at v6.19 3431 lines 91 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21#include <linux/compat.h> 22#include <linux/module.h> 23#include <linux/time.h> 24#include <linux/errno.h> 25#include <linux/stat.h> 26#include <linux/fcntl.h> 27#include <linux/string.h> 28#include <linux/kernel.h> 29#include <linux/slab.h> 30#include <linux/mm.h> 31#include <linux/sunrpc/clnt.h> 32#include <linux/nfs_fs.h> 33#include <linux/nfs_mount.h> 34#include <linux/pagemap.h> 35#include <linux/pagevec.h> 36#include <linux/namei.h> 37#include <linux/mount.h> 38#include <linux/swap.h> 39#include <linux/sched.h> 40#include <linux/kmemleak.h> 41#include <linux/xattr.h> 42#include <linux/hash.h> 43 44#include "delegation.h" 45#include "iostat.h" 46#include "internal.h" 47#include "fscache.h" 48 49#include "nfstrace.h" 50 51/* #define NFS_DEBUG_VERBOSE 1 */ 52 53static int nfs_opendir(struct inode *, struct file *); 54static int nfs_closedir(struct inode *, struct file *); 55static int nfs_readdir(struct file *, struct dir_context *); 56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58static void nfs_readdir_clear_array(struct folio *); 59static int nfs_do_create(struct inode *dir, struct dentry *dentry, 60 umode_t mode, int open_flags); 61 62const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .iterate_shared = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_closedir, 68 .fsync = nfs_fsync_dir, 69 .setlease = simple_nosetlease, 70}; 71 72const struct address_space_operations nfs_dir_aops = { 73 .free_folio = nfs_readdir_clear_array, 74}; 75 76#define NFS_INIT_DTSIZE PAGE_SIZE 77 78static struct nfs_open_dir_context * 79alloc_nfs_open_dir_context(struct inode *dir) 80{ 81 struct nfs_inode *nfsi = NFS_I(dir); 82 struct nfs_open_dir_context *ctx; 83 84 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 85 if (ctx != NULL) { 86 ctx->attr_gencount = nfsi->attr_gencount; 87 ctx->dtsize = NFS_INIT_DTSIZE; 88 spin_lock(&dir->i_lock); 89 if (list_empty(&nfsi->open_files) && 90 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 91 nfs_set_cache_invalid(dir, 92 NFS_INO_INVALID_DATA | 93 NFS_INO_REVAL_FORCED); 94 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 95 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 96 spin_unlock(&dir->i_lock); 97 return ctx; 98 } 99 return ERR_PTR(-ENOMEM); 100} 101 102static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 103{ 104 spin_lock(&dir->i_lock); 105 list_del_rcu(&ctx->list); 106 spin_unlock(&dir->i_lock); 107 kfree_rcu(ctx, rcu_head); 108} 109 110/* 111 * Open file 112 */ 113static int 114nfs_opendir(struct inode *inode, struct file *filp) 115{ 116 int res = 0; 117 struct nfs_open_dir_context *ctx; 118 119 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 120 121 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 122 123 ctx = alloc_nfs_open_dir_context(inode); 124 if (IS_ERR(ctx)) { 125 res = PTR_ERR(ctx); 126 goto out; 127 } 128 filp->private_data = ctx; 129out: 130 return res; 131} 132 133static int 134nfs_closedir(struct inode *inode, struct file *filp) 135{ 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138} 139 140struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 const char *name; 144 unsigned int name_len; 145 unsigned char d_type; 146}; 147 148struct nfs_cache_array { 149 u64 change_attr; 150 u64 last_cookie; 151 unsigned int size; 152 unsigned char folio_full : 1, 153 folio_is_eof : 1, 154 cookies_are_ordered : 1; 155 struct nfs_cache_array_entry array[] __counted_by(size); 156}; 157 158struct nfs_readdir_descriptor { 159 struct file *file; 160 struct folio *folio; 161 struct dir_context *ctx; 162 pgoff_t folio_index; 163 pgoff_t folio_index_max; 164 u64 dir_cookie; 165 u64 last_cookie; 166 loff_t current_index; 167 168 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 169 unsigned long dir_verifier; 170 unsigned long timestamp; 171 unsigned long gencount; 172 unsigned long attr_gencount; 173 unsigned int cache_entry_index; 174 unsigned int buffer_fills; 175 unsigned int dtsize; 176 bool clear_cache; 177 bool plus; 178 bool eob; 179 bool eof; 180}; 181 182static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 183{ 184 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 185 unsigned int maxsize = server->dtsize; 186 187 if (sz > maxsize) 188 sz = maxsize; 189 if (sz < NFS_MIN_FILE_IO_SIZE) 190 sz = NFS_MIN_FILE_IO_SIZE; 191 desc->dtsize = sz; 192} 193 194static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 195{ 196 nfs_set_dtsize(desc, desc->dtsize >> 1); 197} 198 199static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 200{ 201 nfs_set_dtsize(desc, desc->dtsize << 1); 202} 203 204static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 205 u64 change_attr) 206{ 207 struct nfs_cache_array *array; 208 209 array = kmap_local_folio(folio, 0); 210 array->change_attr = change_attr; 211 array->last_cookie = last_cookie; 212 array->size = 0; 213 array->folio_full = 0; 214 array->folio_is_eof = 0; 215 array->cookies_are_ordered = 1; 216 kunmap_local(array); 217} 218 219/* 220 * we are freeing strings created by nfs_add_to_readdir_array() 221 */ 222static void nfs_readdir_clear_array(struct folio *folio) 223{ 224 struct nfs_cache_array *array; 225 unsigned int i; 226 227 array = kmap_local_folio(folio, 0); 228 for (i = 0; i < array->size; i++) 229 kfree(array->array[i].name); 230 array->size = 0; 231 kunmap_local(array); 232} 233 234static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 235 u64 change_attr) 236{ 237 nfs_readdir_clear_array(folio); 238 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 239} 240 241static struct folio * 242nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 243{ 244 struct folio *folio = folio_alloc(gfp_flags, 0); 245 if (folio) 246 nfs_readdir_folio_init_array(folio, last_cookie, 0); 247 return folio; 248} 249 250static void nfs_readdir_folio_array_free(struct folio *folio) 251{ 252 if (folio) { 253 nfs_readdir_clear_array(folio); 254 folio_put(folio); 255 } 256} 257 258static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 259{ 260 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 261} 262 263static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 264{ 265 array->folio_is_eof = 1; 266 array->folio_full = 1; 267} 268 269static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 270{ 271 return array->folio_full; 272} 273 274/* 275 * the caller is responsible for freeing qstr.name 276 * when called by nfs_readdir_add_to_array, the strings will be freed in 277 * nfs_clear_readdir_array() 278 */ 279static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 280{ 281 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 282 283 /* 284 * Avoid a kmemleak false positive. The pointer to the name is stored 285 * in a page cache page which kmemleak does not scan. 286 */ 287 if (ret != NULL) 288 kmemleak_not_leak(ret); 289 return ret; 290} 291 292static size_t nfs_readdir_array_maxentries(void) 293{ 294 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 295 sizeof(struct nfs_cache_array_entry); 296} 297 298/* 299 * Check that the next array entry lies entirely within the page bounds 300 */ 301static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 302{ 303 if (array->folio_full) 304 return -ENOSPC; 305 if (array->size == nfs_readdir_array_maxentries()) { 306 array->folio_full = 1; 307 return -ENOSPC; 308 } 309 return 0; 310} 311 312static int nfs_readdir_folio_array_append(struct folio *folio, 313 const struct nfs_entry *entry, 314 u64 *cookie) 315{ 316 struct nfs_cache_array *array; 317 struct nfs_cache_array_entry *cache_entry; 318 const char *name; 319 int ret = -ENOMEM; 320 321 name = nfs_readdir_copy_name(entry->name, entry->len); 322 323 array = kmap_local_folio(folio, 0); 324 if (!name) 325 goto out; 326 ret = nfs_readdir_array_can_expand(array); 327 if (ret) { 328 kfree(name); 329 goto out; 330 } 331 332 array->size++; 333 cache_entry = &array->array[array->size - 1]; 334 cache_entry->cookie = array->last_cookie; 335 cache_entry->ino = entry->ino; 336 cache_entry->d_type = entry->d_type; 337 cache_entry->name_len = entry->len; 338 cache_entry->name = name; 339 array->last_cookie = entry->cookie; 340 if (array->last_cookie <= cache_entry->cookie) 341 array->cookies_are_ordered = 0; 342 if (entry->eof != 0) 343 nfs_readdir_array_set_eof(array); 344out: 345 *cookie = array->last_cookie; 346 kunmap_local(array); 347 return ret; 348} 349 350#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 351/* 352 * Hash algorithm allowing content addressible access to sequences 353 * of directory cookies. Content is addressed by the value of the 354 * cookie index of the first readdir entry in a page. 355 * 356 * We select only the first 18 bits to avoid issues with excessive 357 * memory use for the page cache XArray. 18 bits should allow the caching 358 * of 262144 pages of sequences of readdir entries. Since each page holds 359 * 127 readdir entries for a typical 64-bit system, that works out to a 360 * cache of ~ 33 million entries per directory. 361 */ 362static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 363{ 364 if (cookie == 0) 365 return 0; 366 return hash_64(cookie, 18); 367} 368 369static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 370 u64 change_attr) 371{ 372 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 373 int ret = true; 374 375 if (array->change_attr != change_attr) 376 ret = false; 377 if (nfs_readdir_array_index_cookie(array) != last_cookie) 378 ret = false; 379 kunmap_local(array); 380 return ret; 381} 382 383static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 384{ 385 folio_unlock(folio); 386 folio_put(folio); 387} 388 389static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 390 u64 change_attr) 391{ 392 if (folio_test_uptodate(folio)) { 393 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 394 return; 395 nfs_readdir_clear_array(folio); 396 } 397 nfs_readdir_folio_init_array(folio, cookie, change_attr); 398 folio_mark_uptodate(folio); 399} 400 401static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 402 u64 cookie, u64 change_attr) 403{ 404 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 405 struct folio *folio; 406 407 folio = filemap_grab_folio(mapping, index); 408 if (IS_ERR(folio)) 409 return NULL; 410 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 411 return folio; 412} 413 414static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 415{ 416 struct nfs_cache_array *array; 417 u64 ret; 418 419 array = kmap_local_folio(folio, 0); 420 ret = array->last_cookie; 421 kunmap_local(array); 422 return ret; 423} 424 425static bool nfs_readdir_folio_needs_filling(struct folio *folio) 426{ 427 struct nfs_cache_array *array; 428 bool ret; 429 430 array = kmap_local_folio(folio, 0); 431 ret = !nfs_readdir_array_is_full(array); 432 kunmap_local(array); 433 return ret; 434} 435 436static void nfs_readdir_folio_set_eof(struct folio *folio) 437{ 438 struct nfs_cache_array *array; 439 440 array = kmap_local_folio(folio, 0); 441 nfs_readdir_array_set_eof(array); 442 kunmap_local(array); 443} 444 445static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 446 u64 cookie, u64 change_attr) 447{ 448 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 449 struct folio *folio; 450 451 folio = __filemap_get_folio(mapping, index, 452 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 453 mapping_gfp_mask(mapping)); 454 if (IS_ERR(folio)) 455 return NULL; 456 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 457 if (nfs_readdir_folio_last_cookie(folio) != cookie) 458 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 459 return folio; 460} 461 462static inline 463int is_32bit_api(void) 464{ 465#ifdef CONFIG_COMPAT 466 return in_compat_syscall(); 467#else 468 return (BITS_PER_LONG == 32); 469#endif 470} 471 472static 473bool nfs_readdir_use_cookie(const struct file *filp) 474{ 475 if ((filp->f_mode & FMODE_32BITHASH) || 476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 477 return false; 478 return true; 479} 480 481static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 482 struct nfs_readdir_descriptor *desc) 483{ 484 if (array->folio_full) { 485 desc->last_cookie = array->last_cookie; 486 desc->current_index += array->size; 487 desc->cache_entry_index = 0; 488 desc->folio_index++; 489 } else 490 desc->last_cookie = nfs_readdir_array_index_cookie(array); 491} 492 493static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 494{ 495 desc->current_index = 0; 496 desc->last_cookie = 0; 497 desc->folio_index = 0; 498} 499 500static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 501 struct nfs_readdir_descriptor *desc) 502{ 503 loff_t diff = desc->ctx->pos - desc->current_index; 504 unsigned int index; 505 506 if (diff < 0) 507 goto out_eof; 508 if (diff >= array->size) { 509 if (array->folio_is_eof) 510 goto out_eof; 511 nfs_readdir_seek_next_array(array, desc); 512 return -EAGAIN; 513 } 514 515 index = (unsigned int)diff; 516 desc->dir_cookie = array->array[index].cookie; 517 desc->cache_entry_index = index; 518 return 0; 519out_eof: 520 desc->eof = true; 521 return -EBADCOOKIE; 522} 523 524static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 525 u64 cookie) 526{ 527 if (!array->cookies_are_ordered) 528 return true; 529 /* Optimisation for monotonically increasing cookies */ 530 if (cookie >= array->last_cookie) 531 return false; 532 if (array->size && cookie < array->array[0].cookie) 533 return false; 534 return true; 535} 536 537static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 538 struct nfs_readdir_descriptor *desc) 539{ 540 unsigned int i; 541 int status = -EAGAIN; 542 543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 544 goto check_eof; 545 546 for (i = 0; i < array->size; i++) { 547 if (array->array[i].cookie == desc->dir_cookie) { 548 if (nfs_readdir_use_cookie(desc->file)) 549 desc->ctx->pos = desc->dir_cookie; 550 else 551 desc->ctx->pos = desc->current_index + i; 552 desc->cache_entry_index = i; 553 return 0; 554 } 555 } 556check_eof: 557 if (array->folio_is_eof) { 558 status = -EBADCOOKIE; 559 if (desc->dir_cookie == array->last_cookie) 560 desc->eof = true; 561 } else 562 nfs_readdir_seek_next_array(array, desc); 563 return status; 564} 565 566static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 567{ 568 struct nfs_cache_array *array; 569 int status; 570 571 array = kmap_local_folio(desc->folio, 0); 572 573 if (desc->dir_cookie == 0) 574 status = nfs_readdir_search_for_pos(array, desc); 575 else 576 status = nfs_readdir_search_for_cookie(array, desc); 577 578 kunmap_local(array); 579 return status; 580} 581 582/* Fill a page with xdr information before transferring to the cache page */ 583static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 584 __be32 *verf, u64 cookie, 585 struct page **pages, size_t bufsize, 586 __be32 *verf_res) 587{ 588 struct inode *inode = file_inode(desc->file); 589 struct nfs_readdir_arg arg = { 590 .dentry = file_dentry(desc->file), 591 .cred = desc->file->f_cred, 592 .verf = verf, 593 .cookie = cookie, 594 .pages = pages, 595 .page_len = bufsize, 596 .plus = desc->plus, 597 }; 598 struct nfs_readdir_res res = { 599 .verf = verf_res, 600 }; 601 unsigned long timestamp, gencount; 602 int error; 603 604 again: 605 timestamp = jiffies; 606 gencount = nfs_inc_attr_generation_counter(); 607 desc->dir_verifier = nfs_save_change_attribute(inode); 608 error = NFS_PROTO(inode)->readdir(&arg, &res); 609 if (error < 0) { 610 /* We requested READDIRPLUS, but the server doesn't grok it */ 611 if (error == -ENOTSUPP && desc->plus) { 612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 613 desc->plus = arg.plus = false; 614 goto again; 615 } 616 goto error; 617 } 618 desc->timestamp = timestamp; 619 desc->gencount = gencount; 620error: 621 return error; 622} 623 624static int xdr_decode(struct nfs_readdir_descriptor *desc, 625 struct nfs_entry *entry, struct xdr_stream *xdr) 626{ 627 struct inode *inode = file_inode(desc->file); 628 int error; 629 630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 631 if (error) 632 return error; 633 entry->fattr->time_start = desc->timestamp; 634 entry->fattr->gencount = desc->gencount; 635 return 0; 636} 637 638/* Match file and dirent using either filehandle or fileid 639 * Note: caller is responsible for checking the fsid 640 */ 641static 642int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 643{ 644 struct inode *inode; 645 struct nfs_inode *nfsi; 646 647 if (d_really_is_negative(dentry)) 648 return 0; 649 650 inode = d_inode(dentry); 651 if (is_bad_inode(inode) || NFS_STALE(inode)) 652 return 0; 653 654 nfsi = NFS_I(inode); 655 if (entry->fattr->fileid != nfsi->fileid) 656 return 0; 657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 658 return 0; 659 return 1; 660} 661 662#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 663 664static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 665 unsigned int cache_hits, 666 unsigned int cache_misses) 667{ 668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 669 return false; 670 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS) 671 return true; 672 if (ctx->pos == 0 || 673 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 674 return true; 675 return false; 676} 677 678/* 679 * This function is called by the getattr code to request the 680 * use of readdirplus to accelerate any future lookups in the same 681 * directory. 682 */ 683void nfs_readdir_record_entry_cache_hit(struct inode *dir) 684{ 685 struct nfs_inode *nfsi = NFS_I(dir); 686 struct nfs_open_dir_context *ctx; 687 688 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 689 S_ISDIR(dir->i_mode)) { 690 rcu_read_lock(); 691 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 692 atomic_inc(&ctx->cache_hits); 693 rcu_read_unlock(); 694 } 695} 696 697/* 698 * This function is mainly for use by nfs_getattr(). 699 * 700 * If this is an 'ls -l', we want to force use of readdirplus. 701 */ 702void nfs_readdir_record_entry_cache_miss(struct inode *dir) 703{ 704 struct nfs_inode *nfsi = NFS_I(dir); 705 struct nfs_open_dir_context *ctx; 706 707 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 708 S_ISDIR(dir->i_mode)) { 709 rcu_read_lock(); 710 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 711 atomic_inc(&ctx->cache_misses); 712 rcu_read_unlock(); 713 } 714} 715 716static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 717 unsigned int flags) 718{ 719 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 720 return; 721 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 722 return; 723 nfs_readdir_record_entry_cache_miss(dir); 724} 725 726static 727void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 728 unsigned long dir_verifier) 729{ 730 struct qstr filename = QSTR_INIT(entry->name, entry->len); 731 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 732 struct dentry *dentry; 733 struct dentry *alias; 734 struct inode *inode; 735 int status; 736 737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 738 return; 739 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 740 return; 741 if (filename.len == 0) 742 return; 743 /* Validate that the name doesn't contain any illegal '\0' */ 744 if (strnlen(filename.name, filename.len) != filename.len) 745 return; 746 /* ...or '/' */ 747 if (strnchr(filename.name, filename.len, '/')) 748 return; 749 if (filename.name[0] == '.') { 750 if (filename.len == 1) 751 return; 752 if (filename.len == 2 && filename.name[1] == '.') 753 return; 754 } 755 filename.hash = full_name_hash(parent, filename.name, filename.len); 756 757 dentry = d_lookup(parent, &filename); 758again: 759 if (!dentry) { 760 dentry = d_alloc_parallel(parent, &filename, &wq); 761 if (IS_ERR(dentry)) 762 return; 763 } 764 if (!d_in_lookup(dentry)) { 765 /* Is there a mountpoint here? If so, just exit */ 766 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 767 &entry->fattr->fsid)) 768 goto out; 769 if (nfs_same_file(dentry, entry)) { 770 if (!entry->fh->size) 771 goto out; 772 nfs_set_verifier(dentry, dir_verifier); 773 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 774 if (!status) 775 nfs_setsecurity(d_inode(dentry), entry->fattr); 776 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 777 dentry, 0, status); 778 goto out; 779 } else { 780 trace_nfs_readdir_lookup_revalidate_failed( 781 d_inode(parent), dentry, 0); 782 d_invalidate(dentry); 783 dput(dentry); 784 dentry = NULL; 785 goto again; 786 } 787 } 788 if (!entry->fh->size) { 789 d_lookup_done(dentry); 790 goto out; 791 } 792 793 nfs_set_verifier(dentry, dir_verifier); 794 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 795 alias = d_splice_alias(inode, dentry); 796 d_lookup_done(dentry); 797 if (alias) { 798 if (IS_ERR(alias)) 799 goto out; 800 nfs_set_verifier(alias, dir_verifier); 801 dput(dentry); 802 dentry = alias; 803 } 804 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 805out: 806 dput(dentry); 807} 808 809static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 810 struct nfs_entry *entry, 811 struct xdr_stream *stream) 812{ 813 int ret; 814 815 if (entry->fattr->label) 816 entry->fattr->label->len = NFS4_MAXLABELLEN; 817 ret = xdr_decode(desc, entry, stream); 818 if (ret || !desc->plus) 819 return ret; 820 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 821 return 0; 822} 823 824/* Perform conversion from xdr to cache array */ 825static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 826 struct nfs_entry *entry, 827 struct page **xdr_pages, unsigned int buflen, 828 struct folio **arrays, size_t narrays, 829 u64 change_attr) 830{ 831 struct address_space *mapping = desc->file->f_mapping; 832 struct folio *new, *folio = *arrays; 833 struct xdr_stream stream; 834 struct folio *scratch; 835 struct xdr_buf buf; 836 u64 cookie; 837 int status; 838 839 scratch = folio_alloc(GFP_KERNEL, 0); 840 if (scratch == NULL) 841 return -ENOMEM; 842 843 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 844 xdr_set_scratch_folio(&stream, scratch); 845 846 do { 847 status = nfs_readdir_entry_decode(desc, entry, &stream); 848 if (status != 0) 849 break; 850 851 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 852 if (status != -ENOSPC) 853 continue; 854 855 if (folio->mapping != mapping) { 856 if (!--narrays) 857 break; 858 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 859 if (!new) 860 break; 861 arrays++; 862 *arrays = folio = new; 863 } else { 864 new = nfs_readdir_folio_get_next(mapping, cookie, 865 change_attr); 866 if (!new) 867 break; 868 if (folio != *arrays) 869 nfs_readdir_folio_unlock_and_put(folio); 870 folio = new; 871 } 872 desc->folio_index_max++; 873 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 874 } while (!status && !entry->eof); 875 876 switch (status) { 877 case -EBADCOOKIE: 878 if (!entry->eof) 879 break; 880 nfs_readdir_folio_set_eof(folio); 881 fallthrough; 882 case -EAGAIN: 883 status = 0; 884 break; 885 case -ENOSPC: 886 status = 0; 887 if (!desc->plus) 888 break; 889 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 890 ; 891 } 892 893 if (folio != *arrays) 894 nfs_readdir_folio_unlock_and_put(folio); 895 896 folio_put(scratch); 897 return status; 898} 899 900static void nfs_readdir_free_pages(struct page **pages, size_t npages) 901{ 902 while (npages--) 903 put_page(pages[npages]); 904 kfree(pages); 905} 906 907/* 908 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 909 * to nfs_readdir_free_pages() 910 */ 911static struct page **nfs_readdir_alloc_pages(size_t npages) 912{ 913 struct page **pages; 914 size_t i; 915 916 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 917 if (!pages) 918 return NULL; 919 for (i = 0; i < npages; i++) { 920 struct page *page = alloc_page(GFP_KERNEL); 921 if (page == NULL) 922 goto out_freepages; 923 pages[i] = page; 924 } 925 return pages; 926 927out_freepages: 928 nfs_readdir_free_pages(pages, i); 929 return NULL; 930} 931 932static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 933 __be32 *verf_arg, __be32 *verf_res, 934 struct folio **arrays, size_t narrays) 935{ 936 u64 change_attr; 937 struct page **pages; 938 struct folio *folio = *arrays; 939 struct nfs_entry *entry; 940 size_t array_size; 941 struct inode *inode = file_inode(desc->file); 942 unsigned int dtsize = desc->dtsize; 943 unsigned int pglen; 944 int status = -ENOMEM; 945 946 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 947 if (!entry) 948 return -ENOMEM; 949 entry->cookie = nfs_readdir_folio_last_cookie(folio); 950 entry->fh = nfs_alloc_fhandle(); 951 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 952 entry->server = NFS_SERVER(inode); 953 if (entry->fh == NULL || entry->fattr == NULL) 954 goto out; 955 956 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 957 pages = nfs_readdir_alloc_pages(array_size); 958 if (!pages) 959 goto out; 960 961 change_attr = inode_peek_iversion_raw(inode); 962 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 963 dtsize, verf_res); 964 if (status < 0) 965 goto free_pages; 966 967 pglen = status; 968 if (pglen != 0) 969 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 970 arrays, narrays, change_attr); 971 else 972 nfs_readdir_folio_set_eof(folio); 973 desc->buffer_fills++; 974 975free_pages: 976 nfs_readdir_free_pages(pages, array_size); 977out: 978 nfs_free_fattr(entry->fattr); 979 nfs_free_fhandle(entry->fh); 980 kfree(entry); 981 return status; 982} 983 984static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 985{ 986 folio_put(desc->folio); 987 desc->folio = NULL; 988} 989 990static void 991nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 992{ 993 folio_unlock(desc->folio); 994 nfs_readdir_folio_put(desc); 995} 996 997static struct folio * 998nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 999{ 1000 struct address_space *mapping = desc->file->f_mapping; 1001 u64 change_attr = inode_peek_iversion_raw(mapping->host); 1002 u64 cookie = desc->last_cookie; 1003 struct folio *folio; 1004 1005 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1006 if (!folio) 1007 return NULL; 1008 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1009 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1010 return folio; 1011} 1012 1013/* 1014 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1015 * and locks the page to prevent removal from the page cache. 1016 */ 1017static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1018{ 1019 struct inode *inode = file_inode(desc->file); 1020 struct nfs_inode *nfsi = NFS_I(inode); 1021 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1022 int res; 1023 1024 desc->folio = nfs_readdir_folio_get_cached(desc); 1025 if (!desc->folio) 1026 return -ENOMEM; 1027 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1028 /* Grow the dtsize if we had to go back for more pages */ 1029 if (desc->folio_index == desc->folio_index_max) 1030 nfs_grow_dtsize(desc); 1031 desc->folio_index_max = desc->folio_index; 1032 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1033 desc->last_cookie, 1034 desc->folio->index, desc->dtsize); 1035 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1036 &desc->folio, 1); 1037 if (res < 0) { 1038 nfs_readdir_folio_unlock_and_put_cached(desc); 1039 trace_nfs_readdir_cache_fill_done(inode, res); 1040 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1041 invalidate_inode_pages2(desc->file->f_mapping); 1042 nfs_readdir_rewind_search(desc); 1043 trace_nfs_readdir_invalidate_cache_range( 1044 inode, 0, MAX_LFS_FILESIZE); 1045 return -EAGAIN; 1046 } 1047 return res; 1048 } 1049 /* 1050 * Set the cookie verifier if the page cache was empty 1051 */ 1052 if (desc->last_cookie == 0 && 1053 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1054 memcpy(nfsi->cookieverf, verf, 1055 sizeof(nfsi->cookieverf)); 1056 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1057 -1); 1058 trace_nfs_readdir_invalidate_cache_range( 1059 inode, 1, MAX_LFS_FILESIZE); 1060 } 1061 desc->clear_cache = false; 1062 } 1063 res = nfs_readdir_search_array(desc); 1064 if (res == 0) 1065 return 0; 1066 nfs_readdir_folio_unlock_and_put_cached(desc); 1067 return res; 1068} 1069 1070/* Search for desc->dir_cookie from the beginning of the page cache */ 1071static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1072{ 1073 int res; 1074 1075 do { 1076 res = find_and_lock_cache_page(desc); 1077 } while (res == -EAGAIN); 1078 return res; 1079} 1080 1081#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1082 1083/* 1084 * Once we've found the start of the dirent within a page: fill 'er up... 1085 */ 1086static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1087 const __be32 *verf) 1088{ 1089 struct file *file = desc->file; 1090 struct nfs_cache_array *array; 1091 unsigned int i; 1092 bool first_emit = !desc->dir_cookie; 1093 1094 array = kmap_local_folio(desc->folio, 0); 1095 for (i = desc->cache_entry_index; i < array->size; i++) { 1096 struct nfs_cache_array_entry *ent; 1097 1098 /* 1099 * nfs_readdir_handle_cache_misses return force clear at 1100 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1101 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1102 * entries need be emitted here. 1103 */ 1104 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1105 desc->eob = true; 1106 break; 1107 } 1108 1109 ent = &array->array[i]; 1110 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1111 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1112 desc->eob = true; 1113 break; 1114 } 1115 memcpy(desc->verf, verf, sizeof(desc->verf)); 1116 if (i == array->size - 1) { 1117 desc->dir_cookie = array->last_cookie; 1118 nfs_readdir_seek_next_array(array, desc); 1119 } else { 1120 desc->dir_cookie = array->array[i + 1].cookie; 1121 desc->last_cookie = array->array[0].cookie; 1122 } 1123 if (nfs_readdir_use_cookie(file)) 1124 desc->ctx->pos = desc->dir_cookie; 1125 else 1126 desc->ctx->pos++; 1127 } 1128 if (array->folio_is_eof) 1129 desc->eof = !desc->eob; 1130 1131 kunmap_local(array); 1132 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1133 (unsigned long long)desc->dir_cookie); 1134} 1135 1136/* 1137 * If we cannot find a cookie in our cache, we suspect that this is 1138 * because it points to a deleted file, so we ask the server to return 1139 * whatever it thinks is the next entry. We then feed this to filldir. 1140 * If all goes well, we should then be able to find our way round the 1141 * cache on the next call to readdir_search_pagecache(); 1142 * 1143 * NOTE: we cannot add the anonymous page to the pagecache because 1144 * the data it contains might not be page aligned. Besides, 1145 * we should already have a complete representation of the 1146 * directory in the page cache by the time we get here. 1147 */ 1148static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1149{ 1150 struct folio **arrays; 1151 size_t i, sz = 512; 1152 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1153 int status = -ENOMEM; 1154 1155 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1156 (unsigned long long)desc->dir_cookie); 1157 1158 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1159 if (!arrays) 1160 goto out; 1161 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1162 if (!arrays[0]) 1163 goto out; 1164 1165 desc->folio_index = 0; 1166 desc->cache_entry_index = 0; 1167 desc->last_cookie = desc->dir_cookie; 1168 desc->folio_index_max = 0; 1169 1170 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1171 -1, desc->dtsize); 1172 1173 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1174 if (status < 0) { 1175 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1176 goto out_free; 1177 } 1178 1179 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1180 desc->folio = arrays[i]; 1181 nfs_do_filldir(desc, verf); 1182 } 1183 desc->folio = NULL; 1184 1185 /* 1186 * Grow the dtsize if we have to go back for more pages, 1187 * or shrink it if we're reading too many. 1188 */ 1189 if (!desc->eof) { 1190 if (!desc->eob) 1191 nfs_grow_dtsize(desc); 1192 else if (desc->buffer_fills == 1 && 1193 i < (desc->folio_index_max >> 1)) 1194 nfs_shrink_dtsize(desc); 1195 } 1196out_free: 1197 for (i = 0; i < sz && arrays[i]; i++) 1198 nfs_readdir_folio_array_free(arrays[i]); 1199out: 1200 if (!nfs_readdir_use_cookie(desc->file)) 1201 nfs_readdir_rewind_search(desc); 1202 desc->folio_index_max = -1; 1203 kfree(arrays); 1204 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1205 return status; 1206} 1207 1208static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1209 struct nfs_readdir_descriptor *desc, 1210 unsigned int cache_misses, 1211 bool force_clear) 1212{ 1213 if (desc->ctx->pos == 0 || !desc->plus) 1214 return false; 1215 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1216 return false; 1217 trace_nfs_readdir_force_readdirplus(inode); 1218 return true; 1219} 1220 1221/* The file offset position represents the dirent entry number. A 1222 last cookie cache takes care of the common case of reading the 1223 whole directory. 1224 */ 1225static int nfs_readdir(struct file *file, struct dir_context *ctx) 1226{ 1227 struct dentry *dentry = file_dentry(file); 1228 struct inode *inode = d_inode(dentry); 1229 struct nfs_inode *nfsi = NFS_I(inode); 1230 struct nfs_open_dir_context *dir_ctx = file->private_data; 1231 struct nfs_readdir_descriptor *desc; 1232 unsigned int cache_hits, cache_misses; 1233 bool force_clear; 1234 int res; 1235 1236 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1237 file, (long long)ctx->pos); 1238 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1239 1240 /* 1241 * ctx->pos points to the dirent entry number. 1242 * *desc->dir_cookie has the cookie for the next entry. We have 1243 * to either find the entry with the appropriate number or 1244 * revalidate the cookie. 1245 */ 1246 nfs_revalidate_mapping(inode, file->f_mapping); 1247 1248 res = -ENOMEM; 1249 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1250 if (!desc) 1251 goto out; 1252 desc->file = file; 1253 desc->ctx = ctx; 1254 desc->folio_index_max = -1; 1255 1256 spin_lock(&file->f_lock); 1257 desc->dir_cookie = dir_ctx->dir_cookie; 1258 desc->folio_index = dir_ctx->page_index; 1259 desc->last_cookie = dir_ctx->last_cookie; 1260 desc->attr_gencount = dir_ctx->attr_gencount; 1261 desc->eof = dir_ctx->eof; 1262 nfs_set_dtsize(desc, dir_ctx->dtsize); 1263 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1264 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1265 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1266 force_clear = dir_ctx->force_clear; 1267 spin_unlock(&file->f_lock); 1268 1269 if (desc->eof) { 1270 res = 0; 1271 goto out_free; 1272 } 1273 1274 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1275 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1276 force_clear); 1277 desc->clear_cache = force_clear; 1278 1279 do { 1280 res = readdir_search_pagecache(desc); 1281 1282 if (res == -EBADCOOKIE) { 1283 res = 0; 1284 /* This means either end of directory */ 1285 if (desc->dir_cookie && !desc->eof) { 1286 /* Or that the server has 'lost' a cookie */ 1287 res = uncached_readdir(desc); 1288 if (res == 0) 1289 continue; 1290 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1291 res = 0; 1292 } 1293 break; 1294 } 1295 if (res == -ETOOSMALL && desc->plus) { 1296 nfs_zap_caches(inode); 1297 desc->plus = false; 1298 desc->eof = false; 1299 continue; 1300 } 1301 if (res < 0) 1302 break; 1303 1304 nfs_do_filldir(desc, nfsi->cookieverf); 1305 nfs_readdir_folio_unlock_and_put_cached(desc); 1306 if (desc->folio_index == desc->folio_index_max) 1307 desc->clear_cache = force_clear; 1308 } while (!desc->eob && !desc->eof); 1309 1310 spin_lock(&file->f_lock); 1311 dir_ctx->dir_cookie = desc->dir_cookie; 1312 dir_ctx->last_cookie = desc->last_cookie; 1313 dir_ctx->attr_gencount = desc->attr_gencount; 1314 dir_ctx->page_index = desc->folio_index; 1315 dir_ctx->force_clear = force_clear; 1316 dir_ctx->eof = desc->eof; 1317 dir_ctx->dtsize = desc->dtsize; 1318 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1319 spin_unlock(&file->f_lock); 1320out_free: 1321 kfree(desc); 1322 1323out: 1324 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1325 return res; 1326} 1327 1328static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1329{ 1330 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1331 1332 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1333 filp, offset, whence); 1334 1335 switch (whence) { 1336 default: 1337 return -EINVAL; 1338 case SEEK_SET: 1339 if (offset < 0) 1340 return -EINVAL; 1341 spin_lock(&filp->f_lock); 1342 break; 1343 case SEEK_CUR: 1344 if (offset == 0) 1345 return filp->f_pos; 1346 spin_lock(&filp->f_lock); 1347 offset += filp->f_pos; 1348 if (offset < 0) { 1349 spin_unlock(&filp->f_lock); 1350 return -EINVAL; 1351 } 1352 } 1353 if (offset != filp->f_pos) { 1354 filp->f_pos = offset; 1355 dir_ctx->page_index = 0; 1356 if (!nfs_readdir_use_cookie(filp)) { 1357 dir_ctx->dir_cookie = 0; 1358 dir_ctx->last_cookie = 0; 1359 } else { 1360 dir_ctx->dir_cookie = offset; 1361 dir_ctx->last_cookie = offset; 1362 } 1363 dir_ctx->eof = false; 1364 } 1365 spin_unlock(&filp->f_lock); 1366 return offset; 1367} 1368 1369/* 1370 * All directory operations under NFS are synchronous, so fsync() 1371 * is a dummy operation. 1372 */ 1373static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1374 int datasync) 1375{ 1376 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1377 1378 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1379 return 0; 1380} 1381 1382/** 1383 * nfs_force_lookup_revalidate - Mark the directory as having changed 1384 * @dir: pointer to directory inode 1385 * 1386 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1387 * full lookup on all child dentries of 'dir' whenever a change occurs 1388 * on the server that might have invalidated our dcache. 1389 * 1390 * Note that we reserve bit '0' as a tag to let us know when a dentry 1391 * was revalidated while holding a delegation on its inode. 1392 * 1393 * The caller should be holding dir->i_lock 1394 */ 1395void nfs_force_lookup_revalidate(struct inode *dir) 1396{ 1397 NFS_I(dir)->cache_change_attribute += 2; 1398} 1399EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1400 1401/** 1402 * nfs_verify_change_attribute - Detects NFS remote directory changes 1403 * @dir: pointer to parent directory inode 1404 * @verf: previously saved change attribute 1405 * 1406 * Return "false" if the verifiers doesn't match the change attribute. 1407 * This would usually indicate that the directory contents have changed on 1408 * the server, and that any dentries need revalidating. 1409 */ 1410static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1411{ 1412 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1413} 1414 1415static void nfs_set_verifier_delegated(unsigned long *verf) 1416{ 1417 *verf |= 1UL; 1418} 1419 1420#if IS_ENABLED(CONFIG_NFS_V4) 1421static void nfs_unset_verifier_delegated(unsigned long *verf) 1422{ 1423 *verf &= ~1UL; 1424} 1425#endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1426 1427static bool nfs_test_verifier_delegated(unsigned long verf) 1428{ 1429 return verf & 1; 1430} 1431 1432static bool nfs_verifier_is_delegated(struct dentry *dentry) 1433{ 1434 return nfs_test_verifier_delegated(dentry->d_time); 1435} 1436 1437static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1438{ 1439 struct inode *inode = d_inode(dentry); 1440 struct inode *dir = d_inode_rcu(dentry->d_parent); 1441 1442 if (!dir || !nfs_verify_change_attribute(dir, verf)) 1443 return; 1444 if (NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0) || 1445 (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))) 1446 nfs_set_verifier_delegated(&verf); 1447 dentry->d_time = verf; 1448} 1449 1450/** 1451 * nfs_set_verifier - save a parent directory verifier in the dentry 1452 * @dentry: pointer to dentry 1453 * @verf: verifier to save 1454 * 1455 * Saves the parent directory verifier in @dentry. If the inode has 1456 * a delegation, we also tag the dentry as having been revalidated 1457 * while holding a delegation so that we know we don't have to 1458 * look it up again after a directory change. 1459 */ 1460void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1461{ 1462 1463 spin_lock(&dentry->d_lock); 1464 nfs_set_verifier_locked(dentry, verf); 1465 spin_unlock(&dentry->d_lock); 1466} 1467EXPORT_SYMBOL_GPL(nfs_set_verifier); 1468 1469#if IS_ENABLED(CONFIG_NFS_V4) 1470static void nfs_clear_verifier_file(struct inode *inode) 1471{ 1472 struct dentry *alias; 1473 struct inode *dir; 1474 1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1476 spin_lock(&alias->d_lock); 1477 dir = d_inode_rcu(alias->d_parent); 1478 if (!dir || 1479 !NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0)) 1480 nfs_unset_verifier_delegated(&alias->d_time); 1481 spin_unlock(&alias->d_lock); 1482 } 1483} 1484 1485static void nfs_clear_verifier_directory(struct inode *dir) 1486{ 1487 struct dentry *this_parent; 1488 struct dentry *dentry; 1489 struct inode *inode; 1490 1491 if (hlist_empty(&dir->i_dentry)) 1492 return; 1493 this_parent = 1494 hlist_entry(dir->i_dentry.first, struct dentry, d_u.d_alias); 1495 1496 spin_lock(&this_parent->d_lock); 1497 nfs_unset_verifier_delegated(&this_parent->d_time); 1498 dentry = d_first_child(this_parent); 1499 hlist_for_each_entry_from(dentry, d_sib) { 1500 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1501 continue; 1502 inode = d_inode_rcu(dentry); 1503 if (inode && 1504 NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)) 1505 continue; 1506 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1507 nfs_unset_verifier_delegated(&dentry->d_time); 1508 spin_unlock(&dentry->d_lock); 1509 } 1510 spin_unlock(&this_parent->d_lock); 1511} 1512 1513/** 1514 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1515 * @inode: pointer to inode 1516 * 1517 * Iterates through the dentries in the inode alias list and clears 1518 * the tag used to indicate that the dentry has been revalidated 1519 * while holding a delegation. 1520 * This function is intended for use when the delegation is being 1521 * returned or revoked. 1522 */ 1523void nfs_clear_verifier_delegated(struct inode *inode) 1524{ 1525 if (!inode) 1526 return; 1527 spin_lock(&inode->i_lock); 1528 if (S_ISREG(inode->i_mode)) 1529 nfs_clear_verifier_file(inode); 1530 else if (S_ISDIR(inode->i_mode)) 1531 nfs_clear_verifier_directory(inode); 1532 spin_unlock(&inode->i_lock); 1533} 1534EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1535#endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1536 1537static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1538{ 1539 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1540 d_really_is_negative(dentry)) 1541 return dentry->d_time == inode_peek_iversion_raw(dir); 1542 return nfs_verify_change_attribute(dir, dentry->d_time); 1543} 1544 1545/* 1546 * A check for whether or not the parent directory has changed. 1547 * In the case it has, we assume that the dentries are untrustworthy 1548 * and may need to be looked up again. 1549 * If rcu_walk prevents us from performing a full check, return 0. 1550 */ 1551static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1552 int rcu_walk) 1553{ 1554 if (IS_ROOT(dentry)) 1555 return 1; 1556 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1557 return 0; 1558 if (!nfs_dentry_verify_change(dir, dentry)) 1559 return 0; 1560 1561 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1562 if (nfs_mapping_need_revalidate_inode(dir)) { 1563 if (rcu_walk) 1564 return 0; 1565 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1566 return 0; 1567 } 1568 if (!nfs_dentry_verify_change(dir, dentry)) 1569 return 0; 1570 return 1; 1571} 1572 1573/* 1574 * Use intent information to check whether or not we're going to do 1575 * an O_EXCL create using this path component. 1576 */ 1577static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1578{ 1579 if (NFS_PROTO(dir)->version == 2) 1580 return 0; 1581 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) == 1582 (LOOKUP_CREATE | LOOKUP_EXCL); 1583} 1584 1585/* 1586 * Inode and filehandle revalidation for lookups. 1587 * 1588 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1589 * or if the intent information indicates that we're about to open this 1590 * particular file and the "nocto" mount flag is not set. 1591 * 1592 */ 1593static 1594int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1595{ 1596 struct nfs_server *server = NFS_SERVER(inode); 1597 int ret; 1598 1599 if (IS_AUTOMOUNT(inode)) 1600 return 0; 1601 1602 if (flags & LOOKUP_OPEN) { 1603 switch (inode->i_mode & S_IFMT) { 1604 case S_IFREG: 1605 /* A NFSv4 OPEN will revalidate later */ 1606 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1607 goto out; 1608 fallthrough; 1609 case S_IFDIR: 1610 if (server->flags & NFS_MOUNT_NOCTO) 1611 break; 1612 /* NFS close-to-open cache consistency validation */ 1613 goto out_force; 1614 } 1615 } 1616 1617 /* VFS wants an on-the-wire revalidation */ 1618 if (flags & LOOKUP_REVAL) 1619 goto out_force; 1620out: 1621 if (inode->i_nlink > 0 || 1622 (inode->i_nlink == 0 && 1623 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1624 return 0; 1625 else 1626 return -ESTALE; 1627out_force: 1628 if (flags & LOOKUP_RCU) 1629 return -ECHILD; 1630 ret = __nfs_revalidate_inode(server, inode); 1631 if (ret != 0) 1632 return ret; 1633 goto out; 1634} 1635 1636static void nfs_mark_dir_for_revalidate(struct inode *inode) 1637{ 1638 spin_lock(&inode->i_lock); 1639 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1640 spin_unlock(&inode->i_lock); 1641} 1642 1643/* 1644 * We judge how long we want to trust negative 1645 * dentries by looking at the parent inode mtime. 1646 * 1647 * If parent mtime has changed, we revalidate, else we wait for a 1648 * period corresponding to the parent's attribute cache timeout value. 1649 * 1650 * If LOOKUP_RCU prevents us from performing a full check, return 1 1651 * suggesting a reval is needed. 1652 * 1653 * Note that when creating a new file, or looking up a rename target, 1654 * then it shouldn't be necessary to revalidate a negative dentry. 1655 */ 1656static inline 1657int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1658 unsigned int flags) 1659{ 1660 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1661 return 0; 1662 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1663 return 1; 1664 /* Case insensitive server? Revalidate negative dentries */ 1665 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1666 return 1; 1667 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1668} 1669 1670static int 1671nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1672 struct inode *inode, int error) 1673{ 1674 switch (error) { 1675 case 1: 1676 break; 1677 case -ETIMEDOUT: 1678 if (inode && (IS_ROOT(dentry) || 1679 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) 1680 error = 1; 1681 break; 1682 case -ESTALE: 1683 case -ENOENT: 1684 error = 0; 1685 fallthrough; 1686 default: 1687 /* 1688 * We can't d_drop the root of a disconnected tree: 1689 * its d_hash is on the s_anon list and d_drop() would hide 1690 * it from shrink_dcache_for_unmount(), leading to busy 1691 * inodes on unmount and further oopses. 1692 */ 1693 if (inode && IS_ROOT(dentry)) 1694 error = 1; 1695 break; 1696 } 1697 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1698 return error; 1699} 1700 1701static int 1702nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1703 unsigned int flags) 1704{ 1705 int ret = 1; 1706 if (nfs_neg_need_reval(dir, dentry, flags)) { 1707 if (flags & LOOKUP_RCU) 1708 return -ECHILD; 1709 ret = 0; 1710 } 1711 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1712} 1713 1714static int 1715nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1716 struct inode *inode) 1717{ 1718 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1719 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1720} 1721 1722static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name, 1723 struct dentry *dentry, 1724 struct inode *inode, unsigned int flags) 1725{ 1726 struct nfs_fh *fhandle; 1727 struct nfs_fattr *fattr; 1728 unsigned long dir_verifier; 1729 int ret; 1730 1731 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1732 1733 ret = -ENOMEM; 1734 fhandle = nfs_alloc_fhandle(); 1735 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1736 if (fhandle == NULL || fattr == NULL) 1737 goto out; 1738 1739 dir_verifier = nfs_save_change_attribute(dir); 1740 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr); 1741 if (ret < 0) 1742 goto out; 1743 1744 /* Request help from readdirplus */ 1745 nfs_lookup_advise_force_readdirplus(dir, flags); 1746 1747 ret = 0; 1748 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1749 goto out; 1750 if (nfs_refresh_inode(inode, fattr) < 0) 1751 goto out; 1752 1753 nfs_setsecurity(inode, fattr); 1754 nfs_set_verifier(dentry, dir_verifier); 1755 1756 ret = 1; 1757out: 1758 nfs_free_fattr(fattr); 1759 nfs_free_fhandle(fhandle); 1760 1761 /* 1762 * If the lookup failed despite the dentry change attribute being 1763 * a match, then we should revalidate the directory cache. 1764 */ 1765 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1766 nfs_mark_dir_for_revalidate(dir); 1767 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1768} 1769 1770/* 1771 * This is called every time the dcache has a lookup hit, 1772 * and we should check whether we can really trust that 1773 * lookup. 1774 * 1775 * NOTE! The hit can be a negative hit too, don't assume 1776 * we have an inode! 1777 * 1778 * If the parent directory is seen to have changed, we throw out the 1779 * cached dentry and do a new lookup. 1780 */ 1781static int 1782nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name, 1783 struct dentry *dentry, unsigned int flags) 1784{ 1785 struct inode *inode; 1786 int error = 0; 1787 1788 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1789 inode = d_inode(dentry); 1790 1791 if (!inode) 1792 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1793 1794 if (is_bad_inode(inode)) { 1795 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1796 __func__, dentry); 1797 goto out_bad; 1798 } 1799 1800 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1801 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1802 goto out_bad; 1803 1804 if (nfs_verifier_is_delegated(dentry)) 1805 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1806 1807 /* Force a full look up iff the parent directory has changed */ 1808 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1809 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1810 error = nfs_lookup_verify_inode(inode, flags); 1811 if (error) { 1812 if (error == -ESTALE) 1813 nfs_mark_dir_for_revalidate(dir); 1814 goto out_bad; 1815 } 1816 goto out_valid; 1817 } 1818 1819 if (flags & LOOKUP_RCU) 1820 return -ECHILD; 1821 1822 if (NFS_STALE(inode)) 1823 goto out_bad; 1824 1825 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 1826out_valid: 1827 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1828out_bad: 1829 if (flags & LOOKUP_RCU) 1830 return -ECHILD; 1831 return nfs_lookup_revalidate_done(dir, dentry, inode, error); 1832} 1833 1834static int 1835__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1836{ 1837 if (flags & LOOKUP_RCU) { 1838 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1839 return -ECHILD; 1840 } else { 1841 /* Wait for unlink to complete - see unblock_revalidate() */ 1842 wait_var_event(&dentry->d_fsdata, 1843 smp_load_acquire(&dentry->d_fsdata) 1844 != NFS_FSDATA_BLOCKED); 1845 } 1846 return 0; 1847} 1848 1849static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name, 1850 struct dentry *dentry, unsigned int flags) 1851{ 1852 if (__nfs_lookup_revalidate(dentry, flags)) 1853 return -ECHILD; 1854 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 1855} 1856 1857static void block_revalidate(struct dentry *dentry) 1858{ 1859 /* old devname - just in case */ 1860 kfree(dentry->d_fsdata); 1861 1862 /* Any new reference that could lead to an open 1863 * will take ->d_lock in lookup_open() -> d_lookup(). 1864 * Holding this lock ensures we cannot race with 1865 * __nfs_lookup_revalidate() and removes and need 1866 * for further barriers. 1867 */ 1868 lockdep_assert_held(&dentry->d_lock); 1869 1870 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 1871} 1872 1873static void unblock_revalidate(struct dentry *dentry) 1874{ 1875 store_release_wake_up(&dentry->d_fsdata, NULL); 1876} 1877 1878/* 1879 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1880 * when we don't really care about the dentry name. This is called when a 1881 * pathwalk ends on a dentry that was not found via a normal lookup in the 1882 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1883 * 1884 * In this situation, we just want to verify that the inode itself is OK 1885 * since the dentry might have changed on the server. 1886 */ 1887static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1888{ 1889 struct inode *inode = d_inode(dentry); 1890 int error = 0; 1891 1892 /* 1893 * I believe we can only get a negative dentry here in the case of a 1894 * procfs-style symlink. Just assume it's correct for now, but we may 1895 * eventually need to do something more here. 1896 */ 1897 if (!inode) { 1898 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1899 __func__, dentry); 1900 return 1; 1901 } 1902 1903 if (is_bad_inode(inode)) { 1904 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1905 __func__, dentry); 1906 return 0; 1907 } 1908 1909 error = nfs_lookup_verify_inode(inode, flags); 1910 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1911 __func__, inode->i_ino, error ? "invalid" : "valid"); 1912 return !error; 1913} 1914 1915/* 1916 * This is called from dput() when d_count is going to 0. 1917 */ 1918static int nfs_dentry_delete(const struct dentry *dentry) 1919{ 1920 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1921 dentry, dentry->d_flags); 1922 1923 /* Unhash any dentry with a stale inode */ 1924 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1925 return 1; 1926 1927 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1928 /* Unhash it, so that ->d_iput() would be called */ 1929 return 1; 1930 } 1931 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1932 /* Unhash it, so that ancestors of killed async unlink 1933 * files will be cleaned up during umount */ 1934 return 1; 1935 } 1936 return 0; 1937 1938} 1939 1940/* Ensure that we revalidate inode->i_nlink */ 1941static void nfs_drop_nlink(struct inode *inode, unsigned long gencount) 1942{ 1943 struct nfs_inode *nfsi = NFS_I(inode); 1944 1945 spin_lock(&inode->i_lock); 1946 /* drop the inode if we're reasonably sure this is the last link */ 1947 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount) 1948 drop_nlink(inode); 1949 nfsi->attr_gencount = nfs_inc_attr_generation_counter(); 1950 nfs_set_cache_invalid( 1951 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1952 NFS_INO_INVALID_NLINK); 1953 spin_unlock(&inode->i_lock); 1954} 1955 1956/* 1957 * Called when the dentry loses inode. 1958 * We use it to clean up silly-renamed files. 1959 */ 1960static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1961{ 1962 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1963 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 1964 nfs_complete_unlink(dentry, inode); 1965 nfs_drop_nlink(inode, gencount); 1966 } 1967 iput(inode); 1968} 1969 1970static void nfs_d_release(struct dentry *dentry) 1971{ 1972 /* free cached devname value, if it survived that far */ 1973 if (unlikely(dentry->d_fsdata)) { 1974 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1975 WARN_ON(1); 1976 else 1977 kfree(dentry->d_fsdata); 1978 } 1979} 1980 1981const struct dentry_operations nfs_dentry_operations = { 1982 .d_revalidate = nfs_lookup_revalidate, 1983 .d_weak_revalidate = nfs_weak_revalidate, 1984 .d_delete = nfs_dentry_delete, 1985 .d_iput = nfs_dentry_iput, 1986 .d_automount = nfs_d_automount, 1987 .d_release = nfs_d_release, 1988}; 1989EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1990 1991struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1992{ 1993 struct dentry *res; 1994 struct inode *inode = NULL; 1995 struct nfs_fh *fhandle = NULL; 1996 struct nfs_fattr *fattr = NULL; 1997 unsigned long dir_verifier; 1998 int error; 1999 2000 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 2001 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 2002 2003 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 2004 return ERR_PTR(-ENAMETOOLONG); 2005 2006 /* 2007 * If we're doing an exclusive create, optimize away the lookup 2008 * but don't hash the dentry. 2009 */ 2010 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 2011 return NULL; 2012 2013 res = ERR_PTR(-ENOMEM); 2014 fhandle = nfs_alloc_fhandle(); 2015 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 2016 if (fhandle == NULL || fattr == NULL) 2017 goto out; 2018 2019 dir_verifier = nfs_save_change_attribute(dir); 2020 trace_nfs_lookup_enter(dir, dentry, flags); 2021 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2022 fhandle, fattr); 2023 if (error == -ENOENT) { 2024 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2025 dir_verifier = inode_peek_iversion_raw(dir); 2026 goto no_entry; 2027 } 2028 if (error < 0) { 2029 res = ERR_PTR(error); 2030 goto out; 2031 } 2032 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2033 res = ERR_CAST(inode); 2034 if (IS_ERR(res)) 2035 goto out; 2036 2037 /* Notify readdir to use READDIRPLUS */ 2038 nfs_lookup_advise_force_readdirplus(dir, flags); 2039 2040no_entry: 2041 nfs_set_verifier(dentry, dir_verifier); 2042 res = d_splice_alias(inode, dentry); 2043 if (res != NULL) { 2044 if (IS_ERR(res)) 2045 goto out; 2046 nfs_set_verifier(res, dir_verifier); 2047 dentry = res; 2048 } 2049out: 2050 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 2051 nfs_free_fattr(fattr); 2052 nfs_free_fhandle(fhandle); 2053 return res; 2054} 2055EXPORT_SYMBOL_GPL(nfs_lookup); 2056 2057void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 2058{ 2059 /* Case insensitive server? Revalidate dentries */ 2060 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2061 d_prune_aliases(inode); 2062} 2063EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2064 2065#if IS_ENABLED(CONFIG_NFS_V4) 2066static int nfs4_lookup_revalidate(struct inode *, const struct qstr *, 2067 struct dentry *, unsigned int); 2068 2069const struct dentry_operations nfs4_dentry_operations = { 2070 .d_revalidate = nfs4_lookup_revalidate, 2071 .d_weak_revalidate = nfs_weak_revalidate, 2072 .d_delete = nfs_dentry_delete, 2073 .d_iput = nfs_dentry_iput, 2074 .d_automount = nfs_d_automount, 2075 .d_release = nfs_d_release, 2076}; 2077EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2078 2079static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2080{ 2081 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2082} 2083 2084static int do_open(struct inode *inode, struct file *filp) 2085{ 2086 nfs_fscache_open_file(inode, filp); 2087 return 0; 2088} 2089 2090static int nfs_finish_open(struct nfs_open_context *ctx, 2091 struct dentry *dentry, 2092 struct file *file, unsigned open_flags) 2093{ 2094 int err; 2095 2096 err = finish_open(file, dentry, do_open); 2097 if (err) 2098 goto out; 2099 if (S_ISREG(file_inode(file)->i_mode)) 2100 nfs_file_set_open_context(file, ctx); 2101 else 2102 err = -EOPENSTALE; 2103out: 2104 return err; 2105} 2106 2107int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2108 struct file *file, unsigned open_flags, 2109 umode_t mode) 2110{ 2111 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2112 struct nfs_open_context *ctx; 2113 struct dentry *res; 2114 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2115 struct inode *inode; 2116 unsigned int lookup_flags = 0; 2117 unsigned long dir_verifier; 2118 bool switched = false; 2119 int created = 0; 2120 int err; 2121 2122 /* Expect a negative dentry */ 2123 BUG_ON(d_inode(dentry)); 2124 2125 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2126 dir->i_sb->s_id, dir->i_ino, dentry); 2127 2128 err = nfs_check_flags(open_flags); 2129 if (err) 2130 return err; 2131 2132 /* NFS only supports OPEN on regular files */ 2133 if ((open_flags & O_DIRECTORY)) { 2134 if (!d_in_lookup(dentry)) { 2135 /* 2136 * Hashed negative dentry with O_DIRECTORY: dentry was 2137 * revalidated and is fine, no need to perform lookup 2138 * again 2139 */ 2140 return -ENOENT; 2141 } 2142 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2143 goto no_open; 2144 } 2145 2146 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2147 return -ENAMETOOLONG; 2148 2149 if (open_flags & O_CREAT) { 2150 struct nfs_server *server = NFS_SERVER(dir); 2151 2152 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2153 mode &= ~current_umask(); 2154 2155 attr.ia_valid |= ATTR_MODE; 2156 attr.ia_mode = mode; 2157 } 2158 if (open_flags & O_TRUNC) { 2159 attr.ia_valid |= ATTR_SIZE; 2160 attr.ia_size = 0; 2161 } 2162 2163 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2164 d_drop(dentry); 2165 switched = true; 2166 dentry = d_alloc_parallel(dentry->d_parent, 2167 &dentry->d_name, &wq); 2168 if (IS_ERR(dentry)) 2169 return PTR_ERR(dentry); 2170 if (unlikely(!d_in_lookup(dentry))) 2171 return finish_no_open(file, dentry); 2172 } 2173 2174 ctx = create_nfs_open_context(dentry, open_flags, file); 2175 err = PTR_ERR(ctx); 2176 if (IS_ERR(ctx)) 2177 goto out; 2178 2179 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2180 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2181 if (created) 2182 file->f_mode |= FMODE_CREATED; 2183 if (IS_ERR(inode)) { 2184 err = PTR_ERR(inode); 2185 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2186 put_nfs_open_context(ctx); 2187 d_drop(dentry); 2188 switch (err) { 2189 case -ENOENT: 2190 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2191 dir_verifier = inode_peek_iversion_raw(dir); 2192 else 2193 dir_verifier = nfs_save_change_attribute(dir); 2194 nfs_set_verifier(dentry, dir_verifier); 2195 d_splice_alias(NULL, dentry); 2196 break; 2197 case -EISDIR: 2198 case -ENOTDIR: 2199 goto no_open; 2200 case -ELOOP: 2201 if (!(open_flags & O_NOFOLLOW)) 2202 goto no_open; 2203 break; 2204 /* case -EINVAL: */ 2205 default: 2206 break; 2207 } 2208 goto out; 2209 } 2210 file->f_mode |= FMODE_CAN_ODIRECT; 2211 2212 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2213 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2214 put_nfs_open_context(ctx); 2215out: 2216 if (unlikely(switched)) { 2217 d_lookup_done(dentry); 2218 dput(dentry); 2219 } 2220 return err; 2221 2222no_open: 2223 res = nfs_lookup(dir, dentry, lookup_flags); 2224 if (!res) { 2225 inode = d_inode(dentry); 2226 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2227 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2228 res = ERR_PTR(-ENOTDIR); 2229 else if (inode && S_ISREG(inode->i_mode)) 2230 res = ERR_PTR(-EOPENSTALE); 2231 } else if (!IS_ERR(res)) { 2232 inode = d_inode(res); 2233 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2234 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2235 dput(res); 2236 res = ERR_PTR(-ENOTDIR); 2237 } else if (inode && S_ISREG(inode->i_mode)) { 2238 dput(res); 2239 res = ERR_PTR(-EOPENSTALE); 2240 } 2241 } 2242 if (switched) { 2243 d_lookup_done(dentry); 2244 if (!res) 2245 res = dentry; 2246 else 2247 dput(dentry); 2248 } 2249 return finish_no_open(file, res); 2250} 2251EXPORT_SYMBOL_GPL(nfs_atomic_open); 2252 2253static int 2254nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name, 2255 struct dentry *dentry, unsigned int flags) 2256{ 2257 struct inode *inode; 2258 2259 if (__nfs_lookup_revalidate(dentry, flags)) 2260 return -ECHILD; 2261 2262 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 2263 2264 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2265 goto full_reval; 2266 if (d_mountpoint(dentry)) 2267 goto full_reval; 2268 2269 inode = d_inode(dentry); 2270 2271 /* We can't create new files in nfs_open_revalidate(), so we 2272 * optimize away revalidation of negative dentries. 2273 */ 2274 if (inode == NULL) 2275 goto full_reval; 2276 2277 if (nfs_verifier_is_delegated(dentry) || 2278 nfs_have_directory_delegation(inode)) 2279 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2280 2281 /* NFS only supports OPEN on regular files */ 2282 if (!S_ISREG(inode->i_mode)) 2283 goto full_reval; 2284 2285 /* We cannot do exclusive creation on a positive dentry */ 2286 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2287 goto reval_dentry; 2288 2289 /* Check if the directory changed */ 2290 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2291 goto reval_dentry; 2292 2293 /* Let f_op->open() actually open (and revalidate) the file */ 2294 return 1; 2295reval_dentry: 2296 if (flags & LOOKUP_RCU) 2297 return -ECHILD; 2298 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 2299 2300full_reval: 2301 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 2302} 2303 2304#endif /* CONFIG_NFSV4 */ 2305 2306int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, 2307 struct file *file, unsigned int open_flags, 2308 umode_t mode) 2309{ 2310 struct dentry *res = NULL; 2311 /* Same as look+open from lookup_open(), but with different O_TRUNC 2312 * handling. 2313 */ 2314 int error = 0; 2315 2316 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2317 return -ENAMETOOLONG; 2318 2319 if (open_flags & O_CREAT) { 2320 error = nfs_do_create(dir, dentry, mode, open_flags); 2321 if (!error) { 2322 file->f_mode |= FMODE_CREATED; 2323 return finish_open(file, dentry, NULL); 2324 } else if (error != -EEXIST || open_flags & O_EXCL) 2325 return error; 2326 } 2327 if (d_in_lookup(dentry)) { 2328 /* The only flags nfs_lookup considers are 2329 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and 2330 * we want those to be zero so the lookup isn't skipped. 2331 */ 2332 res = nfs_lookup(dir, dentry, 0); 2333 } 2334 return finish_no_open(file, res); 2335 2336} 2337EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); 2338 2339struct dentry * 2340nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2341 struct nfs_fattr *fattr) 2342{ 2343 struct dentry *parent = dget_parent(dentry); 2344 struct inode *dir = d_inode(parent); 2345 struct inode *inode; 2346 struct dentry *d; 2347 int error; 2348 2349 d_drop(dentry); 2350 2351 if (fhandle->size == 0) { 2352 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2353 fhandle, fattr); 2354 if (error) 2355 goto out_error; 2356 } 2357 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2358 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2359 struct nfs_server *server = NFS_SB(dentry->d_sb); 2360 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2361 fattr, NULL); 2362 if (error < 0) 2363 goto out_error; 2364 } 2365 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2366 d = d_splice_alias(inode, dentry); 2367out: 2368 dput(parent); 2369 return d; 2370out_error: 2371 d = ERR_PTR(error); 2372 goto out; 2373} 2374EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2375 2376/* 2377 * Code common to create, mkdir, and mknod. 2378 */ 2379int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2380 struct nfs_fattr *fattr) 2381{ 2382 struct dentry *d; 2383 2384 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2385 if (IS_ERR(d)) 2386 return PTR_ERR(d); 2387 2388 /* Callers don't care */ 2389 dput(d); 2390 return 0; 2391} 2392EXPORT_SYMBOL_GPL(nfs_instantiate); 2393 2394/* 2395 * Following a failed create operation, we drop the dentry rather 2396 * than retain a negative dentry. This avoids a problem in the event 2397 * that the operation succeeded on the server, but an error in the 2398 * reply path made it appear to have failed. 2399 */ 2400static int nfs_do_create(struct inode *dir, struct dentry *dentry, 2401 umode_t mode, int open_flags) 2402{ 2403 struct iattr attr; 2404 int error; 2405 2406 open_flags |= O_CREAT; 2407 2408 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2409 dir->i_sb->s_id, dir->i_ino, dentry); 2410 2411 attr.ia_mode = mode; 2412 attr.ia_valid = ATTR_MODE; 2413 if (open_flags & O_TRUNC) { 2414 attr.ia_size = 0; 2415 attr.ia_valid |= ATTR_SIZE; 2416 } 2417 2418 trace_nfs_create_enter(dir, dentry, open_flags); 2419 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2420 trace_nfs_create_exit(dir, dentry, open_flags, error); 2421 if (error != 0) 2422 goto out_err; 2423 return 0; 2424out_err: 2425 d_drop(dentry); 2426 return error; 2427} 2428 2429int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2430 struct dentry *dentry, umode_t mode, bool excl) 2431{ 2432 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); 2433} 2434EXPORT_SYMBOL_GPL(nfs_create); 2435 2436/* 2437 * See comments for nfs_proc_create regarding failed operations. 2438 */ 2439int 2440nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2441 struct dentry *dentry, umode_t mode, dev_t rdev) 2442{ 2443 struct iattr attr; 2444 int status; 2445 2446 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2447 dir->i_sb->s_id, dir->i_ino, dentry); 2448 2449 attr.ia_mode = mode; 2450 attr.ia_valid = ATTR_MODE; 2451 2452 trace_nfs_mknod_enter(dir, dentry); 2453 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2454 trace_nfs_mknod_exit(dir, dentry, status); 2455 if (status != 0) 2456 goto out_err; 2457 return 0; 2458out_err: 2459 d_drop(dentry); 2460 return status; 2461} 2462EXPORT_SYMBOL_GPL(nfs_mknod); 2463 2464/* 2465 * See comments for nfs_proc_create regarding failed operations. 2466 */ 2467struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2468 struct dentry *dentry, umode_t mode) 2469{ 2470 struct iattr attr; 2471 struct dentry *ret; 2472 2473 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2474 dir->i_sb->s_id, dir->i_ino, dentry); 2475 2476 attr.ia_valid = ATTR_MODE; 2477 attr.ia_mode = mode | S_IFDIR; 2478 2479 trace_nfs_mkdir_enter(dir, dentry); 2480 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2481 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret)); 2482 return ret; 2483} 2484EXPORT_SYMBOL_GPL(nfs_mkdir); 2485 2486static void nfs_dentry_handle_enoent(struct dentry *dentry) 2487{ 2488 if (simple_positive(dentry)) 2489 d_delete(dentry); 2490} 2491 2492static void nfs_dentry_remove_handle_error(struct inode *dir, 2493 struct dentry *dentry, int error) 2494{ 2495 switch (error) { 2496 case -ENOENT: 2497 if (d_really_is_positive(dentry)) 2498 d_delete(dentry); 2499 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2500 break; 2501 case 0: 2502 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2504 } 2505} 2506 2507int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2508{ 2509 int error; 2510 2511 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2512 dir->i_sb->s_id, dir->i_ino, dentry); 2513 2514 trace_nfs_rmdir_enter(dir, dentry); 2515 if (d_really_is_positive(dentry)) { 2516 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2517 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2518 /* Ensure the VFS deletes this inode */ 2519 switch (error) { 2520 case 0: 2521 clear_nlink(d_inode(dentry)); 2522 break; 2523 case -ENOENT: 2524 nfs_dentry_handle_enoent(dentry); 2525 } 2526 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2527 } else 2528 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2529 nfs_dentry_remove_handle_error(dir, dentry, error); 2530 trace_nfs_rmdir_exit(dir, dentry, error); 2531 2532 return error; 2533} 2534EXPORT_SYMBOL_GPL(nfs_rmdir); 2535 2536/* 2537 * Remove a file after making sure there are no pending writes, 2538 * and after checking that the file has only one user. 2539 * 2540 * We invalidate the attribute cache and free the inode prior to the operation 2541 * to avoid possible races if the server reuses the inode. 2542 */ 2543static int nfs_safe_remove(struct dentry *dentry) 2544{ 2545 struct inode *dir = d_inode(dentry->d_parent); 2546 struct inode *inode = d_inode(dentry); 2547 int error = -EBUSY; 2548 2549 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2550 2551 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2552 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2553 error = 0; 2554 goto out; 2555 } 2556 2557 trace_nfs_remove_enter(dir, dentry); 2558 if (inode != NULL) { 2559 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 2560 2561 error = NFS_PROTO(dir)->remove(dir, dentry); 2562 if (error == 0) 2563 nfs_drop_nlink(inode, gencount); 2564 } else 2565 error = NFS_PROTO(dir)->remove(dir, dentry); 2566 if (error == -ENOENT) 2567 nfs_dentry_handle_enoent(dentry); 2568 trace_nfs_remove_exit(dir, dentry, error); 2569out: 2570 return error; 2571} 2572 2573/* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2574 * belongs to an active ".nfs..." file and we return -EBUSY. 2575 * 2576 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2577 */ 2578int nfs_unlink(struct inode *dir, struct dentry *dentry) 2579{ 2580 int error; 2581 2582 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2583 dir->i_ino, dentry); 2584 2585 trace_nfs_unlink_enter(dir, dentry); 2586 spin_lock(&dentry->d_lock); 2587 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2588 &NFS_I(d_inode(dentry))->flags)) { 2589 spin_unlock(&dentry->d_lock); 2590 /* Start asynchronous writeout of the inode */ 2591 write_inode_now(d_inode(dentry), 0); 2592 error = nfs_sillyrename(dir, dentry); 2593 goto out; 2594 } 2595 /* We must prevent any concurrent open until the unlink 2596 * completes. ->d_revalidate will wait for ->d_fsdata 2597 * to clear. We set it here to ensure no lookup succeeds until 2598 * the unlink is complete on the server. 2599 */ 2600 error = -ETXTBSY; 2601 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2602 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2603 spin_unlock(&dentry->d_lock); 2604 goto out; 2605 } 2606 block_revalidate(dentry); 2607 2608 spin_unlock(&dentry->d_lock); 2609 error = nfs_safe_remove(dentry); 2610 nfs_dentry_remove_handle_error(dir, dentry, error); 2611 unblock_revalidate(dentry); 2612out: 2613 trace_nfs_unlink_exit(dir, dentry, error); 2614 return error; 2615} 2616EXPORT_SYMBOL_GPL(nfs_unlink); 2617 2618/* 2619 * To create a symbolic link, most file systems instantiate a new inode, 2620 * add a page to it containing the path, then write it out to the disk 2621 * using prepare_write/commit_write. 2622 * 2623 * Unfortunately the NFS client can't create the in-core inode first 2624 * because it needs a file handle to create an in-core inode (see 2625 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2626 * symlink request has completed on the server. 2627 * 2628 * So instead we allocate a raw page, copy the symname into it, then do 2629 * the SYMLINK request with the page as the buffer. If it succeeds, we 2630 * now have a new file handle and can instantiate an in-core NFS inode 2631 * and move the raw page into its mapping. 2632 */ 2633int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2634 struct dentry *dentry, const char *symname) 2635{ 2636 struct folio *folio; 2637 char *kaddr; 2638 struct iattr attr; 2639 unsigned int pathlen = strlen(symname); 2640 int error; 2641 2642 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2643 dir->i_ino, dentry, symname); 2644 2645 if (pathlen > PAGE_SIZE) 2646 return -ENAMETOOLONG; 2647 2648 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2649 attr.ia_valid = ATTR_MODE; 2650 2651 folio = folio_alloc(GFP_USER, 0); 2652 if (!folio) 2653 return -ENOMEM; 2654 2655 kaddr = folio_address(folio); 2656 memcpy(kaddr, symname, pathlen); 2657 if (pathlen < PAGE_SIZE) 2658 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2659 2660 trace_nfs_symlink_enter(dir, dentry); 2661 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2662 trace_nfs_symlink_exit(dir, dentry, error); 2663 if (error != 0) { 2664 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2665 dir->i_sb->s_id, dir->i_ino, 2666 dentry, symname, error); 2667 d_drop(dentry); 2668 folio_put(folio); 2669 return error; 2670 } 2671 2672 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2673 2674 /* 2675 * No big deal if we can't add this page to the page cache here. 2676 * READLINK will get the missing page from the server if needed. 2677 */ 2678 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2679 GFP_KERNEL) == 0) { 2680 folio_mark_uptodate(folio); 2681 folio_unlock(folio); 2682 } 2683 2684 folio_put(folio); 2685 return 0; 2686} 2687EXPORT_SYMBOL_GPL(nfs_symlink); 2688 2689int 2690nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2691{ 2692 struct inode *inode = d_inode(old_dentry); 2693 int error; 2694 2695 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2696 old_dentry, dentry); 2697 2698 trace_nfs_link_enter(inode, dir, dentry); 2699 d_drop(dentry); 2700 if (S_ISREG(inode->i_mode)) 2701 nfs_sync_inode(inode); 2702 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2703 if (error == 0) { 2704 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2705 ihold(inode); 2706 d_add(dentry, inode); 2707 } 2708 trace_nfs_link_exit(inode, dir, dentry, error); 2709 return error; 2710} 2711EXPORT_SYMBOL_GPL(nfs_link); 2712 2713static void 2714nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2715{ 2716 struct dentry *new_dentry = data->new_dentry; 2717 2718 unblock_revalidate(new_dentry); 2719} 2720 2721static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry, 2722 struct dentry *new_dentry) 2723{ 2724 struct nfs_server *server = NFS_SB(old_dentry->d_sb); 2725 2726 if (old_dentry->d_parent != new_dentry->d_parent) 2727 return false; 2728 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE) 2729 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN); 2730 return true; 2731} 2732 2733/* 2734 * RENAME 2735 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2736 * different file handle for the same inode after a rename (e.g. when 2737 * moving to a different directory). A fail-safe method to do so would 2738 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2739 * rename the old file using the sillyrename stuff. This way, the original 2740 * file in old_dir will go away when the last process iput()s the inode. 2741 * 2742 * FIXED. 2743 * 2744 * It actually works quite well. One needs to have the possibility for 2745 * at least one ".nfs..." file in each directory the file ever gets 2746 * moved or linked to which happens automagically with the new 2747 * implementation that only depends on the dcache stuff instead of 2748 * using the inode layer 2749 * 2750 * Unfortunately, things are a little more complicated than indicated 2751 * above. For a cross-directory move, we want to make sure we can get 2752 * rid of the old inode after the operation. This means there must be 2753 * no pending writes (if it's a file), and the use count must be 1. 2754 * If these conditions are met, we can drop the dentries before doing 2755 * the rename. 2756 */ 2757int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2758 struct dentry *old_dentry, struct inode *new_dir, 2759 struct dentry *new_dentry, unsigned int flags) 2760{ 2761 struct inode *old_inode = d_inode(old_dentry); 2762 struct inode *new_inode = d_inode(new_dentry); 2763 unsigned long new_gencount = 0; 2764 struct dentry *dentry = NULL; 2765 struct rpc_task *task; 2766 bool must_unblock = false; 2767 int error = -EBUSY; 2768 2769 if (flags) 2770 return -EINVAL; 2771 2772 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2773 old_dentry, new_dentry, 2774 d_count(new_dentry)); 2775 2776 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2777 /* 2778 * For non-directories, check whether the target is busy and if so, 2779 * make a copy of the dentry and then do a silly-rename. If the 2780 * silly-rename succeeds, the copied dentry is hashed and becomes 2781 * the new target. 2782 */ 2783 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2784 /* We must prevent any concurrent open until the unlink 2785 * completes. ->d_revalidate will wait for ->d_fsdata 2786 * to clear. We set it here to ensure no lookup succeeds until 2787 * the unlink is complete on the server. 2788 */ 2789 error = -ETXTBSY; 2790 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2791 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2792 goto out; 2793 2794 spin_lock(&new_dentry->d_lock); 2795 if (d_count(new_dentry) > 2) { 2796 int err; 2797 2798 spin_unlock(&new_dentry->d_lock); 2799 2800 /* copy the target dentry's name */ 2801 dentry = d_alloc(new_dentry->d_parent, 2802 &new_dentry->d_name); 2803 if (!dentry) 2804 goto out; 2805 2806 /* silly-rename the existing target ... */ 2807 err = nfs_sillyrename(new_dir, new_dentry); 2808 if (err) 2809 goto out; 2810 2811 new_dentry = dentry; 2812 new_inode = NULL; 2813 } else { 2814 block_revalidate(new_dentry); 2815 must_unblock = true; 2816 new_gencount = NFS_I(new_inode)->attr_gencount; 2817 spin_unlock(&new_dentry->d_lock); 2818 } 2819 2820 } 2821 2822 if (S_ISREG(old_inode->i_mode) && 2823 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry)) 2824 nfs_sync_inode(old_inode); 2825 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2826 must_unblock ? nfs_unblock_rename : NULL); 2827 if (IS_ERR(task)) { 2828 if (must_unblock) 2829 unblock_revalidate(new_dentry); 2830 error = PTR_ERR(task); 2831 goto out; 2832 } 2833 2834 error = rpc_wait_for_completion_task(task); 2835 if (error != 0) { 2836 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2837 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2838 smp_wmb(); 2839 } else 2840 error = task->tk_status; 2841 rpc_put_task(task); 2842 /* Ensure the inode attributes are revalidated */ 2843 if (error == 0) { 2844 spin_lock(&old_inode->i_lock); 2845 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2846 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2847 NFS_INO_INVALID_CTIME | 2848 NFS_INO_REVAL_FORCED); 2849 spin_unlock(&old_inode->i_lock); 2850 } 2851out: 2852 trace_nfs_rename_exit(old_dir, old_dentry, 2853 new_dir, new_dentry, error); 2854 if (!error) { 2855 if (new_inode != NULL) 2856 nfs_drop_nlink(new_inode, new_gencount); 2857 /* 2858 * The d_move() should be here instead of in an async RPC completion 2859 * handler because we need the proper locks to move the dentry. If 2860 * we're interrupted by a signal, the async RPC completion handler 2861 * should mark the directories for revalidation. 2862 */ 2863 d_move(old_dentry, new_dentry); 2864 nfs_set_verifier(old_dentry, 2865 nfs_save_change_attribute(new_dir)); 2866 } else if (error == -ENOENT) 2867 nfs_dentry_handle_enoent(old_dentry); 2868 2869 /* new dentry created? */ 2870 if (dentry) 2871 dput(dentry); 2872 return error; 2873} 2874EXPORT_SYMBOL_GPL(nfs_rename); 2875 2876static DEFINE_SPINLOCK(nfs_access_lru_lock); 2877static LIST_HEAD(nfs_access_lru_list); 2878static atomic_long_t nfs_access_nr_entries; 2879 2880static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2881module_param(nfs_access_max_cachesize, ulong, 0644); 2882MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2883 2884static void nfs_access_free_entry(struct nfs_access_entry *entry) 2885{ 2886 put_group_info(entry->group_info); 2887 kfree_rcu(entry, rcu_head); 2888 smp_mb__before_atomic(); 2889 atomic_long_dec(&nfs_access_nr_entries); 2890 smp_mb__after_atomic(); 2891} 2892 2893static void nfs_access_free_list(struct list_head *head) 2894{ 2895 struct nfs_access_entry *cache; 2896 2897 while (!list_empty(head)) { 2898 cache = list_entry(head->next, struct nfs_access_entry, lru); 2899 list_del(&cache->lru); 2900 nfs_access_free_entry(cache); 2901 } 2902} 2903 2904static unsigned long 2905nfs_do_access_cache_scan(unsigned int nr_to_scan) 2906{ 2907 LIST_HEAD(head); 2908 struct nfs_inode *nfsi, *next; 2909 struct nfs_access_entry *cache; 2910 long freed = 0; 2911 2912 spin_lock(&nfs_access_lru_lock); 2913 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2914 struct inode *inode; 2915 2916 if (nr_to_scan-- == 0) 2917 break; 2918 inode = &nfsi->vfs_inode; 2919 spin_lock(&inode->i_lock); 2920 if (list_empty(&nfsi->access_cache_entry_lru)) 2921 goto remove_lru_entry; 2922 cache = list_entry(nfsi->access_cache_entry_lru.next, 2923 struct nfs_access_entry, lru); 2924 list_move(&cache->lru, &head); 2925 rb_erase(&cache->rb_node, &nfsi->access_cache); 2926 freed++; 2927 if (!list_empty(&nfsi->access_cache_entry_lru)) 2928 list_move_tail(&nfsi->access_cache_inode_lru, 2929 &nfs_access_lru_list); 2930 else { 2931remove_lru_entry: 2932 list_del_init(&nfsi->access_cache_inode_lru); 2933 smp_mb__before_atomic(); 2934 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2935 smp_mb__after_atomic(); 2936 } 2937 spin_unlock(&inode->i_lock); 2938 } 2939 spin_unlock(&nfs_access_lru_lock); 2940 nfs_access_free_list(&head); 2941 return freed; 2942} 2943 2944unsigned long 2945nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2946{ 2947 int nr_to_scan = sc->nr_to_scan; 2948 gfp_t gfp_mask = sc->gfp_mask; 2949 2950 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2951 return SHRINK_STOP; 2952 return nfs_do_access_cache_scan(nr_to_scan); 2953} 2954 2955 2956unsigned long 2957nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2958{ 2959 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2960} 2961 2962static void 2963nfs_access_cache_enforce_limit(void) 2964{ 2965 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2966 unsigned long diff; 2967 unsigned int nr_to_scan; 2968 2969 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2970 return; 2971 nr_to_scan = 100; 2972 diff = nr_entries - nfs_access_max_cachesize; 2973 if (diff < nr_to_scan) 2974 nr_to_scan = diff; 2975 nfs_do_access_cache_scan(nr_to_scan); 2976} 2977 2978static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2979{ 2980 struct rb_root *root_node = &nfsi->access_cache; 2981 struct rb_node *n; 2982 struct nfs_access_entry *entry; 2983 2984 /* Unhook entries from the cache */ 2985 while ((n = rb_first(root_node)) != NULL) { 2986 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2987 rb_erase(n, root_node); 2988 list_move(&entry->lru, head); 2989 } 2990 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2991} 2992 2993void nfs_access_zap_cache(struct inode *inode) 2994{ 2995 LIST_HEAD(head); 2996 2997 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2998 return; 2999 /* Remove from global LRU init */ 3000 spin_lock(&nfs_access_lru_lock); 3001 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3002 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 3003 3004 spin_lock(&inode->i_lock); 3005 __nfs_access_zap_cache(NFS_I(inode), &head); 3006 spin_unlock(&inode->i_lock); 3007 spin_unlock(&nfs_access_lru_lock); 3008 nfs_access_free_list(&head); 3009} 3010EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 3011 3012static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 3013{ 3014 struct group_info *ga, *gb; 3015 int g; 3016 3017 if (uid_lt(a->fsuid, b->fsuid)) 3018 return -1; 3019 if (uid_gt(a->fsuid, b->fsuid)) 3020 return 1; 3021 3022 if (gid_lt(a->fsgid, b->fsgid)) 3023 return -1; 3024 if (gid_gt(a->fsgid, b->fsgid)) 3025 return 1; 3026 3027 ga = a->group_info; 3028 gb = b->group_info; 3029 if (ga == gb) 3030 return 0; 3031 if (ga == NULL) 3032 return -1; 3033 if (gb == NULL) 3034 return 1; 3035 if (ga->ngroups < gb->ngroups) 3036 return -1; 3037 if (ga->ngroups > gb->ngroups) 3038 return 1; 3039 3040 for (g = 0; g < ga->ngroups; g++) { 3041 if (gid_lt(ga->gid[g], gb->gid[g])) 3042 return -1; 3043 if (gid_gt(ga->gid[g], gb->gid[g])) 3044 return 1; 3045 } 3046 return 0; 3047} 3048 3049static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 3050{ 3051 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 3052 3053 while (n != NULL) { 3054 struct nfs_access_entry *entry = 3055 rb_entry(n, struct nfs_access_entry, rb_node); 3056 int cmp = access_cmp(cred, entry); 3057 3058 if (cmp < 0) 3059 n = n->rb_left; 3060 else if (cmp > 0) 3061 n = n->rb_right; 3062 else 3063 return entry; 3064 } 3065 return NULL; 3066} 3067 3068static u64 nfs_access_login_time(const struct task_struct *task, 3069 const struct cred *cred) 3070{ 3071 const struct task_struct *parent; 3072 const struct cred *pcred; 3073 u64 ret; 3074 3075 rcu_read_lock(); 3076 for (;;) { 3077 parent = rcu_dereference(task->real_parent); 3078 pcred = __task_cred(parent); 3079 if (parent == task || cred_fscmp(pcred, cred) != 0) 3080 break; 3081 task = parent; 3082 } 3083 ret = task->start_time; 3084 rcu_read_unlock(); 3085 return ret; 3086} 3087 3088static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 3089{ 3090 struct nfs_inode *nfsi = NFS_I(inode); 3091 u64 login_time = nfs_access_login_time(current, cred); 3092 struct nfs_access_entry *cache; 3093 bool retry = true; 3094 int err; 3095 3096 spin_lock(&inode->i_lock); 3097 for(;;) { 3098 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3099 goto out_zap; 3100 cache = nfs_access_search_rbtree(inode, cred); 3101 err = -ENOENT; 3102 if (cache == NULL) 3103 goto out; 3104 /* Found an entry, is our attribute cache valid? */ 3105 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3106 break; 3107 if (!retry) 3108 break; 3109 err = -ECHILD; 3110 if (!may_block) 3111 goto out; 3112 spin_unlock(&inode->i_lock); 3113 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3114 if (err) 3115 return err; 3116 spin_lock(&inode->i_lock); 3117 retry = false; 3118 } 3119 err = -ENOENT; 3120 if ((s64)(login_time - cache->timestamp) > 0) 3121 goto out; 3122 *mask = cache->mask; 3123 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3124 err = 0; 3125out: 3126 spin_unlock(&inode->i_lock); 3127 return err; 3128out_zap: 3129 spin_unlock(&inode->i_lock); 3130 nfs_access_zap_cache(inode); 3131 return -ENOENT; 3132} 3133 3134static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3135{ 3136 /* Only check the most recently returned cache entry, 3137 * but do it without locking. 3138 */ 3139 struct nfs_inode *nfsi = NFS_I(inode); 3140 u64 login_time = nfs_access_login_time(current, cred); 3141 struct nfs_access_entry *cache; 3142 int err = -ECHILD; 3143 struct list_head *lh; 3144 3145 rcu_read_lock(); 3146 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3147 goto out; 3148 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3149 cache = list_entry(lh, struct nfs_access_entry, lru); 3150 if (lh == &nfsi->access_cache_entry_lru || 3151 access_cmp(cred, cache) != 0) 3152 cache = NULL; 3153 if (cache == NULL) 3154 goto out; 3155 if ((s64)(login_time - cache->timestamp) > 0) 3156 goto out; 3157 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3158 goto out; 3159 *mask = cache->mask; 3160 err = 0; 3161out: 3162 rcu_read_unlock(); 3163 return err; 3164} 3165 3166int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3167 u32 *mask, bool may_block) 3168{ 3169 int status; 3170 3171 status = nfs_access_get_cached_rcu(inode, cred, mask); 3172 if (status != 0) 3173 status = nfs_access_get_cached_locked(inode, cred, mask, 3174 may_block); 3175 3176 return status; 3177} 3178EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3179 3180static void nfs_access_add_rbtree(struct inode *inode, 3181 struct nfs_access_entry *set, 3182 const struct cred *cred) 3183{ 3184 struct nfs_inode *nfsi = NFS_I(inode); 3185 struct rb_root *root_node = &nfsi->access_cache; 3186 struct rb_node **p = &root_node->rb_node; 3187 struct rb_node *parent = NULL; 3188 struct nfs_access_entry *entry; 3189 int cmp; 3190 3191 spin_lock(&inode->i_lock); 3192 while (*p != NULL) { 3193 parent = *p; 3194 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3195 cmp = access_cmp(cred, entry); 3196 3197 if (cmp < 0) 3198 p = &parent->rb_left; 3199 else if (cmp > 0) 3200 p = &parent->rb_right; 3201 else 3202 goto found; 3203 } 3204 rb_link_node(&set->rb_node, parent, p); 3205 rb_insert_color(&set->rb_node, root_node); 3206 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3207 spin_unlock(&inode->i_lock); 3208 return; 3209found: 3210 rb_replace_node(parent, &set->rb_node, root_node); 3211 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3212 list_del(&entry->lru); 3213 spin_unlock(&inode->i_lock); 3214 nfs_access_free_entry(entry); 3215} 3216 3217void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3218 const struct cred *cred) 3219{ 3220 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3221 if (cache == NULL) 3222 return; 3223 RB_CLEAR_NODE(&cache->rb_node); 3224 cache->fsuid = cred->fsuid; 3225 cache->fsgid = cred->fsgid; 3226 cache->group_info = get_group_info(cred->group_info); 3227 cache->mask = set->mask; 3228 cache->timestamp = ktime_get_ns(); 3229 3230 /* The above field assignments must be visible 3231 * before this item appears on the lru. We cannot easily 3232 * use rcu_assign_pointer, so just force the memory barrier. 3233 */ 3234 smp_wmb(); 3235 nfs_access_add_rbtree(inode, cache, cred); 3236 3237 /* Update accounting */ 3238 smp_mb__before_atomic(); 3239 atomic_long_inc(&nfs_access_nr_entries); 3240 smp_mb__after_atomic(); 3241 3242 /* Add inode to global LRU list */ 3243 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3244 spin_lock(&nfs_access_lru_lock); 3245 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3246 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3247 &nfs_access_lru_list); 3248 spin_unlock(&nfs_access_lru_lock); 3249 } 3250 nfs_access_cache_enforce_limit(); 3251} 3252EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3253 3254#define NFS_MAY_READ (NFS_ACCESS_READ) 3255#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3256 NFS_ACCESS_EXTEND | \ 3257 NFS_ACCESS_DELETE) 3258#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3259 NFS_ACCESS_EXTEND) 3260#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3261#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3262#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3263static int 3264nfs_access_calc_mask(u32 access_result, umode_t umode) 3265{ 3266 int mask = 0; 3267 3268 if (access_result & NFS_MAY_READ) 3269 mask |= MAY_READ; 3270 if (S_ISDIR(umode)) { 3271 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3272 mask |= MAY_WRITE; 3273 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3274 mask |= MAY_EXEC; 3275 } else if (S_ISREG(umode)) { 3276 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3277 mask |= MAY_WRITE; 3278 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3279 mask |= MAY_EXEC; 3280 } else if (access_result & NFS_MAY_WRITE) 3281 mask |= MAY_WRITE; 3282 return mask; 3283} 3284 3285void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3286{ 3287 entry->mask = access_result; 3288} 3289EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3290 3291static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3292{ 3293 struct nfs_access_entry cache; 3294 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3295 int cache_mask = -1; 3296 int status; 3297 3298 trace_nfs_access_enter(inode); 3299 3300 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3301 if (status == 0) 3302 goto out_cached; 3303 3304 status = -ECHILD; 3305 if (!may_block) 3306 goto out; 3307 3308 /* 3309 * Determine which access bits we want to ask for... 3310 */ 3311 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3312 nfs_access_xattr_mask(NFS_SERVER(inode)); 3313 if (S_ISDIR(inode->i_mode)) 3314 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3315 else 3316 cache.mask |= NFS_ACCESS_EXECUTE; 3317 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3318 if (status != 0) { 3319 if (status == -ESTALE) { 3320 if (!S_ISDIR(inode->i_mode)) 3321 nfs_set_inode_stale(inode); 3322 else 3323 nfs_zap_caches(inode); 3324 } 3325 goto out; 3326 } 3327 nfs_access_add_cache(inode, &cache, cred); 3328out_cached: 3329 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3330 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3331 status = -EACCES; 3332out: 3333 trace_nfs_access_exit(inode, mask, cache_mask, status); 3334 return status; 3335} 3336 3337static int nfs_open_permission_mask(int openflags) 3338{ 3339 int mask = 0; 3340 3341 if (openflags & __FMODE_EXEC) { 3342 /* ONLY check exec rights */ 3343 mask = MAY_EXEC; 3344 } else { 3345 if ((openflags & O_ACCMODE) != O_WRONLY) 3346 mask |= MAY_READ; 3347 if ((openflags & O_ACCMODE) != O_RDONLY) 3348 mask |= MAY_WRITE; 3349 } 3350 3351 return mask; 3352} 3353 3354int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3355{ 3356 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3357} 3358EXPORT_SYMBOL_GPL(nfs_may_open); 3359 3360static int nfs_execute_ok(struct inode *inode, int mask) 3361{ 3362 struct nfs_server *server = NFS_SERVER(inode); 3363 int ret = 0; 3364 3365 if (S_ISDIR(inode->i_mode)) 3366 return 0; 3367 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3368 if (mask & MAY_NOT_BLOCK) 3369 return -ECHILD; 3370 ret = __nfs_revalidate_inode(server, inode); 3371 } 3372 if (ret == 0 && !execute_ok(inode)) 3373 ret = -EACCES; 3374 return ret; 3375} 3376 3377int nfs_permission(struct mnt_idmap *idmap, 3378 struct inode *inode, 3379 int mask) 3380{ 3381 const struct cred *cred = current_cred(); 3382 int res = 0; 3383 3384 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3385 3386 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3387 goto out; 3388 /* Is this sys_access() ? */ 3389 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3390 goto force_lookup; 3391 3392 switch (inode->i_mode & S_IFMT) { 3393 case S_IFLNK: 3394 goto out; 3395 case S_IFREG: 3396 if ((mask & MAY_OPEN) && 3397 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3398 return 0; 3399 break; 3400 case S_IFDIR: 3401 /* 3402 * Optimize away all write operations, since the server 3403 * will check permissions when we perform the op. 3404 */ 3405 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3406 goto out; 3407 } 3408 3409force_lookup: 3410 if (!NFS_PROTO(inode)->access) 3411 goto out_notsup; 3412 3413 res = nfs_do_access(inode, cred, mask); 3414out: 3415 if (!res && (mask & MAY_EXEC)) 3416 res = nfs_execute_ok(inode, mask); 3417 3418 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3419 inode->i_sb->s_id, inode->i_ino, mask, res); 3420 return res; 3421out_notsup: 3422 if (mask & MAY_NOT_BLOCK) 3423 return -ECHILD; 3424 3425 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3426 NFS_INO_INVALID_OTHER); 3427 if (res == 0) 3428 res = generic_permission(&nop_mnt_idmap, inode, mask); 3429 goto out; 3430} 3431EXPORT_SYMBOL_GPL(nfs_permission);