at v6.19 219 lines 5.7 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2 3#ifndef BTRFS_MISC_H 4#define BTRFS_MISC_H 5 6#include <linux/types.h> 7#include <linux/bitmap.h> 8#include <linux/sched.h> 9#include <linux/wait.h> 10#include <linux/mm.h> 11#include <linux/pagemap.h> 12#include <linux/math64.h> 13#include <linux/rbtree.h> 14#include <linux/bio.h> 15 16/* 17 * Convenience macros to define a pointer with the __free(kfree) and 18 * __free(kvfree) cleanup attributes and initialized to NULL. 19 */ 20#define AUTO_KFREE(name) *name __free(kfree) = NULL 21#define AUTO_KVFREE(name) *name __free(kvfree) = NULL 22 23/* 24 * Enumerate bits using enum autoincrement. Define the @name as the n-th bit. 25 */ 26#define ENUM_BIT(name) \ 27 __ ## name ## _BIT, \ 28 name = (1U << __ ## name ## _BIT), \ 29 __ ## name ## _SEQ = __ ## name ## _BIT 30 31static inline phys_addr_t bio_iter_phys(struct bio *bio, struct bvec_iter *iter) 32{ 33 struct bio_vec bv = bio_iter_iovec(bio, *iter); 34 35 return bvec_phys(&bv); 36} 37 38/* 39 * Iterate bio using btrfs block size. 40 * 41 * This will handle large folio and highmem. 42 * 43 * @paddr: Physical memory address of each iteration 44 * @bio: The bio to iterate 45 * @iter: The bvec_iter (pointer) to use. 46 * @blocksize: The blocksize to iterate. 47 * 48 * This requires all folios in the bio to cover at least one block. 49 */ 50#define btrfs_bio_for_each_block(paddr, bio, iter, blocksize) \ 51 for (; (iter)->bi_size && \ 52 (paddr = bio_iter_phys((bio), (iter)), 1); \ 53 bio_advance_iter_single((bio), (iter), (blocksize))) 54 55/* Initialize a bvec_iter to the size of the specified bio. */ 56static inline struct bvec_iter init_bvec_iter_for_bio(struct bio *bio) 57{ 58 struct bio_vec *bvec; 59 u32 bio_size = 0; 60 int i; 61 62 bio_for_each_bvec_all(bvec, bio, i) 63 bio_size += bvec->bv_len; 64 65 return (struct bvec_iter) { 66 .bi_sector = 0, 67 .bi_size = bio_size, 68 .bi_idx = 0, 69 .bi_bvec_done = 0, 70 }; 71} 72 73#define btrfs_bio_for_each_block_all(paddr, bio, blocksize) \ 74 for (struct bvec_iter iter = init_bvec_iter_for_bio(bio); \ 75 (iter).bi_size && \ 76 (paddr = bio_iter_phys((bio), &(iter)), 1); \ 77 bio_advance_iter_single((bio), &(iter), (blocksize))) 78 79static inline void cond_wake_up(struct wait_queue_head *wq) 80{ 81 /* 82 * This implies a full smp_mb barrier, see comments for 83 * waitqueue_active why. 84 */ 85 if (wq_has_sleeper(wq)) 86 wake_up(wq); 87} 88 89static inline void cond_wake_up_nomb(struct wait_queue_head *wq) 90{ 91 /* 92 * Special case for conditional wakeup where the barrier required for 93 * waitqueue_active is implied by some of the preceding code. Eg. one 94 * of such atomic operations (atomic_dec_and_return, ...), or a 95 * unlock/lock sequence, etc. 96 */ 97 if (waitqueue_active(wq)) 98 wake_up(wq); 99} 100 101static inline u64 mult_perc(u64 num, u32 percent) 102{ 103 return div_u64(num * percent, 100); 104} 105/* Copy of is_power_of_two that is 64bit safe */ 106static inline bool is_power_of_two_u64(u64 n) 107{ 108 return n != 0 && (n & (n - 1)) == 0; 109} 110 111static inline bool has_single_bit_set(u64 n) 112{ 113 return is_power_of_two_u64(n); 114} 115 116/* 117 * Simple bytenr based rb_tree relate structures 118 * 119 * Any structure wants to use bytenr as single search index should have their 120 * structure start with these members. 121 */ 122struct rb_simple_node { 123 struct rb_node rb_node; 124 u64 bytenr; 125}; 126 127static inline struct rb_node *rb_simple_search(const struct rb_root *root, u64 bytenr) 128{ 129 struct rb_node *node = root->rb_node; 130 struct rb_simple_node *entry; 131 132 while (node) { 133 entry = rb_entry(node, struct rb_simple_node, rb_node); 134 135 if (bytenr < entry->bytenr) 136 node = node->rb_left; 137 else if (bytenr > entry->bytenr) 138 node = node->rb_right; 139 else 140 return node; 141 } 142 return NULL; 143} 144 145/* 146 * Search @root from an entry that starts or comes after @bytenr. 147 * 148 * @root: the root to search. 149 * @bytenr: bytenr to search from. 150 * 151 * Return the rb_node that start at or after @bytenr. If there is no entry at 152 * or after @bytner return NULL. 153 */ 154static inline struct rb_node *rb_simple_search_first(const struct rb_root *root, 155 u64 bytenr) 156{ 157 struct rb_node *node = root->rb_node, *ret = NULL; 158 struct rb_simple_node *entry, *ret_entry = NULL; 159 160 while (node) { 161 entry = rb_entry(node, struct rb_simple_node, rb_node); 162 163 if (bytenr < entry->bytenr) { 164 if (!ret || entry->bytenr < ret_entry->bytenr) { 165 ret = node; 166 ret_entry = entry; 167 } 168 169 node = node->rb_left; 170 } else if (bytenr > entry->bytenr) { 171 node = node->rb_right; 172 } else { 173 return node; 174 } 175 } 176 177 return ret; 178} 179 180static int rb_simple_node_bytenr_cmp(struct rb_node *new, const struct rb_node *existing) 181{ 182 struct rb_simple_node *new_entry = rb_entry(new, struct rb_simple_node, rb_node); 183 struct rb_simple_node *existing_entry = rb_entry(existing, struct rb_simple_node, rb_node); 184 185 if (new_entry->bytenr < existing_entry->bytenr) 186 return -1; 187 else if (new_entry->bytenr > existing_entry->bytenr) 188 return 1; 189 190 return 0; 191} 192 193static inline struct rb_node *rb_simple_insert(struct rb_root *root, 194 struct rb_simple_node *simple_node) 195{ 196 return rb_find_add(&simple_node->rb_node, root, rb_simple_node_bytenr_cmp); 197} 198 199static inline bool bitmap_test_range_all_set(const unsigned long *addr, 200 unsigned long start, 201 unsigned long nbits) 202{ 203 unsigned long found_zero; 204 205 found_zero = find_next_zero_bit(addr, start + nbits, start); 206 return (found_zero == start + nbits); 207} 208 209static inline bool bitmap_test_range_all_zero(const unsigned long *addr, 210 unsigned long start, 211 unsigned long nbits) 212{ 213 unsigned long found_set; 214 215 found_set = find_next_bit(addr, start + nbits, start); 216 return (found_set == start + nbits); 217} 218 219#endif