return -ENOMEM; 1539 1540 ret = single_open(file, show_smaps_rollup, priv); 1541 if (ret) 1542 goto out_free; 1543 1544 priv->inode = inode; 1545 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 1546 if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) { 1547 ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH; 1548 1549 single_release(inode, file); 1550 goto out_free; 1551 } 1552 1553 return 0; 1554 1555out_free: 1556 kfree(priv); 1557 return ret; 1558} 1559 1560static int smaps_rollup_release(struct inode *inode, struct file *file) 1561{ 1562 struct seq_file *seq = file->private_data; 1563 struct proc_maps_private *priv = seq->private; 1564 1565 if (priv->lock_ctx.mm) 1566 mmdrop(priv->lock_ctx.mm); 1567 1568 kfree(priv); 1569 return single_release(inode, file); 1570} 1571 1572const struct file_operations proc_pid_smaps_operations = { 1573 .open = pid_smaps_open, 1574 .read = seq_read, 1575 .llseek = seq_lseek, 1576 .release = proc_map_release, 1577}; 1578 1579const struct file_operations proc_pid_smaps_rollup_operations = { 1580 .open = smaps_rollup_open, 1581 .read = seq_read, 1582 .llseek = seq_lseek, 1583 .release = smaps_rollup_release, 1584}; 1585 1586enum clear_refs_types { 1587 CLEAR_REFS_ALL = 1, 1588 CLEAR_REFS_ANON, 1589 CLEAR_REFS_MAPPED, 1590 CLEAR_REFS_SOFT_DIRTY, 1591 CLEAR_REFS_MM_HIWATER_RSS, 1592 CLEAR_REFS_LAST, 1593}; 1594 1595struct clear_refs_private { 1596 enum clear_refs_types type; 1597}; 1598 1599static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1600{ 1601 struct folio *folio; 1602 1603 if (!pte_write(pte)) 1604 return false; 1605 if (!is_cow_mapping(vma->vm_flags)) 1606 return false; 1607 if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))) 1608 return false; 1609 folio = vm_normal_folio(vma, addr, pte); 1610 if (!folio) 1611 return false; 1612 return folio_maybe_dma_pinned(folio); 1613} 1614 1615static inline void clear_soft_dirty(struct vm_area_struct *vma, 1616 unsigned long addr, pte_t *pte) 1617{ 1618 if (!pgtable_supports_soft_dirty()) 1619 return; 1620 /* 1621 * The soft-dirty tracker uses #PF-s to catch writes 1622 * to pages, so write-protect the pte as well. See the 1623 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1624 * of how soft-dirty works. 1625 */ 1626 pte_t ptent = ptep_get(pte); 1627 1628 if (pte_none(ptent)) 1629 return; 1630 1631 if (pte_present(ptent)) { 1632 pte_t old_pte; 1633 1634 if (pte_is_pinned(vma, addr, ptent)) 1635 return; 1636 old_pte = ptep_modify_prot_start(vma, addr, pte); 1637 ptent = pte_wrprotect(old_pte); 1638 ptent = pte_clear_soft_dirty(ptent); 1639 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1640 } else { 1641 ptent = pte_swp_clear_soft_dirty(ptent); 1642 set_pte_at(vma->vm_mm, addr, pte, ptent); 1643 } 1644} 1645 1646#if defined(CONFIG_TRANSPARENT_HUGEPAGE) 1647static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1648 unsigned long addr, pmd_t *pmdp) 1649{ 1650 pmd_t old, pmd = *pmdp; 1651 1652 if (!pgtable_supports_soft_dirty()) 1653 return; 1654 1655 if (pmd_present(pmd)) { 1656 /* See comment in change_huge_pmd() */ 1657 old = pmdp_invalidate(vma, addr, pmdp); 1658 if (pmd_dirty(old)) 1659 pmd = pmd_mkdirty(pmd); 1660 if (pmd_young(old)) 1661 pmd = pmd_mkyoung(pmd); 1662 1663 pmd = pmd_wrprotect(pmd); 1664 pmd = pmd_clear_soft_dirty(pmd); 1665 1666 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1667 } else if (pmd_is_migration_entry(pmd)) { 1668 pmd = pmd_swp_clear_soft_dirty(pmd); 1669 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1670 } 1671} 1672#else 1673static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1674 unsigned long addr, pmd_t *pmdp) 1675{ 1676} 1677#endif 1678 1679static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1680 unsigned long end, struct mm_walk *walk) 1681{ 1682 struct clear_refs_private *cp = walk->private; 1683 struct vm_area_struct *vma = walk->vma; 1684 pte_t *pte, ptent; 1685 spinlock_t *ptl; 1686 struct folio *folio; 1687 1688 ptl = pmd_trans_huge_lock(pmd, vma); 1689 if (ptl) { 1690 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1691 clear_soft_dirty_pmd(vma, addr, pmd); 1692 goto out; 1693 } 1694 1695 if (!pmd_present(*pmd)) 1696 goto out; 1697 1698 folio = pmd_folio(*pmd); 1699 1700 /* Clear accessed and referenced bits. */ 1701 pmdp_test_and_clear_young(vma, addr, pmd); 1702 folio_test_clear_young(folio); 1703 folio_clear_referenced(folio); 1704out: 1705 spin_unlock(ptl); 1706 return 0; 1707 } 1708 1709 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1710 if (!pte) { 1711 walk->action = ACTION_AGAIN; 1712 return 0; 1713 } 1714 for (; addr != end; pte++, addr += PAGE_SIZE) { 1715 ptent = ptep_get(pte); 1716 1717 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1718 clear_soft_dirty(vma, addr, pte); 1719 continue; 1720 } 1721 1722 if (!pte_present(ptent)) 1723 continue; 1724 1725 folio = vm_normal_folio(vma, addr, ptent); 1726 if (!folio) 1727 continue; 1728 1729 /* Clear accessed and referenced bits. */ 1730 ptep_test_and_clear_young(vma, addr, pte); 1731 folio_test_clear_young(folio); 1732 folio_clear_referenced(folio); 1733 } 1734 pte_unmap_unlock(pte - 1, ptl); 1735 cond_resched(); 1736 return 0; 1737} 1738 1739static int clear_refs_test_walk(unsigned long start, unsigned long end, 1740 struct mm_walk *walk) 1741{ 1742 struct clear_refs_private *cp = walk->private; 1743 struct vm_area_struct *vma = walk->vma; 1744 1745 if (vma->vm_flags & VM_PFNMAP) 1746 return 1; 1747 1748 /* 1749 * Writing 1 to /proc/pid/clear_refs affects all pages. 1750 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1751 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1752 * Writing 4 to /proc/pid/clear_refs affects all pages. 1753 */ 1754 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1755 return 1; 1756 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1757 return 1; 1758 return 0; 1759} 1760 1761static const struct mm_walk_ops clear_refs_walk_ops = { 1762 .pmd_entry = clear_refs_pte_range, 1763 .test_walk = clear_refs_test_walk, 1764 .walk_lock = PGWALK_WRLOCK, 1765}; 1766 1767static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1768 size_t count, loff_t *ppos) 1769{ 1770 struct task_struct *task; 1771 char buffer[PROC_NUMBUF] = {}; 1772 struct mm_struct *mm; 1773 struct vm_area_struct *vma; 1774 enum clear_refs_types type; 1775 int itype; 1776 int rv; 1777 1778 if (count > sizeof(buffer) - 1) 1779 count = sizeof(buffer) - 1; 1780 if (copy_from_user(buffer, buf, count)) 1781 return -EFAULT; 1782 rv = kstrtoint(strstrip(buffer), 10, &itype); 1783 if (rv < 0) 1784 return rv; 1785 type = (enum clear_refs_types)itype; 1786 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1787 return -EINVAL; 1788 1789 task = get_proc_task(file_inode(file)); 1790 if (!task) 1791 return -ESRCH; 1792 mm = get_task_mm(task); 1793 if (mm) { 1794 VMA_ITERATOR(vmi, mm, 0); 1795 struct mmu_notifier_range range; 1796 struct clear_refs_private cp = { 1797 .type = type, 1798 }; 1799 1800 if (mmap_write_lock_killable(mm)) { 1801 count = -EINTR; 1802 goto out_mm; 1803 } 1804 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1805 /* 1806 * Writing 5 to /proc/pid/clear_refs resets the peak 1807 * resident set size to this mm's current rss value. 1808 */ 1809 reset_mm_hiwater_rss(mm); 1810 goto out_unlock; 1811 } 1812 1813 if (type == CLEAR_REFS_SOFT_DIRTY) { 1814 for_each_vma(vmi, vma) { 1815 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1816 continue; 1817 vm_flags_clear(vma, VM_SOFTDIRTY); 1818 vma_set_page_prot(vma); 1819 } 1820 1821 inc_tlb_flush_pending(mm); 1822 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1823 0, mm, 0, -1UL); 1824 mmu_notifier_invalidate_range_start(&range); 1825 } 1826 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1827 if (type == CLEAR_REFS_SOFT_DIRTY) { 1828 mmu_notifier_invalidate_range_end(&range); 1829 flush_tlb_mm(mm); 1830 dec_tlb_flush_pending(mm); 1831 } 1832out_unlock: 1833 mmap_write_unlock(mm); 1834out_mm: 1835 mmput(mm); 1836 } 1837 put_task_struct(task); 1838 1839 return count; 1840} 1841 1842const struct file_operations proc_clear_refs_operations = { 1843 .write = clear_refs_write, 1844 .llseek = noop_llseek, 1845}; 1846 1847typedef struct { 1848 u64 pme; 1849} pagemap_entry_t; 1850 1851struct pagemapread { 1852 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1853 pagemap_entry_t *buffer; 1854 bool show_pfn; 1855}; 1856 1857#define PAGEMAP_WALK_SIZE (PMD_SIZE) 1858#define PAGEMAP_WALK_MASK (PMD_MASK) 1859 1860#define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1861#define PM_PFRAME_BITS 55 1862#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1863#define PM_SOFT_DIRTY BIT_ULL(55) 1864#define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1865#define PM_UFFD_WP BIT_ULL(57) 1866#define PM_GUARD_REGION BIT_ULL(58) 1867#define PM_FILE BIT_ULL(61) 1868#define PM_SWAP BIT_ULL(62) 1869#define PM_PRESENT BIT_ULL(63) 1870 1871#define PM_END_OF_BUFFER 1 1872 1873static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1874{ 1875 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1876} 1877 1878static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm) 1879{ 1880 pm->buffer[pm->pos++] = *pme; 1881 if (pm->pos >= pm->len) 1882 return PM_END_OF_BUFFER; 1883 return 0; 1884} 1885 1886static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page) 1887{ 1888 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1889 return folio_precise_page_mapcount(folio, page) == 1; 1890 return !folio_maybe_mapped_shared(folio); 1891} 1892 1893static int pagemap_pte_hole(unsigned long start, unsigned long end, 1894 __always_unused int depth, struct mm_walk *walk) 1895{ 1896 struct pagemapread *pm = walk->private; 1897 unsigned long addr = start; 1898 int err = 0; 1899 1900 while (addr < end) { 1901 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1902 pagemap_entry_t pme = make_pme(0, 0); 1903 /* End of address space hole, which we mark as non-present. */ 1904 unsigned long hole_end; 1905 1906 if (vma) 1907 hole_end = min(end, vma->vm_start); 1908 else 1909 hole_end = end; 1910 1911 for (; addr < hole_end; addr += PAGE_SIZE) { 1912 err = add_to_pagemap(&pme, pm); 1913 if (err) 1914 goto out; 1915 } 1916 1917 if (!vma) 1918 break; 1919 1920 /* Addresses in the VMA. */ 1921 if (vma->vm_flags & VM_SOFTDIRTY) 1922 pme = make_pme(0, PM_SOFT_DIRTY); 1923 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1924 err = add_to_pagemap(&pme, pm); 1925 if (err) 1926 goto out; 1927 } 1928 } 1929out: 1930 return err; 1931} 1932 1933static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1934 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1935{ 1936 u64 frame = 0, flags = 0; 1937 struct page *page = NULL; 1938 struct folio *folio; 1939 1940 if (pte_none(pte)) 1941 goto out; 1942 1943 if (pte_present(pte)) { 1944 if (pm->show_pfn) 1945 frame = pte_pfn(pte); 1946 flags |= PM_PRESENT; 1947 page = vm_normal_page(vma, addr, pte); 1948 if (pte_soft_dirty(pte)) 1949 flags |= PM_SOFT_DIRTY; 1950 if (pte_uffd_wp(pte)) 1951 flags |= PM_UFFD_WP; 1952 } else { 1953 softleaf_t entry; 1954 1955 if (pte_swp_soft_dirty(pte)) 1956 flags |= PM_SOFT_DIRTY; 1957 if (pte_swp_uffd_wp(pte)) 1958 flags |= PM_UFFD_WP; 1959 entry = softleaf_from_pte(pte); 1960 if (pm->show_pfn) { 1961 pgoff_t offset; 1962 1963 /* 1964 * For PFN swap offsets, keeping the offset field 1965 * to be PFN only to be compatible with old smaps. 1966 */ 1967 if (softleaf_has_pfn(entry)) 1968 offset = softleaf_to_pfn(entry); 1969 else 1970 offset = swp_offset(entry); 1971 frame = swp_type(entry) | 1972 (offset << MAX_SWAPFILES_SHIFT); 1973 } 1974 flags |= PM_SWAP; 1975 if (softleaf_has_pfn(entry)) 1976 page = softleaf_to_page(entry); 1977 if (softleaf_is_uffd_wp_marker(entry)) 1978 flags |= PM_UFFD_WP; 1979 if (softleaf_is_guard_marker(entry)) 1980 flags |= PM_GUARD_REGION; 1981 } 1982 1983 if (page) { 1984 folio = page_folio(page); 1985 if (!folio_test_anon(folio)) 1986 flags |= PM_FILE; 1987 if ((flags & PM_PRESENT) && 1988 __folio_page_mapped_exclusively(folio, page)) 1989 flags |= PM_MMAP_EXCLUSIVE; 1990 } 1991 1992out: 1993 if (vma->vm_flags & VM_SOFTDIRTY) 1994 flags |= PM_SOFT_DIRTY; 1995 1996 return make_pme(frame, flags); 1997} 1998 1999#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2000static int pagemap_pmd_range_thp(pmd_t *pmdp, unsigned long addr, 2001 unsigned long end, struct vm_area_struct *vma, 2002 struct pagemapread *pm) 2003{ 2004 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT; 2005 u64 flags = 0, frame = 0; 2006 pmd_t pmd = *pmdp; 2007 struct page *page = NULL; 2008 struct folio *folio = NULL; 2009 int err = 0; 2010 2011 if (vma->vm_flags & VM_SOFTDIRTY) 2012 flags |= PM_SOFT_DIRTY; 2013 2014 if (pmd_none(pmd)) 2015 goto populate_pagemap; 2016 2017 if (pmd_present(pmd)) { 2018 page = pmd_page(pmd); 2019 2020 flags |= PM_PRESENT; 2021 if (pmd_soft_dirty(pmd)) 2022 flags |= PM_SOFT_DIRTY; 2023 if (pmd_uffd_wp(pmd)) 2024 flags |= PM_UFFD_WP; 2025 if (pm->show_pfn) 2026 frame = pmd_pfn(pmd) + idx; 2027 } else if (thp_migration_supported()) { 2028 const softleaf_t entry = softleaf_from_pmd(pmd); 2029 unsigned long offset; 2030 2031 if (pm->show_pfn) { 2032 if (softleaf_has_pfn(entry)) 2033 offset = softleaf_to_pfn(entry) + idx; 2034 else 2035 offset = swp_offset(entry) + idx; 2036 frame = swp_type(entry) | 2037 (offset << MAX_SWAPFILES_SHIFT); 2038 } 2039 flags |= PM_SWAP; 2040 if (pmd_swp_soft_dirty(pmd)) 2041 flags |= PM_SOFT_DIRTY; 2042 if (pmd_swp_uffd_wp(pmd)) 2043 flags |= PM_UFFD_WP; 2044 VM_WARN_ON_ONCE(!pmd_is_migration_entry(pmd)); 2045 page = softleaf_to_page(entry); 2046 } 2047 2048 if (page) { 2049 folio = page_folio(page); 2050 if (!folio_test_anon(folio)) 2051 flags |= PM_FILE; 2052 } 2053 2054populate_pagemap: 2055 for (; addr != end; addr += PAGE_SIZE, idx++) { 2056 u64 cur_flags = flags; 2057 pagemap_entry_t pme; 2058 2059 if (folio && (flags & PM_PRESENT) && 2060 __folio_page_mapped_exclusively(folio, page)) 2061 cur_flags |= PM_MMAP_EXCLUSIVE; 2062 2063 pme = make_pme(frame, cur_flags); 2064 err = add_to_pagemap(&pme, pm); 2065 if (err) 2066 break; 2067 if (pm->show_pfn) { 2068 if (flags & PM_PRESENT) 2069 frame++; 2070 else if (flags & PM_SWAP) 2071 frame += (1 << MAX_SWAPFILES_SHIFT); 2072 } 2073 } 2074 return err; 2075} 2076#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2077 2078static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 2079 struct mm_walk *walk) 2080{ 2081 struct vm_area_struct *vma = walk->vma; 2082 struct pagemapread *pm = walk->private; 2083 spinlock_t *ptl; 2084 pte_t *pte, *orig_pte; 2085 int err = 0; 2086 2087#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2088 ptl = pmd_trans_huge_lock(pmdp, vma); 2089 if (ptl) { 2090 err = pagemap_pmd_range_thp(pmdp, addr, end, vma, pm); 2091 spin_unlock(ptl); 2092 return err; 2093 } 2094#endif 2095 2096 /* 2097 * We can assume that @vma always points to a valid one and @end never 2098 * goes beyond vma->vm_end. 2099 */ 2100 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 2101 if (!pte) { 2102 walk->action = ACTION_AGAIN; 2103 return err; 2104 } 2105 for (; addr < end; pte++, addr += PAGE_SIZE) { 2106 pagemap_entry_t pme; 2107 2108 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 2109 err = add_to_pagemap(&pme, pm); 2110 if (err) 2111 break; 2112 } 2113 pte_unmap_unlock(orig_pte, ptl); 2114 2115 cond_resched(); 2116 2117 return err; 2118} 2119 2120#ifdef CONFIG_HUGETLB_PAGE 2121/* This function walks within one hugetlb entry in the single call */ 2122static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 2123 unsigned long addr, unsigned long end, 2124 struct mm_walk *walk) 2125{ 2126 struct pagemapread *pm = walk->private; 2127 struct vm_area_struct *vma = walk->vma; 2128 u64 flags = 0, frame = 0; 2129 spinlock_t *ptl; 2130 int err = 0; 2131 pte_t pte; 2132 2133 if (vma->vm_flags & VM_SOFTDIRTY) 2134 flags |= PM_SOFT_DIRTY; 2135 2136 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep); 2137 pte = huge_ptep_get(walk->mm, addr, ptep); 2138 if (pte_present(pte)) { 2139 struct folio *folio = page_folio(pte_page(pte)); 2140 2141 if (!folio_test_anon(folio)) 2142 flags |= PM_FILE; 2143 2144 if (!folio_maybe_mapped_shared(folio) && 2145 !hugetlb_pmd_shared(ptep)) 2146 flags |= PM_MMAP_EXCLUSIVE; 2147 2148 if (huge_pte_uffd_wp(pte)) 2149 flags |= PM_UFFD_WP; 2150 2151 flags |= PM_PRESENT; 2152 if (pm->show_pfn) 2153 frame = pte_pfn(pte) + 2154 ((addr & ~hmask) >> PAGE_SHIFT); 2155 } else if (pte_swp_uffd_wp_any(pte)) { 2156 flags |= PM_UFFD_WP; 2157 } 2158 2159 for (; addr != end; addr += PAGE_SIZE) { 2160 pagemap_entry_t pme = make_pme(frame, flags); 2161 2162 err = add_to_pagemap(&pme, pm); 2163 if (err) 2164 break; 2165 if (pm->show_pfn && (flags & PM_PRESENT)) 2166 frame++; 2167 } 2168 2169 spin_unlock(ptl); 2170 cond_resched(); 2171 2172 return err; 2173} 2174#else 2175#define pagemap_hugetlb_range NULL 2176#endif /* HUGETLB_PAGE */ 2177 2178static const struct mm_walk_ops pagemap_ops = { 2179 .pmd_entry = pagemap_pmd_range, 2180 .pte_hole = pagemap_pte_hole, 2181 .hugetlb_entry = pagemap_hugetlb_range, 2182 .walk_lock = PGWALK_RDLOCK, 2183}; 2184 2185/* 2186 * /proc/pid/pagemap - an array mapping virtual pages to pfns 2187 * 2188 * For each page in the address space, this file contains one 64-bit entry 2189 * consisting of the following: 2190 * 2191 * Bits 0-54 page frame number (PFN) if present 2192 * Bits 0-4 swap type if swapped 2193 * Bits 5-54 swap offset if swapped 2194 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 2195 * Bit 56 page exclusively mapped 2196 * Bit 57 pte is uffd-wp write-protected 2197 * Bit 58 pte is a guard region 2198 * Bits 59-60 zero 2199 * Bit 61 page is file-page or shared-anon 2200 * Bit 62 page swapped 2201 * Bit 63 page present 2202 * 2203 * If the page is not present but in swap, then the PFN contains an 2204 * encoding of the swap file number and the page's offset into the 2205 * swap. Unmapped pages return a null PFN. This allows determining 2206 * precisely which pages are mapped (or in swap) and comparing mapped 2207 * pages between processes. 2208 * 2209 * Efficient users of this interface will use /proc/pid/maps to 2210 * determine which areas of memory are actually mapped and llseek to 2211 * skip over unmapped regions. 2212 */ 2213static ssize_t pagemap_read(struct file *file, char __user *buf, 2214 size_t count, loff_t *ppos) 2215{ 2216 struct mm_struct *mm = file->private_data; 2217 struct pagemapread pm; 2218 unsigned long src; 2219 unsigned long svpfn; 2220 unsigned long start_vaddr; 2221 unsigned long end_vaddr; 2222 int ret = 0, copied = 0; 2223 2224 if (!mm || !mmget_not_zero(mm)) 2225 goto out; 2226 2227 ret = -EINVAL; 2228 /* file position must be aligned */ 2229 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 2230 goto out_mm; 2231 2232 ret = 0; 2233 if (!count) 2234 goto out_mm; 2235 2236 /* do not disclose physical addresses: attack vector */ 2237 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 2238 2239 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 2240 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 2241 ret = -ENOMEM; 2242 if (!pm.buffer) 2243 goto out_mm; 2244 2245 src = *ppos; 2246 svpfn = src / PM_ENTRY_BYTES; 2247 end_vaddr = mm->task_size; 2248 2249 /* watch out for wraparound */ 2250 start_vaddr = end_vaddr; 2251 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 2252 unsigned long end; 2253 2254 ret = mmap_read_lock_killable(mm); 2255 if (ret) 2256 goto out_free; 2257 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 2258 mmap_read_unlock(mm); 2259 2260 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 2261 if (end >= start_vaddr && end < mm->task_size) 2262 end_vaddr = end; 2263 } 2264 2265 /* Ensure the address is inside the task */ 2266 if (start_vaddr > mm->task_size) 2267 start_vaddr = end_vaddr; 2268 2269 ret = 0; 2270 while (count && (start_vaddr < end_vaddr)) { 2271 int len; 2272 unsigned long end; 2273 2274 pm.pos = 0; 2275 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 2276 /* overflow ? */ 2277 if (end < start_vaddr || end > end_vaddr) 2278 end = end_vaddr; 2279 ret = mmap_read_lock_killable(mm); 2280 if (ret) 2281 goto out_free; 2282 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 2283 mmap_read_unlock(mm); 2284 start_vaddr = end; 2285 2286 len = min(count, PM_ENTRY_BYTES * pm.pos); 2287 if (copy_to_user(buf, pm.buffer, len)) { 2288 ret = -EFAULT; 2289 goto out_free; 2290 } 2291 copied += len; 2292 buf += len; 2293 count -= len; 2294 } 2295 *ppos += copied; 2296 if (!ret || ret == PM_END_OF_BUFFER) 2297 ret = copied; 2298 2299out_free: 2300 kfree(pm.buffer); 2301out_mm: 2302 mmput(mm); 2303out: 2304 return ret; 2305} 2306 2307static int pagemap_open(struct inode *inode, struct file *file) 2308{ 2309 struct mm_struct *mm; 2310 2311 mm = proc_mem_open(inode, PTRACE_MODE_READ); 2312 if (IS_ERR_OR_NULL(mm)) 2313 return mm ? PTR_ERR(mm) : -ESRCH; 2314 file->private_data = mm; 2315 return 0; 2316} 2317 2318static int pagemap_release(struct inode *inode, struct file *file) 2319{ 2320 struct mm_struct *mm = file->private_data; 2321 2322 if (mm) 2323 mmdrop(mm); 2324 return 0; 2325} 2326 2327#define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \ 2328 PAGE_IS_FILE | PAGE_IS_PRESENT | \ 2329 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \ 2330 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY | \ 2331 PAGE_IS_GUARD) 2332#define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC) 2333 2334struct pagemap_scan_private { 2335 struct pm_scan_arg arg; 2336 unsigned long masks_of_interest, cur_vma_category; 2337 struct page_region *vec_buf; 2338 unsigned long vec_buf_len, vec_buf_index, found_pages; 2339 struct page_region __user *vec_out; 2340}; 2341 2342static unsigned long pagemap_page_category(struct pagemap_scan_private *p, 2343 struct vm_area_struct *vma, 2344 unsigned long addr, pte_t pte) 2345{ 2346 unsigned long categories; 2347 2348 if (pte_none(pte)) 2349 return 0; 2350 2351 if (pte_present(pte)) { 2352 struct page *page; 2353 2354 categories = PAGE_IS_PRESENT; 2355 2356 if (!pte_uffd_wp(pte)) 2357 categories |= PAGE_IS_WRITTEN; 2358 2359 if (p->masks_of_interest & PAGE_IS_FILE) { 2360 page = vm_normal_page(vma, addr, pte); 2361 if (page && !PageAnon(page)) 2362 categories |= PAGE_IS_FILE; 2363 } 2364 2365 if (is_zero_pfn(pte_pfn(pte))) 2366 categories |= PAGE_IS_PFNZERO; 2367 if (pte_soft_dirty(pte)) 2368 categories |= PAGE_IS_SOFT_DIRTY; 2369 } else { 2370 softleaf_t entry; 2371 2372 categories = PAGE_IS_SWAPPED; 2373 2374 if (!pte_swp_uffd_wp_any(pte)) 2375 categories |= PAGE_IS_WRITTEN; 2376 2377 entry = softleaf_from_pte(pte); 2378 if (softleaf_is_guard_marker(entry)) 2379 categories |= PAGE_IS_GUARD; 2380 else if ((p->masks_of_interest & PAGE_IS_FILE) && 2381 softleaf_has_pfn(entry) && 2382 !folio_test_anon(softleaf_to_folio(entry))) 2383 categories |= PAGE_IS_FILE; 2384 2385 if (pte_swp_soft_dirty(pte)) 2386 categories |= PAGE_IS_SOFT_DIRTY; 2387 } 2388 2389 return categories; 2390} 2391 2392static void make_uffd_wp_pte(struct vm_area_struct *vma, 2393 unsigned long addr, pte_t *pte, pte_t ptent) 2394{ 2395 if (pte_present(ptent)) { 2396 pte_t old_pte; 2397 2398 old_pte = ptep_modify_prot_start(vma, addr, pte); 2399 ptent = pte_mkuffd_wp(old_pte); 2400 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 2401 } else if (pte_none(ptent)) { 2402 set_pte_at(vma->vm_mm, addr, pte, 2403 make_pte_marker(PTE_MARKER_UFFD_WP)); 2404 } else { 2405 ptent = pte_swp_mkuffd_wp(ptent); 2406 set_pte_at(vma->vm_mm, addr, pte, ptent); 2407 } 2408} 2409 2410#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2411static unsigned long pagemap_thp_category(struct pagemap_scan_private *p, 2412 struct vm_area_struct *vma, 2413 unsigned long addr, pmd_t pmd) 2414{ 2415 unsigned long categories = PAGE_IS_HUGE; 2416 2417 if (pmd_none(pmd)) 2418 return categories; 2419 2420 if (pmd_present(pmd)) { 2421 struct page *page; 2422 2423 categories |= PAGE_IS_PRESENT; 2424 if (!pmd_uffd_wp(pmd)) 2425 categories |= PAGE_IS_WRITTEN; 2426 2427 if (p->masks_of_interest & PAGE_IS_FILE) { 2428 page = vm_normal_page_pmd(vma, addr, pmd); 2429 if (page && !PageAnon(page)) 2430 categories |= PAGE_IS_FILE; 2431 } 2432 2433 if (is_huge_zero_pmd(pmd)) 2434 categories |= PAGE_IS_PFNZERO; 2435 if (pmd_soft_dirty(pmd)) 2436 categories |= PAGE_IS_SOFT_DIRTY; 2437 } else { 2438 categories |= PAGE_IS_SWAPPED; 2439 if (!pmd_swp_uffd_wp(pmd)) 2440 categories |= PAGE_IS_WRITTEN; 2441 if (pmd_swp_soft_dirty(pmd)) 2442 categories |= PAGE_IS_SOFT_DIRTY; 2443 2444 if (p->masks_of_interest & PAGE_IS_FILE) { 2445 const softleaf_t entry = softleaf_from_pmd(pmd); 2446 2447 if (softleaf_has_pfn(entry) && 2448 !folio_test_anon(softleaf_to_folio(entry))) 2449 categories |= PAGE_IS_FILE; 2450 } 2451 } 2452 2453 return categories; 2454} 2455 2456static void make_uffd_wp_pmd(struct vm_area_struct *vma, 2457 unsigned long addr, pmd_t *pmdp) 2458{ 2459 pmd_t old, pmd = *pmdp; 2460 2461 if (pmd_present(pmd)) { 2462 old = pmdp_invalidate_ad(vma, addr, pmdp); 2463 pmd = pmd_mkuffd_wp(old); 2464 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2465 } else if (pmd_is_migration_entry(pmd)) { 2466 pmd = pmd_swp_mkuffd_wp(pmd); 2467 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2468 } 2469} 2470#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2471 2472#ifdef CONFIG_HUGETLB_PAGE 2473static unsigned long pagemap_hugetlb_category(pte_t pte) 2474{ 2475 unsigned long categories = PAGE_IS_HUGE; 2476 2477 if (pte_none(pte)) 2478 return categories; 2479 2480 /* 2481 * According to pagemap_hugetlb_range(), file-backed HugeTLB 2482 * page cannot be swapped. So PAGE_IS_FILE is not checked for 2483 * swapped pages. 2484 */ 2485 if (pte_present(pte)) { 2486 categories |= PAGE_IS_PRESENT; 2487 2488 if (!huge_pte_uffd_wp(pte)) 2489 categories |= PAGE_IS_WRITTEN; 2490 if (!PageAnon(pte_page(pte))) 2491 categories |= PAGE_IS_FILE; 2492 if (is_zero_pfn(pte_pfn(pte))) 2493 categories |= PAGE_IS_PFNZERO; 2494 if (pte_soft_dirty(pte)) 2495 categories |= PAGE_IS_SOFT_DIRTY; 2496 } else { 2497 categories |= PAGE_IS_SWAPPED; 2498 2499 if (!pte_swp_uffd_wp_any(pte)) 2500 categories |= PAGE_IS_WRITTEN; 2501 if (pte_swp_soft_dirty(pte)) 2502 categories |= PAGE_IS_SOFT_DIRTY; 2503 } 2504 2505 return categories; 2506} 2507 2508static void make_uffd_wp_huge_pte(struct vm_area_struct *vma, 2509 unsigned long addr, pte_t *ptep, 2510 pte_t ptent) 2511{ 2512 const unsigned long psize = huge_page_size(hstate_vma(vma)); 2513 softleaf_t entry; 2514 2515 if (huge_pte_none(ptent)) { 2516 set_huge_pte_at(vma->vm_mm, addr, ptep, 2517 make_pte_marker(PTE_MARKER_UFFD_WP), psize); 2518 return; 2519 } 2520 2521 entry = softleaf_from_pte(ptent); 2522 if (softleaf_is_hwpoison(entry) || softleaf_is_marker(entry)) 2523 return; 2524 2525 if (softleaf_is_migration(entry)) 2526 set_huge_pte_at(vma->vm_mm, addr, ptep, 2527 pte_swp_mkuffd_wp(ptent), psize); 2528 else 2529 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, 2530 huge_pte_mkuffd_wp(ptent)); 2531} 2532#endif /* CONFIG_HUGETLB_PAGE */ 2533 2534#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 2535static void pagemap_scan_backout_range(struct pagemap_scan_private *p, 2536 unsigned long addr, unsigned long end) 2537{ 2538 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2539 2540 if (!p->vec_buf) 2541 return; 2542 2543 if (cur_buf->start != addr) 2544 cur_buf->end = addr; 2545 else 2546 cur_buf->start = cur_buf->end = 0; 2547 2548 p->found_pages -= (end - addr) / PAGE_SIZE; 2549} 2550#endif 2551 2552static bool pagemap_scan_is_interesting_page(unsigned long categories, 2553 const struct pagemap_scan_private *p) 2554{ 2555 categories ^= p->arg.category_inverted; 2556 if ((categories & p->arg.category_mask) != p->arg.category_mask) 2557 return false; 2558 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask)) 2559 return false; 2560 2561 return true; 2562} 2563 2564static bool pagemap_scan_is_interesting_vma(unsigned long categories, 2565 const struct pagemap_scan_private *p) 2566{ 2567 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED; 2568 2569 categories ^= p->arg.category_inverted; 2570 if ((categories & required) != required) 2571 return false; 2572 2573 return true; 2574} 2575 2576static int pagemap_scan_test_walk(unsigned long start, unsigned long end, 2577 struct mm_walk *walk) 2578{ 2579 struct pagemap_scan_private *p = walk->private; 2580 struct vm_area_struct *vma = walk->vma; 2581 unsigned long vma_category = 0; 2582 bool wp_allowed = userfaultfd_wp_async(vma) && 2583 userfaultfd_wp_use_markers(vma); 2584 2585 if (!wp_allowed) { 2586 /* User requested explicit failure over wp-async capability */ 2587 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC) 2588 return -EPERM; 2589 /* 2590 * User requires wr-protect, and allows silently skipping 2591 * unsupported vmas. 2592 */ 2593 if (p->arg.flags & PM_SCAN_WP_MATCHING) 2594 return 1; 2595 /* 2596 * Then the request doesn't involve wr-protects at all, 2597 * fall through to the rest checks, and allow vma walk. 2598 */ 2599 } 2600 2601 if (vma->vm_flags & VM_PFNMAP) 2602 return 1; 2603 2604 if (wp_allowed) 2605 vma_category |= PAGE_IS_WPALLOWED; 2606 2607 if (vma->vm_flags & VM_SOFTDIRTY) 2608 vma_category |= PAGE_IS_SOFT_DIRTY; 2609 2610 if (!pagemap_scan_is_interesting_vma(vma_category, p)) 2611 return 1; 2612 2613 p->cur_vma_category = vma_category; 2614 2615 return 0; 2616} 2617 2618static bool pagemap_scan_push_range(unsigned long categories, 2619 struct pagemap_scan_private *p, 2620 unsigned long addr, unsigned long end) 2621{ 2622 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2623 2624 /* 2625 * When there is no output buffer provided at all, the sentinel values 2626 * won't match here. There is no other way for `cur_buf->end` to be 2627 * non-zero other than it being non-empty. 2628 */ 2629 if (addr == cur_buf->end && categories == cur_buf->categories) { 2630 cur_buf->end = end; 2631 return true; 2632 } 2633 2634 if (cur_buf->end) { 2635 if (p->vec_buf_index >= p->vec_buf_len - 1) 2636 return false; 2637 2638 cur_buf = &p->vec_buf[++p->vec_buf_index]; 2639 } 2640 2641 cur_buf->start = addr; 2642 cur_buf->end = end; 2643 cur_buf->categories = categories; 2644 2645 return true; 2646} 2647 2648static int pagemap_scan_output(unsigned long categories, 2649 struct pagemap_scan_private *p, 2650 unsigned long addr, unsigned long *end) 2651{ 2652 unsigned long n_pages, total_pages; 2653 int ret = 0; 2654 2655 if (!p->vec_buf) 2656 return 0; 2657 2658 categories &= p->arg.return_mask; 2659 2660 n_pages = (*end - addr) / PAGE_SIZE; 2661 if (check_add_overflow(p->found_pages, n_pages, &total_pages) || 2662 total_pages > p->arg.max_pages) { 2663 size_t n_too_much = total_pages - p->arg.max_pages; 2664 *end -= n_too_much * PAGE_SIZE; 2665 n_pages -= n_too_much; 2666 ret = -ENOSPC; 2667 } 2668 2669 if (!pagemap_scan_push_range(categories, p, addr, *end)) { 2670 *end = addr; 2671 n_pages = 0; 2672 ret = -ENOSPC; 2673 } 2674 2675 p->found_pages += n_pages; 2676 if (ret) 2677 p->arg.walk_end = *end; 2678 2679 return ret; 2680} 2681 2682static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start, 2683 unsigned long end, struct mm_walk *walk) 2684{ 2685#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2686 struct pagemap_scan_private *p = walk->private; 2687 struct vm_area_struct *vma = walk->vma; 2688 unsigned long categories; 2689 spinlock_t *ptl; 2690 int ret = 0; 2691 2692 ptl = pmd_trans_huge_lock(pmd, vma); 2693 if (!ptl) 2694 return -ENOENT; 2695 2696 categories = p->cur_vma_category | 2697 pagemap_thp_category(p, vma, start, *pmd); 2698 2699 if (!pagemap_scan_is_interesting_page(categories, p)) 2700 goto out_unlock; 2701 2702 ret = pagemap_scan_output(categories, p, start, &end); 2703 if (start == end) 2704 goto out_unlock; 2705 2706 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2707 goto out_unlock; 2708 if (~categories & PAGE_IS_WRITTEN) 2709 goto out_unlock; 2710 2711 /* 2712 * Break huge page into small pages if the WP operation 2713 * needs to be performed on a portion of the huge page. 2714 */ 2715 if (end != start + HPAGE_SIZE) { 2716 spin_unlock(ptl); 2717 split_huge_pmd(vma, pmd, start); 2718 pagemap_scan_backout_range(p, start, end); 2719 /* Report as if there was no THP */ 2720 return -ENOENT; 2721 } 2722 2723 make_uffd_wp_pmd(vma, start, pmd); 2724 flush_tlb_range(vma, start, end); 2725out_unlock: 2726 spin_unlock(ptl); 2727 return ret; 2728#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 2729 return -ENOENT; 2730#endif 2731} 2732 2733static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 2734 unsigned long end, struct mm_walk *walk) 2735{ 2736 struct pagemap_scan_private *p = walk->private; 2737 struct vm_area_struct *vma = walk->vma; 2738 unsigned long addr, flush_end = 0; 2739 pte_t *pte, *start_pte; 2740 spinlock_t *ptl; 2741 int ret; 2742 2743 ret = pagemap_scan_thp_entry(pmd, start, end, walk); 2744 if (ret != -ENOENT) 2745 return ret; 2746 2747 ret = 0; 2748 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 2749 if (!pte) { 2750 walk->action = ACTION_AGAIN; 2751 return 0; 2752 } 2753 2754 arch_enter_lazy_mmu_mode(); 2755 2756 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) { 2757 /* Fast path for performing exclusive WP */ 2758 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2759 pte_t ptent = ptep_get(pte); 2760 2761 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2762 pte_swp_uffd_wp_any(ptent)) 2763 continue; 2764 make_uffd_wp_pte(vma, addr, pte, ptent); 2765 if (!flush_end) 2766 start = addr; 2767 flush_end = addr + PAGE_SIZE; 2768 } 2769 goto flush_and_return; 2770 } 2771 2772 if (!p->arg.category_anyof_mask && !p->arg.category_inverted && 2773 p->arg.category_mask == PAGE_IS_WRITTEN && 2774 p->arg.return_mask == PAGE_IS_WRITTEN) { 2775 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) { 2776 unsigned long next = addr + PAGE_SIZE; 2777 pte_t ptent = ptep_get(pte); 2778 2779 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2780 pte_swp_uffd_wp_any(ptent)) 2781 continue; 2782 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN, 2783 p, addr, &next); 2784 if (next == addr) 2785 break; 2786 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2787 continue; 2788 make_uffd_wp_pte(vma, addr, pte, ptent); 2789 if (!flush_end) 2790 start = addr; 2791 flush_end = next; 2792 } 2793 goto flush_and_return; 2794 } 2795 2796 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2797 pte_t ptent = ptep_get(pte); 2798 unsigned long categories = p->cur_vma_category | 2799 pagemap_page_category(p, vma, addr, ptent); 2800 unsigned long next = addr + PAGE_SIZE; 2801 2802 if (!pagemap_scan_is_interesting_page(categories, p)) 2803 continue; 2804 2805 ret = pagemap_scan_output(categories, p, addr, &next); 2806 if (next == addr) 2807 break; 2808 2809 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2810 continue; 2811 if (~categories & PAGE_IS_WRITTEN) 2812 continue; 2813 2814 make_uffd_wp_pte(vma, addr, pte, ptent); 2815 if (!flush_end) 2816 start = addr; 2817 flush_end = next; 2818 } 2819 2820flush_and_return: 2821 if (flush_end) 2822 flush_tlb_range(vma, start, addr); 2823 2824 arch_leave_lazy_mmu_mode(); 2825 pte_unmap_unlock(start_pte, ptl); 2826 2827 cond_resched(); 2828 return ret; 2829} 2830 2831#ifdef CONFIG_HUGETLB_PAGE 2832static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, 2833 unsigned long start, unsigned long end, 2834 struct mm_walk *walk) 2835{ 2836 struct pagemap_scan_private *p = walk->private; 2837 struct vm_area_struct *vma = walk->vma; 2838 unsigned long categories; 2839 spinlock_t *ptl; 2840 int ret = 0; 2841 pte_t pte; 2842 2843 if (~p->arg.flags & PM_SCAN_WP_MATCHING) { 2844 /* Go the short route when not write-protecting pages. */ 2845 2846 pte = huge_ptep_get(walk->mm, start, ptep); 2847 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2848 2849 if (!pagemap_scan_is_interesting_page(categories, p)) 2850 return 0; 2851 2852 return pagemap_scan_output(categories, p, start, &end); 2853 } 2854 2855 i_mmap_lock_write(vma->vm_file->f_mapping); 2856 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep); 2857 2858 pte = huge_ptep_get(walk->mm, start, ptep); 2859 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2860 2861 if (!pagemap_scan_is_interesting_page(categories, p)) 2862 goto out_unlock; 2863 2864 ret = pagemap_scan_output(categories, p, start, &end); 2865 if (start == end) 2866 goto out_unlock; 2867 2868 if (~categories & PAGE_IS_WRITTEN) 2869 goto out_unlock; 2870 2871 if (end != start + HPAGE_SIZE) { 2872 /* Partial HugeTLB page WP isn't possible. */ 2873 pagemap_scan_backout_range(p, start, end); 2874 p->arg.walk_end = start; 2875 ret = 0; 2876 goto out_unlock; 2877 } 2878 2879 make_uffd_wp_huge_pte(vma, start, ptep, pte); 2880 flush_hugetlb_tlb_range(vma, start, end); 2881 2882out_unlock: 2883 spin_unlock(ptl); 2884 i_mmap_unlock_write(vma->vm_file->f_mapping); 2885 2886 return ret; 2887} 2888#else 2889#define pagemap_scan_hugetlb_entry NULL 2890#endif 2891 2892static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, 2893 int depth, struct mm_walk *walk) 2894{ 2895 struct pagemap_scan_private *p = walk->private; 2896 struct vm_area_struct *vma = walk->vma; 2897 int ret, err; 2898 2899 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p)) 2900 return 0; 2901 2902 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end); 2903 if (addr == end) 2904 return ret; 2905 2906 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2907 return ret; 2908 2909 err = uffd_wp_range(vma, addr, end - addr, true); 2910 if (err < 0) 2911 ret = err; 2912 2913 return ret; 2914} 2915 2916static const struct mm_walk_ops pagemap_scan_ops = { 2917 .test_walk = pagemap_scan_test_walk, 2918 .pmd_entry = pagemap_scan_pmd_entry, 2919 .pte_hole = pagemap_scan_pte_hole, 2920 .hugetlb_entry = pagemap_scan_hugetlb_entry, 2921}; 2922 2923static int pagemap_scan_get_args(struct pm_scan_arg *arg, 2924 unsigned long uarg) 2925{ 2926 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg))) 2927 return -EFAULT; 2928 2929 if (arg->size != sizeof(struct pm_scan_arg)) 2930 return -EINVAL; 2931 2932 /* Validate requested features */ 2933 if (arg->flags & ~PM_SCAN_FLAGS) 2934 return -EINVAL; 2935 if ((arg->category_inverted | arg->category_mask | 2936 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES) 2937 return -EINVAL; 2938 2939 arg->start = untagged_addr((unsigned long)arg->start); 2940 arg->end = untagged_addr((unsigned long)arg->end); 2941 arg->vec = untagged_addr((unsigned long)arg->vec); 2942 2943 /* Validate memory pointers */ 2944 if (!IS_ALIGNED(arg->start, PAGE_SIZE)) 2945 return -EINVAL; 2946 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start)) 2947 return -EFAULT; 2948 if (!arg->vec && arg->vec_len) 2949 return -EINVAL; 2950 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX) 2951 return -EINVAL; 2952 if (arg->vec && !access_ok((void __user *)(long)arg->vec, 2953 size_mul(arg->vec_len, sizeof(struct page_region)))) 2954 return -EFAULT; 2955 2956 /* Fixup default values */ 2957 arg->end = ALIGN(arg->end, PAGE_SIZE); 2958 arg->walk_end = 0; 2959 if (!arg->max_pages) 2960 arg->max_pages = ULONG_MAX; 2961 2962 return 0; 2963} 2964 2965static int pagemap_scan_writeback_args(struct pm_scan_arg *arg, 2966 unsigned long uargl) 2967{ 2968 struct pm_scan_arg __user *uarg = (void __user *)uargl; 2969 2970 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end))) 2971 return -EFAULT; 2972 2973 return 0; 2974} 2975 2976static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p) 2977{ 2978 if (!p->arg.vec_len) 2979 return 0; 2980 2981 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT, 2982 p->arg.vec_len); 2983 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf), 2984 GFP_KERNEL); 2985 if (!p->vec_buf) 2986 return -ENOMEM; 2987 2988 p->vec_buf->start = p->vec_buf->end = 0; 2989 p->vec_out = (struct page_region __user *)(long)p->arg.vec; 2990 2991 return 0; 2992} 2993 2994static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p) 2995{ 2996 const struct page_region *buf = p->vec_buf; 2997 long n = p->vec_buf_index; 2998 2999 if (!p->vec_buf) 3000 return 0; 3001 3002 if (buf[n].end != buf[n].start) 3003 n++; 3004 3005 if (!n) 3006 return 0; 3007 3008 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf))) 3009 return -EFAULT; 3010 3011 p->arg.vec_len -= n; 3012 p->vec_out += n; 3013 3014 p->vec_buf_index = 0; 3015 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len); 3016 p->vec_buf->start = p->vec_buf->end = 0; 3017 3018 return n; 3019} 3020 3021static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg) 3022{ 3023 struct pagemap_scan_private p = {0}; 3024 unsigned long walk_start; 3025 size_t n_ranges_out = 0; 3026 int ret; 3027 3028 ret = pagemap_scan_get_args(&p.arg, uarg); 3029 if (ret) 3030 return ret; 3031 3032 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask | 3033 p.arg.return_mask; 3034 ret = pagemap_scan_init_bounce_buffer(&p); 3035 if (ret) 3036 return ret; 3037 3038 for (walk_start = p.arg.start; walk_start < p.arg.end; 3039 walk_start = p.arg.walk_end) { 3040 struct mmu_notifier_range range; 3041 long n_out; 3042 3043 if (fatal_signal_pending(current)) { 3044 ret = -EINTR; 3045 break; 3046 } 3047 3048 ret = mmap_read_lock_killable(mm); 3049 if (ret) 3050 break; 3051 3052 /* Protection change for the range is going to happen. */ 3053 if (p.arg.flags & PM_SCAN_WP_MATCHING) { 3054 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, 3055 mm, walk_start, p.arg.end); 3056 mmu_notifier_invalidate_range_start(&range); 3057 } 3058 3059 ret = walk_page_range(mm, walk_start, p.arg.end, 3060 &pagemap_scan_ops, &p); 3061 3062 if (p.arg.flags & PM_SCAN_WP_MATCHING) 3063 mmu_notifier_invalidate_range_end(&range); 3064 3065 mmap_read_unlock(mm); 3066 3067 n_out = pagemap_scan_flush_buffer(&p); 3068 if (n_out < 0) 3069 ret = n_out; 3070 else 3071 n_ranges_out += n_out; 3072 3073 if (ret != -ENOSPC) 3074 break; 3075 3076 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages) 3077 break; 3078 } 3079 3080 /* ENOSPC signifies early stop (buffer full) from the walk. */ 3081 if (!ret || ret == -ENOSPC) 3082 ret = n_ranges_out; 3083 3084 /* The walk_end isn't set when ret is zero */ 3085 if (!p.arg.walk_end) 3086 p.arg.walk_end = p.arg.end; 3087 if (pagemap_scan_writeback_args(&p.arg, uarg)) 3088 ret = -EFAULT; 3089 3090 kfree(p.vec_buf); 3091 return ret; 3092} 3093 3094static long do_pagemap_cmd(struct file *file, unsigned int cmd, 3095 unsigned long arg) 3096{ 3097 struct mm_struct *mm = file->private_data; 3098 3099 switch (cmd) { 3100 case PAGEMAP_SCAN: 3101 return do_pagemap_scan(mm, arg); 3102 3103 default: 3104 return -EINVAL; 3105 } 3106} 3107 3108const struct file_operations proc_pagemap_operations = { 3109 .llseek = mem_lseek, /* borrow this */ 3110 .read = pagemap_read, 3111 .open = pagemap_open, 3112 .release = pagemap_release, 3113 .unlocked_ioctl = do_pagemap_cmd, 3114 .compat_ioctl = do_pagemap_cmd, 3115}; 3116#endif /* CONFIG_PROC_PAGE_MONITOR */ 3117 3118#ifdef CONFIG_NUMA 3119 3120struct numa_maps { 3121 unsigned long pages; 3122 unsigned long anon; 3123 unsigned long active; 3124 unsigned long writeback; 3125 unsigned long mapcount_max; 3126 unsigned long dirty; 3127 unsigned long swapcache; 3128 unsigned long node[MAX_NUMNODES]; 3129}; 3130 3131struct numa_maps_private { 3132 struct proc_maps_private proc_maps; 3133 struct numa_maps md; 3134}; 3135 3136static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 3137 unsigned long nr_pages) 3138{ 3139 struct folio *folio = page_folio(page); 3140 int count; 3141 3142 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 3143 count = folio_precise_page_mapcount(folio, page); 3144 else 3145 count = folio_average_page_mapcount(folio); 3146 3147 md->pages += nr_pages; 3148 if (pte_dirty || folio_test_dirty(folio)) 3149 md->dirty += nr_pages; 3150 3151 if (folio_test_swapcache(folio)) 3152 md->swapcache += nr_pages; 3153 3154 if (folio_test_active(folio) || folio_test_unevictable(folio)) 3155 md->active += nr_pages; 3156 3157 if (folio_test_writeback(folio)) 3158 md->writeback += nr_pages; 3159 3160 if (folio_test_anon(folio)) 3161 md->anon += nr_pages; 3162 3163 if (count > md->mapcount_max) 3164 md->mapcount_max = count; 3165 3166 md->node[folio_nid(folio)] += nr_pages; 3167} 3168 3169static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 3170 unsigned long addr) 3171{ 3172 struct page *page; 3173 int nid; 3174 3175 if (!pte_present(pte)) 3176 return NULL; 3177 3178 page = vm_normal_page(vma, addr, pte); 3179 if (!page || is_zone_device_page(page)) 3180 return NULL; 3181 3182 if (PageReserved(page)) 3183 return NULL; 3184 3185 nid = page_to_nid(page); 3186 if (!node_isset(nid, node_states[N_MEMORY])) 3187 return NULL; 3188 3189 return page; 3190} 3191 3192#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3193static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 3194 struct vm_area_struct *vma, 3195 unsigned long addr) 3196{ 3197 struct page *page; 3198 int nid; 3199 3200 if (!pmd_present(pmd)) 3201 return NULL; 3202 3203 page = vm_normal_page_pmd(vma, addr, pmd); 3204 if (!page) 3205 return NULL; 3206 3207 if (PageReserved(page)) 3208 return NULL; 3209 3210 nid = page_to_nid(page); 3211 if (!node_isset(nid, node_states[N_MEMORY])) 3212 return NULL; 3213 3214 return page; 3215} 3216#endif 3217 3218static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 3219 unsigned long end, struct mm_walk *walk) 3220{ 3221 struct numa_maps *md = walk->private; 3222 struct vm_area_struct *vma = walk->vma; 3223 spinlock_t *ptl; 3224 pte_t *orig_pte; 3225 pte_t *pte; 3226 3227#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3228 ptl = pmd_trans_huge_lock(pmd, vma); 3229 if (ptl) { 3230 struct page *page; 3231 3232 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 3233 if (page) 3234 gather_stats(page, md, pmd_dirty(*pmd), 3235 HPAGE_PMD_SIZE/PAGE_SIZE); 3236 spin_unlock(ptl); 3237 return 0; 3238 } 3239#endif 3240 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 3241 if (!pte) { 3242 walk->action = ACTION_AGAIN; 3243 return 0; 3244 } 3245 do { 3246 pte_t ptent = ptep_get(pte); 3247 struct page *page = can_gather_numa_stats(ptent, vma, addr); 3248 if (!page) 3249 continue; 3250 gather_stats(page, md, pte_dirty(ptent), 1); 3251 3252 } while (pte++, addr += PAGE_SIZE, addr != end); 3253 pte_unmap_unlock(orig_pte, ptl); 3254 cond_resched(); 3255 return 0; 3256} 3257#ifdef CONFIG_HUGETLB_PAGE 3258static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3259 unsigned long addr, unsigned long end, struct mm_walk *walk) 3260{ 3261 pte_t huge_pte; 3262 struct numa_maps *md; 3263 struct page *page; 3264 spinlock_t *ptl; 3265 3266 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 3267 huge_pte = huge_ptep_get(walk->mm, addr, pte); 3268 if (!pte_present(huge_pte)) 3269 goto out; 3270 3271 page = pte_page(huge_pte); 3272 3273 md = walk->private; 3274 gather_stats(page, md, pte_dirty(huge_pte), 1); 3275out: 3276 spin_unlock(ptl); 3277 return 0; 3278} 3279 3280#else 3281static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3282 unsigned long addr, unsigned long end, struct mm_walk *walk) 3283{ 3284 return 0; 3285} 3286#endif 3287 3288static const struct mm_walk_ops show_numa_ops = { 3289 .hugetlb_entry = gather_hugetlb_stats, 3290 .pmd_entry = gather_pte_stats, 3291 .walk_lock = PGWALK_RDLOCK, 3292}; 3293 3294/* 3295 * Display pages allocated per node and memory policy via /proc. 3296 */ 3297static int show_numa_map(struct seq_file *m, void *v) 3298{ 3299 struct numa_maps_private *numa_priv = m->private; 3300 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 3301 struct vm_area_struct *vma = v; 3302 struct numa_maps *md = &numa_priv->md; 3303 struct file *file = vma->vm_file; 3304 struct mm_struct *mm = vma->vm_mm; 3305 char buffer[64]; 3306 struct mempolicy *pol; 3307 pgoff_t ilx; 3308 int nid; 3309 3310 if (!mm) 3311 return 0; 3312 3313 /* Ensure we start with an empty set of numa_maps statistics. */ 3314 memset(md, 0, sizeof(*md)); 3315 3316 pol = __get_vma_policy(vma, vma->vm_start, &ilx); 3317 if (pol) { 3318 mpol_to_str(buffer, sizeof(buffer), pol); 3319 mpol_cond_put(pol); 3320 } else { 3321 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 3322 } 3323 3324 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 3325 3326 if (file) { 3327 seq_puts(m, " file="); 3328 seq_path(m, file_user_path(file), "\n\t= "); 3329 } else if (vma_is_initial_heap(vma)) { 3330 seq_puts(m, " heap"); 3331 } else if (vma_is_initial_stack(vma)) { 3332 seq_puts(m, " stack"); 3333 } 3334 3335 if (is_vm_hugetlb_page(vma)) 3336 seq_puts(m, " huge"); 3337 3338 /* mmap_lock is held by m_start */ 3339 walk_page_vma(vma, &show_numa_ops, md); 3340 3341 if (!md->pages) 3342 goto out; 3343 3344 if (md->anon) 3345 seq_printf(m, " anon=%lu", md->anon); 3346 3347 if (md->dirty) 3348 seq_printf(m, " dirty=%lu", md->dirty); 3349 3350 if (md->pages != md->anon && md->pages != md->dirty) 3351 seq_printf(m, " mapped=%lu", md->pages); 3352 3353 if (md->mapcount_max > 1) 3354 seq_printf(m, " mapmax=%lu", md->mapcount_max); 3355 3356 if (md->swapcache) 3357 seq_printf(m, " swapcache=%lu", md->swapcache); 3358 3359 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 3360 seq_printf(m, " active=%lu", md->active); 3361 3362 if (md->writeback) 3363 seq_printf(m, " writeback=%lu", md->writeback); 3364 3365 for_each_node_state(nid, N_MEMORY) 3366 if (md->node[nid]) 3367 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 3368 3369 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 3370out: 3371 seq_putc(m, '\n'); 3372 return 0; 3373} 3374 3375static const struct seq_operations proc_pid_numa_maps_op = { 3376 .start = m_start, 3377 .next = m_next, 3378 .stop = m_stop, 3379 .show = show_numa_map, 3380}; 3381 3382static int pid_numa_maps_open(struct inode *inode, struct file *file) 3383{ 3384 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 3385 sizeof(struct numa_maps_private)); 3386} 3387 3388const struct file_operations proc_pid_numa_maps_operations = { 3389 .open = pid_numa_maps_open, 3390 .read = seq_read, 3391 .llseek = seq_lseek, 3392 .release = proc_map_release, 3393}; 3394 3395#endif /* CONFIG_NUMA */