at v6.19 4352 lines 106 kB view raw
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14/* #define DEBUG */ 15/* #define VERBOSE_DEBUG */ 16 17#include <linux/blkdev.h> 18#include <linux/dma-buf.h> 19#include <linux/dma-fence.h> 20#include <linux/dma-resv.h> 21#include <linux/pagemap.h> 22#include <linux/export.h> 23#include <linux/fs_parser.h> 24#include <linux/hid.h> 25#include <linux/mm.h> 26#include <linux/module.h> 27#include <linux/scatterlist.h> 28#include <linux/sched/signal.h> 29#include <linux/uio.h> 30#include <linux/vmalloc.h> 31#include <linux/unaligned.h> 32 33#include <linux/usb/ccid.h> 34#include <linux/usb/composite.h> 35#include <linux/usb/functionfs.h> 36#include <linux/usb/func_utils.h> 37 38#include <linux/aio.h> 39#include <linux/kthread.h> 40#include <linux/poll.h> 41#include <linux/eventfd.h> 42 43#include "u_fs.h" 44#include "u_os_desc.h" 45#include "configfs.h" 46 47#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48#define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */ 49 50#define DMABUF_ENQUEUE_TIMEOUT_MS 5000 51 52MODULE_IMPORT_NS("DMA_BUF"); 53 54/* Reference counter handling */ 55static void ffs_data_get(struct ffs_data *ffs); 56static void ffs_data_put(struct ffs_data *ffs); 57/* Creates new ffs_data object. */ 58static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 59 __attribute__((malloc)); 60 61/* Opened counter handling. */ 62static void ffs_data_closed(struct ffs_data *ffs); 63 64/* Called with ffs->mutex held; take over ownership of data. */ 65static int __must_check 66__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 67static int __must_check 68__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 69 70 71/* The function structure ***************************************************/ 72 73struct ffs_ep; 74 75struct ffs_function { 76 struct usb_configuration *conf; 77 struct usb_gadget *gadget; 78 struct ffs_data *ffs; 79 80 struct ffs_ep *eps; 81 u8 eps_revmap[16]; 82 short *interfaces_nums; 83 84 struct usb_function function; 85 int cur_alt[MAX_CONFIG_INTERFACES]; 86}; 87 88 89static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 90{ 91 return container_of(f, struct ffs_function, function); 92} 93 94 95static inline enum ffs_setup_state 96ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 97{ 98 return (enum ffs_setup_state) 99 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 100} 101 102 103static void ffs_func_eps_disable(struct ffs_function *func); 104static int __must_check ffs_func_eps_enable(struct ffs_function *func); 105 106static int ffs_func_bind(struct usb_configuration *, 107 struct usb_function *); 108static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 109static int ffs_func_get_alt(struct usb_function *f, unsigned int intf); 110static void ffs_func_disable(struct usb_function *); 111static int ffs_func_setup(struct usb_function *, 112 const struct usb_ctrlrequest *); 113static bool ffs_func_req_match(struct usb_function *, 114 const struct usb_ctrlrequest *, 115 bool config0); 116static void ffs_func_suspend(struct usb_function *); 117static void ffs_func_resume(struct usb_function *); 118 119 120static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 121static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 122 123 124/* The endpoints structures *************************************************/ 125 126struct ffs_ep { 127 struct usb_ep *ep; /* P: ffs->eps_lock */ 128 struct usb_request *req; /* P: epfile->mutex */ 129 130 /* [0]: full speed, [1]: high speed, [2]: super speed */ 131 struct usb_endpoint_descriptor *descs[3]; 132 133 u8 num; 134}; 135 136struct ffs_dmabuf_priv { 137 struct list_head entry; 138 struct kref ref; 139 struct ffs_data *ffs; 140 struct dma_buf_attachment *attach; 141 struct sg_table *sgt; 142 enum dma_data_direction dir; 143 spinlock_t lock; 144 u64 context; 145 struct usb_request *req; /* P: ffs->eps_lock */ 146 struct usb_ep *ep; /* P: ffs->eps_lock */ 147}; 148 149struct ffs_dma_fence { 150 struct dma_fence base; 151 struct ffs_dmabuf_priv *priv; 152 struct work_struct work; 153}; 154 155struct ffs_epfile { 156 /* Protects ep->ep and ep->req. */ 157 struct mutex mutex; 158 159 struct ffs_data *ffs; 160 struct ffs_ep *ep; /* P: ffs->eps_lock */ 161 162 /* 163 * Buffer for holding data from partial reads which may happen since 164 * we’re rounding user read requests to a multiple of a max packet size. 165 * 166 * The pointer is initialised with NULL value and may be set by 167 * __ffs_epfile_read_data function to point to a temporary buffer. 168 * 169 * In normal operation, calls to __ffs_epfile_read_buffered will consume 170 * data from said buffer and eventually free it. Importantly, while the 171 * function is using the buffer, it sets the pointer to NULL. This is 172 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 173 * can never run concurrently (they are synchronised by epfile->mutex) 174 * so the latter will not assign a new value to the pointer. 175 * 176 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 177 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 178 * value is crux of the synchronisation between ffs_func_eps_disable and 179 * __ffs_epfile_read_data. 180 * 181 * Once __ffs_epfile_read_data is about to finish it will try to set the 182 * pointer back to its old value (as described above), but seeing as the 183 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 184 * the buffer. 185 * 186 * == State transitions == 187 * 188 * • ptr == NULL: (initial state) 189 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 190 * ◦ __ffs_epfile_read_buffered: nop 191 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 192 * ◦ reading finishes: n/a, not in ‘and reading’ state 193 * • ptr == DROP: 194 * ◦ __ffs_epfile_read_buffer_free: nop 195 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 196 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 197 * ◦ reading finishes: n/a, not in ‘and reading’ state 198 * • ptr == buf: 199 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 200 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 201 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 202 * is always called first 203 * ◦ reading finishes: n/a, not in ‘and reading’ state 204 * • ptr == NULL and reading: 205 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 206 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 207 * ◦ __ffs_epfile_read_data: n/a, mutex is held 208 * ◦ reading finishes and … 209 * … all data read: free buf, go to ptr == NULL 210 * … otherwise: go to ptr == buf and reading 211 * • ptr == DROP and reading: 212 * ◦ __ffs_epfile_read_buffer_free: nop 213 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 214 * ◦ __ffs_epfile_read_data: n/a, mutex is held 215 * ◦ reading finishes: free buf, go to ptr == DROP 216 */ 217 struct ffs_buffer *read_buffer; 218#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 219 220 char name[5]; 221 222 unsigned char in; /* P: ffs->eps_lock */ 223 unsigned char isoc; /* P: ffs->eps_lock */ 224 225 unsigned char _pad; 226 227 /* Protects dmabufs */ 228 struct mutex dmabufs_mutex; 229 struct list_head dmabufs; /* P: dmabufs_mutex */ 230 atomic_t seqno; 231}; 232 233struct ffs_buffer { 234 size_t length; 235 char *data; 236 char storage[] __counted_by(length); 237}; 238 239/* ffs_io_data structure ***************************************************/ 240 241struct ffs_io_data { 242 bool aio; 243 bool read; 244 245 struct kiocb *kiocb; 246 struct iov_iter data; 247 const void *to_free; 248 char *buf; 249 250 struct mm_struct *mm; 251 struct work_struct work; 252 253 struct usb_ep *ep; 254 struct usb_request *req; 255 struct sg_table sgt; 256 bool use_sg; 257 258 struct ffs_data *ffs; 259 260 int status; 261 struct completion done; 262}; 263 264struct ffs_desc_helper { 265 struct ffs_data *ffs; 266 unsigned interfaces_count; 267 unsigned eps_count; 268}; 269 270static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 271static void ffs_epfiles_destroy(struct super_block *sb, 272 struct ffs_epfile *epfiles, unsigned count); 273 274static int ffs_sb_create_file(struct super_block *sb, const char *name, 275 void *data, const struct file_operations *fops); 276 277/* Devices management *******************************************************/ 278 279DEFINE_MUTEX(ffs_lock); 280EXPORT_SYMBOL_GPL(ffs_lock); 281 282static struct ffs_dev *_ffs_find_dev(const char *name); 283static struct ffs_dev *_ffs_alloc_dev(void); 284static void _ffs_free_dev(struct ffs_dev *dev); 285static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 286static void ffs_release_dev(struct ffs_dev *ffs_dev); 287static int ffs_ready(struct ffs_data *ffs); 288static void ffs_closed(struct ffs_data *ffs); 289 290/* Misc helper functions ****************************************************/ 291 292static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 293 __attribute__((warn_unused_result, nonnull)); 294static char *ffs_prepare_buffer(const char __user *buf, size_t len) 295 __attribute__((warn_unused_result, nonnull)); 296 297 298/* Control file aka ep0 *****************************************************/ 299 300static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 301{ 302 struct ffs_data *ffs = req->context; 303 304 complete(&ffs->ep0req_completion); 305} 306 307static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 308 __releases(&ffs->ev.waitq.lock) 309{ 310 struct usb_request *req = ffs->ep0req; 311 int ret; 312 313 if (!req) { 314 spin_unlock_irq(&ffs->ev.waitq.lock); 315 return -EINVAL; 316 } 317 318 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 319 320 spin_unlock_irq(&ffs->ev.waitq.lock); 321 322 req->buf = data; 323 req->length = len; 324 325 /* 326 * UDC layer requires to provide a buffer even for ZLP, but should 327 * not use it at all. Let's provide some poisoned pointer to catch 328 * possible bug in the driver. 329 */ 330 if (req->buf == NULL) 331 req->buf = (void *)0xDEADBABE; 332 333 reinit_completion(&ffs->ep0req_completion); 334 335 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 336 if (ret < 0) 337 return ret; 338 339 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 340 if (ret) { 341 usb_ep_dequeue(ffs->gadget->ep0, req); 342 return -EINTR; 343 } 344 345 ffs->setup_state = FFS_NO_SETUP; 346 return req->status ? req->status : req->actual; 347} 348 349static int __ffs_ep0_stall(struct ffs_data *ffs) 350{ 351 if (ffs->ev.can_stall) { 352 pr_vdebug("ep0 stall\n"); 353 usb_ep_set_halt(ffs->gadget->ep0); 354 ffs->setup_state = FFS_NO_SETUP; 355 return -EL2HLT; 356 } else { 357 pr_debug("bogus ep0 stall!\n"); 358 return -ESRCH; 359 } 360} 361 362static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 363 size_t len, loff_t *ptr) 364{ 365 struct ffs_data *ffs = file->private_data; 366 ssize_t ret; 367 char *data; 368 369 /* Fast check if setup was canceled */ 370 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 371 return -EIDRM; 372 373 /* Acquire mutex */ 374 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 375 if (ret < 0) 376 return ret; 377 378 /* Check state */ 379 switch (ffs->state) { 380 case FFS_READ_DESCRIPTORS: 381 case FFS_READ_STRINGS: 382 /* Copy data */ 383 if (len < 16) { 384 ret = -EINVAL; 385 break; 386 } 387 388 data = ffs_prepare_buffer(buf, len); 389 if (IS_ERR(data)) { 390 ret = PTR_ERR(data); 391 break; 392 } 393 394 /* Handle data */ 395 if (ffs->state == FFS_READ_DESCRIPTORS) { 396 pr_info("read descriptors\n"); 397 ret = __ffs_data_got_descs(ffs, data, len); 398 if (ret < 0) 399 break; 400 401 ffs->state = FFS_READ_STRINGS; 402 ret = len; 403 } else { 404 pr_info("read strings\n"); 405 ret = __ffs_data_got_strings(ffs, data, len); 406 if (ret < 0) 407 break; 408 409 ret = ffs_epfiles_create(ffs); 410 if (ret) { 411 ffs->state = FFS_CLOSING; 412 break; 413 } 414 415 ffs->state = FFS_ACTIVE; 416 mutex_unlock(&ffs->mutex); 417 418 ret = ffs_ready(ffs); 419 if (ret < 0) { 420 ffs->state = FFS_CLOSING; 421 return ret; 422 } 423 424 return len; 425 } 426 break; 427 428 case FFS_ACTIVE: 429 data = NULL; 430 /* 431 * We're called from user space, we can use _irq 432 * rather then _irqsave 433 */ 434 spin_lock_irq(&ffs->ev.waitq.lock); 435 switch (ffs_setup_state_clear_cancelled(ffs)) { 436 case FFS_SETUP_CANCELLED: 437 ret = -EIDRM; 438 goto done_spin; 439 440 case FFS_NO_SETUP: 441 ret = -ESRCH; 442 goto done_spin; 443 444 case FFS_SETUP_PENDING: 445 break; 446 } 447 448 /* FFS_SETUP_PENDING */ 449 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 450 spin_unlock_irq(&ffs->ev.waitq.lock); 451 ret = __ffs_ep0_stall(ffs); 452 break; 453 } 454 455 /* FFS_SETUP_PENDING and not stall */ 456 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 457 458 spin_unlock_irq(&ffs->ev.waitq.lock); 459 460 data = ffs_prepare_buffer(buf, len); 461 if (IS_ERR(data)) { 462 ret = PTR_ERR(data); 463 break; 464 } 465 466 spin_lock_irq(&ffs->ev.waitq.lock); 467 468 /* 469 * We are guaranteed to be still in FFS_ACTIVE state 470 * but the state of setup could have changed from 471 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 472 * to check for that. If that happened we copied data 473 * from user space in vain but it's unlikely. 474 * 475 * For sure we are not in FFS_NO_SETUP since this is 476 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 477 * transition can be performed and it's protected by 478 * mutex. 479 */ 480 if (ffs_setup_state_clear_cancelled(ffs) == 481 FFS_SETUP_CANCELLED) { 482 ret = -EIDRM; 483done_spin: 484 spin_unlock_irq(&ffs->ev.waitq.lock); 485 } else { 486 /* unlocks spinlock */ 487 ret = __ffs_ep0_queue_wait(ffs, data, len); 488 } 489 kfree(data); 490 break; 491 492 default: 493 ret = -EBADFD; 494 break; 495 } 496 497 mutex_unlock(&ffs->mutex); 498 return ret; 499} 500 501/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 502static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 503 size_t n) 504 __releases(&ffs->ev.waitq.lock) 505{ 506 /* 507 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 508 * size of ffs->ev.types array (which is four) so that's how much space 509 * we reserve. 510 */ 511 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 512 const size_t size = n * sizeof *events; 513 unsigned i = 0; 514 515 memset(events, 0, size); 516 517 do { 518 events[i].type = ffs->ev.types[i]; 519 if (events[i].type == FUNCTIONFS_SETUP) { 520 events[i].u.setup = ffs->ev.setup; 521 ffs->setup_state = FFS_SETUP_PENDING; 522 } 523 } while (++i < n); 524 525 ffs->ev.count -= n; 526 if (ffs->ev.count) 527 memmove(ffs->ev.types, ffs->ev.types + n, 528 ffs->ev.count * sizeof *ffs->ev.types); 529 530 spin_unlock_irq(&ffs->ev.waitq.lock); 531 mutex_unlock(&ffs->mutex); 532 533 return copy_to_user(buf, events, size) ? -EFAULT : size; 534} 535 536static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 537 size_t len, loff_t *ptr) 538{ 539 struct ffs_data *ffs = file->private_data; 540 char *data = NULL; 541 size_t n; 542 int ret; 543 544 /* Fast check if setup was canceled */ 545 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 546 return -EIDRM; 547 548 /* Acquire mutex */ 549 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 550 if (ret < 0) 551 return ret; 552 553 /* Check state */ 554 if (ffs->state != FFS_ACTIVE) { 555 ret = -EBADFD; 556 goto done_mutex; 557 } 558 559 /* 560 * We're called from user space, we can use _irq rather then 561 * _irqsave 562 */ 563 spin_lock_irq(&ffs->ev.waitq.lock); 564 565 switch (ffs_setup_state_clear_cancelled(ffs)) { 566 case FFS_SETUP_CANCELLED: 567 ret = -EIDRM; 568 break; 569 570 case FFS_NO_SETUP: 571 n = len / sizeof(struct usb_functionfs_event); 572 if (!n) { 573 ret = -EINVAL; 574 break; 575 } 576 577 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 578 ret = -EAGAIN; 579 break; 580 } 581 582 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 583 ffs->ev.count)) { 584 ret = -EINTR; 585 break; 586 } 587 588 /* unlocks spinlock */ 589 return __ffs_ep0_read_events(ffs, buf, 590 min_t(size_t, n, ffs->ev.count)); 591 592 case FFS_SETUP_PENDING: 593 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 594 spin_unlock_irq(&ffs->ev.waitq.lock); 595 ret = __ffs_ep0_stall(ffs); 596 goto done_mutex; 597 } 598 599 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 600 601 spin_unlock_irq(&ffs->ev.waitq.lock); 602 603 if (len) { 604 data = kmalloc(len, GFP_KERNEL); 605 if (!data) { 606 ret = -ENOMEM; 607 goto done_mutex; 608 } 609 } 610 611 spin_lock_irq(&ffs->ev.waitq.lock); 612 613 /* See ffs_ep0_write() */ 614 if (ffs_setup_state_clear_cancelled(ffs) == 615 FFS_SETUP_CANCELLED) { 616 ret = -EIDRM; 617 break; 618 } 619 620 /* unlocks spinlock */ 621 ret = __ffs_ep0_queue_wait(ffs, data, len); 622 if ((ret > 0) && (copy_to_user(buf, data, len))) 623 ret = -EFAULT; 624 goto done_mutex; 625 626 default: 627 ret = -EBADFD; 628 break; 629 } 630 631 spin_unlock_irq(&ffs->ev.waitq.lock); 632done_mutex: 633 mutex_unlock(&ffs->mutex); 634 kfree(data); 635 return ret; 636} 637 638 639static void ffs_data_reset(struct ffs_data *ffs); 640 641static int ffs_ep0_open(struct inode *inode, struct file *file) 642{ 643 struct ffs_data *ffs = inode->i_sb->s_fs_info; 644 645 spin_lock_irq(&ffs->eps_lock); 646 if (ffs->state == FFS_CLOSING) { 647 spin_unlock_irq(&ffs->eps_lock); 648 return -EBUSY; 649 } 650 if (!ffs->opened++ && ffs->state == FFS_DEACTIVATED) { 651 ffs->state = FFS_CLOSING; 652 spin_unlock_irq(&ffs->eps_lock); 653 ffs_data_reset(ffs); 654 } else { 655 spin_unlock_irq(&ffs->eps_lock); 656 } 657 file->private_data = ffs; 658 659 return stream_open(inode, file); 660} 661 662static int ffs_ep0_release(struct inode *inode, struct file *file) 663{ 664 struct ffs_data *ffs = file->private_data; 665 666 ffs_data_closed(ffs); 667 668 return 0; 669} 670 671static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 672{ 673 struct ffs_data *ffs = file->private_data; 674 struct usb_gadget *gadget = ffs->gadget; 675 long ret; 676 677 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 678 struct ffs_function *func = ffs->func; 679 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 680 } else if (gadget && gadget->ops->ioctl) { 681 ret = gadget->ops->ioctl(gadget, code, value); 682 } else { 683 ret = -ENOTTY; 684 } 685 686 return ret; 687} 688 689static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 690{ 691 struct ffs_data *ffs = file->private_data; 692 __poll_t mask = EPOLLWRNORM; 693 int ret; 694 695 poll_wait(file, &ffs->ev.waitq, wait); 696 697 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 698 if (ret < 0) 699 return mask; 700 701 switch (ffs->state) { 702 case FFS_READ_DESCRIPTORS: 703 case FFS_READ_STRINGS: 704 mask |= EPOLLOUT; 705 break; 706 707 case FFS_ACTIVE: 708 switch (ffs->setup_state) { 709 case FFS_NO_SETUP: 710 if (ffs->ev.count) 711 mask |= EPOLLIN; 712 break; 713 714 case FFS_SETUP_PENDING: 715 case FFS_SETUP_CANCELLED: 716 mask |= (EPOLLIN | EPOLLOUT); 717 break; 718 } 719 break; 720 721 case FFS_CLOSING: 722 break; 723 case FFS_DEACTIVATED: 724 break; 725 } 726 727 mutex_unlock(&ffs->mutex); 728 729 return mask; 730} 731 732static const struct file_operations ffs_ep0_operations = { 733 734 .open = ffs_ep0_open, 735 .write = ffs_ep0_write, 736 .read = ffs_ep0_read, 737 .release = ffs_ep0_release, 738 .unlocked_ioctl = ffs_ep0_ioctl, 739 .poll = ffs_ep0_poll, 740}; 741 742 743/* "Normal" endpoints operations ********************************************/ 744 745static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 746{ 747 struct ffs_io_data *io_data = req->context; 748 749 if (req->status) 750 io_data->status = req->status; 751 else 752 io_data->status = req->actual; 753 754 complete(&io_data->done); 755} 756 757static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 758{ 759 ssize_t ret = copy_to_iter(data, data_len, iter); 760 if (ret == data_len) 761 return ret; 762 763 if (iov_iter_count(iter)) 764 return -EFAULT; 765 766 /* 767 * Dear user space developer! 768 * 769 * TL;DR: To stop getting below error message in your kernel log, change 770 * user space code using functionfs to align read buffers to a max 771 * packet size. 772 * 773 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 774 * packet size. When unaligned buffer is passed to functionfs, it 775 * internally uses a larger, aligned buffer so that such UDCs are happy. 776 * 777 * Unfortunately, this means that host may send more data than was 778 * requested in read(2) system call. f_fs doesn’t know what to do with 779 * that excess data so it simply drops it. 780 * 781 * Was the buffer aligned in the first place, no such problem would 782 * happen. 783 * 784 * Data may be dropped only in AIO reads. Synchronous reads are handled 785 * by splitting a request into multiple parts. This splitting may still 786 * be a problem though so it’s likely best to align the buffer 787 * regardless of it being AIO or not.. 788 * 789 * This only affects OUT endpoints, i.e. reading data with a read(2), 790 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 791 * affected. 792 */ 793 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 794 "Align read buffer size to max packet size to avoid the problem.\n", 795 data_len, ret); 796 797 return ret; 798} 799 800/* 801 * allocate a virtually contiguous buffer and create a scatterlist describing it 802 * @sg_table - pointer to a place to be filled with sg_table contents 803 * @size - required buffer size 804 */ 805static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 806{ 807 struct page **pages; 808 void *vaddr, *ptr; 809 unsigned int n_pages; 810 int i; 811 812 vaddr = vmalloc(sz); 813 if (!vaddr) 814 return NULL; 815 816 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 817 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 818 if (!pages) { 819 vfree(vaddr); 820 821 return NULL; 822 } 823 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 824 pages[i] = vmalloc_to_page(ptr); 825 826 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 827 kvfree(pages); 828 vfree(vaddr); 829 830 return NULL; 831 } 832 kvfree(pages); 833 834 return vaddr; 835} 836 837static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 838 size_t data_len) 839{ 840 if (io_data->use_sg) 841 return ffs_build_sg_list(&io_data->sgt, data_len); 842 843 return kmalloc(data_len, GFP_KERNEL); 844} 845 846static inline void ffs_free_buffer(struct ffs_io_data *io_data) 847{ 848 if (!io_data->buf) 849 return; 850 851 if (io_data->use_sg) { 852 sg_free_table(&io_data->sgt); 853 vfree(io_data->buf); 854 } else { 855 kfree(io_data->buf); 856 } 857} 858 859static void ffs_user_copy_worker(struct work_struct *work) 860{ 861 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 862 work); 863 int ret = io_data->status; 864 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 865 866 if (io_data->read && ret > 0) { 867 kthread_use_mm(io_data->mm); 868 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 869 kthread_unuse_mm(io_data->mm); 870 } 871 872 io_data->kiocb->ki_complete(io_data->kiocb, ret); 873 874 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 875 eventfd_signal(io_data->ffs->ffs_eventfd); 876 877 usb_ep_free_request(io_data->ep, io_data->req); 878 879 if (io_data->read) 880 kfree(io_data->to_free); 881 ffs_free_buffer(io_data); 882 kfree(io_data); 883} 884 885static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 886 struct usb_request *req) 887{ 888 struct ffs_io_data *io_data = req->context; 889 struct ffs_data *ffs = io_data->ffs; 890 891 io_data->status = req->status ? req->status : req->actual; 892 893 INIT_WORK(&io_data->work, ffs_user_copy_worker); 894 queue_work(ffs->io_completion_wq, &io_data->work); 895} 896 897static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 898{ 899 /* 900 * See comment in struct ffs_epfile for full read_buffer pointer 901 * synchronisation story. 902 */ 903 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 904 if (buf && buf != READ_BUFFER_DROP) 905 kfree(buf); 906} 907 908/* Assumes epfile->mutex is held. */ 909static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 910 struct iov_iter *iter) 911{ 912 /* 913 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 914 * the buffer while we are using it. See comment in struct ffs_epfile 915 * for full read_buffer pointer synchronisation story. 916 */ 917 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 918 ssize_t ret; 919 if (!buf || buf == READ_BUFFER_DROP) 920 return 0; 921 922 ret = copy_to_iter(buf->data, buf->length, iter); 923 if (buf->length == ret) { 924 kfree(buf); 925 return ret; 926 } 927 928 if (iov_iter_count(iter)) { 929 ret = -EFAULT; 930 } else { 931 buf->length -= ret; 932 buf->data += ret; 933 } 934 935 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 936 kfree(buf); 937 938 return ret; 939} 940 941/* Assumes epfile->mutex is held. */ 942static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 943 void *data, int data_len, 944 struct iov_iter *iter) 945{ 946 struct ffs_buffer *buf; 947 948 ssize_t ret = copy_to_iter(data, data_len, iter); 949 if (data_len == ret) 950 return ret; 951 952 if (iov_iter_count(iter)) 953 return -EFAULT; 954 955 /* See ffs_copy_to_iter for more context. */ 956 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 957 data_len, ret); 958 959 data_len -= ret; 960 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 961 if (!buf) 962 return -ENOMEM; 963 buf->length = data_len; 964 buf->data = buf->storage; 965 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 966 967 /* 968 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 969 * ffs_func_eps_disable has been called in the meanwhile). See comment 970 * in struct ffs_epfile for full read_buffer pointer synchronisation 971 * story. 972 */ 973 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 974 kfree(buf); 975 976 return ret; 977} 978 979static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 980{ 981 struct ffs_epfile *epfile = file->private_data; 982 struct ffs_ep *ep; 983 int ret; 984 985 /* Wait for endpoint to be enabled */ 986 ep = epfile->ep; 987 if (!ep) { 988 if (file->f_flags & O_NONBLOCK) 989 return ERR_PTR(-EAGAIN); 990 991 ret = wait_event_interruptible( 992 epfile->ffs->wait, (ep = epfile->ep)); 993 if (ret) 994 return ERR_PTR(-EINTR); 995 } 996 997 return ep; 998} 999 1000static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 1001{ 1002 struct ffs_epfile *epfile = file->private_data; 1003 struct usb_request *req; 1004 struct ffs_ep *ep; 1005 char *data = NULL; 1006 ssize_t ret, data_len = -EINVAL; 1007 int halt; 1008 1009 /* Are we still active? */ 1010 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1011 return -ENODEV; 1012 1013 ep = ffs_epfile_wait_ep(file); 1014 if (IS_ERR(ep)) 1015 return PTR_ERR(ep); 1016 1017 /* Do we halt? */ 1018 halt = (!io_data->read == !epfile->in); 1019 if (halt && epfile->isoc) 1020 return -EINVAL; 1021 1022 /* We will be using request and read_buffer */ 1023 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1024 if (ret) 1025 goto error; 1026 1027 /* Allocate & copy */ 1028 if (!halt) { 1029 struct usb_gadget *gadget; 1030 1031 /* 1032 * Do we have buffered data from previous partial read? Check 1033 * that for synchronous case only because we do not have 1034 * facility to ‘wake up’ a pending asynchronous read and push 1035 * buffered data to it which we would need to make things behave 1036 * consistently. 1037 */ 1038 if (!io_data->aio && io_data->read) { 1039 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1040 if (ret) 1041 goto error_mutex; 1042 } 1043 1044 /* 1045 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1046 * before the waiting completes, so do not assign to 'gadget' 1047 * earlier 1048 */ 1049 gadget = epfile->ffs->gadget; 1050 1051 spin_lock_irq(&epfile->ffs->eps_lock); 1052 /* In the meantime, endpoint got disabled or changed. */ 1053 if (epfile->ep != ep) { 1054 ret = -ESHUTDOWN; 1055 goto error_lock; 1056 } 1057 data_len = iov_iter_count(&io_data->data); 1058 /* 1059 * Controller may require buffer size to be aligned to 1060 * maxpacketsize of an out endpoint. 1061 */ 1062 if (io_data->read) 1063 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1064 1065 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1066 spin_unlock_irq(&epfile->ffs->eps_lock); 1067 1068 data = ffs_alloc_buffer(io_data, data_len); 1069 if (!data) { 1070 ret = -ENOMEM; 1071 goto error_mutex; 1072 } 1073 if (!io_data->read && 1074 !copy_from_iter_full(data, data_len, &io_data->data)) { 1075 ret = -EFAULT; 1076 goto error_mutex; 1077 } 1078 } 1079 1080 spin_lock_irq(&epfile->ffs->eps_lock); 1081 1082 if (epfile->ep != ep) { 1083 /* In the meantime, endpoint got disabled or changed. */ 1084 ret = -ESHUTDOWN; 1085 } else if (halt) { 1086 ret = usb_ep_set_halt(ep->ep); 1087 if (!ret) 1088 ret = -EBADMSG; 1089 } else if (data_len == -EINVAL) { 1090 /* 1091 * Sanity Check: even though data_len can't be used 1092 * uninitialized at the time I write this comment, some 1093 * compilers complain about this situation. 1094 * In order to keep the code clean from warnings, data_len is 1095 * being initialized to -EINVAL during its declaration, which 1096 * means we can't rely on compiler anymore to warn no future 1097 * changes won't result in data_len being used uninitialized. 1098 * For such reason, we're adding this redundant sanity check 1099 * here. 1100 */ 1101 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1102 ret = -EINVAL; 1103 } else if (!io_data->aio) { 1104 bool interrupted = false; 1105 1106 req = ep->req; 1107 if (io_data->use_sg) { 1108 req->buf = NULL; 1109 req->sg = io_data->sgt.sgl; 1110 req->num_sgs = io_data->sgt.nents; 1111 } else { 1112 req->buf = data; 1113 req->num_sgs = 0; 1114 } 1115 req->length = data_len; 1116 1117 io_data->buf = data; 1118 1119 init_completion(&io_data->done); 1120 req->context = io_data; 1121 req->complete = ffs_epfile_io_complete; 1122 1123 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1124 if (ret < 0) 1125 goto error_lock; 1126 1127 spin_unlock_irq(&epfile->ffs->eps_lock); 1128 1129 if (wait_for_completion_interruptible(&io_data->done)) { 1130 spin_lock_irq(&epfile->ffs->eps_lock); 1131 if (epfile->ep != ep) { 1132 ret = -ESHUTDOWN; 1133 goto error_lock; 1134 } 1135 /* 1136 * To avoid race condition with ffs_epfile_io_complete, 1137 * dequeue the request first then check 1138 * status. usb_ep_dequeue API should guarantee no race 1139 * condition with req->complete callback. 1140 */ 1141 usb_ep_dequeue(ep->ep, req); 1142 spin_unlock_irq(&epfile->ffs->eps_lock); 1143 wait_for_completion(&io_data->done); 1144 interrupted = io_data->status < 0; 1145 } 1146 1147 if (interrupted) 1148 ret = -EINTR; 1149 else if (io_data->read && io_data->status > 0) 1150 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1151 &io_data->data); 1152 else 1153 ret = io_data->status; 1154 goto error_mutex; 1155 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1156 ret = -ENOMEM; 1157 } else { 1158 if (io_data->use_sg) { 1159 req->buf = NULL; 1160 req->sg = io_data->sgt.sgl; 1161 req->num_sgs = io_data->sgt.nents; 1162 } else { 1163 req->buf = data; 1164 req->num_sgs = 0; 1165 } 1166 req->length = data_len; 1167 1168 io_data->buf = data; 1169 io_data->ep = ep->ep; 1170 io_data->req = req; 1171 io_data->ffs = epfile->ffs; 1172 1173 req->context = io_data; 1174 req->complete = ffs_epfile_async_io_complete; 1175 1176 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1177 if (ret) { 1178 io_data->req = NULL; 1179 usb_ep_free_request(ep->ep, req); 1180 goto error_lock; 1181 } 1182 1183 ret = -EIOCBQUEUED; 1184 /* 1185 * Do not kfree the buffer in this function. It will be freed 1186 * by ffs_user_copy_worker. 1187 */ 1188 data = NULL; 1189 } 1190 1191error_lock: 1192 spin_unlock_irq(&epfile->ffs->eps_lock); 1193error_mutex: 1194 mutex_unlock(&epfile->mutex); 1195error: 1196 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1197 ffs_free_buffer(io_data); 1198 return ret; 1199} 1200 1201static int 1202ffs_epfile_open(struct inode *inode, struct file *file) 1203{ 1204 struct ffs_data *ffs = inode->i_sb->s_fs_info; 1205 struct ffs_epfile *epfile; 1206 1207 spin_lock_irq(&ffs->eps_lock); 1208 if (!ffs->opened) { 1209 spin_unlock_irq(&ffs->eps_lock); 1210 return -ENODEV; 1211 } 1212 /* 1213 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is 1214 * not enough, though - we might have been through FFS_CLOSING 1215 * and back to FFS_ACTIVE, with our file already removed. 1216 */ 1217 epfile = smp_load_acquire(&inode->i_private); 1218 if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) { 1219 spin_unlock_irq(&ffs->eps_lock); 1220 return -ENODEV; 1221 } 1222 ffs->opened++; 1223 spin_unlock_irq(&ffs->eps_lock); 1224 1225 file->private_data = epfile; 1226 return stream_open(inode, file); 1227} 1228 1229static int ffs_aio_cancel(struct kiocb *kiocb) 1230{ 1231 struct ffs_io_data *io_data = kiocb->private; 1232 int value; 1233 1234 if (io_data && io_data->ep && io_data->req) 1235 value = usb_ep_dequeue(io_data->ep, io_data->req); 1236 else 1237 value = -EINVAL; 1238 1239 return value; 1240} 1241 1242static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1243{ 1244 struct ffs_io_data io_data, *p = &io_data; 1245 ssize_t res; 1246 1247 if (!is_sync_kiocb(kiocb)) { 1248 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1249 if (!p) 1250 return -ENOMEM; 1251 p->aio = true; 1252 } else { 1253 memset(p, 0, sizeof(*p)); 1254 p->aio = false; 1255 } 1256 1257 p->read = false; 1258 p->kiocb = kiocb; 1259 p->data = *from; 1260 p->mm = current->mm; 1261 1262 kiocb->private = p; 1263 1264 if (p->aio) 1265 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1266 1267 res = ffs_epfile_io(kiocb->ki_filp, p); 1268 if (res == -EIOCBQUEUED) 1269 return res; 1270 if (p->aio) 1271 kfree(p); 1272 else 1273 *from = p->data; 1274 return res; 1275} 1276 1277static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1278{ 1279 struct ffs_io_data io_data, *p = &io_data; 1280 ssize_t res; 1281 1282 if (!is_sync_kiocb(kiocb)) { 1283 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1284 if (!p) 1285 return -ENOMEM; 1286 p->aio = true; 1287 } else { 1288 memset(p, 0, sizeof(*p)); 1289 p->aio = false; 1290 } 1291 1292 p->read = true; 1293 p->kiocb = kiocb; 1294 if (p->aio) { 1295 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1296 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1297 kfree(p); 1298 return -ENOMEM; 1299 } 1300 } else { 1301 p->data = *to; 1302 p->to_free = NULL; 1303 } 1304 p->mm = current->mm; 1305 1306 kiocb->private = p; 1307 1308 if (p->aio) 1309 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1310 1311 res = ffs_epfile_io(kiocb->ki_filp, p); 1312 if (res == -EIOCBQUEUED) 1313 return res; 1314 1315 if (p->aio) { 1316 kfree(p->to_free); 1317 kfree(p); 1318 } else { 1319 *to = p->data; 1320 } 1321 return res; 1322} 1323 1324static void ffs_dmabuf_release(struct kref *ref) 1325{ 1326 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1327 struct dma_buf_attachment *attach = priv->attach; 1328 struct dma_buf *dmabuf = attach->dmabuf; 1329 1330 pr_vdebug("FFS DMABUF release\n"); 1331 dma_buf_unmap_attachment_unlocked(attach, priv->sgt, priv->dir); 1332 1333 dma_buf_detach(attach->dmabuf, attach); 1334 dma_buf_put(dmabuf); 1335 kfree(priv); 1336} 1337 1338static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1339{ 1340 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1341 1342 kref_get(&priv->ref); 1343} 1344 1345static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1346{ 1347 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1348 1349 kref_put(&priv->ref, ffs_dmabuf_release); 1350} 1351 1352static int 1353ffs_epfile_release(struct inode *inode, struct file *file) 1354{ 1355 struct ffs_epfile *epfile = file->private_data; 1356 struct ffs_dmabuf_priv *priv, *tmp; 1357 struct ffs_data *ffs = epfile->ffs; 1358 1359 mutex_lock(&epfile->dmabufs_mutex); 1360 1361 /* Close all attached DMABUFs */ 1362 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1363 /* Cancel any pending transfer */ 1364 spin_lock_irq(&ffs->eps_lock); 1365 if (priv->ep && priv->req) 1366 usb_ep_dequeue(priv->ep, priv->req); 1367 spin_unlock_irq(&ffs->eps_lock); 1368 1369 list_del(&priv->entry); 1370 ffs_dmabuf_put(priv->attach); 1371 } 1372 1373 mutex_unlock(&epfile->dmabufs_mutex); 1374 1375 __ffs_epfile_read_buffer_free(epfile); 1376 ffs_data_closed(epfile->ffs); 1377 1378 return 0; 1379} 1380 1381static void ffs_dmabuf_cleanup(struct work_struct *work) 1382{ 1383 struct ffs_dma_fence *dma_fence = 1384 container_of(work, struct ffs_dma_fence, work); 1385 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1386 struct dma_buf_attachment *attach = priv->attach; 1387 struct dma_fence *fence = &dma_fence->base; 1388 1389 ffs_dmabuf_put(attach); 1390 dma_fence_put(fence); 1391} 1392 1393static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1394{ 1395 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1396 struct dma_fence *fence = &dma_fence->base; 1397 bool cookie = dma_fence_begin_signalling(); 1398 1399 dma_fence_get(fence); 1400 fence->error = ret; 1401 dma_fence_signal(fence); 1402 dma_fence_end_signalling(cookie); 1403 1404 /* 1405 * The fence will be unref'd in ffs_dmabuf_cleanup. 1406 * It can't be done here, as the unref functions might try to lock 1407 * the resv object, which would deadlock. 1408 */ 1409 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1410 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1411} 1412 1413static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1414 struct usb_request *req) 1415{ 1416 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1417 ffs_dmabuf_signal_done(req->context, req->status); 1418 usb_ep_free_request(ep, req); 1419} 1420 1421static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1422{ 1423 return "functionfs"; 1424} 1425 1426static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1427{ 1428 return ""; 1429} 1430 1431static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1432{ 1433 struct ffs_dma_fence *dma_fence = 1434 container_of(fence, struct ffs_dma_fence, base); 1435 1436 kfree(dma_fence); 1437} 1438 1439static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1440 .get_driver_name = ffs_dmabuf_get_driver_name, 1441 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1442 .release = ffs_dmabuf_fence_release, 1443}; 1444 1445static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1446{ 1447 if (!nonblock) 1448 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1449 1450 if (!dma_resv_trylock(dmabuf->resv)) 1451 return -EBUSY; 1452 1453 return 0; 1454} 1455 1456static struct dma_buf_attachment * 1457ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1458{ 1459 struct device *dev = epfile->ffs->gadget->dev.parent; 1460 struct dma_buf_attachment *attach = NULL; 1461 struct ffs_dmabuf_priv *priv; 1462 1463 mutex_lock(&epfile->dmabufs_mutex); 1464 1465 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1466 if (priv->attach->dev == dev 1467 && priv->attach->dmabuf == dmabuf) { 1468 attach = priv->attach; 1469 break; 1470 } 1471 } 1472 1473 if (attach) 1474 ffs_dmabuf_get(attach); 1475 1476 mutex_unlock(&epfile->dmabufs_mutex); 1477 1478 return attach ?: ERR_PTR(-EPERM); 1479} 1480 1481static int ffs_dmabuf_attach(struct file *file, int fd) 1482{ 1483 bool nonblock = file->f_flags & O_NONBLOCK; 1484 struct ffs_epfile *epfile = file->private_data; 1485 struct usb_gadget *gadget = epfile->ffs->gadget; 1486 struct dma_buf_attachment *attach; 1487 struct ffs_dmabuf_priv *priv; 1488 enum dma_data_direction dir; 1489 struct sg_table *sg_table; 1490 struct dma_buf *dmabuf; 1491 int err; 1492 1493 if (!gadget || !gadget->sg_supported) 1494 return -EPERM; 1495 1496 dmabuf = dma_buf_get(fd); 1497 if (IS_ERR(dmabuf)) 1498 return PTR_ERR(dmabuf); 1499 1500 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1501 if (IS_ERR(attach)) { 1502 err = PTR_ERR(attach); 1503 goto err_dmabuf_put; 1504 } 1505 1506 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1507 if (!priv) { 1508 err = -ENOMEM; 1509 goto err_dmabuf_detach; 1510 } 1511 1512 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1513 1514 err = ffs_dma_resv_lock(dmabuf, nonblock); 1515 if (err) 1516 goto err_free_priv; 1517 1518 sg_table = dma_buf_map_attachment(attach, dir); 1519 dma_resv_unlock(dmabuf->resv); 1520 1521 if (IS_ERR(sg_table)) { 1522 err = PTR_ERR(sg_table); 1523 goto err_free_priv; 1524 } 1525 1526 attach->importer_priv = priv; 1527 1528 priv->sgt = sg_table; 1529 priv->dir = dir; 1530 priv->ffs = epfile->ffs; 1531 priv->attach = attach; 1532 spin_lock_init(&priv->lock); 1533 kref_init(&priv->ref); 1534 priv->context = dma_fence_context_alloc(1); 1535 1536 mutex_lock(&epfile->dmabufs_mutex); 1537 list_add(&priv->entry, &epfile->dmabufs); 1538 mutex_unlock(&epfile->dmabufs_mutex); 1539 1540 return 0; 1541 1542err_free_priv: 1543 kfree(priv); 1544err_dmabuf_detach: 1545 dma_buf_detach(dmabuf, attach); 1546err_dmabuf_put: 1547 dma_buf_put(dmabuf); 1548 1549 return err; 1550} 1551 1552static int ffs_dmabuf_detach(struct file *file, int fd) 1553{ 1554 struct ffs_epfile *epfile = file->private_data; 1555 struct ffs_data *ffs = epfile->ffs; 1556 struct device *dev = ffs->gadget->dev.parent; 1557 struct ffs_dmabuf_priv *priv, *tmp; 1558 struct dma_buf *dmabuf; 1559 int ret = -EPERM; 1560 1561 dmabuf = dma_buf_get(fd); 1562 if (IS_ERR(dmabuf)) 1563 return PTR_ERR(dmabuf); 1564 1565 mutex_lock(&epfile->dmabufs_mutex); 1566 1567 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1568 if (priv->attach->dev == dev 1569 && priv->attach->dmabuf == dmabuf) { 1570 /* Cancel any pending transfer */ 1571 spin_lock_irq(&ffs->eps_lock); 1572 if (priv->ep && priv->req) 1573 usb_ep_dequeue(priv->ep, priv->req); 1574 spin_unlock_irq(&ffs->eps_lock); 1575 1576 list_del(&priv->entry); 1577 1578 /* Unref the reference from ffs_dmabuf_attach() */ 1579 ffs_dmabuf_put(priv->attach); 1580 ret = 0; 1581 break; 1582 } 1583 } 1584 1585 mutex_unlock(&epfile->dmabufs_mutex); 1586 dma_buf_put(dmabuf); 1587 1588 return ret; 1589} 1590 1591static int ffs_dmabuf_transfer(struct file *file, 1592 const struct usb_ffs_dmabuf_transfer_req *req) 1593{ 1594 bool nonblock = file->f_flags & O_NONBLOCK; 1595 struct ffs_epfile *epfile = file->private_data; 1596 struct dma_buf_attachment *attach; 1597 struct ffs_dmabuf_priv *priv; 1598 struct ffs_dma_fence *fence; 1599 struct usb_request *usb_req; 1600 enum dma_resv_usage resv_dir; 1601 struct dma_buf *dmabuf; 1602 unsigned long timeout; 1603 struct ffs_ep *ep; 1604 bool cookie; 1605 u32 seqno; 1606 long retl; 1607 int ret; 1608 1609 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1610 return -EINVAL; 1611 1612 dmabuf = dma_buf_get(req->fd); 1613 if (IS_ERR(dmabuf)) 1614 return PTR_ERR(dmabuf); 1615 1616 if (req->length > dmabuf->size || req->length == 0) { 1617 ret = -EINVAL; 1618 goto err_dmabuf_put; 1619 } 1620 1621 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1622 if (IS_ERR(attach)) { 1623 ret = PTR_ERR(attach); 1624 goto err_dmabuf_put; 1625 } 1626 1627 priv = attach->importer_priv; 1628 1629 ep = ffs_epfile_wait_ep(file); 1630 if (IS_ERR(ep)) { 1631 ret = PTR_ERR(ep); 1632 goto err_attachment_put; 1633 } 1634 1635 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1636 if (ret) 1637 goto err_attachment_put; 1638 1639 /* Make sure we don't have writers */ 1640 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1641 retl = dma_resv_wait_timeout(dmabuf->resv, 1642 dma_resv_usage_rw(epfile->in), 1643 true, timeout); 1644 if (retl == 0) 1645 retl = -EBUSY; 1646 if (retl < 0) { 1647 ret = (int)retl; 1648 goto err_resv_unlock; 1649 } 1650 1651 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1652 if (ret) 1653 goto err_resv_unlock; 1654 1655 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1656 if (!fence) { 1657 ret = -ENOMEM; 1658 goto err_resv_unlock; 1659 } 1660 1661 fence->priv = priv; 1662 1663 spin_lock_irq(&epfile->ffs->eps_lock); 1664 1665 /* In the meantime, endpoint got disabled or changed. */ 1666 if (epfile->ep != ep) { 1667 ret = -ESHUTDOWN; 1668 goto err_fence_put; 1669 } 1670 1671 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1672 if (!usb_req) { 1673 ret = -ENOMEM; 1674 goto err_fence_put; 1675 } 1676 1677 /* 1678 * usb_ep_queue() guarantees that all transfers are processed in the 1679 * order they are enqueued, so we can use a simple incrementing 1680 * sequence number for the dma_fence. 1681 */ 1682 seqno = atomic_add_return(1, &epfile->seqno); 1683 1684 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1685 &priv->lock, priv->context, seqno); 1686 1687 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1688 1689 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1690 dma_resv_unlock(dmabuf->resv); 1691 1692 /* Now that the dma_fence is in place, queue the transfer. */ 1693 1694 usb_req->length = req->length; 1695 usb_req->buf = NULL; 1696 usb_req->sg = priv->sgt->sgl; 1697 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1698 usb_req->sg_was_mapped = true; 1699 usb_req->context = fence; 1700 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1701 1702 cookie = dma_fence_begin_signalling(); 1703 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1704 dma_fence_end_signalling(cookie); 1705 if (!ret) { 1706 priv->req = usb_req; 1707 priv->ep = ep->ep; 1708 } else { 1709 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1710 ffs_dmabuf_signal_done(fence, ret); 1711 usb_ep_free_request(ep->ep, usb_req); 1712 } 1713 1714 spin_unlock_irq(&epfile->ffs->eps_lock); 1715 dma_buf_put(dmabuf); 1716 1717 return ret; 1718 1719err_fence_put: 1720 spin_unlock_irq(&epfile->ffs->eps_lock); 1721 dma_fence_put(&fence->base); 1722err_resv_unlock: 1723 dma_resv_unlock(dmabuf->resv); 1724err_attachment_put: 1725 ffs_dmabuf_put(attach); 1726err_dmabuf_put: 1727 dma_buf_put(dmabuf); 1728 1729 return ret; 1730} 1731 1732static long ffs_epfile_ioctl(struct file *file, unsigned code, 1733 unsigned long value) 1734{ 1735 struct ffs_epfile *epfile = file->private_data; 1736 struct ffs_ep *ep; 1737 int ret; 1738 1739 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1740 return -ENODEV; 1741 1742 switch (code) { 1743 case FUNCTIONFS_DMABUF_ATTACH: 1744 { 1745 int fd; 1746 1747 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1748 ret = -EFAULT; 1749 break; 1750 } 1751 1752 return ffs_dmabuf_attach(file, fd); 1753 } 1754 case FUNCTIONFS_DMABUF_DETACH: 1755 { 1756 int fd; 1757 1758 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1759 ret = -EFAULT; 1760 break; 1761 } 1762 1763 return ffs_dmabuf_detach(file, fd); 1764 } 1765 case FUNCTIONFS_DMABUF_TRANSFER: 1766 { 1767 struct usb_ffs_dmabuf_transfer_req req; 1768 1769 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1770 ret = -EFAULT; 1771 break; 1772 } 1773 1774 return ffs_dmabuf_transfer(file, &req); 1775 } 1776 default: 1777 break; 1778 } 1779 1780 /* Wait for endpoint to be enabled */ 1781 ep = ffs_epfile_wait_ep(file); 1782 if (IS_ERR(ep)) 1783 return PTR_ERR(ep); 1784 1785 spin_lock_irq(&epfile->ffs->eps_lock); 1786 1787 /* In the meantime, endpoint got disabled or changed. */ 1788 if (epfile->ep != ep) { 1789 spin_unlock_irq(&epfile->ffs->eps_lock); 1790 return -ESHUTDOWN; 1791 } 1792 1793 switch (code) { 1794 case FUNCTIONFS_FIFO_STATUS: 1795 ret = usb_ep_fifo_status(epfile->ep->ep); 1796 break; 1797 case FUNCTIONFS_FIFO_FLUSH: 1798 usb_ep_fifo_flush(epfile->ep->ep); 1799 ret = 0; 1800 break; 1801 case FUNCTIONFS_CLEAR_HALT: 1802 ret = usb_ep_clear_halt(epfile->ep->ep); 1803 break; 1804 case FUNCTIONFS_ENDPOINT_REVMAP: 1805 ret = epfile->ep->num; 1806 break; 1807 case FUNCTIONFS_ENDPOINT_DESC: 1808 { 1809 int desc_idx; 1810 struct usb_endpoint_descriptor desc1, *desc; 1811 1812 switch (epfile->ffs->gadget->speed) { 1813 case USB_SPEED_SUPER: 1814 case USB_SPEED_SUPER_PLUS: 1815 desc_idx = 2; 1816 break; 1817 case USB_SPEED_HIGH: 1818 desc_idx = 1; 1819 break; 1820 default: 1821 desc_idx = 0; 1822 } 1823 1824 desc = epfile->ep->descs[desc_idx]; 1825 memcpy(&desc1, desc, desc->bLength); 1826 1827 spin_unlock_irq(&epfile->ffs->eps_lock); 1828 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1829 if (ret) 1830 ret = -EFAULT; 1831 return ret; 1832 } 1833 default: 1834 ret = -ENOTTY; 1835 } 1836 spin_unlock_irq(&epfile->ffs->eps_lock); 1837 1838 return ret; 1839} 1840 1841static const struct file_operations ffs_epfile_operations = { 1842 1843 .open = ffs_epfile_open, 1844 .write_iter = ffs_epfile_write_iter, 1845 .read_iter = ffs_epfile_read_iter, 1846 .release = ffs_epfile_release, 1847 .unlocked_ioctl = ffs_epfile_ioctl, 1848 .compat_ioctl = compat_ptr_ioctl, 1849}; 1850 1851 1852/* File system and super block operations ***********************************/ 1853 1854/* 1855 * Mounting the file system creates a controller file, used first for 1856 * function configuration then later for event monitoring. 1857 */ 1858 1859static struct inode *__must_check 1860ffs_sb_make_inode(struct super_block *sb, void *data, 1861 const struct file_operations *fops, 1862 const struct inode_operations *iops, 1863 struct ffs_file_perms *perms) 1864{ 1865 struct inode *inode; 1866 1867 inode = new_inode(sb); 1868 1869 if (inode) { 1870 struct timespec64 ts = inode_set_ctime_current(inode); 1871 1872 inode->i_ino = get_next_ino(); 1873 inode->i_mode = perms->mode; 1874 inode->i_uid = perms->uid; 1875 inode->i_gid = perms->gid; 1876 inode_set_atime_to_ts(inode, ts); 1877 inode_set_mtime_to_ts(inode, ts); 1878 inode->i_private = data; 1879 if (fops) 1880 inode->i_fop = fops; 1881 if (iops) 1882 inode->i_op = iops; 1883 } 1884 1885 return inode; 1886} 1887 1888/* Create "regular" file */ 1889static int ffs_sb_create_file(struct super_block *sb, const char *name, 1890 void *data, const struct file_operations *fops) 1891{ 1892 struct ffs_data *ffs = sb->s_fs_info; 1893 struct dentry *dentry; 1894 struct inode *inode; 1895 1896 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1897 if (!inode) 1898 return -ENOMEM; 1899 dentry = simple_start_creating(sb->s_root, name); 1900 if (IS_ERR(dentry)) { 1901 iput(inode); 1902 return PTR_ERR(dentry); 1903 } 1904 1905 d_make_persistent(dentry, inode); 1906 1907 simple_done_creating(dentry); 1908 return 0; 1909} 1910 1911/* Super block */ 1912static const struct super_operations ffs_sb_operations = { 1913 .statfs = simple_statfs, 1914 .drop_inode = inode_just_drop, 1915}; 1916 1917struct ffs_sb_fill_data { 1918 struct ffs_file_perms perms; 1919 umode_t root_mode; 1920 const char *dev_name; 1921 bool no_disconnect; 1922 struct ffs_data *ffs_data; 1923}; 1924 1925static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1926{ 1927 struct ffs_sb_fill_data *data = fc->fs_private; 1928 struct inode *inode; 1929 struct ffs_data *ffs = data->ffs_data; 1930 1931 ffs->sb = sb; 1932 data->ffs_data = NULL; 1933 sb->s_fs_info = ffs; 1934 sb->s_blocksize = PAGE_SIZE; 1935 sb->s_blocksize_bits = PAGE_SHIFT; 1936 sb->s_magic = FUNCTIONFS_MAGIC; 1937 sb->s_op = &ffs_sb_operations; 1938 sb->s_time_gran = 1; 1939 1940 /* Root inode */ 1941 data->perms.mode = data->root_mode; 1942 inode = ffs_sb_make_inode(sb, NULL, 1943 &simple_dir_operations, 1944 &simple_dir_inode_operations, 1945 &data->perms); 1946 sb->s_root = d_make_root(inode); 1947 if (!sb->s_root) 1948 return -ENOMEM; 1949 1950 /* EP0 file */ 1951 return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations); 1952} 1953 1954enum { 1955 Opt_no_disconnect, 1956 Opt_rmode, 1957 Opt_fmode, 1958 Opt_mode, 1959 Opt_uid, 1960 Opt_gid, 1961}; 1962 1963static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1964 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1965 fsparam_u32 ("rmode", Opt_rmode), 1966 fsparam_u32 ("fmode", Opt_fmode), 1967 fsparam_u32 ("mode", Opt_mode), 1968 fsparam_u32 ("uid", Opt_uid), 1969 fsparam_u32 ("gid", Opt_gid), 1970 {} 1971}; 1972 1973static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1974{ 1975 struct ffs_sb_fill_data *data = fc->fs_private; 1976 struct fs_parse_result result; 1977 int opt; 1978 1979 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1980 if (opt < 0) 1981 return opt; 1982 1983 switch (opt) { 1984 case Opt_no_disconnect: 1985 data->no_disconnect = result.boolean; 1986 break; 1987 case Opt_rmode: 1988 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1989 break; 1990 case Opt_fmode: 1991 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1992 break; 1993 case Opt_mode: 1994 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1995 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1996 break; 1997 1998 case Opt_uid: 1999 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 2000 if (!uid_valid(data->perms.uid)) 2001 goto unmapped_value; 2002 break; 2003 case Opt_gid: 2004 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 2005 if (!gid_valid(data->perms.gid)) 2006 goto unmapped_value; 2007 break; 2008 2009 default: 2010 return -ENOPARAM; 2011 } 2012 2013 return 0; 2014 2015unmapped_value: 2016 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2017} 2018 2019/* 2020 * Set up the superblock for a mount. 2021 */ 2022static int ffs_fs_get_tree(struct fs_context *fc) 2023{ 2024 struct ffs_sb_fill_data *ctx = fc->fs_private; 2025 struct ffs_data *ffs; 2026 int ret; 2027 2028 if (!fc->source) 2029 return invalf(fc, "No source specified"); 2030 2031 ffs = ffs_data_new(fc->source); 2032 if (!ffs) 2033 return -ENOMEM; 2034 ffs->file_perms = ctx->perms; 2035 ffs->no_disconnect = ctx->no_disconnect; 2036 2037 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2038 if (!ffs->dev_name) { 2039 ffs_data_put(ffs); 2040 return -ENOMEM; 2041 } 2042 2043 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2044 if (ret) { 2045 ffs_data_put(ffs); 2046 return ret; 2047 } 2048 2049 ctx->ffs_data = ffs; 2050 return get_tree_nodev(fc, ffs_sb_fill); 2051} 2052 2053static void ffs_fs_free_fc(struct fs_context *fc) 2054{ 2055 struct ffs_sb_fill_data *ctx = fc->fs_private; 2056 2057 if (ctx) { 2058 if (ctx->ffs_data) { 2059 ffs_data_put(ctx->ffs_data); 2060 } 2061 2062 kfree(ctx); 2063 } 2064} 2065 2066static const struct fs_context_operations ffs_fs_context_ops = { 2067 .free = ffs_fs_free_fc, 2068 .parse_param = ffs_fs_parse_param, 2069 .get_tree = ffs_fs_get_tree, 2070}; 2071 2072static int ffs_fs_init_fs_context(struct fs_context *fc) 2073{ 2074 struct ffs_sb_fill_data *ctx; 2075 2076 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2077 if (!ctx) 2078 return -ENOMEM; 2079 2080 ctx->perms.mode = S_IFREG | 0600; 2081 ctx->perms.uid = GLOBAL_ROOT_UID; 2082 ctx->perms.gid = GLOBAL_ROOT_GID; 2083 ctx->root_mode = S_IFDIR | 0500; 2084 ctx->no_disconnect = false; 2085 2086 fc->fs_private = ctx; 2087 fc->ops = &ffs_fs_context_ops; 2088 return 0; 2089} 2090 2091static void 2092ffs_fs_kill_sb(struct super_block *sb) 2093{ 2094 kill_anon_super(sb); 2095 if (sb->s_fs_info) { 2096 struct ffs_data *ffs = sb->s_fs_info; 2097 ffs->state = FFS_CLOSING; 2098 ffs_data_reset(ffs); 2099 // no configfs accesses from that point on, 2100 // so no further schedule_work() is possible 2101 cancel_work_sync(&ffs->reset_work); 2102 ffs_data_put(ffs); 2103 } 2104} 2105 2106static struct file_system_type ffs_fs_type = { 2107 .owner = THIS_MODULE, 2108 .name = "functionfs", 2109 .init_fs_context = ffs_fs_init_fs_context, 2110 .parameters = ffs_fs_fs_parameters, 2111 .kill_sb = ffs_fs_kill_sb, 2112}; 2113MODULE_ALIAS_FS("functionfs"); 2114 2115 2116/* Driver's main init/cleanup functions *************************************/ 2117 2118static int functionfs_init(void) 2119{ 2120 int ret; 2121 2122 ret = register_filesystem(&ffs_fs_type); 2123 if (!ret) 2124 pr_info("file system registered\n"); 2125 else 2126 pr_err("failed registering file system (%d)\n", ret); 2127 2128 return ret; 2129} 2130 2131static void functionfs_cleanup(void) 2132{ 2133 pr_info("unloading\n"); 2134 unregister_filesystem(&ffs_fs_type); 2135} 2136 2137 2138/* ffs_data and ffs_function construction and destruction code **************/ 2139 2140static void ffs_data_clear(struct ffs_data *ffs); 2141 2142static void ffs_data_get(struct ffs_data *ffs) 2143{ 2144 refcount_inc(&ffs->ref); 2145} 2146 2147static void ffs_data_put(struct ffs_data *ffs) 2148{ 2149 if (refcount_dec_and_test(&ffs->ref)) { 2150 pr_info("%s(): freeing\n", __func__); 2151 ffs_data_clear(ffs); 2152 ffs_release_dev(ffs->private_data); 2153 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2154 swait_active(&ffs->ep0req_completion.wait) || 2155 waitqueue_active(&ffs->wait)); 2156 destroy_workqueue(ffs->io_completion_wq); 2157 kfree(ffs->dev_name); 2158 kfree(ffs); 2159 } 2160} 2161 2162static void ffs_data_closed(struct ffs_data *ffs) 2163{ 2164 spin_lock_irq(&ffs->eps_lock); 2165 if (--ffs->opened) { // not the last opener? 2166 spin_unlock_irq(&ffs->eps_lock); 2167 return; 2168 } 2169 if (ffs->no_disconnect) { 2170 struct ffs_epfile *epfiles; 2171 2172 ffs->state = FFS_DEACTIVATED; 2173 epfiles = ffs->epfiles; 2174 ffs->epfiles = NULL; 2175 spin_unlock_irq(&ffs->eps_lock); 2176 2177 if (epfiles) 2178 ffs_epfiles_destroy(ffs->sb, epfiles, 2179 ffs->eps_count); 2180 2181 if (ffs->setup_state == FFS_SETUP_PENDING) 2182 __ffs_ep0_stall(ffs); 2183 } else { 2184 ffs->state = FFS_CLOSING; 2185 spin_unlock_irq(&ffs->eps_lock); 2186 ffs_data_reset(ffs); 2187 } 2188} 2189 2190static struct ffs_data *ffs_data_new(const char *dev_name) 2191{ 2192 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2193 if (!ffs) 2194 return NULL; 2195 2196 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2197 if (!ffs->io_completion_wq) { 2198 kfree(ffs); 2199 return NULL; 2200 } 2201 2202 refcount_set(&ffs->ref, 1); 2203 ffs->opened = 0; 2204 ffs->state = FFS_READ_DESCRIPTORS; 2205 mutex_init(&ffs->mutex); 2206 spin_lock_init(&ffs->eps_lock); 2207 init_waitqueue_head(&ffs->ev.waitq); 2208 init_waitqueue_head(&ffs->wait); 2209 init_completion(&ffs->ep0req_completion); 2210 2211 /* XXX REVISIT need to update it in some places, or do we? */ 2212 ffs->ev.can_stall = 1; 2213 2214 return ffs; 2215} 2216 2217static void ffs_data_clear(struct ffs_data *ffs) 2218{ 2219 struct ffs_epfile *epfiles; 2220 unsigned long flags; 2221 2222 ffs_closed(ffs); 2223 2224 BUG_ON(ffs->gadget); 2225 2226 spin_lock_irqsave(&ffs->eps_lock, flags); 2227 epfiles = ffs->epfiles; 2228 ffs->epfiles = NULL; 2229 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2230 2231 /* 2232 * potential race possible between ffs_func_eps_disable 2233 * & ffs_epfile_release therefore maintaining a local 2234 * copy of epfile will save us from use-after-free. 2235 */ 2236 if (epfiles) { 2237 ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count); 2238 ffs->epfiles = NULL; 2239 } 2240 2241 if (ffs->ffs_eventfd) { 2242 eventfd_ctx_put(ffs->ffs_eventfd); 2243 ffs->ffs_eventfd = NULL; 2244 } 2245 2246 kfree(ffs->raw_descs_data); 2247 kfree(ffs->raw_strings); 2248 kfree(ffs->stringtabs); 2249} 2250 2251static void ffs_data_reset(struct ffs_data *ffs) 2252{ 2253 ffs_data_clear(ffs); 2254 2255 spin_lock_irq(&ffs->eps_lock); 2256 ffs->raw_descs_data = NULL; 2257 ffs->raw_descs = NULL; 2258 ffs->raw_strings = NULL; 2259 ffs->stringtabs = NULL; 2260 2261 ffs->raw_descs_length = 0; 2262 ffs->fs_descs_count = 0; 2263 ffs->hs_descs_count = 0; 2264 ffs->ss_descs_count = 0; 2265 2266 ffs->strings_count = 0; 2267 ffs->interfaces_count = 0; 2268 ffs->eps_count = 0; 2269 2270 ffs->ev.count = 0; 2271 2272 ffs->state = FFS_READ_DESCRIPTORS; 2273 ffs->setup_state = FFS_NO_SETUP; 2274 ffs->flags = 0; 2275 2276 ffs->ms_os_descs_ext_prop_count = 0; 2277 ffs->ms_os_descs_ext_prop_name_len = 0; 2278 ffs->ms_os_descs_ext_prop_data_len = 0; 2279 spin_unlock_irq(&ffs->eps_lock); 2280} 2281 2282 2283static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2284{ 2285 struct usb_gadget_strings **lang; 2286 int first_id; 2287 2288 if ((ffs->state != FFS_ACTIVE 2289 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2290 return -EBADFD; 2291 2292 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2293 if (first_id < 0) 2294 return first_id; 2295 2296 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2297 if (!ffs->ep0req) 2298 return -ENOMEM; 2299 ffs->ep0req->complete = ffs_ep0_complete; 2300 ffs->ep0req->context = ffs; 2301 2302 lang = ffs->stringtabs; 2303 if (lang) { 2304 for (; *lang; ++lang) { 2305 struct usb_string *str = (*lang)->strings; 2306 int id = first_id; 2307 for (; str->s; ++id, ++str) 2308 str->id = id; 2309 } 2310 } 2311 2312 ffs->gadget = cdev->gadget; 2313 ffs_data_get(ffs); 2314 return 0; 2315} 2316 2317static void functionfs_unbind(struct ffs_data *ffs) 2318{ 2319 if (!WARN_ON(!ffs->gadget)) { 2320 /* dequeue before freeing ep0req */ 2321 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2322 mutex_lock(&ffs->mutex); 2323 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2324 ffs->ep0req = NULL; 2325 ffs->gadget = NULL; 2326 clear_bit(FFS_FL_BOUND, &ffs->flags); 2327 mutex_unlock(&ffs->mutex); 2328 ffs_data_put(ffs); 2329 } 2330} 2331 2332static int ffs_epfiles_create(struct ffs_data *ffs) 2333{ 2334 struct ffs_epfile *epfile, *epfiles; 2335 unsigned i, count; 2336 int err; 2337 2338 count = ffs->eps_count; 2339 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2340 if (!epfiles) 2341 return -ENOMEM; 2342 2343 epfile = epfiles; 2344 for (i = 1; i <= count; ++i, ++epfile) { 2345 epfile->ffs = ffs; 2346 mutex_init(&epfile->mutex); 2347 mutex_init(&epfile->dmabufs_mutex); 2348 INIT_LIST_HEAD(&epfile->dmabufs); 2349 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2350 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2351 else 2352 sprintf(epfile->name, "ep%u", i); 2353 err = ffs_sb_create_file(ffs->sb, epfile->name, 2354 epfile, &ffs_epfile_operations); 2355 if (err) { 2356 ffs_epfiles_destroy(ffs->sb, epfiles, i - 1); 2357 return err; 2358 } 2359 } 2360 2361 ffs->epfiles = epfiles; 2362 return 0; 2363} 2364 2365static void clear_one(struct dentry *dentry) 2366{ 2367 smp_store_release(&dentry->d_inode->i_private, NULL); 2368} 2369 2370static void ffs_epfiles_destroy(struct super_block *sb, 2371 struct ffs_epfile *epfiles, unsigned count) 2372{ 2373 struct ffs_epfile *epfile = epfiles; 2374 struct dentry *root = sb->s_root; 2375 2376 for (; count; --count, ++epfile) { 2377 BUG_ON(mutex_is_locked(&epfile->mutex)); 2378 simple_remove_by_name(root, epfile->name, clear_one); 2379 } 2380 2381 kfree(epfiles); 2382} 2383 2384static void ffs_func_eps_disable(struct ffs_function *func) 2385{ 2386 struct ffs_ep *ep; 2387 struct ffs_epfile *epfile; 2388 unsigned short count; 2389 unsigned long flags; 2390 2391 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2392 count = func->ffs->eps_count; 2393 epfile = func->ffs->epfiles; 2394 ep = func->eps; 2395 while (count--) { 2396 /* pending requests get nuked */ 2397 if (ep->ep) 2398 usb_ep_disable(ep->ep); 2399 ++ep; 2400 2401 if (epfile) { 2402 epfile->ep = NULL; 2403 __ffs_epfile_read_buffer_free(epfile); 2404 ++epfile; 2405 } 2406 } 2407 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2408} 2409 2410static int ffs_func_eps_enable(struct ffs_function *func) 2411{ 2412 struct ffs_data *ffs; 2413 struct ffs_ep *ep; 2414 struct ffs_epfile *epfile; 2415 unsigned short count; 2416 unsigned long flags; 2417 int ret = 0; 2418 2419 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2420 ffs = func->ffs; 2421 ep = func->eps; 2422 epfile = ffs->epfiles; 2423 count = ffs->eps_count; 2424 if (!epfile) { 2425 ret = -ENOMEM; 2426 goto done; 2427 } 2428 2429 while (count--) { 2430 ep->ep->driver_data = ep; 2431 2432 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2433 if (ret) { 2434 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2435 __func__, ep->ep->name, ret); 2436 break; 2437 } 2438 2439 ret = usb_ep_enable(ep->ep); 2440 if (!ret) { 2441 epfile->ep = ep; 2442 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2443 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2444 } else { 2445 break; 2446 } 2447 2448 ++ep; 2449 ++epfile; 2450 } 2451 2452 wake_up_interruptible(&ffs->wait); 2453done: 2454 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2455 2456 return ret; 2457} 2458 2459 2460/* Parsing and building descriptors and strings *****************************/ 2461 2462/* 2463 * This validates if data pointed by data is a valid USB descriptor as 2464 * well as record how many interfaces, endpoints and strings are 2465 * required by given configuration. Returns address after the 2466 * descriptor or NULL if data is invalid. 2467 */ 2468 2469enum ffs_entity_type { 2470 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2471}; 2472 2473enum ffs_os_desc_type { 2474 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2475}; 2476 2477typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2478 u8 *valuep, 2479 struct usb_descriptor_header *desc, 2480 void *priv); 2481 2482typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2483 struct usb_os_desc_header *h, void *data, 2484 unsigned len, void *priv); 2485 2486static int __must_check ffs_do_single_desc(char *data, unsigned len, 2487 ffs_entity_callback entity, 2488 void *priv, int *current_class, int *current_subclass) 2489{ 2490 struct usb_descriptor_header *_ds = (void *)data; 2491 u8 length; 2492 int ret; 2493 2494 /* At least two bytes are required: length and type */ 2495 if (len < 2) { 2496 pr_vdebug("descriptor too short\n"); 2497 return -EINVAL; 2498 } 2499 2500 /* If we have at least as many bytes as the descriptor takes? */ 2501 length = _ds->bLength; 2502 if (len < length) { 2503 pr_vdebug("descriptor longer then available data\n"); 2504 return -EINVAL; 2505 } 2506 2507#define __entity_check_INTERFACE(val) 1 2508#define __entity_check_STRING(val) (val) 2509#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2510#define __entity(type, val) do { \ 2511 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2512 if (!__entity_check_ ##type(val)) { \ 2513 pr_vdebug("invalid entity's value\n"); \ 2514 return -EINVAL; \ 2515 } \ 2516 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2517 if (ret < 0) { \ 2518 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2519 (val), ret); \ 2520 return ret; \ 2521 } \ 2522 } while (0) 2523 2524 /* Parse descriptor depending on type. */ 2525 switch (_ds->bDescriptorType) { 2526 case USB_DT_DEVICE: 2527 case USB_DT_CONFIG: 2528 case USB_DT_STRING: 2529 case USB_DT_DEVICE_QUALIFIER: 2530 /* function can't have any of those */ 2531 pr_vdebug("descriptor reserved for gadget: %d\n", 2532 _ds->bDescriptorType); 2533 return -EINVAL; 2534 2535 case USB_DT_INTERFACE: { 2536 struct usb_interface_descriptor *ds = (void *)_ds; 2537 pr_vdebug("interface descriptor\n"); 2538 if (length != sizeof *ds) 2539 goto inv_length; 2540 2541 __entity(INTERFACE, ds->bInterfaceNumber); 2542 if (ds->iInterface) 2543 __entity(STRING, ds->iInterface); 2544 *current_class = ds->bInterfaceClass; 2545 *current_subclass = ds->bInterfaceSubClass; 2546 } 2547 break; 2548 2549 case USB_DT_ENDPOINT: { 2550 struct usb_endpoint_descriptor *ds = (void *)_ds; 2551 pr_vdebug("endpoint descriptor\n"); 2552 if (length != USB_DT_ENDPOINT_SIZE && 2553 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2554 goto inv_length; 2555 __entity(ENDPOINT, ds->bEndpointAddress); 2556 } 2557 break; 2558 2559 case USB_TYPE_CLASS | 0x01: 2560 if (*current_class == USB_INTERFACE_CLASS_HID) { 2561 pr_vdebug("hid descriptor\n"); 2562 if (length != sizeof(struct hid_descriptor)) 2563 goto inv_length; 2564 break; 2565 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2566 pr_vdebug("ccid descriptor\n"); 2567 if (length != sizeof(struct ccid_descriptor)) 2568 goto inv_length; 2569 break; 2570 } else if (*current_class == USB_CLASS_APP_SPEC && 2571 *current_subclass == USB_SUBCLASS_DFU) { 2572 pr_vdebug("dfu functional descriptor\n"); 2573 if (length != sizeof(struct usb_dfu_functional_descriptor)) 2574 goto inv_length; 2575 break; 2576 } else { 2577 pr_vdebug("unknown descriptor: %d for class %d\n", 2578 _ds->bDescriptorType, *current_class); 2579 return -EINVAL; 2580 } 2581 2582 case USB_DT_OTG: 2583 if (length != sizeof(struct usb_otg_descriptor)) 2584 goto inv_length; 2585 break; 2586 2587 case USB_DT_INTERFACE_ASSOCIATION: { 2588 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2589 pr_vdebug("interface association descriptor\n"); 2590 if (length != sizeof *ds) 2591 goto inv_length; 2592 if (ds->iFunction) 2593 __entity(STRING, ds->iFunction); 2594 } 2595 break; 2596 2597 case USB_DT_SS_ENDPOINT_COMP: 2598 pr_vdebug("EP SS companion descriptor\n"); 2599 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2600 goto inv_length; 2601 break; 2602 2603 case USB_DT_OTHER_SPEED_CONFIG: 2604 case USB_DT_INTERFACE_POWER: 2605 case USB_DT_DEBUG: 2606 case USB_DT_SECURITY: 2607 case USB_DT_CS_RADIO_CONTROL: 2608 /* TODO */ 2609 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2610 return -EINVAL; 2611 2612 default: 2613 /* We should never be here */ 2614 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2615 return -EINVAL; 2616 2617inv_length: 2618 pr_vdebug("invalid length: %d (descriptor %d)\n", 2619 _ds->bLength, _ds->bDescriptorType); 2620 return -EINVAL; 2621 } 2622 2623#undef __entity 2624#undef __entity_check_DESCRIPTOR 2625#undef __entity_check_INTERFACE 2626#undef __entity_check_STRING 2627#undef __entity_check_ENDPOINT 2628 2629 return length; 2630} 2631 2632static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2633 ffs_entity_callback entity, void *priv) 2634{ 2635 const unsigned _len = len; 2636 unsigned long num = 0; 2637 int current_class = -1; 2638 int current_subclass = -1; 2639 2640 for (;;) { 2641 int ret; 2642 2643 if (num == count) 2644 data = NULL; 2645 2646 /* Record "descriptor" entity */ 2647 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2648 if (ret < 0) { 2649 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2650 num, ret); 2651 return ret; 2652 } 2653 2654 if (!data) 2655 return _len - len; 2656 2657 ret = ffs_do_single_desc(data, len, entity, priv, 2658 &current_class, &current_subclass); 2659 if (ret < 0) { 2660 pr_debug("%s returns %d\n", __func__, ret); 2661 return ret; 2662 } 2663 2664 len -= ret; 2665 data += ret; 2666 ++num; 2667 } 2668} 2669 2670static int __ffs_data_do_entity(enum ffs_entity_type type, 2671 u8 *valuep, struct usb_descriptor_header *desc, 2672 void *priv) 2673{ 2674 struct ffs_desc_helper *helper = priv; 2675 struct usb_endpoint_descriptor *d; 2676 2677 switch (type) { 2678 case FFS_DESCRIPTOR: 2679 break; 2680 2681 case FFS_INTERFACE: 2682 /* 2683 * Interfaces are indexed from zero so if we 2684 * encountered interface "n" then there are at least 2685 * "n+1" interfaces. 2686 */ 2687 if (*valuep >= helper->interfaces_count) 2688 helper->interfaces_count = *valuep + 1; 2689 break; 2690 2691 case FFS_STRING: 2692 /* 2693 * Strings are indexed from 1 (0 is reserved 2694 * for languages list) 2695 */ 2696 if (*valuep > helper->ffs->strings_count) 2697 helper->ffs->strings_count = *valuep; 2698 break; 2699 2700 case FFS_ENDPOINT: 2701 d = (void *)desc; 2702 helper->eps_count++; 2703 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2704 return -EINVAL; 2705 /* Check if descriptors for any speed were already parsed */ 2706 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2707 helper->ffs->eps_addrmap[helper->eps_count] = 2708 d->bEndpointAddress; 2709 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2710 d->bEndpointAddress) 2711 return -EINVAL; 2712 break; 2713 } 2714 2715 return 0; 2716} 2717 2718static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2719 struct usb_os_desc_header *desc) 2720{ 2721 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2722 u16 w_index = le16_to_cpu(desc->wIndex); 2723 2724 if (bcd_version == 0x1) { 2725 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2726 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2727 } else if (bcd_version != 0x100) { 2728 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2729 bcd_version); 2730 return -EINVAL; 2731 } 2732 switch (w_index) { 2733 case 0x4: 2734 *next_type = FFS_OS_DESC_EXT_COMPAT; 2735 break; 2736 case 0x5: 2737 *next_type = FFS_OS_DESC_EXT_PROP; 2738 break; 2739 default: 2740 pr_vdebug("unsupported os descriptor type: %d", w_index); 2741 return -EINVAL; 2742 } 2743 2744 return sizeof(*desc); 2745} 2746 2747/* 2748 * Process all extended compatibility/extended property descriptors 2749 * of a feature descriptor 2750 */ 2751static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2752 enum ffs_os_desc_type type, 2753 u16 feature_count, 2754 ffs_os_desc_callback entity, 2755 void *priv, 2756 struct usb_os_desc_header *h) 2757{ 2758 int ret; 2759 const unsigned _len = len; 2760 2761 /* loop over all ext compat/ext prop descriptors */ 2762 while (feature_count--) { 2763 ret = entity(type, h, data, len, priv); 2764 if (ret < 0) { 2765 pr_debug("bad OS descriptor, type: %d\n", type); 2766 return ret; 2767 } 2768 data += ret; 2769 len -= ret; 2770 } 2771 return _len - len; 2772} 2773 2774/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2775static int __must_check ffs_do_os_descs(unsigned count, 2776 char *data, unsigned len, 2777 ffs_os_desc_callback entity, void *priv) 2778{ 2779 const unsigned _len = len; 2780 unsigned long num = 0; 2781 2782 for (num = 0; num < count; ++num) { 2783 int ret; 2784 enum ffs_os_desc_type type; 2785 u16 feature_count; 2786 struct usb_os_desc_header *desc = (void *)data; 2787 2788 if (len < sizeof(*desc)) 2789 return -EINVAL; 2790 2791 /* 2792 * Record "descriptor" entity. 2793 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2794 * Move the data pointer to the beginning of extended 2795 * compatibilities proper or extended properties proper 2796 * portions of the data 2797 */ 2798 if (le32_to_cpu(desc->dwLength) > len) 2799 return -EINVAL; 2800 2801 ret = __ffs_do_os_desc_header(&type, desc); 2802 if (ret < 0) { 2803 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2804 num, ret); 2805 return ret; 2806 } 2807 /* 2808 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2809 */ 2810 feature_count = le16_to_cpu(desc->wCount); 2811 if (type == FFS_OS_DESC_EXT_COMPAT && 2812 (feature_count > 255 || desc->Reserved)) 2813 return -EINVAL; 2814 len -= ret; 2815 data += ret; 2816 2817 /* 2818 * Process all function/property descriptors 2819 * of this Feature Descriptor 2820 */ 2821 ret = ffs_do_single_os_desc(data, len, type, 2822 feature_count, entity, priv, desc); 2823 if (ret < 0) { 2824 pr_debug("%s returns %d\n", __func__, ret); 2825 return ret; 2826 } 2827 2828 len -= ret; 2829 data += ret; 2830 } 2831 return _len - len; 2832} 2833 2834/* 2835 * Validate contents of the buffer from userspace related to OS descriptors. 2836 */ 2837static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2838 struct usb_os_desc_header *h, void *data, 2839 unsigned len, void *priv) 2840{ 2841 struct ffs_data *ffs = priv; 2842 u8 length; 2843 2844 switch (type) { 2845 case FFS_OS_DESC_EXT_COMPAT: { 2846 struct usb_ext_compat_desc *d = data; 2847 int i; 2848 2849 if (len < sizeof(*d) || 2850 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2851 return -EINVAL; 2852 if (d->Reserved1 != 1) { 2853 /* 2854 * According to the spec, Reserved1 must be set to 1 2855 * but older kernels incorrectly rejected non-zero 2856 * values. We fix it here to avoid returning EINVAL 2857 * in response to values we used to accept. 2858 */ 2859 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2860 d->Reserved1 = 1; 2861 } 2862 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2863 if (d->Reserved2[i]) 2864 return -EINVAL; 2865 2866 length = sizeof(struct usb_ext_compat_desc); 2867 } 2868 break; 2869 case FFS_OS_DESC_EXT_PROP: { 2870 struct usb_ext_prop_desc *d = data; 2871 u32 type, pdl; 2872 u16 pnl; 2873 2874 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2875 return -EINVAL; 2876 length = le32_to_cpu(d->dwSize); 2877 if (len < length) 2878 return -EINVAL; 2879 type = le32_to_cpu(d->dwPropertyDataType); 2880 if (type < USB_EXT_PROP_UNICODE || 2881 type > USB_EXT_PROP_UNICODE_MULTI) { 2882 pr_vdebug("unsupported os descriptor property type: %d", 2883 type); 2884 return -EINVAL; 2885 } 2886 pnl = le16_to_cpu(d->wPropertyNameLength); 2887 if (length < 14 + pnl) { 2888 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2889 length, pnl, type); 2890 return -EINVAL; 2891 } 2892 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2893 if (length != 14 + pnl + pdl) { 2894 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2895 length, pnl, pdl, type); 2896 return -EINVAL; 2897 } 2898 ++ffs->ms_os_descs_ext_prop_count; 2899 /* property name reported to the host as "WCHAR"s */ 2900 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2901 ffs->ms_os_descs_ext_prop_data_len += pdl; 2902 } 2903 break; 2904 default: 2905 pr_vdebug("unknown descriptor: %d\n", type); 2906 return -EINVAL; 2907 } 2908 return length; 2909} 2910 2911static int __ffs_data_got_descs(struct ffs_data *ffs, 2912 char *const _data, size_t len) 2913{ 2914 char *data = _data, *raw_descs; 2915 unsigned os_descs_count = 0, counts[3], flags; 2916 int ret = -EINVAL, i; 2917 struct ffs_desc_helper helper; 2918 2919 if (get_unaligned_le32(data + 4) != len) 2920 goto error; 2921 2922 switch (get_unaligned_le32(data)) { 2923 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2924 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2925 data += 8; 2926 len -= 8; 2927 break; 2928 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2929 flags = get_unaligned_le32(data + 8); 2930 ffs->user_flags = flags; 2931 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2932 FUNCTIONFS_HAS_HS_DESC | 2933 FUNCTIONFS_HAS_SS_DESC | 2934 FUNCTIONFS_HAS_MS_OS_DESC | 2935 FUNCTIONFS_VIRTUAL_ADDR | 2936 FUNCTIONFS_EVENTFD | 2937 FUNCTIONFS_ALL_CTRL_RECIP | 2938 FUNCTIONFS_CONFIG0_SETUP)) { 2939 ret = -ENOSYS; 2940 goto error; 2941 } 2942 data += 12; 2943 len -= 12; 2944 break; 2945 default: 2946 goto error; 2947 } 2948 2949 if (flags & FUNCTIONFS_EVENTFD) { 2950 if (len < 4) 2951 goto error; 2952 ffs->ffs_eventfd = 2953 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2954 if (IS_ERR(ffs->ffs_eventfd)) { 2955 ret = PTR_ERR(ffs->ffs_eventfd); 2956 ffs->ffs_eventfd = NULL; 2957 goto error; 2958 } 2959 data += 4; 2960 len -= 4; 2961 } 2962 2963 /* Read fs_count, hs_count and ss_count (if present) */ 2964 for (i = 0; i < 3; ++i) { 2965 if (!(flags & (1 << i))) { 2966 counts[i] = 0; 2967 } else if (len < 4) { 2968 goto error; 2969 } else { 2970 counts[i] = get_unaligned_le32(data); 2971 data += 4; 2972 len -= 4; 2973 } 2974 } 2975 if (flags & (1 << i)) { 2976 if (len < 4) { 2977 goto error; 2978 } 2979 os_descs_count = get_unaligned_le32(data); 2980 data += 4; 2981 len -= 4; 2982 } 2983 2984 /* Read descriptors */ 2985 raw_descs = data; 2986 helper.ffs = ffs; 2987 for (i = 0; i < 3; ++i) { 2988 if (!counts[i]) 2989 continue; 2990 helper.interfaces_count = 0; 2991 helper.eps_count = 0; 2992 ret = ffs_do_descs(counts[i], data, len, 2993 __ffs_data_do_entity, &helper); 2994 if (ret < 0) 2995 goto error; 2996 if (!ffs->eps_count && !ffs->interfaces_count) { 2997 ffs->eps_count = helper.eps_count; 2998 ffs->interfaces_count = helper.interfaces_count; 2999 } else { 3000 if (ffs->eps_count != helper.eps_count) { 3001 ret = -EINVAL; 3002 goto error; 3003 } 3004 if (ffs->interfaces_count != helper.interfaces_count) { 3005 ret = -EINVAL; 3006 goto error; 3007 } 3008 } 3009 data += ret; 3010 len -= ret; 3011 } 3012 if (os_descs_count) { 3013 ret = ffs_do_os_descs(os_descs_count, data, len, 3014 __ffs_data_do_os_desc, ffs); 3015 if (ret < 0) 3016 goto error; 3017 data += ret; 3018 len -= ret; 3019 } 3020 3021 if (raw_descs == data || len) { 3022 ret = -EINVAL; 3023 goto error; 3024 } 3025 3026 ffs->raw_descs_data = _data; 3027 ffs->raw_descs = raw_descs; 3028 ffs->raw_descs_length = data - raw_descs; 3029 ffs->fs_descs_count = counts[0]; 3030 ffs->hs_descs_count = counts[1]; 3031 ffs->ss_descs_count = counts[2]; 3032 ffs->ms_os_descs_count = os_descs_count; 3033 3034 return 0; 3035 3036error: 3037 kfree(_data); 3038 return ret; 3039} 3040 3041static int __ffs_data_got_strings(struct ffs_data *ffs, 3042 char *const _data, size_t len) 3043{ 3044 u32 str_count, needed_count, lang_count; 3045 struct usb_gadget_strings **stringtabs, *t; 3046 const char *data = _data; 3047 struct usb_string *s; 3048 3049 if (len < 16 || 3050 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3051 get_unaligned_le32(data + 4) != len) 3052 goto error; 3053 str_count = get_unaligned_le32(data + 8); 3054 lang_count = get_unaligned_le32(data + 12); 3055 3056 /* if one is zero the other must be zero */ 3057 if (!str_count != !lang_count) 3058 goto error; 3059 3060 /* Do we have at least as many strings as descriptors need? */ 3061 needed_count = ffs->strings_count; 3062 if (str_count < needed_count) 3063 goto error; 3064 3065 /* 3066 * If we don't need any strings just return and free all 3067 * memory. 3068 */ 3069 if (!needed_count) { 3070 kfree(_data); 3071 return 0; 3072 } 3073 3074 /* Allocate everything in one chunk so there's less maintenance. */ 3075 { 3076 unsigned i = 0; 3077 vla_group(d); 3078 vla_item(d, struct usb_gadget_strings *, stringtabs, 3079 size_add(lang_count, 1)); 3080 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3081 vla_item(d, struct usb_string, strings, 3082 size_mul(lang_count, (needed_count + 1))); 3083 3084 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3085 3086 if (!vlabuf) { 3087 kfree(_data); 3088 return -ENOMEM; 3089 } 3090 3091 /* Initialize the VLA pointers */ 3092 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3093 t = vla_ptr(vlabuf, d, stringtab); 3094 i = lang_count; 3095 do { 3096 *stringtabs++ = t++; 3097 } while (--i); 3098 *stringtabs = NULL; 3099 3100 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3101 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3102 t = vla_ptr(vlabuf, d, stringtab); 3103 s = vla_ptr(vlabuf, d, strings); 3104 } 3105 3106 /* For each language */ 3107 data += 16; 3108 len -= 16; 3109 3110 do { /* lang_count > 0 so we can use do-while */ 3111 unsigned needed = needed_count; 3112 u32 str_per_lang = str_count; 3113 3114 if (len < 3) 3115 goto error_free; 3116 t->language = get_unaligned_le16(data); 3117 t->strings = s; 3118 ++t; 3119 3120 data += 2; 3121 len -= 2; 3122 3123 /* For each string */ 3124 do { /* str_count > 0 so we can use do-while */ 3125 size_t length = strnlen(data, len); 3126 3127 if (length == len) 3128 goto error_free; 3129 3130 /* 3131 * User may provide more strings then we need, 3132 * if that's the case we simply ignore the 3133 * rest 3134 */ 3135 if (needed) { 3136 /* 3137 * s->id will be set while adding 3138 * function to configuration so for 3139 * now just leave garbage here. 3140 */ 3141 s->s = data; 3142 --needed; 3143 ++s; 3144 } 3145 3146 data += length + 1; 3147 len -= length + 1; 3148 } while (--str_per_lang); 3149 3150 s->id = 0; /* terminator */ 3151 s->s = NULL; 3152 ++s; 3153 3154 } while (--lang_count); 3155 3156 /* Some garbage left? */ 3157 if (len) 3158 goto error_free; 3159 3160 /* Done! */ 3161 ffs->stringtabs = stringtabs; 3162 ffs->raw_strings = _data; 3163 3164 return 0; 3165 3166error_free: 3167 kfree(stringtabs); 3168error: 3169 kfree(_data); 3170 return -EINVAL; 3171} 3172 3173 3174/* Events handling and management *******************************************/ 3175 3176static void __ffs_event_add(struct ffs_data *ffs, 3177 enum usb_functionfs_event_type type) 3178{ 3179 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3180 int neg = 0; 3181 3182 /* 3183 * Abort any unhandled setup 3184 * 3185 * We do not need to worry about some cmpxchg() changing value 3186 * of ffs->setup_state without holding the lock because when 3187 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3188 * the source does nothing. 3189 */ 3190 if (ffs->setup_state == FFS_SETUP_PENDING) 3191 ffs->setup_state = FFS_SETUP_CANCELLED; 3192 3193 /* 3194 * Logic of this function guarantees that there are at most four pending 3195 * evens on ffs->ev.types queue. This is important because the queue 3196 * has space for four elements only and __ffs_ep0_read_events function 3197 * depends on that limit as well. If more event types are added, those 3198 * limits have to be revisited or guaranteed to still hold. 3199 */ 3200 switch (type) { 3201 case FUNCTIONFS_RESUME: 3202 rem_type2 = FUNCTIONFS_SUSPEND; 3203 fallthrough; 3204 case FUNCTIONFS_SUSPEND: 3205 case FUNCTIONFS_SETUP: 3206 rem_type1 = type; 3207 /* Discard all similar events */ 3208 break; 3209 3210 case FUNCTIONFS_BIND: 3211 case FUNCTIONFS_UNBIND: 3212 case FUNCTIONFS_DISABLE: 3213 case FUNCTIONFS_ENABLE: 3214 /* Discard everything other then power management. */ 3215 rem_type1 = FUNCTIONFS_SUSPEND; 3216 rem_type2 = FUNCTIONFS_RESUME; 3217 neg = 1; 3218 break; 3219 3220 default: 3221 WARN(1, "%d: unknown event, this should not happen\n", type); 3222 return; 3223 } 3224 3225 { 3226 u8 *ev = ffs->ev.types, *out = ev; 3227 unsigned n = ffs->ev.count; 3228 for (; n; --n, ++ev) 3229 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3230 *out++ = *ev; 3231 else 3232 pr_vdebug("purging event %d\n", *ev); 3233 ffs->ev.count = out - ffs->ev.types; 3234 } 3235 3236 pr_vdebug("adding event %d\n", type); 3237 ffs->ev.types[ffs->ev.count++] = type; 3238 wake_up_locked(&ffs->ev.waitq); 3239 if (ffs->ffs_eventfd) 3240 eventfd_signal(ffs->ffs_eventfd); 3241} 3242 3243static void ffs_event_add(struct ffs_data *ffs, 3244 enum usb_functionfs_event_type type) 3245{ 3246 unsigned long flags; 3247 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3248 __ffs_event_add(ffs, type); 3249 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3250} 3251 3252/* Bind/unbind USB function hooks *******************************************/ 3253 3254static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3255{ 3256 int i; 3257 3258 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3259 if (ffs->eps_addrmap[i] == endpoint_address) 3260 return i; 3261 return -ENOENT; 3262} 3263 3264static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3265 struct usb_descriptor_header *desc, 3266 void *priv) 3267{ 3268 struct usb_endpoint_descriptor *ds = (void *)desc; 3269 struct ffs_function *func = priv; 3270 struct ffs_ep *ffs_ep; 3271 unsigned ep_desc_id; 3272 int idx; 3273 static const char *speed_names[] = { "full", "high", "super" }; 3274 3275 if (type != FFS_DESCRIPTOR) 3276 return 0; 3277 3278 /* 3279 * If ss_descriptors is not NULL, we are reading super speed 3280 * descriptors; if hs_descriptors is not NULL, we are reading high 3281 * speed descriptors; otherwise, we are reading full speed 3282 * descriptors. 3283 */ 3284 if (func->function.ss_descriptors) { 3285 ep_desc_id = 2; 3286 func->function.ss_descriptors[(long)valuep] = desc; 3287 } else if (func->function.hs_descriptors) { 3288 ep_desc_id = 1; 3289 func->function.hs_descriptors[(long)valuep] = desc; 3290 } else { 3291 ep_desc_id = 0; 3292 func->function.fs_descriptors[(long)valuep] = desc; 3293 } 3294 3295 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3296 return 0; 3297 3298 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3299 if (idx < 0) 3300 return idx; 3301 3302 ffs_ep = func->eps + idx; 3303 3304 if (ffs_ep->descs[ep_desc_id]) { 3305 pr_err("two %sspeed descriptors for EP %d\n", 3306 speed_names[ep_desc_id], 3307 usb_endpoint_num(ds)); 3308 return -EINVAL; 3309 } 3310 ffs_ep->descs[ep_desc_id] = ds; 3311 3312 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3313 if (ffs_ep->ep) { 3314 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3315 if (!ds->wMaxPacketSize) 3316 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3317 } else { 3318 struct usb_request *req; 3319 struct usb_ep *ep; 3320 u8 bEndpointAddress; 3321 u16 wMaxPacketSize; 3322 3323 /* 3324 * We back up bEndpointAddress because autoconfig overwrites 3325 * it with physical endpoint address. 3326 */ 3327 bEndpointAddress = ds->bEndpointAddress; 3328 /* 3329 * We back up wMaxPacketSize because autoconfig treats 3330 * endpoint descriptors as if they were full speed. 3331 */ 3332 wMaxPacketSize = ds->wMaxPacketSize; 3333 pr_vdebug("autoconfig\n"); 3334 ep = usb_ep_autoconfig(func->gadget, ds); 3335 if (!ep) 3336 return -ENOTSUPP; 3337 ep->driver_data = func->eps + idx; 3338 3339 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3340 if (!req) 3341 return -ENOMEM; 3342 3343 ffs_ep->ep = ep; 3344 ffs_ep->req = req; 3345 func->eps_revmap[ds->bEndpointAddress & 3346 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3347 /* 3348 * If we use virtual address mapping, we restore 3349 * original bEndpointAddress value. 3350 */ 3351 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3352 ds->bEndpointAddress = bEndpointAddress; 3353 /* 3354 * Restore wMaxPacketSize which was potentially 3355 * overwritten by autoconfig. 3356 */ 3357 ds->wMaxPacketSize = wMaxPacketSize; 3358 } 3359 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3360 3361 return 0; 3362} 3363 3364static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3365 struct usb_descriptor_header *desc, 3366 void *priv) 3367{ 3368 struct ffs_function *func = priv; 3369 unsigned idx; 3370 u8 newValue; 3371 3372 switch (type) { 3373 default: 3374 case FFS_DESCRIPTOR: 3375 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3376 return 0; 3377 3378 case FFS_INTERFACE: 3379 idx = *valuep; 3380 if (func->interfaces_nums[idx] < 0) { 3381 int id = usb_interface_id(func->conf, &func->function); 3382 if (id < 0) 3383 return id; 3384 func->interfaces_nums[idx] = id; 3385 } 3386 newValue = func->interfaces_nums[idx]; 3387 break; 3388 3389 case FFS_STRING: 3390 /* String' IDs are allocated when fsf_data is bound to cdev */ 3391 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3392 break; 3393 3394 case FFS_ENDPOINT: 3395 /* 3396 * USB_DT_ENDPOINT are handled in 3397 * __ffs_func_bind_do_descs(). 3398 */ 3399 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3400 return 0; 3401 3402 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3403 if (!func->eps[idx].ep) 3404 return -EINVAL; 3405 3406 { 3407 struct usb_endpoint_descriptor **descs; 3408 descs = func->eps[idx].descs; 3409 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3410 } 3411 break; 3412 } 3413 3414 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3415 *valuep = newValue; 3416 return 0; 3417} 3418 3419static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3420 struct usb_os_desc_header *h, void *data, 3421 unsigned len, void *priv) 3422{ 3423 struct ffs_function *func = priv; 3424 u8 length = 0; 3425 3426 switch (type) { 3427 case FFS_OS_DESC_EXT_COMPAT: { 3428 struct usb_ext_compat_desc *desc = data; 3429 struct usb_os_desc_table *t; 3430 3431 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3432 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3433 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3434 sizeof_field(struct usb_ext_compat_desc, IDs)); 3435 length = sizeof(*desc); 3436 } 3437 break; 3438 case FFS_OS_DESC_EXT_PROP: { 3439 struct usb_ext_prop_desc *desc = data; 3440 struct usb_os_desc_table *t; 3441 struct usb_os_desc_ext_prop *ext_prop; 3442 char *ext_prop_name; 3443 char *ext_prop_data; 3444 3445 t = &func->function.os_desc_table[h->interface]; 3446 t->if_id = func->interfaces_nums[h->interface]; 3447 3448 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3449 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3450 3451 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3452 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3453 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3454 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3455 length = ext_prop->name_len + ext_prop->data_len + 14; 3456 3457 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3458 func->ffs->ms_os_descs_ext_prop_name_avail += 3459 ext_prop->name_len; 3460 3461 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3462 func->ffs->ms_os_descs_ext_prop_data_avail += 3463 ext_prop->data_len; 3464 memcpy(ext_prop_data, 3465 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3466 ext_prop->data_len); 3467 /* unicode data reported to the host as "WCHAR"s */ 3468 switch (ext_prop->type) { 3469 case USB_EXT_PROP_UNICODE: 3470 case USB_EXT_PROP_UNICODE_ENV: 3471 case USB_EXT_PROP_UNICODE_LINK: 3472 case USB_EXT_PROP_UNICODE_MULTI: 3473 ext_prop->data_len *= 2; 3474 break; 3475 } 3476 ext_prop->data = ext_prop_data; 3477 3478 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3479 ext_prop->name_len); 3480 /* property name reported to the host as "WCHAR"s */ 3481 ext_prop->name_len *= 2; 3482 ext_prop->name = ext_prop_name; 3483 3484 t->os_desc->ext_prop_len += 3485 ext_prop->name_len + ext_prop->data_len + 14; 3486 ++t->os_desc->ext_prop_count; 3487 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3488 } 3489 break; 3490 default: 3491 pr_vdebug("unknown descriptor: %d\n", type); 3492 } 3493 3494 return length; 3495} 3496 3497static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3498 struct usb_configuration *c) 3499{ 3500 struct ffs_function *func = ffs_func_from_usb(f); 3501 struct f_fs_opts *ffs_opts = 3502 container_of(f->fi, struct f_fs_opts, func_inst); 3503 struct ffs_data *ffs_data; 3504 int ret; 3505 3506 /* 3507 * Legacy gadget triggers binding in functionfs_ready_callback, 3508 * which already uses locking; taking the same lock here would 3509 * cause a deadlock. 3510 * 3511 * Configfs-enabled gadgets however do need ffs_dev_lock. 3512 */ 3513 if (!ffs_opts->no_configfs) 3514 ffs_dev_lock(); 3515 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3516 ffs_data = ffs_opts->dev->ffs_data; 3517 if (!ffs_opts->no_configfs) 3518 ffs_dev_unlock(); 3519 if (ret) 3520 return ERR_PTR(ret); 3521 3522 func->ffs = ffs_data; 3523 func->conf = c; 3524 func->gadget = c->cdev->gadget; 3525 3526 /* 3527 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3528 * configurations are bound in sequence with list_for_each_entry, 3529 * in each configuration its functions are bound in sequence 3530 * with list_for_each_entry, so we assume no race condition 3531 * with regard to ffs_opts->bound access 3532 */ 3533 if (!ffs_opts->refcnt) { 3534 ret = functionfs_bind(func->ffs, c->cdev); 3535 if (ret) 3536 return ERR_PTR(ret); 3537 } 3538 ffs_opts->refcnt++; 3539 func->function.strings = func->ffs->stringtabs; 3540 3541 return ffs_opts; 3542} 3543 3544static int _ffs_func_bind(struct usb_configuration *c, 3545 struct usb_function *f) 3546{ 3547 struct ffs_function *func = ffs_func_from_usb(f); 3548 struct ffs_data *ffs = func->ffs; 3549 3550 const int full = !!func->ffs->fs_descs_count; 3551 const int high = !!func->ffs->hs_descs_count; 3552 const int super = !!func->ffs->ss_descs_count; 3553 3554 int fs_len, hs_len, ss_len, ret, i; 3555 struct ffs_ep *eps_ptr; 3556 3557 /* Make it a single chunk, less management later on */ 3558 vla_group(d); 3559 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3560 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3561 full ? ffs->fs_descs_count + 1 : 0); 3562 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3563 high ? ffs->hs_descs_count + 1 : 0); 3564 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3565 super ? ffs->ss_descs_count + 1 : 0); 3566 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3567 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3568 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3569 vla_item_with_sz(d, char[16], ext_compat, 3570 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3571 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3572 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3573 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3574 ffs->ms_os_descs_ext_prop_count); 3575 vla_item_with_sz(d, char, ext_prop_name, 3576 ffs->ms_os_descs_ext_prop_name_len); 3577 vla_item_with_sz(d, char, ext_prop_data, 3578 ffs->ms_os_descs_ext_prop_data_len); 3579 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3580 char *vlabuf; 3581 3582 /* Has descriptors only for speeds gadget does not support */ 3583 if (!(full | high | super)) 3584 return -ENOTSUPP; 3585 3586 /* Allocate a single chunk, less management later on */ 3587 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3588 if (!vlabuf) 3589 return -ENOMEM; 3590 3591 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3592 ffs->ms_os_descs_ext_prop_name_avail = 3593 vla_ptr(vlabuf, d, ext_prop_name); 3594 ffs->ms_os_descs_ext_prop_data_avail = 3595 vla_ptr(vlabuf, d, ext_prop_data); 3596 3597 /* Copy descriptors */ 3598 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3599 ffs->raw_descs_length); 3600 3601 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3602 eps_ptr = vla_ptr(vlabuf, d, eps); 3603 for (i = 0; i < ffs->eps_count; i++) 3604 eps_ptr[i].num = -1; 3605 3606 /* Save pointers 3607 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3608 */ 3609 func->eps = vla_ptr(vlabuf, d, eps); 3610 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3611 3612 /* 3613 * Go through all the endpoint descriptors and allocate 3614 * endpoints first, so that later we can rewrite the endpoint 3615 * numbers without worrying that it may be described later on. 3616 */ 3617 if (full) { 3618 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3619 fs_len = ffs_do_descs(ffs->fs_descs_count, 3620 vla_ptr(vlabuf, d, raw_descs), 3621 d_raw_descs__sz, 3622 __ffs_func_bind_do_descs, func); 3623 if (fs_len < 0) { 3624 ret = fs_len; 3625 goto error; 3626 } 3627 } else { 3628 fs_len = 0; 3629 } 3630 3631 if (high) { 3632 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3633 hs_len = ffs_do_descs(ffs->hs_descs_count, 3634 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3635 d_raw_descs__sz - fs_len, 3636 __ffs_func_bind_do_descs, func); 3637 if (hs_len < 0) { 3638 ret = hs_len; 3639 goto error; 3640 } 3641 } else { 3642 hs_len = 0; 3643 } 3644 3645 if (super) { 3646 func->function.ss_descriptors = func->function.ssp_descriptors = 3647 vla_ptr(vlabuf, d, ss_descs); 3648 ss_len = ffs_do_descs(ffs->ss_descs_count, 3649 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3650 d_raw_descs__sz - fs_len - hs_len, 3651 __ffs_func_bind_do_descs, func); 3652 if (ss_len < 0) { 3653 ret = ss_len; 3654 goto error; 3655 } 3656 } else { 3657 ss_len = 0; 3658 } 3659 3660 /* 3661 * Now handle interface numbers allocation and interface and 3662 * endpoint numbers rewriting. We can do that in one go 3663 * now. 3664 */ 3665 ret = ffs_do_descs(ffs->fs_descs_count + 3666 (high ? ffs->hs_descs_count : 0) + 3667 (super ? ffs->ss_descs_count : 0), 3668 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3669 __ffs_func_bind_do_nums, func); 3670 if (ret < 0) 3671 goto error; 3672 3673 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3674 if (c->cdev->use_os_string) { 3675 for (i = 0; i < ffs->interfaces_count; ++i) { 3676 struct usb_os_desc *desc; 3677 3678 desc = func->function.os_desc_table[i].os_desc = 3679 vla_ptr(vlabuf, d, os_desc) + 3680 i * sizeof(struct usb_os_desc); 3681 desc->ext_compat_id = 3682 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3683 INIT_LIST_HEAD(&desc->ext_prop); 3684 } 3685 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3686 vla_ptr(vlabuf, d, raw_descs) + 3687 fs_len + hs_len + ss_len, 3688 d_raw_descs__sz - fs_len - hs_len - 3689 ss_len, 3690 __ffs_func_bind_do_os_desc, func); 3691 if (ret < 0) 3692 goto error; 3693 } 3694 func->function.os_desc_n = 3695 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3696 3697 /* And we're done */ 3698 ffs_event_add(ffs, FUNCTIONFS_BIND); 3699 return 0; 3700 3701error: 3702 /* XXX Do we need to release all claimed endpoints here? */ 3703 return ret; 3704} 3705 3706static int ffs_func_bind(struct usb_configuration *c, 3707 struct usb_function *f) 3708{ 3709 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3710 struct ffs_function *func = ffs_func_from_usb(f); 3711 int ret; 3712 3713 if (IS_ERR(ffs_opts)) 3714 return PTR_ERR(ffs_opts); 3715 3716 ret = _ffs_func_bind(c, f); 3717 if (ret && !--ffs_opts->refcnt) 3718 functionfs_unbind(func->ffs); 3719 3720 return ret; 3721} 3722 3723 3724/* Other USB function hooks *************************************************/ 3725 3726static void ffs_reset_work(struct work_struct *work) 3727{ 3728 struct ffs_data *ffs = container_of(work, 3729 struct ffs_data, reset_work); 3730 ffs_data_reset(ffs); 3731} 3732 3733static int ffs_func_get_alt(struct usb_function *f, 3734 unsigned int interface) 3735{ 3736 struct ffs_function *func = ffs_func_from_usb(f); 3737 int intf = ffs_func_revmap_intf(func, interface); 3738 3739 return (intf < 0) ? intf : func->cur_alt[interface]; 3740} 3741 3742static int ffs_func_set_alt(struct usb_function *f, 3743 unsigned interface, unsigned alt) 3744{ 3745 struct ffs_function *func = ffs_func_from_usb(f); 3746 struct ffs_data *ffs = func->ffs; 3747 unsigned long flags; 3748 int ret = 0, intf; 3749 3750 if (alt > MAX_ALT_SETTINGS) 3751 return -EINVAL; 3752 3753 intf = ffs_func_revmap_intf(func, interface); 3754 if (intf < 0) 3755 return intf; 3756 3757 if (ffs->func) 3758 ffs_func_eps_disable(ffs->func); 3759 3760 spin_lock_irqsave(&ffs->eps_lock, flags); 3761 if (ffs->state == FFS_DEACTIVATED) { 3762 ffs->state = FFS_CLOSING; 3763 spin_unlock_irqrestore(&ffs->eps_lock, flags); 3764 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3765 schedule_work(&ffs->reset_work); 3766 return -ENODEV; 3767 } 3768 spin_unlock_irqrestore(&ffs->eps_lock, flags); 3769 3770 if (ffs->state != FFS_ACTIVE) 3771 return -ENODEV; 3772 3773 ffs->func = func; 3774 ret = ffs_func_eps_enable(func); 3775 if (ret >= 0) { 3776 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3777 func->cur_alt[interface] = alt; 3778 } 3779 return ret; 3780} 3781 3782static void ffs_func_disable(struct usb_function *f) 3783{ 3784 struct ffs_function *func = ffs_func_from_usb(f); 3785 struct ffs_data *ffs = func->ffs; 3786 unsigned long flags; 3787 3788 if (ffs->func) 3789 ffs_func_eps_disable(ffs->func); 3790 3791 spin_lock_irqsave(&ffs->eps_lock, flags); 3792 if (ffs->state == FFS_DEACTIVATED) { 3793 ffs->state = FFS_CLOSING; 3794 spin_unlock_irqrestore(&ffs->eps_lock, flags); 3795 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3796 schedule_work(&ffs->reset_work); 3797 return; 3798 } 3799 spin_unlock_irqrestore(&ffs->eps_lock, flags); 3800 3801 if (ffs->state == FFS_ACTIVE) { 3802 ffs->func = NULL; 3803 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3804 } 3805} 3806 3807static int ffs_func_setup(struct usb_function *f, 3808 const struct usb_ctrlrequest *creq) 3809{ 3810 struct ffs_function *func = ffs_func_from_usb(f); 3811 struct ffs_data *ffs = func->ffs; 3812 unsigned long flags; 3813 int ret; 3814 3815 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3816 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3817 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3818 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3819 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3820 3821 /* 3822 * Most requests directed to interface go through here 3823 * (notable exceptions are set/get interface) so we need to 3824 * handle them. All other either handled by composite or 3825 * passed to usb_configuration->setup() (if one is set). No 3826 * matter, we will handle requests directed to endpoint here 3827 * as well (as it's straightforward). Other request recipient 3828 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3829 * is being used. 3830 */ 3831 if (ffs->state != FFS_ACTIVE) 3832 return -ENODEV; 3833 3834 switch (creq->bRequestType & USB_RECIP_MASK) { 3835 case USB_RECIP_INTERFACE: 3836 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3837 if (ret < 0) 3838 return ret; 3839 break; 3840 3841 case USB_RECIP_ENDPOINT: 3842 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3843 if (ret < 0) 3844 return ret; 3845 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3846 ret = func->ffs->eps_addrmap[ret]; 3847 break; 3848 3849 default: 3850 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3851 ret = le16_to_cpu(creq->wIndex); 3852 else 3853 return -EOPNOTSUPP; 3854 } 3855 3856 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3857 ffs->ev.setup = *creq; 3858 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3859 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3860 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3861 3862 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3863} 3864 3865static bool ffs_func_req_match(struct usb_function *f, 3866 const struct usb_ctrlrequest *creq, 3867 bool config0) 3868{ 3869 struct ffs_function *func = ffs_func_from_usb(f); 3870 3871 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3872 return false; 3873 3874 switch (creq->bRequestType & USB_RECIP_MASK) { 3875 case USB_RECIP_INTERFACE: 3876 return (ffs_func_revmap_intf(func, 3877 le16_to_cpu(creq->wIndex)) >= 0); 3878 case USB_RECIP_ENDPOINT: 3879 return (ffs_func_revmap_ep(func, 3880 le16_to_cpu(creq->wIndex)) >= 0); 3881 default: 3882 return (bool) (func->ffs->user_flags & 3883 FUNCTIONFS_ALL_CTRL_RECIP); 3884 } 3885} 3886 3887static void ffs_func_suspend(struct usb_function *f) 3888{ 3889 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3890} 3891 3892static void ffs_func_resume(struct usb_function *f) 3893{ 3894 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3895} 3896 3897 3898/* Endpoint and interface numbers reverse mapping ***************************/ 3899 3900static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3901{ 3902 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3903 return num ? num : -EDOM; 3904} 3905 3906static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3907{ 3908 short *nums = func->interfaces_nums; 3909 unsigned count = func->ffs->interfaces_count; 3910 3911 for (; count; --count, ++nums) { 3912 if (*nums >= 0 && *nums == intf) 3913 return nums - func->interfaces_nums; 3914 } 3915 3916 return -EDOM; 3917} 3918 3919 3920/* Devices management *******************************************************/ 3921 3922static LIST_HEAD(ffs_devices); 3923 3924static struct ffs_dev *_ffs_do_find_dev(const char *name) 3925{ 3926 struct ffs_dev *dev; 3927 3928 if (!name) 3929 return NULL; 3930 3931 list_for_each_entry(dev, &ffs_devices, entry) { 3932 if (strcmp(dev->name, name) == 0) 3933 return dev; 3934 } 3935 3936 return NULL; 3937} 3938 3939/* 3940 * ffs_lock must be taken by the caller of this function 3941 */ 3942static struct ffs_dev *_ffs_get_single_dev(void) 3943{ 3944 struct ffs_dev *dev; 3945 3946 if (list_is_singular(&ffs_devices)) { 3947 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3948 if (dev->single) 3949 return dev; 3950 } 3951 3952 return NULL; 3953} 3954 3955/* 3956 * ffs_lock must be taken by the caller of this function 3957 */ 3958static struct ffs_dev *_ffs_find_dev(const char *name) 3959{ 3960 struct ffs_dev *dev; 3961 3962 dev = _ffs_get_single_dev(); 3963 if (dev) 3964 return dev; 3965 3966 return _ffs_do_find_dev(name); 3967} 3968 3969/* Configfs support *********************************************************/ 3970 3971static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3972{ 3973 return container_of(to_config_group(item), struct f_fs_opts, 3974 func_inst.group); 3975} 3976 3977static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3978{ 3979 struct f_fs_opts *opts = to_ffs_opts(item); 3980 int ready; 3981 3982 ffs_dev_lock(); 3983 ready = opts->dev->desc_ready; 3984 ffs_dev_unlock(); 3985 3986 return sprintf(page, "%d\n", ready); 3987} 3988 3989CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3990 3991static struct configfs_attribute *ffs_attrs[] = { 3992 &f_fs_opts_attr_ready, 3993 NULL, 3994}; 3995 3996static void ffs_attr_release(struct config_item *item) 3997{ 3998 struct f_fs_opts *opts = to_ffs_opts(item); 3999 4000 usb_put_function_instance(&opts->func_inst); 4001} 4002 4003static struct configfs_item_operations ffs_item_ops = { 4004 .release = ffs_attr_release, 4005}; 4006 4007static const struct config_item_type ffs_func_type = { 4008 .ct_item_ops = &ffs_item_ops, 4009 .ct_attrs = ffs_attrs, 4010 .ct_owner = THIS_MODULE, 4011}; 4012 4013 4014/* Function registration interface ******************************************/ 4015 4016static void ffs_free_inst(struct usb_function_instance *f) 4017{ 4018 struct f_fs_opts *opts; 4019 4020 opts = to_f_fs_opts(f); 4021 ffs_release_dev(opts->dev); 4022 ffs_dev_lock(); 4023 _ffs_free_dev(opts->dev); 4024 ffs_dev_unlock(); 4025 kfree(opts); 4026} 4027 4028static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 4029{ 4030 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 4031 return -ENAMETOOLONG; 4032 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 4033} 4034 4035static struct usb_function_instance *ffs_alloc_inst(void) 4036{ 4037 struct f_fs_opts *opts; 4038 struct ffs_dev *dev; 4039 4040 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 4041 if (!opts) 4042 return ERR_PTR(-ENOMEM); 4043 4044 opts->func_inst.set_inst_name = ffs_set_inst_name; 4045 opts->func_inst.free_func_inst = ffs_free_inst; 4046 ffs_dev_lock(); 4047 dev = _ffs_alloc_dev(); 4048 ffs_dev_unlock(); 4049 if (IS_ERR(dev)) { 4050 kfree(opts); 4051 return ERR_CAST(dev); 4052 } 4053 opts->dev = dev; 4054 dev->opts = opts; 4055 4056 config_group_init_type_name(&opts->func_inst.group, "", 4057 &ffs_func_type); 4058 return &opts->func_inst; 4059} 4060 4061static void ffs_free(struct usb_function *f) 4062{ 4063 kfree(ffs_func_from_usb(f)); 4064} 4065 4066static void ffs_func_unbind(struct usb_configuration *c, 4067 struct usb_function *f) 4068{ 4069 struct ffs_function *func = ffs_func_from_usb(f); 4070 struct ffs_data *ffs = func->ffs; 4071 struct f_fs_opts *opts = 4072 container_of(f->fi, struct f_fs_opts, func_inst); 4073 struct ffs_ep *ep = func->eps; 4074 unsigned count = ffs->eps_count; 4075 unsigned long flags; 4076 4077 if (ffs->func == func) { 4078 ffs_func_eps_disable(func); 4079 ffs->func = NULL; 4080 } 4081 4082 /* Drain any pending AIO completions */ 4083 drain_workqueue(ffs->io_completion_wq); 4084 4085 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4086 if (!--opts->refcnt) 4087 functionfs_unbind(ffs); 4088 4089 /* cleanup after autoconfig */ 4090 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4091 while (count--) { 4092 if (ep->ep && ep->req) 4093 usb_ep_free_request(ep->ep, ep->req); 4094 ep->req = NULL; 4095 ++ep; 4096 } 4097 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4098 kfree(func->eps); 4099 func->eps = NULL; 4100 /* 4101 * eps, descriptors and interfaces_nums are allocated in the 4102 * same chunk so only one free is required. 4103 */ 4104 func->function.fs_descriptors = NULL; 4105 func->function.hs_descriptors = NULL; 4106 func->function.ss_descriptors = NULL; 4107 func->function.ssp_descriptors = NULL; 4108 func->interfaces_nums = NULL; 4109 4110} 4111 4112static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4113{ 4114 struct ffs_function *func; 4115 4116 func = kzalloc(sizeof(*func), GFP_KERNEL); 4117 if (!func) 4118 return ERR_PTR(-ENOMEM); 4119 4120 func->function.name = "Function FS Gadget"; 4121 4122 func->function.bind = ffs_func_bind; 4123 func->function.unbind = ffs_func_unbind; 4124 func->function.set_alt = ffs_func_set_alt; 4125 func->function.get_alt = ffs_func_get_alt; 4126 func->function.disable = ffs_func_disable; 4127 func->function.setup = ffs_func_setup; 4128 func->function.req_match = ffs_func_req_match; 4129 func->function.suspend = ffs_func_suspend; 4130 func->function.resume = ffs_func_resume; 4131 func->function.free_func = ffs_free; 4132 4133 return &func->function; 4134} 4135 4136/* 4137 * ffs_lock must be taken by the caller of this function 4138 */ 4139static struct ffs_dev *_ffs_alloc_dev(void) 4140{ 4141 struct ffs_dev *dev; 4142 int ret; 4143 4144 if (_ffs_get_single_dev()) 4145 return ERR_PTR(-EBUSY); 4146 4147 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4148 if (!dev) 4149 return ERR_PTR(-ENOMEM); 4150 4151 if (list_empty(&ffs_devices)) { 4152 ret = functionfs_init(); 4153 if (ret) { 4154 kfree(dev); 4155 return ERR_PTR(ret); 4156 } 4157 } 4158 4159 list_add(&dev->entry, &ffs_devices); 4160 4161 return dev; 4162} 4163 4164int ffs_name_dev(struct ffs_dev *dev, const char *name) 4165{ 4166 struct ffs_dev *existing; 4167 int ret = 0; 4168 4169 ffs_dev_lock(); 4170 4171 existing = _ffs_do_find_dev(name); 4172 if (!existing) 4173 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4174 else if (existing != dev) 4175 ret = -EBUSY; 4176 4177 ffs_dev_unlock(); 4178 4179 return ret; 4180} 4181EXPORT_SYMBOL_GPL(ffs_name_dev); 4182 4183int ffs_single_dev(struct ffs_dev *dev) 4184{ 4185 int ret; 4186 4187 ret = 0; 4188 ffs_dev_lock(); 4189 4190 if (!list_is_singular(&ffs_devices)) 4191 ret = -EBUSY; 4192 else 4193 dev->single = true; 4194 4195 ffs_dev_unlock(); 4196 return ret; 4197} 4198EXPORT_SYMBOL_GPL(ffs_single_dev); 4199 4200/* 4201 * ffs_lock must be taken by the caller of this function 4202 */ 4203static void _ffs_free_dev(struct ffs_dev *dev) 4204{ 4205 list_del(&dev->entry); 4206 4207 kfree(dev); 4208 if (list_empty(&ffs_devices)) 4209 functionfs_cleanup(); 4210} 4211 4212static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4213{ 4214 int ret = 0; 4215 struct ffs_dev *ffs_dev; 4216 4217 ffs_dev_lock(); 4218 4219 ffs_dev = _ffs_find_dev(dev_name); 4220 if (!ffs_dev) { 4221 ret = -ENOENT; 4222 } else if (ffs_dev->mounted) { 4223 ret = -EBUSY; 4224 } else if (ffs_dev->ffs_acquire_dev_callback && 4225 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4226 ret = -ENOENT; 4227 } else { 4228 ffs_dev->mounted = true; 4229 ffs_dev->ffs_data = ffs_data; 4230 ffs_data->private_data = ffs_dev; 4231 } 4232 4233 ffs_dev_unlock(); 4234 return ret; 4235} 4236 4237static void ffs_release_dev(struct ffs_dev *ffs_dev) 4238{ 4239 ffs_dev_lock(); 4240 4241 if (ffs_dev && ffs_dev->mounted) { 4242 ffs_dev->mounted = false; 4243 if (ffs_dev->ffs_data) { 4244 ffs_dev->ffs_data->private_data = NULL; 4245 ffs_dev->ffs_data = NULL; 4246 } 4247 4248 if (ffs_dev->ffs_release_dev_callback) 4249 ffs_dev->ffs_release_dev_callback(ffs_dev); 4250 } 4251 4252 ffs_dev_unlock(); 4253} 4254 4255static int ffs_ready(struct ffs_data *ffs) 4256{ 4257 struct ffs_dev *ffs_obj; 4258 int ret = 0; 4259 4260 ffs_dev_lock(); 4261 4262 ffs_obj = ffs->private_data; 4263 if (!ffs_obj) { 4264 ret = -EINVAL; 4265 goto done; 4266 } 4267 if (WARN_ON(ffs_obj->desc_ready)) { 4268 ret = -EBUSY; 4269 goto done; 4270 } 4271 4272 ffs_obj->desc_ready = true; 4273 4274 if (ffs_obj->ffs_ready_callback) { 4275 ret = ffs_obj->ffs_ready_callback(ffs); 4276 if (ret) 4277 goto done; 4278 } 4279 4280 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4281done: 4282 ffs_dev_unlock(); 4283 return ret; 4284} 4285 4286static void ffs_closed(struct ffs_data *ffs) 4287{ 4288 struct ffs_dev *ffs_obj; 4289 struct f_fs_opts *opts; 4290 struct config_item *ci; 4291 4292 ffs_dev_lock(); 4293 4294 ffs_obj = ffs->private_data; 4295 if (!ffs_obj) 4296 goto done; 4297 4298 ffs_obj->desc_ready = false; 4299 4300 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4301 ffs_obj->ffs_closed_callback) 4302 ffs_obj->ffs_closed_callback(ffs); 4303 4304 if (ffs_obj->opts) 4305 opts = ffs_obj->opts; 4306 else 4307 goto done; 4308 4309 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4310 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4311 goto done; 4312 4313 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4314 ffs_dev_unlock(); 4315 4316 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4317 unregister_gadget_item(ci); 4318 return; 4319done: 4320 ffs_dev_unlock(); 4321} 4322 4323/* Misc helper functions ****************************************************/ 4324 4325static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4326{ 4327 return nonblock 4328 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4329 : mutex_lock_interruptible(mutex); 4330} 4331 4332static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4333{ 4334 char *data; 4335 4336 if (!len) 4337 return NULL; 4338 4339 data = memdup_user(buf, len); 4340 if (IS_ERR(data)) 4341 return data; 4342 4343 pr_vdebug("Buffer from user space:\n"); 4344 ffs_dump_mem("", data, len); 4345 4346 return data; 4347} 4348 4349DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4350MODULE_DESCRIPTION("user mode file system API for USB composite function controllers"); 4351MODULE_LICENSE("GPL"); 4352MODULE_AUTHOR("Michal Nazarewicz");