at v6.19 1016 lines 24 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17#include <linux/module.h> 18#include <linux/kernel.h> 19#include <linux/skbuff.h> 20#include <linux/tty.h> 21#include <linux/netdevice.h> 22#include <linux/poll.h> 23#include <linux/crc-ccitt.h> 24#include <linux/ppp_defs.h> 25#include <linux/ppp-ioctl.h> 26#include <linux/ppp_channel.h> 27#include <linux/spinlock.h> 28#include <linux/init.h> 29#include <linux/interrupt.h> 30#include <linux/jiffies.h> 31#include <linux/slab.h> 32#include <linux/unaligned.h> 33#include <linux/uaccess.h> 34#include <asm/string.h> 35 36#define PPP_VERSION "2.4.2" 37 38#define OBUFSIZE 4096 39 40/* Structure for storing local state. */ 41struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72}; 73 74/* Bit numbers in xmit_flags */ 75#define XMIT_WAKEUP 0 76#define XMIT_FULL 1 77#define XMIT_BUSY 2 78 79/* State bits */ 80#define SC_TOSS 1 81#define SC_ESCAPE 2 82#define SC_PREV_ERROR 4 83 84/* Bits in rbits */ 85#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87static int flag_time = HZ; 88module_param(flag_time, int, 0); 89MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90MODULE_DESCRIPTION("PPP async serial channel module"); 91MODULE_LICENSE("GPL"); 92MODULE_ALIAS_LDISC(N_PPP); 93 94/* 95 * Prototypes. 96 */ 97static int ppp_async_encode(struct asyncppp *ap); 98static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 99static int ppp_async_push(struct asyncppp *ap); 100static void ppp_async_flush_output(struct asyncppp *ap); 101static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 102 const u8 *flags, int count); 103static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 104 unsigned long arg); 105static void ppp_async_process(struct tasklet_struct *t); 106 107static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 108 int len, int inbound); 109 110static const struct ppp_channel_ops async_ops = { 111 .start_xmit = ppp_async_send, 112 .ioctl = ppp_async_ioctl, 113}; 114 115/* 116 * Routines implementing the PPP line discipline. 117 */ 118 119/* 120 * We have a potential race on dereferencing tty->disc_data, 121 * because the tty layer provides no locking at all - thus one 122 * cpu could be running ppp_asynctty_receive while another 123 * calls ppp_asynctty_close, which zeroes tty->disc_data and 124 * frees the memory that ppp_asynctty_receive is using. The best 125 * way to fix this is to use a rwlock in the tty struct, but for now 126 * we use a single global rwlock for all ttys in ppp line discipline. 127 * 128 * FIXME: this is no longer true. The _close path for the ldisc is 129 * now guaranteed to be sane. 130 */ 131static DEFINE_RWLOCK(disc_data_lock); 132 133static struct asyncppp *ap_get(struct tty_struct *tty) 134{ 135 struct asyncppp *ap; 136 137 read_lock(&disc_data_lock); 138 ap = tty->disc_data; 139 if (ap != NULL) 140 refcount_inc(&ap->refcnt); 141 read_unlock(&disc_data_lock); 142 return ap; 143} 144 145static void ap_put(struct asyncppp *ap) 146{ 147 if (refcount_dec_and_test(&ap->refcnt)) 148 complete(&ap->dead); 149} 150 151/* 152 * Called when a tty is put into PPP line discipline. Called in process 153 * context. 154 */ 155static int 156ppp_asynctty_open(struct tty_struct *tty) 157{ 158 struct asyncppp *ap; 159 int err; 160 int speed; 161 162 if (tty->ops->write == NULL) 163 return -EOPNOTSUPP; 164 165 err = -ENOMEM; 166 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 167 if (!ap) 168 goto out; 169 170 /* initialize the asyncppp structure */ 171 ap->tty = tty; 172 ap->mru = PPP_MRU; 173 spin_lock_init(&ap->xmit_lock); 174 spin_lock_init(&ap->recv_lock); 175 ap->xaccm[0] = ~0U; 176 ap->xaccm[3] = 0x60000000U; 177 ap->raccm = ~0U; 178 ap->optr = ap->obuf; 179 ap->olim = ap->obuf; 180 ap->lcp_fcs = -1; 181 182 skb_queue_head_init(&ap->rqueue); 183 tasklet_setup(&ap->tsk, ppp_async_process); 184 185 refcount_set(&ap->refcnt, 1); 186 init_completion(&ap->dead); 187 188 ap->chan.private = ap; 189 ap->chan.ops = &async_ops; 190 ap->chan.mtu = PPP_MRU; 191 speed = tty_get_baud_rate(tty); 192 ap->chan.speed = speed; 193 err = ppp_register_channel(&ap->chan); 194 if (err) 195 goto out_free; 196 197 tty->disc_data = ap; 198 tty->receive_room = 65536; 199 return 0; 200 201 out_free: 202 kfree(ap); 203 out: 204 return err; 205} 206 207/* 208 * Called when the tty is put into another line discipline 209 * or it hangs up. We have to wait for any cpu currently 210 * executing in any of the other ppp_asynctty_* routines to 211 * finish before we can call ppp_unregister_channel and free 212 * the asyncppp struct. This routine must be called from 213 * process context, not interrupt or softirq context. 214 */ 215static void 216ppp_asynctty_close(struct tty_struct *tty) 217{ 218 struct asyncppp *ap; 219 220 write_lock_irq(&disc_data_lock); 221 ap = tty->disc_data; 222 tty->disc_data = NULL; 223 write_unlock_irq(&disc_data_lock); 224 if (!ap) 225 return; 226 227 /* 228 * We have now ensured that nobody can start using ap from now 229 * on, but we have to wait for all existing users to finish. 230 * Note that ppp_unregister_channel ensures that no calls to 231 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 232 * by the time it returns. 233 */ 234 if (!refcount_dec_and_test(&ap->refcnt)) 235 wait_for_completion(&ap->dead); 236 tasklet_kill(&ap->tsk); 237 238 ppp_unregister_channel(&ap->chan); 239 kfree_skb(ap->rpkt); 240 skb_queue_purge(&ap->rqueue); 241 kfree_skb(ap->tpkt); 242 kfree(ap); 243} 244 245/* 246 * Called on tty hangup in process context. 247 * 248 * Wait for I/O to driver to complete and unregister PPP channel. 249 * This is already done by the close routine, so just call that. 250 */ 251static void ppp_asynctty_hangup(struct tty_struct *tty) 252{ 253 ppp_asynctty_close(tty); 254} 255 256/* 257 * Read does nothing - no data is ever available this way. 258 * Pppd reads and writes packets via /dev/ppp instead. 259 */ 260static ssize_t 261ppp_asynctty_read(struct tty_struct *tty, struct file *file, u8 *buf, 262 size_t count, void **cookie, unsigned long offset) 263{ 264 return -EAGAIN; 265} 266 267/* 268 * Write on the tty does nothing, the packets all come in 269 * from the ppp generic stuff. 270 */ 271static ssize_t 272ppp_asynctty_write(struct tty_struct *tty, struct file *file, const u8 *buf, 273 size_t count) 274{ 275 return -EAGAIN; 276} 277 278/* 279 * Called in process context only. May be re-entered by multiple 280 * ioctl calling threads. 281 */ 282 283static int 284ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) 285{ 286 struct asyncppp *ap = ap_get(tty); 287 int err, val; 288 int __user *p = (int __user *)arg; 289 290 if (!ap) 291 return -ENXIO; 292 err = -EFAULT; 293 switch (cmd) { 294 case PPPIOCGCHAN: 295 err = -EFAULT; 296 if (put_user(ppp_channel_index(&ap->chan), p)) 297 break; 298 err = 0; 299 break; 300 301 case PPPIOCGUNIT: 302 err = -EFAULT; 303 if (put_user(ppp_unit_number(&ap->chan), p)) 304 break; 305 err = 0; 306 break; 307 308 case TCFLSH: 309 /* flush our buffers and the serial port's buffer */ 310 if (arg == TCIOFLUSH || arg == TCOFLUSH) 311 ppp_async_flush_output(ap); 312 err = n_tty_ioctl_helper(tty, cmd, arg); 313 break; 314 315 case FIONREAD: 316 val = 0; 317 if (put_user(val, p)) 318 break; 319 err = 0; 320 break; 321 322 default: 323 /* Try the various mode ioctls */ 324 err = tty_mode_ioctl(tty, cmd, arg); 325 } 326 327 ap_put(ap); 328 return err; 329} 330 331/* May sleep, don't call from interrupt level or with interrupts disabled */ 332static void 333ppp_asynctty_receive(struct tty_struct *tty, const u8 *buf, const u8 *cflags, 334 size_t count) 335{ 336 struct asyncppp *ap = ap_get(tty); 337 unsigned long flags; 338 339 if (!ap) 340 return; 341 spin_lock_irqsave(&ap->recv_lock, flags); 342 ppp_async_input(ap, buf, cflags, count); 343 spin_unlock_irqrestore(&ap->recv_lock, flags); 344 if (!skb_queue_empty(&ap->rqueue)) 345 tasklet_schedule(&ap->tsk); 346 ap_put(ap); 347 tty_unthrottle(tty); 348} 349 350static void 351ppp_asynctty_wakeup(struct tty_struct *tty) 352{ 353 struct asyncppp *ap = ap_get(tty); 354 355 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 356 if (!ap) 357 return; 358 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 359 tasklet_schedule(&ap->tsk); 360 ap_put(ap); 361} 362 363 364static struct tty_ldisc_ops ppp_ldisc = { 365 .owner = THIS_MODULE, 366 .num = N_PPP, 367 .name = "ppp", 368 .open = ppp_asynctty_open, 369 .close = ppp_asynctty_close, 370 .hangup = ppp_asynctty_hangup, 371 .read = ppp_asynctty_read, 372 .write = ppp_asynctty_write, 373 .ioctl = ppp_asynctty_ioctl, 374 .receive_buf = ppp_asynctty_receive, 375 .write_wakeup = ppp_asynctty_wakeup, 376}; 377 378static int __init 379ppp_async_init(void) 380{ 381 int err; 382 383 err = tty_register_ldisc(&ppp_ldisc); 384 if (err != 0) 385 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 386 err); 387 return err; 388} 389 390/* 391 * The following routines provide the PPP channel interface. 392 */ 393static int 394ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 395{ 396 struct asyncppp *ap = chan->private; 397 void __user *argp = (void __user *)arg; 398 int __user *p = argp; 399 int err, val; 400 u32 accm[8]; 401 402 err = -EFAULT; 403 switch (cmd) { 404 case PPPIOCGFLAGS: 405 val = ap->flags | ap->rbits; 406 if (put_user(val, p)) 407 break; 408 err = 0; 409 break; 410 case PPPIOCSFLAGS: 411 if (get_user(val, p)) 412 break; 413 ap->flags = val & ~SC_RCV_BITS; 414 spin_lock_irq(&ap->recv_lock); 415 ap->rbits = val & SC_RCV_BITS; 416 spin_unlock_irq(&ap->recv_lock); 417 err = 0; 418 break; 419 420 case PPPIOCGASYNCMAP: 421 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 422 break; 423 err = 0; 424 break; 425 case PPPIOCSASYNCMAP: 426 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 427 break; 428 err = 0; 429 break; 430 431 case PPPIOCGRASYNCMAP: 432 if (put_user(ap->raccm, (u32 __user *)argp)) 433 break; 434 err = 0; 435 break; 436 case PPPIOCSRASYNCMAP: 437 if (get_user(ap->raccm, (u32 __user *)argp)) 438 break; 439 err = 0; 440 break; 441 442 case PPPIOCGXASYNCMAP: 443 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 444 break; 445 err = 0; 446 break; 447 case PPPIOCSXASYNCMAP: 448 if (copy_from_user(accm, argp, sizeof(accm))) 449 break; 450 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 451 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 452 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 453 err = 0; 454 break; 455 456 case PPPIOCGMRU: 457 if (put_user(ap->mru, p)) 458 break; 459 err = 0; 460 break; 461 case PPPIOCSMRU: 462 if (get_user(val, p)) 463 break; 464 if (val > U16_MAX) { 465 err = -EINVAL; 466 break; 467 } 468 if (val < PPP_MRU) 469 val = PPP_MRU; 470 ap->mru = val; 471 err = 0; 472 break; 473 474 default: 475 err = -ENOTTY; 476 } 477 478 return err; 479} 480 481/* 482 * This is called at softirq level to deliver received packets 483 * to the ppp_generic code, and to tell the ppp_generic code 484 * if we can accept more output now. 485 */ 486static void ppp_async_process(struct tasklet_struct *t) 487{ 488 struct asyncppp *ap = from_tasklet(ap, t, tsk); 489 struct sk_buff *skb; 490 491 /* process received packets */ 492 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 493 if (skb->cb[0]) 494 ppp_input_error(&ap->chan, 0); 495 ppp_input(&ap->chan, skb); 496 } 497 498 /* try to push more stuff out */ 499 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 500 ppp_output_wakeup(&ap->chan); 501} 502 503/* 504 * Procedures for encapsulation and framing. 505 */ 506 507/* 508 * Procedure to encode the data for async serial transmission. 509 * Does octet stuffing (escaping), puts the address/control bytes 510 * on if A/C compression is disabled, and does protocol compression. 511 * Assumes ap->tpkt != 0 on entry. 512 * Returns 1 if we finished the current frame, 0 otherwise. 513 */ 514 515#define PUT_BYTE(ap, buf, c, islcp) do { \ 516 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 517 *buf++ = PPP_ESCAPE; \ 518 *buf++ = c ^ PPP_TRANS; \ 519 } else \ 520 *buf++ = c; \ 521} while (0) 522 523static int 524ppp_async_encode(struct asyncppp *ap) 525{ 526 int fcs, i, count, c, proto; 527 unsigned char *buf, *buflim; 528 unsigned char *data; 529 int islcp; 530 531 buf = ap->obuf; 532 ap->olim = buf; 533 ap->optr = buf; 534 i = ap->tpkt_pos; 535 data = ap->tpkt->data; 536 count = ap->tpkt->len; 537 fcs = ap->tfcs; 538 proto = get_unaligned_be16(data); 539 540 /* 541 * LCP packets with code values between 1 (configure-request) 542 * and 7 (code-reject) must be sent as though no options 543 * had been negotiated. 544 */ 545 islcp = proto == PPP_LCP && count >= 3 && 1 <= data[2] && data[2] <= 7; 546 547 if (i == 0) { 548 if (islcp) 549 async_lcp_peek(ap, data, count, 0); 550 551 /* 552 * Start of a new packet - insert the leading FLAG 553 * character if necessary. 554 */ 555 if (islcp || flag_time == 0 || 556 time_after_eq(jiffies, ap->last_xmit + flag_time)) 557 *buf++ = PPP_FLAG; 558 ap->last_xmit = jiffies; 559 fcs = PPP_INITFCS; 560 561 /* 562 * Put in the address/control bytes if necessary 563 */ 564 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 565 PUT_BYTE(ap, buf, 0xff, islcp); 566 fcs = PPP_FCS(fcs, 0xff); 567 PUT_BYTE(ap, buf, 0x03, islcp); 568 fcs = PPP_FCS(fcs, 0x03); 569 } 570 } 571 572 /* 573 * Once we put in the last byte, we need to put in the FCS 574 * and closing flag, so make sure there is at least 7 bytes 575 * of free space in the output buffer. 576 */ 577 buflim = ap->obuf + OBUFSIZE - 6; 578 while (i < count && buf < buflim) { 579 c = data[i++]; 580 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 581 continue; /* compress protocol field */ 582 fcs = PPP_FCS(fcs, c); 583 PUT_BYTE(ap, buf, c, islcp); 584 } 585 586 if (i < count) { 587 /* 588 * Remember where we are up to in this packet. 589 */ 590 ap->olim = buf; 591 ap->tpkt_pos = i; 592 ap->tfcs = fcs; 593 return 0; 594 } 595 596 /* 597 * We have finished the packet. Add the FCS and flag. 598 */ 599 fcs = ~fcs; 600 c = fcs & 0xff; 601 PUT_BYTE(ap, buf, c, islcp); 602 c = (fcs >> 8) & 0xff; 603 PUT_BYTE(ap, buf, c, islcp); 604 *buf++ = PPP_FLAG; 605 ap->olim = buf; 606 607 consume_skb(ap->tpkt); 608 ap->tpkt = NULL; 609 return 1; 610} 611 612/* 613 * Transmit-side routines. 614 */ 615 616/* 617 * Send a packet to the peer over an async tty line. 618 * Returns 1 iff the packet was accepted. 619 * If the packet was not accepted, we will call ppp_output_wakeup 620 * at some later time. 621 */ 622static int 623ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 624{ 625 struct asyncppp *ap = chan->private; 626 627 ppp_async_push(ap); 628 629 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 630 return 0; /* already full */ 631 ap->tpkt = skb; 632 ap->tpkt_pos = 0; 633 634 ppp_async_push(ap); 635 return 1; 636} 637 638/* 639 * Push as much data as possible out to the tty. 640 */ 641static int 642ppp_async_push(struct asyncppp *ap) 643{ 644 int avail, sent, done = 0; 645 struct tty_struct *tty = ap->tty; 646 int tty_stuffed = 0; 647 648 /* 649 * We can get called recursively here if the tty write 650 * function calls our wakeup function. This can happen 651 * for example on a pty with both the master and slave 652 * set to PPP line discipline. 653 * We use the XMIT_BUSY bit to detect this and get out, 654 * leaving the XMIT_WAKEUP bit set to tell the other 655 * instance that it may now be able to write more now. 656 */ 657 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 658 return 0; 659 spin_lock_bh(&ap->xmit_lock); 660 for (;;) { 661 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 662 tty_stuffed = 0; 663 if (!tty_stuffed && ap->optr < ap->olim) { 664 avail = ap->olim - ap->optr; 665 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 666 sent = tty->ops->write(tty, ap->optr, avail); 667 if (sent < 0) 668 goto flush; /* error, e.g. loss of CD */ 669 ap->optr += sent; 670 if (sent < avail) 671 tty_stuffed = 1; 672 continue; 673 } 674 if (ap->optr >= ap->olim && ap->tpkt) { 675 if (ppp_async_encode(ap)) { 676 /* finished processing ap->tpkt */ 677 clear_bit(XMIT_FULL, &ap->xmit_flags); 678 done = 1; 679 } 680 continue; 681 } 682 /* 683 * We haven't made any progress this time around. 684 * Clear XMIT_BUSY to let other callers in, but 685 * after doing so we have to check if anyone set 686 * XMIT_WAKEUP since we last checked it. If they 687 * did, we should try again to set XMIT_BUSY and go 688 * around again in case XMIT_BUSY was still set when 689 * the other caller tried. 690 */ 691 clear_bit(XMIT_BUSY, &ap->xmit_flags); 692 /* any more work to do? if not, exit the loop */ 693 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 694 (!tty_stuffed && ap->tpkt))) 695 break; 696 /* more work to do, see if we can do it now */ 697 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 698 break; 699 } 700 spin_unlock_bh(&ap->xmit_lock); 701 return done; 702 703flush: 704 clear_bit(XMIT_BUSY, &ap->xmit_flags); 705 if (ap->tpkt) { 706 kfree_skb(ap->tpkt); 707 ap->tpkt = NULL; 708 clear_bit(XMIT_FULL, &ap->xmit_flags); 709 done = 1; 710 } 711 ap->optr = ap->olim; 712 spin_unlock_bh(&ap->xmit_lock); 713 return done; 714} 715 716/* 717 * Flush output from our internal buffers. 718 * Called for the TCFLSH ioctl. Can be entered in parallel 719 * but this is covered by the xmit_lock. 720 */ 721static void 722ppp_async_flush_output(struct asyncppp *ap) 723{ 724 int done = 0; 725 726 spin_lock_bh(&ap->xmit_lock); 727 ap->optr = ap->olim; 728 if (ap->tpkt != NULL) { 729 kfree_skb(ap->tpkt); 730 ap->tpkt = NULL; 731 clear_bit(XMIT_FULL, &ap->xmit_flags); 732 done = 1; 733 } 734 spin_unlock_bh(&ap->xmit_lock); 735 if (done) 736 ppp_output_wakeup(&ap->chan); 737} 738 739/* 740 * Receive-side routines. 741 */ 742 743/* see how many ordinary chars there are at the start of buf */ 744static inline int 745scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 746{ 747 int i, c; 748 749 for (i = 0; i < count; ++i) { 750 c = buf[i]; 751 if (c == PPP_ESCAPE || c == PPP_FLAG || 752 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 753 break; 754 } 755 return i; 756} 757 758/* called when a flag is seen - do end-of-packet processing */ 759static void 760process_input_packet(struct asyncppp *ap) 761{ 762 struct sk_buff *skb; 763 unsigned char *p; 764 unsigned int len, fcs; 765 766 skb = ap->rpkt; 767 if (ap->state & (SC_TOSS | SC_ESCAPE)) 768 goto err; 769 770 if (skb == NULL) 771 return; /* 0-length packet */ 772 773 /* check the FCS */ 774 p = skb->data; 775 len = skb->len; 776 if (len < 3) 777 goto err; /* too short */ 778 fcs = PPP_INITFCS; 779 for (; len > 0; --len) 780 fcs = PPP_FCS(fcs, *p++); 781 if (fcs != PPP_GOODFCS) 782 goto err; /* bad FCS */ 783 skb_trim(skb, skb->len - 2); 784 785 /* check for address/control and protocol compression */ 786 p = skb->data; 787 if (p[0] == PPP_ALLSTATIONS) { 788 /* chop off address/control */ 789 if (p[1] != PPP_UI || skb->len < 3) 790 goto err; 791 p = skb_pull(skb, 2); 792 } 793 794 /* If protocol field is not compressed, it can be LCP packet */ 795 if (!(p[0] & 0x01)) { 796 unsigned int proto; 797 798 if (skb->len < 2) 799 goto err; 800 proto = (p[0] << 8) + p[1]; 801 if (proto == PPP_LCP) 802 async_lcp_peek(ap, p, skb->len, 1); 803 } 804 805 /* queue the frame to be processed */ 806 skb->cb[0] = ap->state; 807 skb_queue_tail(&ap->rqueue, skb); 808 ap->rpkt = NULL; 809 ap->state = 0; 810 return; 811 812 err: 813 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 814 ap->state = SC_PREV_ERROR; 815 if (skb) { 816 /* make skb appear as freshly allocated */ 817 skb_trim(skb, 0); 818 skb_reserve(skb, - skb_headroom(skb)); 819 } 820} 821 822/* Called when the tty driver has data for us. Runs parallel with the 823 other ldisc functions but will not be re-entered */ 824 825static void 826ppp_async_input(struct asyncppp *ap, const u8 *buf, const u8 *flags, int count) 827{ 828 struct sk_buff *skb; 829 int c, i, j, n, s, f; 830 unsigned char *sp; 831 832 /* update bits used for 8-bit cleanness detection */ 833 if (~ap->rbits & SC_RCV_BITS) { 834 s = 0; 835 for (i = 0; i < count; ++i) { 836 c = buf[i]; 837 if (flags && flags[i] != 0) 838 continue; 839 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 840 c = ((c >> 4) ^ c) & 0xf; 841 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 842 } 843 ap->rbits |= s; 844 } 845 846 while (count > 0) { 847 /* scan through and see how many chars we can do in bulk */ 848 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 849 n = 1; 850 else 851 n = scan_ordinary(ap, buf, count); 852 853 f = 0; 854 if (flags && (ap->state & SC_TOSS) == 0) { 855 /* check the flags to see if any char had an error */ 856 for (j = 0; j < n; ++j) 857 if ((f = flags[j]) != 0) 858 break; 859 } 860 if (f != 0) { 861 /* start tossing */ 862 ap->state |= SC_TOSS; 863 864 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 865 /* stuff the chars in the skb */ 866 skb = ap->rpkt; 867 if (!skb) { 868 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 869 if (!skb) 870 goto nomem; 871 ap->rpkt = skb; 872 } 873 if (skb->len == 0) { 874 /* Try to get the payload 4-byte aligned. 875 * This should match the 876 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 877 * process_input_packet, but we do not have 878 * enough chars here to test buf[1] and buf[2]. 879 */ 880 if (buf[0] != PPP_ALLSTATIONS) 881 skb_reserve(skb, 2 + (buf[0] & 1)); 882 } 883 if (n > skb_tailroom(skb)) { 884 /* packet overflowed MRU */ 885 ap->state |= SC_TOSS; 886 } else { 887 sp = skb_put_data(skb, buf, n); 888 if (ap->state & SC_ESCAPE) { 889 sp[0] ^= PPP_TRANS; 890 ap->state &= ~SC_ESCAPE; 891 } 892 } 893 } 894 895 if (n >= count) 896 break; 897 898 c = buf[n]; 899 if (flags != NULL && flags[n] != 0) { 900 ap->state |= SC_TOSS; 901 } else if (c == PPP_FLAG) { 902 process_input_packet(ap); 903 } else if (c == PPP_ESCAPE) { 904 ap->state |= SC_ESCAPE; 905 } else if (I_IXON(ap->tty)) { 906 if (c == START_CHAR(ap->tty)) 907 start_tty(ap->tty); 908 else if (c == STOP_CHAR(ap->tty)) 909 stop_tty(ap->tty); 910 } 911 /* otherwise it's a char in the recv ACCM */ 912 ++n; 913 914 buf += n; 915 if (flags) 916 flags += n; 917 count -= n; 918 } 919 return; 920 921 nomem: 922 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 923 ap->state |= SC_TOSS; 924} 925 926/* 927 * We look at LCP frames going past so that we can notice 928 * and react to the LCP configure-ack from the peer. 929 * In the situation where the peer has been sent a configure-ack 930 * already, LCP is up once it has sent its configure-ack 931 * so the immediately following packet can be sent with the 932 * configured LCP options. This allows us to process the following 933 * packet correctly without pppd needing to respond quickly. 934 * 935 * We only respond to the received configure-ack if we have just 936 * sent a configure-request, and the configure-ack contains the 937 * same data (this is checked using a 16-bit crc of the data). 938 */ 939#define CONFREQ 1 /* LCP code field values */ 940#define CONFACK 2 941#define LCP_MRU 1 /* LCP option numbers */ 942#define LCP_ASYNCMAP 2 943 944static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 945 int len, int inbound) 946{ 947 int dlen, fcs, i, code; 948 u32 val; 949 950 data += 2; /* skip protocol bytes */ 951 len -= 2; 952 if (len < 4) /* 4 = code, ID, length */ 953 return; 954 code = data[0]; 955 if (code != CONFACK && code != CONFREQ) 956 return; 957 dlen = get_unaligned_be16(data + 2); 958 if (len < dlen) 959 return; /* packet got truncated or length is bogus */ 960 961 if (code == (inbound? CONFACK: CONFREQ)) { 962 /* 963 * sent confreq or received confack: 964 * calculate the crc of the data from the ID field on. 965 */ 966 fcs = PPP_INITFCS; 967 for (i = 1; i < dlen; ++i) 968 fcs = PPP_FCS(fcs, data[i]); 969 970 if (!inbound) { 971 /* outbound confreq - remember the crc for later */ 972 ap->lcp_fcs = fcs; 973 return; 974 } 975 976 /* received confack, check the crc */ 977 fcs ^= ap->lcp_fcs; 978 ap->lcp_fcs = -1; 979 if (fcs != 0) 980 return; 981 } else if (inbound) 982 return; /* not interested in received confreq */ 983 984 /* process the options in the confack */ 985 data += 4; 986 dlen -= 4; 987 /* data[0] is code, data[1] is length */ 988 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 989 switch (data[0]) { 990 case LCP_MRU: 991 val = get_unaligned_be16(data + 2); 992 if (inbound) 993 ap->mru = val; 994 else 995 ap->chan.mtu = val; 996 break; 997 case LCP_ASYNCMAP: 998 val = get_unaligned_be32(data + 2); 999 if (inbound) 1000 ap->raccm = val; 1001 else 1002 ap->xaccm[0] = val; 1003 break; 1004 } 1005 dlen -= data[1]; 1006 data += data[1]; 1007 } 1008} 1009 1010static void __exit ppp_async_cleanup(void) 1011{ 1012 tty_unregister_ldisc(&ppp_ldisc); 1013} 1014 1015module_init(ppp_async_init); 1016module_exit(ppp_async_cleanup);