at v6.19 6821 lines 192 kB view raw
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22#include <linux/bitfield.h> 23#include <linux/ethtool_netlink.h> 24#include <linux/kernel.h> 25#include <linux/module.h> 26#include <linux/phy.h> 27#include <linux/micrel_phy.h> 28#include <linux/of.h> 29#include <linux/clk.h> 30#include <linux/delay.h> 31#include <linux/ptp_clock_kernel.h> 32#include <linux/ptp_clock.h> 33#include <linux/ptp_classify.h> 34#include <linux/net_tstamp.h> 35#include <linux/gpio/consumer.h> 36 37#include "phylib.h" 38 39/* Operation Mode Strap Override */ 40#define MII_KSZPHY_OMSO 0x16 41#define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42#define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43#define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44#define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45#define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47/* general Interrupt control/status reg in vendor specific block. */ 48#define MII_KSZPHY_INTCS 0x1B 49#define KSZPHY_INTCS_JABBER BIT(15) 50#define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51#define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52#define KSZPHY_INTCS_PARELLEL BIT(12) 53#define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54#define KSZPHY_INTCS_LINK_DOWN BIT(10) 55#define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56#define KSZPHY_INTCS_LINK_UP BIT(8) 57#define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59#define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60#define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61#define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64/* LinkMD Control/Status */ 65#define KSZ8081_LMD 0x1d 66#define KSZ8081_LMD_ENABLE_TEST BIT(15) 67#define KSZ8081_LMD_STAT_NORMAL 0 68#define KSZ8081_LMD_STAT_OPEN 1 69#define KSZ8081_LMD_STAT_SHORT 2 70#define KSZ8081_LMD_STAT_FAIL 3 71#define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72/* Short cable (<10 meter) has been detected by LinkMD */ 73#define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74#define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76#define KSZ9x31_LMD 0x12 77#define KSZ9x31_LMD_VCT_EN BIT(15) 78#define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79#define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80#define KSZ9x31_LMD_VCT_SEL_RESULT 0 81#define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82#define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83#define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84#define KSZ9x31_LMD_VCT_ST_NORMAL 0 85#define KSZ9x31_LMD_VCT_ST_OPEN 1 86#define KSZ9x31_LMD_VCT_ST_SHORT 2 87#define KSZ9x31_LMD_VCT_ST_FAIL 3 88#define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89#define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90#define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91#define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92#define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93#define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94#define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95#define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97#define KSZPHY_WIRE_PAIR_MASK 0x3 98 99#define LAN8814_CABLE_DIAG 0x12 100#define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101#define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102#define LAN8814_PAIR_BIT_SHIFT 12 103 104#define LAN8814_SKUS 0xB 105 106#define LAN8814_WIRE_PAIR_MASK 0xF 107 108/* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 109#define LAN8814_INTC 0x18 110#define LAN8814_INTS 0x1B 111 112#define LAN8814_INT_FLF BIT(15) 113#define LAN8814_INT_LINK_DOWN BIT(2) 114#define LAN8814_INT_LINK_UP BIT(0) 115#define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 116 LAN8814_INT_LINK_DOWN) 117 118#define LAN8814_INTR_CTRL_REG 0x34 119#define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 120#define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 121 122#define LAN8814_EEE_STATE 0x38 123#define LAN8814_EEE_STATE_MASK2P5P BIT(10) 124 125#define LAN8814_PD_CONTROLS 0x9d 126#define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 127#define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 128 129/* Represents 1ppm adjustment in 2^32 format with 130 * each nsec contains 4 clock cycles. 131 * The value is calculated as following: (1/1000000)/((2^-32)/4) 132 */ 133#define LAN8814_1PPM_FORMAT 17179 134 135/* Represents 1ppm adjustment in 2^32 format with 136 * each nsec contains 8 clock cycles. 137 * The value is calculated as following: (1/1000000)/((2^-32)/8) 138 */ 139#define LAN8841_1PPM_FORMAT 34360 140 141#define PTP_RX_VERSION 0x0248 142#define PTP_TX_VERSION 0x0288 143#define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 144#define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 145 146#define PTP_RX_MOD 0x024F 147#define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 148#define PTP_RX_TIMESTAMP_EN 0x024D 149#define PTP_TX_TIMESTAMP_EN 0x028D 150 151#define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 152#define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 153#define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 154#define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 155 156#define PTP_TX_PARSE_L2_ADDR_EN 0x0284 157#define PTP_RX_PARSE_L2_ADDR_EN 0x0244 158 159#define PTP_TX_PARSE_IP_ADDR_EN 0x0285 160#define PTP_RX_PARSE_IP_ADDR_EN 0x0245 161#define LTC_HARD_RESET 0x023F 162#define LTC_HARD_RESET_ BIT(0) 163 164#define TSU_HARD_RESET 0x02C1 165#define TSU_HARD_RESET_ BIT(0) 166 167#define PTP_CMD_CTL 0x0200 168#define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 169#define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 170#define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 171#define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 172#define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 173#define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 174 175#define PTP_COMMON_INT_ENA 0x0204 176#define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 177 178#define PTP_CLOCK_SET_SEC_HI 0x0205 179#define PTP_CLOCK_SET_SEC_MID 0x0206 180#define PTP_CLOCK_SET_SEC_LO 0x0207 181#define PTP_CLOCK_SET_NS_HI 0x0208 182#define PTP_CLOCK_SET_NS_LO 0x0209 183 184#define PTP_CLOCK_READ_SEC_HI 0x0229 185#define PTP_CLOCK_READ_SEC_MID 0x022A 186#define PTP_CLOCK_READ_SEC_LO 0x022B 187#define PTP_CLOCK_READ_NS_HI 0x022C 188#define PTP_CLOCK_READ_NS_LO 0x022D 189 190#define PTP_GPIO_SEL 0x0230 191#define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 192#define PTP_GPIO_CAP_MAP_LO 0x0232 193 194#define PTP_GPIO_CAP_EN 0x0233 195#define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 196#define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 197 198#define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 199#define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 200#define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 201#define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 202#define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 203#define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 204#define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 205#define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 206 207#define PTP_GPIO_CAP_STS 0x023D 208#define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 209#define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 210 211#define PTP_OPERATING_MODE 0x0241 212#define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 213 214#define PTP_TX_MOD 0x028F 215#define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 216#define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 217 218#define PTP_RX_PARSE_CONFIG 0x0242 219#define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 220#define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 221#define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 222 223#define PTP_TX_PARSE_CONFIG 0x0282 224#define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 225#define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 226#define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 227 228#define PTP_CLOCK_RATE_ADJ_HI 0x020C 229#define PTP_CLOCK_RATE_ADJ_LO 0x020D 230#define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 231 232#define PTP_LTC_STEP_ADJ_HI 0x0212 233#define PTP_LTC_STEP_ADJ_LO 0x0213 234#define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 235 236#define LAN8814_INTR_STS_REG 0x0033 237#define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 238#define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 239#define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 240#define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 241 242#define PTP_CAP_INFO 0x022A 243#define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 244#define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 245 246#define PTP_TX_EGRESS_SEC_HI 0x0296 247#define PTP_TX_EGRESS_SEC_LO 0x0297 248#define PTP_TX_EGRESS_NS_HI 0x0294 249#define PTP_TX_EGRESS_NS_LO 0x0295 250#define PTP_TX_MSG_HEADER2 0x0299 251 252#define PTP_RX_INGRESS_SEC_HI 0x0256 253#define PTP_RX_INGRESS_SEC_LO 0x0257 254#define PTP_RX_INGRESS_NS_HI 0x0254 255#define PTP_RX_INGRESS_NS_LO 0x0255 256#define PTP_RX_MSG_HEADER2 0x0259 257 258#define PTP_TSU_INT_EN 0x0200 259#define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 260#define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 261#define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 262#define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 263 264#define PTP_TSU_INT_STS 0x0201 265#define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 266#define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 267#define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 268#define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 269 270#define LAN8814_LED_CTRL_1 0x0 271#define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 272#define LAN8814_LED_CTRL_2 0x1 273#define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 274 275/* PHY Control 1 */ 276#define MII_KSZPHY_CTRL_1 0x1e 277#define KSZ8081_CTRL1_MDIX_STAT BIT(4) 278 279/* PHY Control 2 / PHY Control (if no PHY Control 1) */ 280#define MII_KSZPHY_CTRL_2 0x1f 281#define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 282/* bitmap of PHY register to set interrupt mode */ 283#define KSZ8081_CTRL2_HP_MDIX BIT(15) 284#define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 285#define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 286#define KSZ8081_CTRL2_FORCE_LINK BIT(11) 287#define KSZ8081_CTRL2_POWER_SAVING BIT(10) 288#define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 289#define KSZPHY_RMII_REF_CLK_SEL BIT(7) 290 291/* Write/read to/from extended registers */ 292#define MII_KSZPHY_EXTREG 0x0b 293#define KSZPHY_EXTREG_WRITE 0x8000 294 295#define MII_KSZPHY_EXTREG_WRITE 0x0c 296#define MII_KSZPHY_EXTREG_READ 0x0d 297 298/* Extended registers */ 299#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 300#define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 301#define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 302 303#define PS_TO_REG 200 304#define FIFO_SIZE 8 305 306#define LAN8814_PTP_GPIO_NUM 24 307#define LAN8814_PTP_PEROUT_NUM 2 308#define LAN8814_PTP_EXTTS_NUM 3 309 310#define LAN8814_BUFFER_TIME 2 311 312#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 313#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 314#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 315#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 316#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 317#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 318#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 319#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 320#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 321#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 322#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 323#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 324#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 325#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 326 327#define LAN8814_GPIO_EN1 0x20 328#define LAN8814_GPIO_EN2 0x21 329#define LAN8814_GPIO_DIR1 0x22 330#define LAN8814_GPIO_DIR2 0x23 331#define LAN8814_GPIO_BUF1 0x24 332#define LAN8814_GPIO_BUF2 0x25 333 334#define LAN8814_GPIO_EN_ADDR(pin) \ 335 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 336#define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 337#define LAN8814_GPIO_DIR_ADDR(pin) \ 338 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 339#define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 340#define LAN8814_GPIO_BUF_ADDR(pin) \ 341 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 342#define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 343 344#define LAN8814_EVENT_A 0 345#define LAN8814_EVENT_B 1 346 347#define LAN8814_PTP_GENERAL_CONFIG 0x0201 348#define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 349 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 350#define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 351 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 352#define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 353 ((event) ? BIT(2) : BIT(0)) 354#define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 355 ((event) ? BIT(3) : BIT(1)) 356 357#define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 358#define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 359#define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 360#define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 361 362#define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 363#define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 364#define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 365#define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 366 367/* Delay used to get the second part from the LTC */ 368#define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 369 370#define LAN8842_REV_8832 0x8832 371 372#define LAN8814_REV_LAN8814 0x8814 373#define LAN8814_REV_LAN8818 0x8818 374 375struct kszphy_hw_stat { 376 const char *string; 377 u8 reg; 378 u8 bits; 379}; 380 381static struct kszphy_hw_stat kszphy_hw_stats[] = { 382 { "phy_receive_errors", 21, 16}, 383 { "phy_idle_errors", 10, 8 }, 384}; 385 386struct kszphy_type { 387 u32 led_mode_reg; 388 u16 interrupt_level_mask; 389 u16 cable_diag_reg; 390 unsigned long pair_mask; 391 u16 disable_dll_tx_bit; 392 u16 disable_dll_rx_bit; 393 u16 disable_dll_mask; 394 bool has_broadcast_disable; 395 bool has_nand_tree_disable; 396 bool has_rmii_ref_clk_sel; 397}; 398 399/* Shared structure between the PHYs of the same package. */ 400struct lan8814_shared_priv { 401 struct phy_device *phydev; 402 struct ptp_clock *ptp_clock; 403 struct ptp_clock_info ptp_clock_info; 404 struct ptp_pin_desc *pin_config; 405 406 /* Lock for ptp_clock */ 407 struct mutex shared_lock; 408}; 409 410struct lan8814_ptp_rx_ts { 411 struct list_head list; 412 u32 seconds; 413 u32 nsec; 414 u16 seq_id; 415}; 416 417struct kszphy_ptp_priv { 418 struct mii_timestamper mii_ts; 419 struct phy_device *phydev; 420 421 struct sk_buff_head tx_queue; 422 struct sk_buff_head rx_queue; 423 424 struct list_head rx_ts_list; 425 /* Lock for Rx ts fifo */ 426 spinlock_t rx_ts_lock; 427 428 int hwts_tx_type; 429 enum hwtstamp_rx_filters rx_filter; 430 int layer; 431 int version; 432 433 struct ptp_clock *ptp_clock; 434 struct ptp_clock_info ptp_clock_info; 435 /* Lock for ptp_clock */ 436 struct mutex ptp_lock; 437 struct ptp_pin_desc *pin_config; 438 439 s64 seconds; 440 /* Lock for accessing seconds */ 441 spinlock_t seconds_lock; 442}; 443 444struct kszphy_phy_stats { 445 u64 rx_err_pkt_cnt; 446}; 447 448struct kszphy_priv { 449 struct kszphy_ptp_priv ptp_priv; 450 const struct kszphy_type *type; 451 struct clk *clk; 452 int led_mode; 453 u16 vct_ctrl1000; 454 bool rmii_ref_clk_sel; 455 bool rmii_ref_clk_sel_val; 456 bool clk_enable; 457 bool is_ptp_available; 458 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 459 struct kszphy_phy_stats phy_stats; 460}; 461 462struct lan8842_phy_stats { 463 u64 rx_packets; 464 u64 rx_errors; 465 u64 tx_packets; 466 u64 tx_errors; 467}; 468 469struct lan8842_priv { 470 struct lan8842_phy_stats phy_stats; 471 struct kszphy_ptp_priv ptp_priv; 472 u16 rev; 473}; 474 475struct lanphy_reg_data { 476 int page; 477 u16 addr; 478 u16 val; 479}; 480 481static const struct kszphy_type lan8814_type = { 482 .led_mode_reg = ~LAN8814_LED_CTRL_1, 483 .cable_diag_reg = LAN8814_CABLE_DIAG, 484 .pair_mask = LAN8814_WIRE_PAIR_MASK, 485}; 486 487static const struct kszphy_type ksz886x_type = { 488 .cable_diag_reg = KSZ8081_LMD, 489 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 490}; 491 492static const struct kszphy_type ksz8021_type = { 493 .led_mode_reg = MII_KSZPHY_CTRL_2, 494 .has_broadcast_disable = true, 495 .has_nand_tree_disable = true, 496 .has_rmii_ref_clk_sel = true, 497}; 498 499static const struct kszphy_type ksz8041_type = { 500 .led_mode_reg = MII_KSZPHY_CTRL_1, 501}; 502 503static const struct kszphy_type ksz8051_type = { 504 .led_mode_reg = MII_KSZPHY_CTRL_2, 505 .has_nand_tree_disable = true, 506}; 507 508static const struct kszphy_type ksz8081_type = { 509 .led_mode_reg = MII_KSZPHY_CTRL_2, 510 .cable_diag_reg = KSZ8081_LMD, 511 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 512 .has_broadcast_disable = true, 513 .has_nand_tree_disable = true, 514 .has_rmii_ref_clk_sel = true, 515}; 516 517static const struct kszphy_type ks8737_type = { 518 .interrupt_level_mask = BIT(14), 519}; 520 521static const struct kszphy_type ksz9021_type = { 522 .interrupt_level_mask = BIT(14), 523}; 524 525static const struct kszphy_type ksz9131_type = { 526 .interrupt_level_mask = BIT(14), 527 .disable_dll_tx_bit = BIT(12), 528 .disable_dll_rx_bit = BIT(12), 529 .disable_dll_mask = BIT_MASK(12), 530}; 531 532static const struct kszphy_type lan8841_type = { 533 .disable_dll_tx_bit = BIT(14), 534 .disable_dll_rx_bit = BIT(14), 535 .disable_dll_mask = BIT_MASK(14), 536 .cable_diag_reg = LAN8814_CABLE_DIAG, 537 .pair_mask = LAN8814_WIRE_PAIR_MASK, 538}; 539 540static int kszphy_extended_write(struct phy_device *phydev, 541 u32 regnum, u16 val) 542{ 543 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 544 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 545} 546 547static int kszphy_extended_read(struct phy_device *phydev, 548 u32 regnum) 549{ 550 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 551 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 552} 553 554static int kszphy_ack_interrupt(struct phy_device *phydev) 555{ 556 /* bit[7..0] int status, which is a read and clear register. */ 557 int rc; 558 559 rc = phy_read(phydev, MII_KSZPHY_INTCS); 560 561 return (rc < 0) ? rc : 0; 562} 563 564static int kszphy_config_intr(struct phy_device *phydev) 565{ 566 const struct kszphy_type *type = phydev->drv->driver_data; 567 int temp, err; 568 u16 mask; 569 570 if (type && type->interrupt_level_mask) 571 mask = type->interrupt_level_mask; 572 else 573 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 574 575 /* set the interrupt pin active low */ 576 temp = phy_read(phydev, MII_KSZPHY_CTRL); 577 if (temp < 0) 578 return temp; 579 temp &= ~mask; 580 phy_write(phydev, MII_KSZPHY_CTRL, temp); 581 582 /* enable / disable interrupts */ 583 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 584 err = kszphy_ack_interrupt(phydev); 585 if (err) 586 return err; 587 588 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 589 } else { 590 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 591 if (err) 592 return err; 593 594 err = kszphy_ack_interrupt(phydev); 595 } 596 597 return err; 598} 599 600static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 601{ 602 int irq_status; 603 604 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 605 if (irq_status < 0) { 606 phy_error(phydev); 607 return IRQ_NONE; 608 } 609 610 if (!(irq_status & KSZPHY_INTCS_STATUS)) 611 return IRQ_NONE; 612 613 phy_trigger_machine(phydev); 614 615 return IRQ_HANDLED; 616} 617 618static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 619{ 620 int ctrl; 621 622 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 623 if (ctrl < 0) 624 return ctrl; 625 626 if (val) 627 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 628 else 629 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 630 631 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 632} 633 634static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 635{ 636 int rc, temp, shift; 637 638 switch (reg) { 639 case MII_KSZPHY_CTRL_1: 640 shift = 14; 641 break; 642 case MII_KSZPHY_CTRL_2: 643 shift = 4; 644 break; 645 default: 646 return -EINVAL; 647 } 648 649 temp = phy_read(phydev, reg); 650 if (temp < 0) { 651 rc = temp; 652 goto out; 653 } 654 655 temp &= ~(3 << shift); 656 temp |= val << shift; 657 rc = phy_write(phydev, reg, temp); 658out: 659 if (rc < 0) 660 phydev_err(phydev, "failed to set led mode\n"); 661 662 return rc; 663} 664 665/* Disable PHY address 0 as the broadcast address, so that it can be used as a 666 * unique (non-broadcast) address on a shared bus. 667 */ 668static int kszphy_broadcast_disable(struct phy_device *phydev) 669{ 670 int ret; 671 672 ret = phy_read(phydev, MII_KSZPHY_OMSO); 673 if (ret < 0) 674 goto out; 675 676 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 677out: 678 if (ret) 679 phydev_err(phydev, "failed to disable broadcast address\n"); 680 681 return ret; 682} 683 684static int kszphy_nand_tree_disable(struct phy_device *phydev) 685{ 686 int ret; 687 688 ret = phy_read(phydev, MII_KSZPHY_OMSO); 689 if (ret < 0) 690 goto out; 691 692 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 693 return 0; 694 695 ret = phy_write(phydev, MII_KSZPHY_OMSO, 696 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 697out: 698 if (ret) 699 phydev_err(phydev, "failed to disable NAND tree mode\n"); 700 701 return ret; 702} 703 704/* Some config bits need to be set again on resume, handle them here. */ 705static int kszphy_config_reset(struct phy_device *phydev) 706{ 707 struct kszphy_priv *priv = phydev->priv; 708 int ret; 709 710 if (priv->rmii_ref_clk_sel) { 711 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 712 if (ret) { 713 phydev_err(phydev, 714 "failed to set rmii reference clock\n"); 715 return ret; 716 } 717 } 718 719 if (priv->type && priv->led_mode >= 0) 720 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 721 722 return 0; 723} 724 725static int kszphy_config_init(struct phy_device *phydev) 726{ 727 struct kszphy_priv *priv = phydev->priv; 728 const struct kszphy_type *type; 729 730 if (!priv) 731 return 0; 732 733 type = priv->type; 734 735 if (type && type->has_broadcast_disable) 736 kszphy_broadcast_disable(phydev); 737 738 if (type && type->has_nand_tree_disable) 739 kszphy_nand_tree_disable(phydev); 740 741 return kszphy_config_reset(phydev); 742} 743 744static int ksz8041_fiber_mode(struct phy_device *phydev) 745{ 746 struct device_node *of_node = phydev->mdio.dev.of_node; 747 748 return of_property_read_bool(of_node, "micrel,fiber-mode"); 749} 750 751static int ksz8041_config_init(struct phy_device *phydev) 752{ 753 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 754 755 /* Limit supported and advertised modes in fiber mode */ 756 if (ksz8041_fiber_mode(phydev)) { 757 phydev->dev_flags |= MICREL_PHY_FXEN; 758 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 760 761 linkmode_and(phydev->supported, phydev->supported, mask); 762 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 763 phydev->supported); 764 linkmode_and(phydev->advertising, phydev->advertising, mask); 765 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 766 phydev->advertising); 767 phydev->autoneg = AUTONEG_DISABLE; 768 } 769 770 return kszphy_config_init(phydev); 771} 772 773static int ksz8041_config_aneg(struct phy_device *phydev) 774{ 775 /* Skip auto-negotiation in fiber mode */ 776 if (phydev->dev_flags & MICREL_PHY_FXEN) { 777 phydev->speed = SPEED_100; 778 return 0; 779 } 780 781 return genphy_config_aneg(phydev); 782} 783 784static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 785 const bool ksz_8051) 786{ 787 int ret; 788 789 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 790 return 0; 791 792 ret = phy_read(phydev, MII_BMSR); 793 if (ret < 0) 794 return ret; 795 796 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 797 * exact PHY ID. However, they can be told apart by the extended 798 * capability registers presence. The KSZ8051 PHY has them while 799 * the switch does not. 800 */ 801 ret &= BMSR_ERCAP; 802 if (ksz_8051) 803 return ret; 804 else 805 return !ret; 806} 807 808static int ksz8051_match_phy_device(struct phy_device *phydev, 809 const struct phy_driver *phydrv) 810{ 811 return ksz8051_ksz8795_match_phy_device(phydev, true); 812} 813 814static int ksz8081_config_init(struct phy_device *phydev) 815{ 816 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 817 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 818 * pull-down is missing, the factory test mode should be cleared by 819 * manually writing a 0. 820 */ 821 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 822 823 return kszphy_config_init(phydev); 824} 825 826static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 827{ 828 u16 val; 829 830 switch (ctrl) { 831 case ETH_TP_MDI: 832 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 833 break; 834 case ETH_TP_MDI_X: 835 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 836 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 837 break; 838 case ETH_TP_MDI_AUTO: 839 val = 0; 840 break; 841 default: 842 return 0; 843 } 844 845 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 846 KSZ8081_CTRL2_HP_MDIX | 847 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 848 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 849 KSZ8081_CTRL2_HP_MDIX | val); 850} 851 852static int ksz8081_config_aneg(struct phy_device *phydev) 853{ 854 int ret; 855 856 ret = genphy_config_aneg(phydev); 857 if (ret) 858 return ret; 859 860 /* The MDI-X configuration is automatically changed by the PHY after 861 * switching from autoneg off to on. So, take MDI-X configuration under 862 * own control and set it after autoneg configuration was done. 863 */ 864 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 865} 866 867static int ksz8081_mdix_update(struct phy_device *phydev) 868{ 869 int ret; 870 871 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 872 if (ret < 0) 873 return ret; 874 875 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 876 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 877 phydev->mdix_ctrl = ETH_TP_MDI_X; 878 else 879 phydev->mdix_ctrl = ETH_TP_MDI; 880 } else { 881 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 882 } 883 884 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 885 if (ret < 0) 886 return ret; 887 888 if (ret & KSZ8081_CTRL1_MDIX_STAT) 889 phydev->mdix = ETH_TP_MDI; 890 else 891 phydev->mdix = ETH_TP_MDI_X; 892 893 return 0; 894} 895 896static int ksz8081_read_status(struct phy_device *phydev) 897{ 898 int ret; 899 900 ret = ksz8081_mdix_update(phydev); 901 if (ret < 0) 902 return ret; 903 904 return genphy_read_status(phydev); 905} 906 907static int ksz8061_config_init(struct phy_device *phydev) 908{ 909 int ret; 910 911 /* Chip can be powered down by the bootstrap code. */ 912 ret = phy_read(phydev, MII_BMCR); 913 if (ret < 0) 914 return ret; 915 if (ret & BMCR_PDOWN) { 916 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 917 if (ret < 0) 918 return ret; 919 usleep_range(1000, 2000); 920 } 921 922 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 923 if (ret) 924 return ret; 925 926 return kszphy_config_init(phydev); 927} 928 929static int ksz8795_match_phy_device(struct phy_device *phydev, 930 const struct phy_driver *phydrv) 931{ 932 return ksz8051_ksz8795_match_phy_device(phydev, false); 933} 934 935static int ksz9021_load_values_from_of(struct phy_device *phydev, 936 const struct device_node *of_node, 937 u16 reg, 938 const char *field1, const char *field2, 939 const char *field3, const char *field4) 940{ 941 int val1 = -1; 942 int val2 = -2; 943 int val3 = -3; 944 int val4 = -4; 945 int newval; 946 int matches = 0; 947 948 if (!of_property_read_u32(of_node, field1, &val1)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field2, &val2)) 952 matches++; 953 954 if (!of_property_read_u32(of_node, field3, &val3)) 955 matches++; 956 957 if (!of_property_read_u32(of_node, field4, &val4)) 958 matches++; 959 960 if (!matches) 961 return 0; 962 963 if (matches < 4) 964 newval = kszphy_extended_read(phydev, reg); 965 else 966 newval = 0; 967 968 if (val1 != -1) 969 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 970 971 if (val2 != -2) 972 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 973 974 if (val3 != -3) 975 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 976 977 if (val4 != -4) 978 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 979 980 return kszphy_extended_write(phydev, reg, newval); 981} 982 983static int ksz9021_config_init(struct phy_device *phydev) 984{ 985 const struct device_node *of_node; 986 const struct device *dev_walker; 987 988 /* The Micrel driver has a deprecated option to place phy OF 989 * properties in the MAC node. Walk up the tree of devices to 990 * find a device with an OF node. 991 */ 992 dev_walker = &phydev->mdio.dev; 993 do { 994 of_node = dev_walker->of_node; 995 dev_walker = dev_walker->parent; 996 997 } while (!of_node && dev_walker); 998 999 if (of_node) { 1000 ksz9021_load_values_from_of(phydev, of_node, 1001 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 1002 "txen-skew-ps", "txc-skew-ps", 1003 "rxdv-skew-ps", "rxc-skew-ps"); 1004 ksz9021_load_values_from_of(phydev, of_node, 1005 MII_KSZPHY_RX_DATA_PAD_SKEW, 1006 "rxd0-skew-ps", "rxd1-skew-ps", 1007 "rxd2-skew-ps", "rxd3-skew-ps"); 1008 ksz9021_load_values_from_of(phydev, of_node, 1009 MII_KSZPHY_TX_DATA_PAD_SKEW, 1010 "txd0-skew-ps", "txd1-skew-ps", 1011 "txd2-skew-ps", "txd3-skew-ps"); 1012 } 1013 return 0; 1014} 1015 1016#define KSZ9031_PS_TO_REG 60 1017 1018/* Extended registers */ 1019/* MMD Address 0x0 */ 1020#define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1021#define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1022 1023/* MMD Address 0x2 */ 1024#define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1025#define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1026#define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1027 1028#define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1029#define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1030#define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1031#define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1032#define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1033 1034#define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1035#define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1036#define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1037#define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1038#define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1039 1040#define MII_KSZ9031RN_CLK_PAD_SKEW 8 1041#define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1042#define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1043 1044/* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1045 * provide different RGMII options we need to configure delay offset 1046 * for each pad relative to build in delay. 1047 */ 1048/* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1049 * 1.80ns 1050 */ 1051#define RX_ID 0x7 1052#define RX_CLK_ID 0x19 1053 1054/* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1055 * internal 1.2ns delay. 1056 */ 1057#define RX_ND 0xc 1058#define RX_CLK_ND 0x0 1059 1060/* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1061#define TX_ID 0x0 1062#define TX_CLK_ID 0x1f 1063 1064/* set tx and tx_clk to "No delay adjustment" to keep 0ns 1065 * delay 1066 */ 1067#define TX_ND 0x7 1068#define TX_CLK_ND 0xf 1069 1070/* MMD Address 0x1C */ 1071#define MII_KSZ9031RN_EDPD 0x23 1072#define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1073 1074static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1075 int speed) 1076{ 1077 u16 ctl = BMCR_LOOPBACK; 1078 int val; 1079 1080 if (!enable) 1081 return genphy_loopback(phydev, enable, 0); 1082 1083 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1084 phydev->speed = speed; 1085 else if (speed) 1086 return -EINVAL; 1087 phydev->duplex = DUPLEX_FULL; 1088 1089 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1090 1091 phy_write(phydev, MII_BMCR, ctl); 1092 1093 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1094 5000, 500000, true); 1095} 1096 1097static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1098 const struct device_node *of_node, 1099 u16 reg, size_t field_sz, 1100 const char *field[], u8 numfields, 1101 bool *update) 1102{ 1103 int val[4] = {-1, -2, -3, -4}; 1104 int matches = 0; 1105 u16 mask; 1106 u16 maxval; 1107 u16 newval; 1108 int i; 1109 1110 for (i = 0; i < numfields; i++) 1111 if (!of_property_read_u32(of_node, field[i], val + i)) 1112 matches++; 1113 1114 if (!matches) 1115 return 0; 1116 1117 *update |= true; 1118 1119 if (matches < numfields) 1120 newval = phy_read_mmd(phydev, 2, reg); 1121 else 1122 newval = 0; 1123 1124 maxval = (field_sz == 4) ? 0xf : 0x1f; 1125 for (i = 0; i < numfields; i++) 1126 if (val[i] != -(i + 1)) { 1127 mask = 0xffff; 1128 mask ^= maxval << (field_sz * i); 1129 newval = (newval & mask) | 1130 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1131 << (field_sz * i)); 1132 } 1133 1134 return phy_write_mmd(phydev, 2, reg, newval); 1135} 1136 1137/* Center KSZ9031RNX FLP timing at 16ms. */ 1138static int ksz9031_center_flp_timing(struct phy_device *phydev) 1139{ 1140 int result; 1141 1142 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1143 0x0006); 1144 if (result) 1145 return result; 1146 1147 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1148 0x1A80); 1149 if (result) 1150 return result; 1151 1152 return genphy_restart_aneg(phydev); 1153} 1154 1155/* Enable energy-detect power-down mode */ 1156static int ksz9031_enable_edpd(struct phy_device *phydev) 1157{ 1158 int reg; 1159 1160 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1161 if (reg < 0) 1162 return reg; 1163 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1164 reg | MII_KSZ9031RN_EDPD_ENABLE); 1165} 1166 1167static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1168{ 1169 u16 rx, tx, rx_clk, tx_clk; 1170 int ret; 1171 1172 switch (phydev->interface) { 1173 case PHY_INTERFACE_MODE_RGMII: 1174 tx = TX_ND; 1175 tx_clk = TX_CLK_ND; 1176 rx = RX_ND; 1177 rx_clk = RX_CLK_ND; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_ID: 1180 tx = TX_ID; 1181 tx_clk = TX_CLK_ID; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_RXID: 1186 tx = TX_ND; 1187 tx_clk = TX_CLK_ND; 1188 rx = RX_ID; 1189 rx_clk = RX_CLK_ID; 1190 break; 1191 case PHY_INTERFACE_MODE_RGMII_TXID: 1192 tx = TX_ID; 1193 tx_clk = TX_CLK_ID; 1194 rx = RX_ND; 1195 rx_clk = RX_CLK_ND; 1196 break; 1197 default: 1198 return 0; 1199 } 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1204 if (ret < 0) 1205 return ret; 1206 1207 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1208 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1209 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1210 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1211 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1212 if (ret < 0) 1213 return ret; 1214 1215 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1216 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1217 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1218 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1219 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1220 if (ret < 0) 1221 return ret; 1222 1223 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1224 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1225 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1226} 1227 1228static int ksz9031_config_init(struct phy_device *phydev) 1229{ 1230 const struct device_node *of_node; 1231 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1232 static const char *rx_data_skews[4] = { 1233 "rxd0-skew-ps", "rxd1-skew-ps", 1234 "rxd2-skew-ps", "rxd3-skew-ps" 1235 }; 1236 static const char *tx_data_skews[4] = { 1237 "txd0-skew-ps", "txd1-skew-ps", 1238 "txd2-skew-ps", "txd3-skew-ps" 1239 }; 1240 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1241 const struct device *dev_walker; 1242 int result; 1243 1244 result = ksz9031_enable_edpd(phydev); 1245 if (result < 0) 1246 return result; 1247 1248 /* The Micrel driver has a deprecated option to place phy OF 1249 * properties in the MAC node. Walk up the tree of devices to 1250 * find a device with an OF node. 1251 */ 1252 dev_walker = &phydev->mdio.dev; 1253 do { 1254 of_node = dev_walker->of_node; 1255 dev_walker = dev_walker->parent; 1256 } while (!of_node && dev_walker); 1257 1258 if (of_node) { 1259 bool update = false; 1260 1261 if (phy_interface_is_rgmii(phydev)) { 1262 result = ksz9031_config_rgmii_delay(phydev); 1263 if (result < 0) 1264 return result; 1265 } 1266 1267 ksz9031_of_load_skew_values(phydev, of_node, 1268 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1269 clk_skews, 2, &update); 1270 1271 ksz9031_of_load_skew_values(phydev, of_node, 1272 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1273 control_skews, 2, &update); 1274 1275 ksz9031_of_load_skew_values(phydev, of_node, 1276 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1277 rx_data_skews, 4, &update); 1278 1279 ksz9031_of_load_skew_values(phydev, of_node, 1280 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1281 tx_data_skews, 4, &update); 1282 1283 if (update && !phy_interface_is_rgmii(phydev)) 1284 phydev_warn(phydev, 1285 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1286 1287 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1288 * When the device links in the 1000BASE-T slave mode only, 1289 * the optional 125MHz reference output clock (CLK125_NDO) 1290 * has wide duty cycle variation. 1291 * 1292 * The optional CLK125_NDO clock does not meet the RGMII 1293 * 45/55 percent (min/max) duty cycle requirement and therefore 1294 * cannot be used directly by the MAC side for clocking 1295 * applications that have setup/hold time requirements on 1296 * rising and falling clock edges. 1297 * 1298 * Workaround: 1299 * Force the phy to be the master to receive a stable clock 1300 * which meets the duty cycle requirement. 1301 */ 1302 if (of_property_read_bool(of_node, "micrel,force-master")) { 1303 result = phy_read(phydev, MII_CTRL1000); 1304 if (result < 0) 1305 goto err_force_master; 1306 1307 /* enable master mode, config & prefer master */ 1308 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1309 result = phy_write(phydev, MII_CTRL1000, result); 1310 if (result < 0) 1311 goto err_force_master; 1312 } 1313 } 1314 1315 return ksz9031_center_flp_timing(phydev); 1316 1317err_force_master: 1318 phydev_err(phydev, "failed to force the phy to master mode\n"); 1319 return result; 1320} 1321 1322#define KSZ9131_SKEW_5BIT_MAX 2400 1323#define KSZ9131_SKEW_4BIT_MAX 800 1324#define KSZ9131_OFFSET 700 1325#define KSZ9131_STEP 100 1326 1327static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1328 struct device_node *of_node, 1329 u16 reg, size_t field_sz, 1330 char *field[], u8 numfields) 1331{ 1332 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1333 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1334 int skewval, skewmax = 0; 1335 int matches = 0; 1336 u16 maxval; 1337 u16 newval; 1338 u16 mask; 1339 int i; 1340 1341 /* psec properties in dts should mean x pico seconds */ 1342 if (field_sz == 5) 1343 skewmax = KSZ9131_SKEW_5BIT_MAX; 1344 else 1345 skewmax = KSZ9131_SKEW_4BIT_MAX; 1346 1347 for (i = 0; i < numfields; i++) 1348 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1349 if (skewval < -KSZ9131_OFFSET) 1350 skewval = -KSZ9131_OFFSET; 1351 else if (skewval > skewmax) 1352 skewval = skewmax; 1353 1354 val[i] = skewval + KSZ9131_OFFSET; 1355 matches++; 1356 } 1357 1358 if (!matches) 1359 return 0; 1360 1361 if (matches < numfields) 1362 newval = phy_read_mmd(phydev, 2, reg); 1363 else 1364 newval = 0; 1365 1366 maxval = (field_sz == 4) ? 0xf : 0x1f; 1367 for (i = 0; i < numfields; i++) 1368 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1369 mask = 0xffff; 1370 mask ^= maxval << (field_sz * i); 1371 newval = (newval & mask) | 1372 (((val[i] / KSZ9131_STEP) & maxval) 1373 << (field_sz * i)); 1374 } 1375 1376 return phy_write_mmd(phydev, 2, reg, newval); 1377} 1378 1379#define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1380#define KSZ9131RN_RXC_DLL_CTRL 76 1381#define KSZ9131RN_TXC_DLL_CTRL 77 1382#define KSZ9131RN_DLL_ENABLE_DELAY 0 1383 1384static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1385{ 1386 const struct kszphy_type *type = phydev->drv->driver_data; 1387 u16 rxcdll_val, txcdll_val; 1388 int ret; 1389 1390 switch (phydev->interface) { 1391 case PHY_INTERFACE_MODE_RGMII: 1392 rxcdll_val = type->disable_dll_rx_bit; 1393 txcdll_val = type->disable_dll_tx_bit; 1394 break; 1395 case PHY_INTERFACE_MODE_RGMII_ID: 1396 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1397 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1398 break; 1399 case PHY_INTERFACE_MODE_RGMII_RXID: 1400 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1401 txcdll_val = type->disable_dll_tx_bit; 1402 break; 1403 case PHY_INTERFACE_MODE_RGMII_TXID: 1404 rxcdll_val = type->disable_dll_rx_bit; 1405 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1406 break; 1407 default: 1408 return 0; 1409 } 1410 1411 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1413 rxcdll_val); 1414 if (ret < 0) 1415 return ret; 1416 1417 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1418 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1419 txcdll_val); 1420} 1421 1422/* Silicon Errata DS80000693B 1423 * 1424 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1425 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1426 * according to the datasheet (off if there is no link). 1427 */ 1428static int ksz9131_led_errata(struct phy_device *phydev) 1429{ 1430 int reg; 1431 1432 reg = phy_read_mmd(phydev, 2, 0); 1433 if (reg < 0) 1434 return reg; 1435 1436 if (!(reg & BIT(4))) 1437 return 0; 1438 1439 return phy_set_bits(phydev, 0x1e, BIT(9)); 1440} 1441 1442static int ksz9131_config_init(struct phy_device *phydev) 1443{ 1444 struct device_node *of_node; 1445 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1446 char *rx_data_skews[4] = { 1447 "rxd0-skew-psec", "rxd1-skew-psec", 1448 "rxd2-skew-psec", "rxd3-skew-psec" 1449 }; 1450 char *tx_data_skews[4] = { 1451 "txd0-skew-psec", "txd1-skew-psec", 1452 "txd2-skew-psec", "txd3-skew-psec" 1453 }; 1454 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1455 const struct device *dev_walker; 1456 int ret; 1457 1458 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1459 1460 dev_walker = &phydev->mdio.dev; 1461 do { 1462 of_node = dev_walker->of_node; 1463 dev_walker = dev_walker->parent; 1464 } while (!of_node && dev_walker); 1465 1466 if (!of_node) 1467 return 0; 1468 1469 if (phy_interface_is_rgmii(phydev)) { 1470 ret = ksz9131_config_rgmii_delay(phydev); 1471 if (ret < 0) 1472 return ret; 1473 } 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1477 clk_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1483 control_skews, 2); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1489 rx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_of_load_skew_values(phydev, of_node, 1494 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1495 tx_data_skews, 4); 1496 if (ret < 0) 1497 return ret; 1498 1499 ret = ksz9131_led_errata(phydev); 1500 if (ret < 0) 1501 return ret; 1502 1503 return 0; 1504} 1505 1506#define MII_KSZ9131_AUTO_MDIX 0x1C 1507#define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1508#define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1509#define MII_KSZ9131_DIG_AXAN_STS 0x14 1510#define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1511#define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1512 1513static int ksz9131_mdix_update(struct phy_device *phydev) 1514{ 1515 int ret; 1516 1517 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1518 phydev->mdix = phydev->mdix_ctrl; 1519 } else { 1520 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1521 if (ret < 0) 1522 return ret; 1523 1524 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1525 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1526 phydev->mdix = ETH_TP_MDI; 1527 else 1528 phydev->mdix = ETH_TP_MDI_X; 1529 } else { 1530 phydev->mdix = ETH_TP_MDI_INVALID; 1531 } 1532 } 1533 1534 return 0; 1535} 1536 1537static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1538{ 1539 u16 val; 1540 1541 switch (ctrl) { 1542 case ETH_TP_MDI: 1543 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1544 MII_KSZ9131_AUTO_MDI_SET; 1545 break; 1546 case ETH_TP_MDI_X: 1547 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1548 break; 1549 case ETH_TP_MDI_AUTO: 1550 val = 0; 1551 break; 1552 default: 1553 return 0; 1554 } 1555 1556 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1557 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1558 MII_KSZ9131_AUTO_MDI_SET, val); 1559} 1560 1561static int ksz9131_read_status(struct phy_device *phydev) 1562{ 1563 int ret; 1564 1565 ret = ksz9131_mdix_update(phydev); 1566 if (ret < 0) 1567 return ret; 1568 1569 return genphy_read_status(phydev); 1570} 1571 1572static int ksz9131_config_aneg(struct phy_device *phydev) 1573{ 1574 int ret; 1575 1576 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1577 if (ret) 1578 return ret; 1579 1580 return genphy_config_aneg(phydev); 1581} 1582 1583static int ksz9477_get_features(struct phy_device *phydev) 1584{ 1585 int ret; 1586 1587 ret = genphy_read_abilities(phydev); 1588 if (ret) 1589 return ret; 1590 1591 /* The "EEE control and capability 1" (Register 3.20) seems to be 1592 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1593 * on the 7.60 will affect 3.20. So, we need to construct our own list 1594 * of caps. 1595 * KSZ8563R should have 100BaseTX/Full only. 1596 */ 1597 linkmode_and(phydev->supported_eee, phydev->supported, 1598 PHY_EEE_CAP1_FEATURES); 1599 1600 return 0; 1601} 1602 1603#define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1604#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1605#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1606static int ksz8873mll_read_status(struct phy_device *phydev) 1607{ 1608 int regval; 1609 1610 /* dummy read */ 1611 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1612 1613 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1614 1615 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1616 phydev->duplex = DUPLEX_HALF; 1617 else 1618 phydev->duplex = DUPLEX_FULL; 1619 1620 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1621 phydev->speed = SPEED_10; 1622 else 1623 phydev->speed = SPEED_100; 1624 1625 phydev->link = 1; 1626 phydev->pause = phydev->asym_pause = 0; 1627 1628 return 0; 1629} 1630 1631static int ksz9031_get_features(struct phy_device *phydev) 1632{ 1633 int ret; 1634 1635 ret = genphy_read_abilities(phydev); 1636 if (ret < 0) 1637 return ret; 1638 1639 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1640 * Whenever the device's Asymmetric Pause capability is set to 1, 1641 * link-up may fail after a link-up to link-down transition. 1642 * 1643 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1644 * 1645 * Workaround: 1646 * Do not enable the Asymmetric Pause capability bit. 1647 */ 1648 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1649 1650 /* We force setting the Pause capability as the core will force the 1651 * Asymmetric Pause capability to 1 otherwise. 1652 */ 1653 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1654 1655 return 0; 1656} 1657 1658static int ksz9031_read_status(struct phy_device *phydev) 1659{ 1660 int err; 1661 int regval; 1662 1663 err = genphy_read_status(phydev); 1664 if (err) 1665 return err; 1666 1667 /* Make sure the PHY is not broken. Read idle error count, 1668 * and reset the PHY if it is maxed out. 1669 */ 1670 regval = phy_read(phydev, MII_STAT1000); 1671 if ((regval & 0xFF) == 0xFF) { 1672 phy_init_hw(phydev); 1673 phydev->link = 0; 1674 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1675 phydev->drv->config_intr(phydev); 1676 return genphy_config_aneg(phydev); 1677 } 1678 1679 return 0; 1680} 1681 1682static int ksz9x31_cable_test_start(struct phy_device *phydev) 1683{ 1684 struct kszphy_priv *priv = phydev->priv; 1685 int ret; 1686 1687 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1688 * Prior to running the cable diagnostics, Auto-negotiation should 1689 * be disabled, full duplex set and the link speed set to 1000Mbps 1690 * via the Basic Control Register. 1691 */ 1692 ret = phy_modify(phydev, MII_BMCR, 1693 BMCR_SPEED1000 | BMCR_FULLDPLX | 1694 BMCR_ANENABLE | BMCR_SPEED100, 1695 BMCR_SPEED1000 | BMCR_FULLDPLX); 1696 if (ret) 1697 return ret; 1698 1699 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1700 * The Master-Slave configuration should be set to Slave by writing 1701 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1702 * Register. 1703 */ 1704 ret = phy_read(phydev, MII_CTRL1000); 1705 if (ret < 0) 1706 return ret; 1707 1708 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1709 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1710 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1711 ret |= CTL1000_ENABLE_MASTER; 1712 1713 return phy_write(phydev, MII_CTRL1000, ret); 1714} 1715 1716static int ksz9x31_cable_test_result_trans(u16 status) 1717{ 1718 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1719 case KSZ9x31_LMD_VCT_ST_NORMAL: 1720 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1721 case KSZ9x31_LMD_VCT_ST_OPEN: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1723 case KSZ9x31_LMD_VCT_ST_SHORT: 1724 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1725 case KSZ9x31_LMD_VCT_ST_FAIL: 1726 fallthrough; 1727 default: 1728 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1729 } 1730} 1731 1732static bool ksz9x31_cable_test_failed(u16 status) 1733{ 1734 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1735 1736 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1737} 1738 1739static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1740{ 1741 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1742 case KSZ9x31_LMD_VCT_ST_OPEN: 1743 fallthrough; 1744 case KSZ9x31_LMD_VCT_ST_SHORT: 1745 return true; 1746 } 1747 return false; 1748} 1749 1750static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1751{ 1752 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1753 1754 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1755 * 1756 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1757 */ 1758 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1759 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1760 dt = clamp(dt - 22, 0, 255); 1761 1762 return (dt * 400) / 10; 1763} 1764 1765static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1766{ 1767 int val, ret; 1768 1769 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1770 !(val & KSZ9x31_LMD_VCT_EN), 1771 30000, 100000, true); 1772 1773 return ret < 0 ? ret : 0; 1774} 1775 1776static int ksz9x31_cable_test_get_pair(int pair) 1777{ 1778 static const int ethtool_pair[] = { 1779 ETHTOOL_A_CABLE_PAIR_A, 1780 ETHTOOL_A_CABLE_PAIR_B, 1781 ETHTOOL_A_CABLE_PAIR_C, 1782 ETHTOOL_A_CABLE_PAIR_D, 1783 }; 1784 1785 return ethtool_pair[pair]; 1786} 1787 1788static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1789{ 1790 int ret, val; 1791 1792 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1793 * To test each individual cable pair, set the cable pair in the Cable 1794 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1795 * Diagnostic Register, along with setting the Cable Diagnostics Test 1796 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1797 * will self clear when the test is concluded. 1798 */ 1799 ret = phy_write(phydev, KSZ9x31_LMD, 1800 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1801 if (ret) 1802 return ret; 1803 1804 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1805 if (ret) 1806 return ret; 1807 1808 val = phy_read(phydev, KSZ9x31_LMD); 1809 if (val < 0) 1810 return val; 1811 1812 if (ksz9x31_cable_test_failed(val)) 1813 return -EAGAIN; 1814 1815 ret = ethnl_cable_test_result(phydev, 1816 ksz9x31_cable_test_get_pair(pair), 1817 ksz9x31_cable_test_result_trans(val)); 1818 if (ret) 1819 return ret; 1820 1821 if (!ksz9x31_cable_test_fault_length_valid(val)) 1822 return 0; 1823 1824 return ethnl_cable_test_fault_length(phydev, 1825 ksz9x31_cable_test_get_pair(pair), 1826 ksz9x31_cable_test_fault_length(phydev, val)); 1827} 1828 1829static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1830 bool *finished) 1831{ 1832 struct kszphy_priv *priv = phydev->priv; 1833 unsigned long pair_mask; 1834 int retries = 20; 1835 int pair, ret, rv; 1836 1837 *finished = false; 1838 1839 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1840 phydev->supported) || 1841 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1842 phydev->supported)) 1843 pair_mask = 0xf; /* All pairs */ 1844 else 1845 pair_mask = 0x3; /* Pairs A and B only */ 1846 1847 /* Try harder if link partner is active */ 1848 while (pair_mask && retries--) { 1849 for_each_set_bit(pair, &pair_mask, 4) { 1850 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1851 if (ret == -EAGAIN) 1852 continue; 1853 if (ret < 0) 1854 return ret; 1855 clear_bit(pair, &pair_mask); 1856 } 1857 /* If link partner is in autonegotiation mode it will send 2ms 1858 * of FLPs with at least 6ms of silence. 1859 * Add 2ms sleep to have better chances to hit this silence. 1860 */ 1861 if (pair_mask) 1862 usleep_range(2000, 3000); 1863 } 1864 1865 /* Report remaining unfinished pair result as unknown. */ 1866 for_each_set_bit(pair, &pair_mask, 4) { 1867 ret = ethnl_cable_test_result(phydev, 1868 ksz9x31_cable_test_get_pair(pair), 1869 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1870 } 1871 1872 *finished = true; 1873 1874 /* Restore cached bits from before LinkMD got started. */ 1875 rv = phy_modify(phydev, MII_CTRL1000, 1876 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1877 priv->vct_ctrl1000); 1878 if (rv) 1879 return rv; 1880 1881 return ret; 1882} 1883 1884static int ksz8873mll_config_aneg(struct phy_device *phydev) 1885{ 1886 return 0; 1887} 1888 1889static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1890{ 1891 u16 val; 1892 1893 switch (ctrl) { 1894 case ETH_TP_MDI: 1895 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1896 break; 1897 case ETH_TP_MDI_X: 1898 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1899 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1900 * sheet seems to be missing: 1901 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1902 * 0 = Normal operation (transmit on TX+/TX- pins) 1903 */ 1904 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1905 break; 1906 case ETH_TP_MDI_AUTO: 1907 val = 0; 1908 break; 1909 default: 1910 return 0; 1911 } 1912 1913 return phy_modify(phydev, MII_BMCR, 1914 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1915 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1916 KSZ886X_BMCR_HP_MDIX | val); 1917} 1918 1919static int ksz886x_config_aneg(struct phy_device *phydev) 1920{ 1921 int ret; 1922 1923 ret = genphy_config_aneg(phydev); 1924 if (ret) 1925 return ret; 1926 1927 if (phydev->autoneg != AUTONEG_ENABLE) { 1928 /* When autonegotiation is disabled, we need to manually force 1929 * the link state. If we don't do this, the PHY will keep 1930 * sending Fast Link Pulses (FLPs) which are part of the 1931 * autonegotiation process. This is not desired when 1932 * autonegotiation is off. 1933 */ 1934 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1935 KSZ886X_CTRL_FORCE_LINK); 1936 if (ret) 1937 return ret; 1938 } else { 1939 /* If we had previously forced the link state, we need to 1940 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1941 * will not perform autonegotiation. 1942 */ 1943 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1944 KSZ886X_CTRL_FORCE_LINK); 1945 if (ret) 1946 return ret; 1947 } 1948 1949 /* The MDI-X configuration is automatically changed by the PHY after 1950 * switching from autoneg off to on. So, take MDI-X configuration under 1951 * own control and set it after autoneg configuration was done. 1952 */ 1953 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1954} 1955 1956static int ksz886x_mdix_update(struct phy_device *phydev) 1957{ 1958 int ret; 1959 1960 ret = phy_read(phydev, MII_BMCR); 1961 if (ret < 0) 1962 return ret; 1963 1964 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1965 if (ret & KSZ886X_BMCR_FORCE_MDI) 1966 phydev->mdix_ctrl = ETH_TP_MDI_X; 1967 else 1968 phydev->mdix_ctrl = ETH_TP_MDI; 1969 } else { 1970 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1971 } 1972 1973 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1974 if (ret < 0) 1975 return ret; 1976 1977 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1978 if (ret & KSZ886X_CTRL_MDIX_STAT) 1979 phydev->mdix = ETH_TP_MDI_X; 1980 else 1981 phydev->mdix = ETH_TP_MDI; 1982 1983 return 0; 1984} 1985 1986static int ksz886x_read_status(struct phy_device *phydev) 1987{ 1988 int ret; 1989 1990 ret = ksz886x_mdix_update(phydev); 1991 if (ret < 0) 1992 return ret; 1993 1994 return genphy_read_status(phydev); 1995} 1996 1997static int ksz9477_mdix_update(struct phy_device *phydev) 1998{ 1999 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 2000 phydev->mdix = phydev->mdix_ctrl; 2001 else 2002 phydev->mdix = ETH_TP_MDI_INVALID; 2003 2004 return 0; 2005} 2006 2007static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2008{ 2009 int val; 2010 2011 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2012 if (val < 0) 2013 return val; 2014 2015 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2016 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2017 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2018 phydev->mdix_ctrl = ETH_TP_MDI; 2019 else 2020 phydev->mdix_ctrl = ETH_TP_MDI_X; 2021 2022 return 0; 2023} 2024 2025static int ksz9477_read_status(struct phy_device *phydev) 2026{ 2027 int ret; 2028 2029 ret = ksz9477_mdix_update(phydev); 2030 if (ret) 2031 return ret; 2032 2033 return genphy_read_status(phydev); 2034} 2035 2036static int ksz9477_config_aneg(struct phy_device *phydev) 2037{ 2038 int ret; 2039 2040 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2041 if (ret) 2042 return ret; 2043 2044 return genphy_config_aneg(phydev); 2045} 2046 2047struct ksz9477_errata_write { 2048 u8 dev_addr; 2049 u8 reg_addr; 2050 u16 val; 2051}; 2052 2053static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2054 /* Register settings are needed to improve PHY receive performance */ 2055 {0x01, 0x6f, 0xdd0b}, 2056 {0x01, 0x8f, 0x6032}, 2057 {0x01, 0x9d, 0x248c}, 2058 {0x01, 0x75, 0x0060}, 2059 {0x01, 0xd3, 0x7777}, 2060 {0x1c, 0x06, 0x3008}, 2061 {0x1c, 0x08, 0x2000}, 2062 2063 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2064 {0x1c, 0x04, 0x00d0}, 2065 2066 /* Register settings are required to meet data sheet supply current specifications */ 2067 {0x1c, 0x13, 0x6eff}, 2068 {0x1c, 0x14, 0xe6ff}, 2069 {0x1c, 0x15, 0x6eff}, 2070 {0x1c, 0x16, 0xe6ff}, 2071 {0x1c, 0x17, 0x00ff}, 2072 {0x1c, 0x18, 0x43ff}, 2073 {0x1c, 0x19, 0xc3ff}, 2074 {0x1c, 0x1a, 0x6fff}, 2075 {0x1c, 0x1b, 0x07ff}, 2076 {0x1c, 0x1c, 0x0fff}, 2077 {0x1c, 0x1d, 0xe7ff}, 2078 {0x1c, 0x1e, 0xefff}, 2079 {0x1c, 0x20, 0xeeee}, 2080}; 2081 2082static int ksz9477_phy_errata(struct phy_device *phydev) 2083{ 2084 int err; 2085 int i; 2086 2087 /* Apply PHY settings to address errata listed in 2088 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2089 * Silicon Errata and Data Sheet Clarification documents. 2090 * 2091 * Document notes: Before configuring the PHY MMD registers, it is 2092 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2093 * disabled by writing to register 0xN100-0xN101. After writing the 2094 * MMD registers, and after all errata workarounds that involve PHY 2095 * register settings, write register 0xN100-0xN101 again to enable 2096 * and restart auto-negotiation. 2097 */ 2098 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2099 if (err) 2100 return err; 2101 2102 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2103 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2104 2105 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2106 if (err) 2107 return err; 2108 } 2109 2110 return genphy_restart_aneg(phydev); 2111} 2112 2113static int ksz9477_config_init(struct phy_device *phydev) 2114{ 2115 int err; 2116 2117 /* Only KSZ9897 family of switches needs this fix. */ 2118 if ((phydev->phy_id & 0xf) == 1) { 2119 err = ksz9477_phy_errata(phydev); 2120 if (err) 2121 return err; 2122 } 2123 2124 /* Read initial MDI-X config state. So, we do not need to poll it 2125 * later on. 2126 */ 2127 err = ksz9477_read_mdix_ctrl(phydev); 2128 if (err) 2129 return err; 2130 2131 return kszphy_config_init(phydev); 2132} 2133 2134static int kszphy_get_sset_count(struct phy_device *phydev) 2135{ 2136 return ARRAY_SIZE(kszphy_hw_stats); 2137} 2138 2139static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2140{ 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2144 ethtool_puts(&data, kszphy_hw_stats[i].string); 2145} 2146 2147static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2148{ 2149 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2150 struct kszphy_priv *priv = phydev->priv; 2151 int val; 2152 u64 ret; 2153 2154 val = phy_read(phydev, stat.reg); 2155 if (val < 0) { 2156 ret = U64_MAX; 2157 } else { 2158 val = val & ((1 << stat.bits) - 1); 2159 priv->stats[i] += val; 2160 ret = priv->stats[i]; 2161 } 2162 2163 return ret; 2164} 2165 2166static void kszphy_get_stats(struct phy_device *phydev, 2167 struct ethtool_stats *stats, u64 *data) 2168{ 2169 int i; 2170 2171 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2172 data[i] = kszphy_get_stat(phydev, i); 2173} 2174 2175/* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2176 * etc. The counter is incremented when the PHY receives a frame with one or 2177 * more symbol errors. The counter is cleared when the register is read. 2178 */ 2179#define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2180 2181static int kszphy_update_stats(struct phy_device *phydev) 2182{ 2183 struct kszphy_priv *priv = phydev->priv; 2184 int ret; 2185 2186 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2187 if (ret < 0) 2188 return ret; 2189 2190 priv->phy_stats.rx_err_pkt_cnt += ret; 2191 2192 return 0; 2193} 2194 2195static void kszphy_get_phy_stats(struct phy_device *phydev, 2196 struct ethtool_eth_phy_stats *eth_stats, 2197 struct ethtool_phy_stats *stats) 2198{ 2199 struct kszphy_priv *priv = phydev->priv; 2200 2201 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2202} 2203 2204/* Base register for Signal Quality Indicator (SQI) - Channel A 2205 * 2206 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2207 * Register: 0xAC (Channel A) 2208 * Each channel (pair) has its own register: 2209 * Channel A: 0xAC 2210 * Channel B: 0xAD 2211 * Channel C: 0xAE 2212 * Channel D: 0xAF 2213 */ 2214#define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2215 2216/* SQI field mask for bits [14:8] 2217 * 2218 * SQI indicates relative quality of the signal. 2219 * A lower value indicates better signal quality. 2220 */ 2221#define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2222 2223#define KSZ9477_MAX_CHANNELS 4 2224#define KSZ9477_SQI_MAX 7 2225 2226/* Number of SQI samples to average for a stable result. 2227 * 2228 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2229 * For noisy environments, a minimum of 30–50 readings is recommended. 2230 */ 2231#define KSZ9477_SQI_SAMPLE_COUNT 40 2232 2233/* The hardware SQI register provides a raw value from 0-127, where a lower 2234 * value indicates better signal quality. However, empirical testing has 2235 * shown that only the 0-7 range is relevant for a functional link. A raw 2236 * value of 8 or higher was measured directly before link drop. This aligns 2237 * with the OPEN Alliance recommendation that SQI=0 should represent the 2238 * pre-failure state. 2239 * 2240 * This table provides a non-linear mapping from the useful raw hardware 2241 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2242 */ 2243static const u8 ksz_sqi_mapping[] = { 2244 7, /* raw 0 -> SQI 7 */ 2245 7, /* raw 1 -> SQI 7 */ 2246 6, /* raw 2 -> SQI 6 */ 2247 5, /* raw 3 -> SQI 5 */ 2248 4, /* raw 4 -> SQI 4 */ 2249 3, /* raw 5 -> SQI 3 */ 2250 2, /* raw 6 -> SQI 2 */ 2251 1, /* raw 7 -> SQI 1 */ 2252}; 2253 2254/** 2255 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2256 * @phydev: the PHY device 2257 * 2258 * This function reads and processes the raw Signal Quality Index from the 2259 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2260 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2261 * mapped to the standard 0-7 SQI scale via a lookup table. 2262 * 2263 * Return: SQI value (0–7), or a negative errno on failure. 2264 */ 2265static int kszphy_get_sqi(struct phy_device *phydev) 2266{ 2267 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2268 int worst_sqi = KSZ9477_SQI_MAX; 2269 int i, val, raw_sqi, ch; 2270 u8 channels; 2271 2272 /* Determine applicable channels based on link speed */ 2273 if (phydev->speed == SPEED_1000) 2274 channels = 4; 2275 else if (phydev->speed == SPEED_100) 2276 channels = 1; 2277 else 2278 return -EOPNOTSUPP; 2279 2280 /* Sample and accumulate SQI readings for each pair (currently only one). 2281 * 2282 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2283 * - The SQI register is updated every 2 µs. 2284 * - Values may fluctuate significantly, even in low-noise environments. 2285 * - For reliable estimation, average a minimum of 30–50 samples 2286 * (recommended for noisy environments) 2287 * - In noisy environments, individual readings are highly unreliable. 2288 * 2289 * We use 40 samples per pair with a delay of 3 µs between each 2290 * read to ensure new values are captured (2 µs update interval). 2291 */ 2292 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2293 for (ch = 0; ch < channels; ch++) { 2294 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2295 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2296 if (val < 0) 2297 return val; 2298 2299 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2300 sum[ch] += raw_sqi; 2301 2302 /* We communicate with the PHY via MDIO via SPI or 2303 * I2C, which is relatively slow. At least slower than 2304 * the update interval of the SQI register. 2305 * So, we can skip the delay between reads. 2306 */ 2307 } 2308 } 2309 2310 /* Calculate average for each channel and find the worst SQI */ 2311 for (ch = 0; ch < channels; ch++) { 2312 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2313 int mapped_sqi; 2314 2315 /* Handle the pre-fail/failed state first. */ 2316 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2317 mapped_sqi = 0; 2318 else 2319 /* Use the lookup table for the good signal range. */ 2320 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2321 2322 if (mapped_sqi < worst_sqi) 2323 worst_sqi = mapped_sqi; 2324 } 2325 2326 return worst_sqi; 2327} 2328 2329static int kszphy_get_sqi_max(struct phy_device *phydev) 2330{ 2331 return KSZ9477_SQI_MAX; 2332} 2333 2334static int kszphy_get_mse_capability(struct phy_device *phydev, 2335 struct phy_mse_capability *cap) 2336{ 2337 /* Capabilities depend on link mode: 2338 * - 1000BASE-T: per-pair SQI registers exist => expose A..D 2339 * and a WORST selector. 2340 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A" 2341 * register, but with auto MDI-X there is no MDI-X resolution bit, 2342 * so we cannot map that register to a specific wire pair reliably. 2343 * To avoid misleading per-channel data, advertise only LINK. 2344 * Other speeds: no MSE exposure via this driver. 2345 * 2346 * Note: WORST is *not* a hardware selector on this family. 2347 * We expose it because the driver computes it in software 2348 * by scanning per-channel readouts (A..D) and picking the 2349 * maximum average MSE. 2350 */ 2351 if (phydev->speed == SPEED_1000) 2352 cap->supported_caps = PHY_MSE_CAP_CHANNEL_A | 2353 PHY_MSE_CAP_CHANNEL_B | 2354 PHY_MSE_CAP_CHANNEL_C | 2355 PHY_MSE_CAP_CHANNEL_D | 2356 PHY_MSE_CAP_WORST_CHANNEL; 2357 else if (phydev->speed == SPEED_100) 2358 cap->supported_caps = PHY_MSE_CAP_LINK; 2359 else 2360 return -EOPNOTSUPP; 2361 2362 cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK); 2363 cap->refresh_rate_ps = 2000000; /* 2 us */ 2364 /* Estimated from link modulation (125 MBd per channel) and documented 2365 * refresh rate of 2 us 2366 */ 2367 cap->num_symbols = 250; 2368 2369 cap->supported_caps |= PHY_MSE_CAP_AVG; 2370 2371 return 0; 2372} 2373 2374static int kszphy_get_mse_snapshot(struct phy_device *phydev, 2375 enum phy_mse_channel channel, 2376 struct phy_mse_snapshot *snapshot) 2377{ 2378 u8 num_channels; 2379 int ret; 2380 2381 if (phydev->speed == SPEED_1000) 2382 num_channels = 4; 2383 else if (phydev->speed == SPEED_100) 2384 num_channels = 1; 2385 else 2386 return -EOPNOTSUPP; 2387 2388 if (channel == PHY_MSE_CHANNEL_WORST) { 2389 u32 worst_val = 0; 2390 int i; 2391 2392 /* WORST is implemented in software: select the maximum 2393 * average MSE across the available per-channel registers. 2394 * Only defined when multiple channels exist (1000BASE-T). 2395 */ 2396 if (num_channels < 2) 2397 return -EOPNOTSUPP; 2398 2399 for (i = 0; i < num_channels; i++) { 2400 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2401 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i); 2402 if (ret < 0) 2403 return ret; 2404 2405 ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2406 if (ret > worst_val) 2407 worst_val = ret; 2408 } 2409 snapshot->average_mse = worst_val; 2410 } else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) { 2411 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2412 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A); 2413 if (ret < 0) 2414 return ret; 2415 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2416 } else if (channel >= PHY_MSE_CHANNEL_A && 2417 channel <= PHY_MSE_CHANNEL_D) { 2418 /* Per-channel readouts are valid only for 1000BASE-T. */ 2419 if (phydev->speed != SPEED_1000) 2420 return -EOPNOTSUPP; 2421 2422 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2423 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel); 2424 if (ret < 0) 2425 return ret; 2426 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2427 } else { 2428 return -EOPNOTSUPP; 2429 } 2430 2431 return 0; 2432} 2433 2434static void kszphy_enable_clk(struct phy_device *phydev) 2435{ 2436 struct kszphy_priv *priv = phydev->priv; 2437 2438 if (!priv->clk_enable && priv->clk) { 2439 clk_prepare_enable(priv->clk); 2440 priv->clk_enable = true; 2441 } 2442} 2443 2444static void kszphy_disable_clk(struct phy_device *phydev) 2445{ 2446 struct kszphy_priv *priv = phydev->priv; 2447 2448 if (priv->clk_enable && priv->clk) { 2449 clk_disable_unprepare(priv->clk); 2450 priv->clk_enable = false; 2451 } 2452} 2453 2454static int kszphy_generic_resume(struct phy_device *phydev) 2455{ 2456 kszphy_enable_clk(phydev); 2457 2458 return genphy_resume(phydev); 2459} 2460 2461static int kszphy_generic_suspend(struct phy_device *phydev) 2462{ 2463 int ret; 2464 2465 ret = genphy_suspend(phydev); 2466 if (ret) 2467 return ret; 2468 2469 kszphy_disable_clk(phydev); 2470 2471 return 0; 2472} 2473 2474static int kszphy_suspend(struct phy_device *phydev) 2475{ 2476 /* Disable PHY Interrupts */ 2477 if (phy_interrupt_is_valid(phydev)) { 2478 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2479 if (phydev->drv->config_intr) 2480 phydev->drv->config_intr(phydev); 2481 } 2482 2483 return kszphy_generic_suspend(phydev); 2484} 2485 2486static void kszphy_parse_led_mode(struct phy_device *phydev) 2487{ 2488 const struct kszphy_type *type = phydev->drv->driver_data; 2489 const struct device_node *np = phydev->mdio.dev.of_node; 2490 struct kszphy_priv *priv = phydev->priv; 2491 int ret; 2492 2493 if (type && type->led_mode_reg) { 2494 ret = of_property_read_u32(np, "micrel,led-mode", 2495 &priv->led_mode); 2496 2497 if (ret) 2498 priv->led_mode = -1; 2499 2500 if (priv->led_mode > 3) { 2501 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2502 priv->led_mode); 2503 priv->led_mode = -1; 2504 } 2505 } else { 2506 priv->led_mode = -1; 2507 } 2508} 2509 2510static int kszphy_resume(struct phy_device *phydev) 2511{ 2512 int ret; 2513 2514 ret = kszphy_generic_resume(phydev); 2515 if (ret) 2516 return ret; 2517 2518 /* After switching from power-down to normal mode, an internal global 2519 * reset is automatically generated. Wait a minimum of 1 ms before 2520 * read/write access to the PHY registers. 2521 */ 2522 usleep_range(1000, 2000); 2523 2524 ret = kszphy_config_reset(phydev); 2525 if (ret) 2526 return ret; 2527 2528 /* Enable PHY Interrupts */ 2529 if (phy_interrupt_is_valid(phydev)) { 2530 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2531 if (phydev->drv->config_intr) 2532 phydev->drv->config_intr(phydev); 2533 } 2534 2535 return 0; 2536} 2537 2538/* Because of errata DS80000700A, receiver error following software 2539 * power down. Suspend and resume callbacks only disable and enable 2540 * external rmii reference clock. 2541 */ 2542static int ksz8041_resume(struct phy_device *phydev) 2543{ 2544 kszphy_enable_clk(phydev); 2545 2546 return 0; 2547} 2548 2549static int ksz8041_suspend(struct phy_device *phydev) 2550{ 2551 kszphy_disable_clk(phydev); 2552 2553 return 0; 2554} 2555 2556static int ksz9477_resume(struct phy_device *phydev) 2557{ 2558 int ret; 2559 2560 /* No need to initialize registers if not powered down. */ 2561 ret = phy_read(phydev, MII_BMCR); 2562 if (ret < 0) 2563 return ret; 2564 if (!(ret & BMCR_PDOWN)) 2565 return 0; 2566 2567 genphy_resume(phydev); 2568 2569 /* After switching from power-down to normal mode, an internal global 2570 * reset is automatically generated. Wait a minimum of 1 ms before 2571 * read/write access to the PHY registers. 2572 */ 2573 usleep_range(1000, 2000); 2574 2575 /* Only KSZ9897 family of switches needs this fix. */ 2576 if ((phydev->phy_id & 0xf) == 1) { 2577 ret = ksz9477_phy_errata(phydev); 2578 if (ret) 2579 return ret; 2580 } 2581 2582 /* Enable PHY Interrupts */ 2583 if (phy_interrupt_is_valid(phydev)) { 2584 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2585 if (phydev->drv->config_intr) 2586 phydev->drv->config_intr(phydev); 2587 } 2588 2589 return 0; 2590} 2591 2592static int ksz8061_resume(struct phy_device *phydev) 2593{ 2594 int ret; 2595 2596 /* This function can be called twice when the Ethernet device is on. */ 2597 ret = phy_read(phydev, MII_BMCR); 2598 if (ret < 0) 2599 return ret; 2600 if (!(ret & BMCR_PDOWN)) 2601 return 0; 2602 2603 ret = kszphy_generic_resume(phydev); 2604 if (ret) 2605 return ret; 2606 2607 usleep_range(1000, 2000); 2608 2609 /* Re-program the value after chip is reset. */ 2610 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2611 if (ret) 2612 return ret; 2613 2614 /* Enable PHY Interrupts */ 2615 if (phy_interrupt_is_valid(phydev)) { 2616 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2617 if (phydev->drv->config_intr) 2618 phydev->drv->config_intr(phydev); 2619 } 2620 2621 return 0; 2622} 2623 2624static int ksz8061_suspend(struct phy_device *phydev) 2625{ 2626 return kszphy_suspend(phydev); 2627} 2628 2629static int kszphy_probe(struct phy_device *phydev) 2630{ 2631 const struct kszphy_type *type = phydev->drv->driver_data; 2632 const struct device_node *np = phydev->mdio.dev.of_node; 2633 struct kszphy_priv *priv; 2634 struct clk *clk; 2635 2636 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2637 if (!priv) 2638 return -ENOMEM; 2639 2640 phydev->priv = priv; 2641 2642 priv->type = type; 2643 2644 kszphy_parse_led_mode(phydev); 2645 2646 clk = devm_clk_get_optional(&phydev->mdio.dev, "rmii-ref"); 2647 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2648 if (!IS_ERR_OR_NULL(clk)) { 2649 bool rmii_ref_clk_sel_25_mhz; 2650 unsigned long rate; 2651 int err; 2652 2653 err = clk_prepare_enable(clk); 2654 if (err) { 2655 phydev_err(phydev, "Failed to enable rmii-ref clock\n"); 2656 return err; 2657 } 2658 2659 rate = clk_get_rate(clk); 2660 clk_disable_unprepare(clk); 2661 2662 if (type) 2663 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2664 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2665 "micrel,rmii-reference-clock-select-25-mhz"); 2666 2667 if (rate > 24500000 && rate < 25500000) { 2668 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2669 } else if (rate > 49500000 && rate < 50500000) { 2670 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2671 } else { 2672 phydev_err(phydev, "Clock rate out of range: %ld\n", 2673 rate); 2674 return -EINVAL; 2675 } 2676 } else if (!clk) { 2677 /* unnamed clock from the generic ethernet-phy binding */ 2678 clk = devm_clk_get_optional(&phydev->mdio.dev, NULL); 2679 } 2680 2681 if (IS_ERR(clk)) 2682 return PTR_ERR(clk); 2683 2684 priv->clk = clk; 2685 2686 if (ksz8041_fiber_mode(phydev)) 2687 phydev->port = PORT_FIBRE; 2688 2689 /* Support legacy board-file configuration */ 2690 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2691 priv->rmii_ref_clk_sel = true; 2692 priv->rmii_ref_clk_sel_val = true; 2693 } 2694 2695 return 0; 2696} 2697 2698static int lan8814_cable_test_start(struct phy_device *phydev) 2699{ 2700 /* If autoneg is enabled, we won't be able to test cross pair 2701 * short. In this case, the PHY will "detect" a link and 2702 * confuse the internal state machine - disable auto neg here. 2703 * Set the speed to 1000mbit and full duplex. 2704 */ 2705 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2706 BMCR_SPEED1000 | BMCR_FULLDPLX); 2707} 2708 2709static int ksz886x_cable_test_start(struct phy_device *phydev) 2710{ 2711 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2712 return -EOPNOTSUPP; 2713 2714 /* If autoneg is enabled, we won't be able to test cross pair 2715 * short. In this case, the PHY will "detect" a link and 2716 * confuse the internal state machine - disable auto neg here. 2717 * If autoneg is disabled, we should set the speed to 10mbit. 2718 */ 2719 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2720} 2721 2722static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2723{ 2724 switch (FIELD_GET(mask, status)) { 2725 case KSZ8081_LMD_STAT_NORMAL: 2726 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2727 case KSZ8081_LMD_STAT_SHORT: 2728 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2729 case KSZ8081_LMD_STAT_OPEN: 2730 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2731 case KSZ8081_LMD_STAT_FAIL: 2732 fallthrough; 2733 default: 2734 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2735 } 2736} 2737 2738static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2739{ 2740 return FIELD_GET(mask, status) == 2741 KSZ8081_LMD_STAT_FAIL; 2742} 2743 2744static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2745{ 2746 switch (FIELD_GET(mask, status)) { 2747 case KSZ8081_LMD_STAT_OPEN: 2748 fallthrough; 2749 case KSZ8081_LMD_STAT_SHORT: 2750 return true; 2751 } 2752 return false; 2753} 2754 2755static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2756 u16 status, u16 data_mask) 2757{ 2758 int dt; 2759 2760 /* According to the data sheet the distance to the fault is 2761 * DELTA_TIME * 0.4 meters for ksz phys. 2762 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2763 */ 2764 dt = FIELD_GET(data_mask, status); 2765 2766 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2767 return ((dt - 22) * 800) / 10; 2768 else 2769 return (dt * 400) / 10; 2770} 2771 2772static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2773{ 2774 const struct kszphy_type *type = phydev->drv->driver_data; 2775 int val, ret; 2776 2777 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2778 !(val & KSZ8081_LMD_ENABLE_TEST), 2779 30000, 100000, true); 2780 2781 return ret < 0 ? ret : 0; 2782} 2783 2784static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2785{ 2786 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2787 ETHTOOL_A_CABLE_PAIR_B, 2788 ETHTOOL_A_CABLE_PAIR_C, 2789 ETHTOOL_A_CABLE_PAIR_D, 2790 }; 2791 u32 fault_length; 2792 int ret; 2793 int val; 2794 2795 val = KSZ8081_LMD_ENABLE_TEST; 2796 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2797 2798 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2799 if (ret < 0) 2800 return ret; 2801 2802 ret = ksz886x_cable_test_wait_for_completion(phydev); 2803 if (ret) 2804 return ret; 2805 2806 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2807 if (val < 0) 2808 return val; 2809 2810 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2811 return -EAGAIN; 2812 2813 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2814 ksz886x_cable_test_result_trans(val, 2815 LAN8814_CABLE_DIAG_STAT_MASK 2816 )); 2817 if (ret) 2818 return ret; 2819 2820 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2821 return 0; 2822 2823 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2824 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2825 2826 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2827} 2828 2829static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2830{ 2831 static const int ethtool_pair[] = { 2832 ETHTOOL_A_CABLE_PAIR_A, 2833 ETHTOOL_A_CABLE_PAIR_B, 2834 }; 2835 int ret, val, mdix; 2836 u32 fault_length; 2837 2838 /* There is no way to choice the pair, like we do one ksz9031. 2839 * We can workaround this limitation by using the MDI-X functionality. 2840 */ 2841 if (pair == 0) 2842 mdix = ETH_TP_MDI; 2843 else 2844 mdix = ETH_TP_MDI_X; 2845 2846 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2847 case PHY_ID_KSZ8081: 2848 ret = ksz8081_config_mdix(phydev, mdix); 2849 break; 2850 case PHY_ID_KSZ886X: 2851 ret = ksz886x_config_mdix(phydev, mdix); 2852 break; 2853 default: 2854 ret = -ENODEV; 2855 } 2856 2857 if (ret) 2858 return ret; 2859 2860 /* Now we are ready to fire. This command will send a 100ns pulse 2861 * to the pair. 2862 */ 2863 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2864 if (ret) 2865 return ret; 2866 2867 ret = ksz886x_cable_test_wait_for_completion(phydev); 2868 if (ret) 2869 return ret; 2870 2871 val = phy_read(phydev, KSZ8081_LMD); 2872 if (val < 0) 2873 return val; 2874 2875 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2876 return -EAGAIN; 2877 2878 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2879 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2880 if (ret) 2881 return ret; 2882 2883 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2884 return 0; 2885 2886 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2887 2888 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2889} 2890 2891static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2892 bool *finished) 2893{ 2894 const struct kszphy_type *type = phydev->drv->driver_data; 2895 unsigned long pair_mask = type->pair_mask; 2896 int retries = 20; 2897 int ret = 0; 2898 int pair; 2899 2900 *finished = false; 2901 2902 /* Try harder if link partner is active */ 2903 while (pair_mask && retries--) { 2904 for_each_set_bit(pair, &pair_mask, 4) { 2905 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2906 ret = lan8814_cable_test_one_pair(phydev, pair); 2907 else 2908 ret = ksz886x_cable_test_one_pair(phydev, pair); 2909 if (ret == -EAGAIN) 2910 continue; 2911 if (ret < 0) 2912 return ret; 2913 clear_bit(pair, &pair_mask); 2914 } 2915 /* If link partner is in autonegotiation mode it will send 2ms 2916 * of FLPs with at least 6ms of silence. 2917 * Add 2ms sleep to have better chances to hit this silence. 2918 */ 2919 if (pair_mask) 2920 msleep(2); 2921 } 2922 2923 *finished = true; 2924 2925 return ret; 2926} 2927 2928/** 2929 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2930 * 2931 * This page contains timers used for auto-negotiation, debug registers and 2932 * register to configure fast link failure. 2933 */ 2934#define LAN8814_PAGE_PCS 0 2935 2936/** 2937 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2938 * 2939 * This page appears to control the Analog Front-End (AFE) and Physical 2940 * Medium Attachment (PMA) layers. It is used to access registers like 2941 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2942 */ 2943#define LAN8814_PAGE_AFE_PMA 1 2944 2945/** 2946 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2947 * 2948 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2949 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2950 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2951 * and self-test counters in the LAN8842. 2952 */ 2953#define LAN8814_PAGE_PCS_DIGITAL 2 2954 2955/** 2956 * LAN8814_PAGE_EEE - Selects Extended Page 3. 2957 * 2958 * This page contains EEE registers 2959 */ 2960#define LAN8814_PAGE_EEE 3 2961 2962/** 2963 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2964 * 2965 * This page contains device-common registers that affect the entire chip. 2966 * It includes controls for chip-level resets, strap status, GPIO, 2967 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2968 */ 2969#define LAN8814_PAGE_COMMON_REGS 4 2970 2971/** 2972 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2973 * 2974 * This page contains port-specific registers that must be accessed 2975 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2976 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2977 */ 2978#define LAN8814_PAGE_PORT_REGS 5 2979 2980/** 2981 * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28. 2982 * 2983 * This page contains analog control registers and power mode registers. 2984 */ 2985#define LAN8814_PAGE_POWER_REGS 28 2986 2987/** 2988 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2989 * 2990 * This page appears to hold fundamental system or global controls. In the 2991 * driver, it is used by the related LAN8804 to access the 2992 * LAN8814_CLOCK_MANAGEMENT register. 2993 */ 2994#define LAN8814_PAGE_SYSTEM_CTRL 31 2995 2996#define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2997#define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2998#define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2999 3000#define LAN8814_QSGMII_TX_CONFIG 0x35 3001#define LAN8814_QSGMII_TX_CONFIG_QSGMII BIT(3) 3002#define LAN8814_QSGMII_SOFT_RESET 0x43 3003#define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 3004#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 3005#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 3006#define LAN8814_ALIGN_SWAP 0x4a 3007#define LAN8814_ALIGN_TX_A_B_SWAP 0x1 3008#define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3009 3010#define LAN8804_ALIGN_SWAP 0x4a 3011#define LAN8804_ALIGN_TX_A_B_SWAP 0x1 3012#define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3013#define LAN8814_CLOCK_MANAGEMENT 0xd 3014#define LAN8814_LINK_QUALITY 0x8e 3015 3016static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 3017{ 3018 int data; 3019 3020 phy_lock_mdio_bus(phydev); 3021 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3022 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3023 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3024 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3025 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 3026 phy_unlock_mdio_bus(phydev); 3027 3028 return data; 3029} 3030 3031static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 3032 u16 val) 3033{ 3034 phy_lock_mdio_bus(phydev); 3035 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3036 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3037 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3038 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 3039 3040 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 3041 if (val != 0) 3042 phydev_err(phydev, "Error: phy_write has returned error %d\n", 3043 val); 3044 phy_unlock_mdio_bus(phydev); 3045 return val; 3046} 3047 3048static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 3049 u16 mask, u16 set) 3050{ 3051 int ret; 3052 3053 phy_lock_mdio_bus(phydev); 3054 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3055 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3056 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3057 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3058 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 3059 mask, set); 3060 phy_unlock_mdio_bus(phydev); 3061 3062 if (ret < 0) 3063 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 3064 ERR_PTR(ret)); 3065 3066 return ret; 3067} 3068 3069static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 3070{ 3071 u16 val = 0; 3072 3073 if (enable) 3074 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 3075 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 3076 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 3077 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 3078 3079 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3080 PTP_TSU_INT_EN, val); 3081} 3082 3083static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 3084 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3085{ 3086 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3087 PTP_RX_INGRESS_SEC_HI); 3088 *seconds = (*seconds << 16) | 3089 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3090 PTP_RX_INGRESS_SEC_LO); 3091 3092 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3093 PTP_RX_INGRESS_NS_HI); 3094 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3095 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3096 PTP_RX_INGRESS_NS_LO); 3097 3098 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3099 PTP_RX_MSG_HEADER2); 3100} 3101 3102static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 3103 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3104{ 3105 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3106 PTP_TX_EGRESS_SEC_HI); 3107 *seconds = *seconds << 16 | 3108 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3109 PTP_TX_EGRESS_SEC_LO); 3110 3111 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3112 PTP_TX_EGRESS_NS_HI); 3113 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3114 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3115 PTP_TX_EGRESS_NS_LO); 3116 3117 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3118 PTP_TX_MSG_HEADER2); 3119} 3120 3121static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 3122{ 3123 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3124 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 3125 3126 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3127 SOF_TIMESTAMPING_RX_HARDWARE | 3128 SOF_TIMESTAMPING_RAW_HARDWARE; 3129 3130 info->phc_index = ptp_clock_index(shared->ptp_clock); 3131 3132 info->tx_types = 3133 (1 << HWTSTAMP_TX_OFF) | 3134 (1 << HWTSTAMP_TX_ON) | 3135 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3136 3137 info->rx_filters = 3138 (1 << HWTSTAMP_FILTER_NONE) | 3139 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3140 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3141 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3142 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3143 3144 return 0; 3145} 3146 3147static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3148{ 3149 int i; 3150 3151 for (i = 0; i < FIFO_SIZE; ++i) 3152 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3153 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3154 3155 /* Read to clear overflow status bit */ 3156 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3157} 3158 3159static int lan8814_hwtstamp_set(struct mii_timestamper *mii_ts, 3160 struct kernel_hwtstamp_config *config, 3161 struct netlink_ext_ack *extack) 3162{ 3163 struct kszphy_ptp_priv *ptp_priv = 3164 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3165 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3166 int txcfg = 0, rxcfg = 0; 3167 int pkt_ts_enable; 3168 3169 ptp_priv->hwts_tx_type = config->tx_type; 3170 ptp_priv->rx_filter = config->rx_filter; 3171 3172 switch (config->rx_filter) { 3173 case HWTSTAMP_FILTER_NONE: 3174 ptp_priv->layer = 0; 3175 ptp_priv->version = 0; 3176 break; 3177 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3178 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3179 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3180 ptp_priv->layer = PTP_CLASS_L4; 3181 ptp_priv->version = PTP_CLASS_V2; 3182 break; 3183 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3184 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3185 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3186 ptp_priv->layer = PTP_CLASS_L2; 3187 ptp_priv->version = PTP_CLASS_V2; 3188 break; 3189 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3190 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3191 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3192 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3193 ptp_priv->version = PTP_CLASS_V2; 3194 break; 3195 default: 3196 return -ERANGE; 3197 } 3198 3199 if (ptp_priv->layer & PTP_CLASS_L2) { 3200 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3201 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3202 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3203 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3204 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3205 } 3206 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3207 PTP_RX_PARSE_CONFIG, rxcfg); 3208 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3209 PTP_TX_PARSE_CONFIG, txcfg); 3210 3211 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3212 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3213 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3214 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3215 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3216 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3217 3218 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3219 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3220 PTP_TX_MOD, 3221 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3222 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3223 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3224 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3225 PTP_TX_MOD, 3226 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3227 0); 3228 } 3229 3230 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3231 lan8814_config_ts_intr(ptp_priv->phydev, true); 3232 else 3233 lan8814_config_ts_intr(ptp_priv->phydev, false); 3234 3235 /* In case of multiple starts and stops, these needs to be cleared */ 3236 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3237 list_del(&rx_ts->list); 3238 kfree(rx_ts); 3239 } 3240 skb_queue_purge(&ptp_priv->rx_queue); 3241 skb_queue_purge(&ptp_priv->tx_queue); 3242 3243 lan8814_flush_fifo(ptp_priv->phydev, false); 3244 lan8814_flush_fifo(ptp_priv->phydev, true); 3245 3246 return 0; 3247} 3248 3249static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3250 struct sk_buff *skb, int type) 3251{ 3252 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3253 3254 switch (ptp_priv->hwts_tx_type) { 3255 case HWTSTAMP_TX_ONESTEP_SYNC: 3256 if (ptp_msg_is_sync(skb, type)) { 3257 kfree_skb(skb); 3258 return; 3259 } 3260 fallthrough; 3261 case HWTSTAMP_TX_ON: 3262 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3263 skb_queue_tail(&ptp_priv->tx_queue, skb); 3264 break; 3265 case HWTSTAMP_TX_OFF: 3266 default: 3267 kfree_skb(skb); 3268 break; 3269 } 3270} 3271 3272static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3273{ 3274 struct ptp_header *ptp_header; 3275 u32 type; 3276 3277 skb_push(skb, ETH_HLEN); 3278 type = ptp_classify_raw(skb); 3279 ptp_header = ptp_parse_header(skb, type); 3280 skb_pull_inline(skb, ETH_HLEN); 3281 3282 if (!ptp_header) 3283 return false; 3284 3285 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3286 return true; 3287} 3288 3289static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3290 struct sk_buff *skb) 3291{ 3292 struct skb_shared_hwtstamps *shhwtstamps; 3293 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3294 unsigned long flags; 3295 bool ret = false; 3296 u16 skb_sig; 3297 3298 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3299 return ret; 3300 3301 /* Iterate over all RX timestamps and match it with the received skbs */ 3302 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3303 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3304 /* Check if we found the signature we were looking for. */ 3305 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3306 continue; 3307 3308 shhwtstamps = skb_hwtstamps(skb); 3309 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3310 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3311 rx_ts->nsec); 3312 list_del(&rx_ts->list); 3313 kfree(rx_ts); 3314 3315 ret = true; 3316 break; 3317 } 3318 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3319 3320 if (ret) 3321 netif_rx(skb); 3322 return ret; 3323} 3324 3325static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3326{ 3327 struct kszphy_ptp_priv *ptp_priv = 3328 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3329 3330 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3331 type == PTP_CLASS_NONE) 3332 return false; 3333 3334 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3335 return false; 3336 3337 /* If we failed to match then add it to the queue for when the timestamp 3338 * will come 3339 */ 3340 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3341 skb_queue_tail(&ptp_priv->rx_queue, skb); 3342 3343 return true; 3344} 3345 3346static void lan8814_ptp_clock_set(struct phy_device *phydev, 3347 time64_t sec, u32 nsec) 3348{ 3349 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3350 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3351 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3352 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3353 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3354 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3355 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3356 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3357 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3358 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3359 3360 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3361 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3362} 3363 3364static void lan8814_ptp_clock_get(struct phy_device *phydev, 3365 time64_t *sec, u32 *nsec) 3366{ 3367 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3368 PTP_CMD_CTL_PTP_CLOCK_READ_); 3369 3370 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3371 PTP_CLOCK_READ_SEC_HI); 3372 *sec <<= 16; 3373 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3374 PTP_CLOCK_READ_SEC_MID); 3375 *sec <<= 16; 3376 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3377 PTP_CLOCK_READ_SEC_LO); 3378 3379 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3380 PTP_CLOCK_READ_NS_HI); 3381 *nsec <<= 16; 3382 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3383 PTP_CLOCK_READ_NS_LO); 3384} 3385 3386static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3387 struct timespec64 *ts) 3388{ 3389 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3390 ptp_clock_info); 3391 struct phy_device *phydev = shared->phydev; 3392 u32 nano_seconds; 3393 time64_t seconds; 3394 3395 mutex_lock(&shared->shared_lock); 3396 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3397 mutex_unlock(&shared->shared_lock); 3398 ts->tv_sec = seconds; 3399 ts->tv_nsec = nano_seconds; 3400 3401 return 0; 3402} 3403 3404static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3405 const struct timespec64 *ts) 3406{ 3407 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3408 ptp_clock_info); 3409 struct phy_device *phydev = shared->phydev; 3410 3411 mutex_lock(&shared->shared_lock); 3412 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3413 mutex_unlock(&shared->shared_lock); 3414 3415 return 0; 3416} 3417 3418static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3419 s64 start_sec, u32 start_nsec) 3420{ 3421 /* Set the start time */ 3422 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3423 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3424 lower_16_bits(start_sec)); 3425 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3426 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3427 upper_16_bits(start_sec)); 3428 3429 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3430 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3431 lower_16_bits(start_nsec)); 3432 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3433 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3434 upper_16_bits(start_nsec) & 0x3fff); 3435} 3436 3437static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3438{ 3439 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3440 sec + LAN8814_BUFFER_TIME, 0); 3441 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3442 sec + LAN8814_BUFFER_TIME, 0); 3443} 3444 3445static void lan8814_ptp_clock_step(struct phy_device *phydev, 3446 s64 time_step_ns) 3447{ 3448 u32 nano_seconds_step; 3449 u64 abs_time_step_ns; 3450 time64_t set_seconds; 3451 u32 nano_seconds; 3452 u32 remainder; 3453 s32 seconds; 3454 3455 if (time_step_ns > 15000000000LL) { 3456 /* convert to clock set */ 3457 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3458 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3459 &remainder); 3460 nano_seconds += remainder; 3461 if (nano_seconds >= 1000000000) { 3462 set_seconds++; 3463 nano_seconds -= 1000000000; 3464 } 3465 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3466 lan8814_ptp_update_target(phydev, set_seconds); 3467 return; 3468 } else if (time_step_ns < -15000000000LL) { 3469 /* convert to clock set */ 3470 time_step_ns = -time_step_ns; 3471 3472 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3473 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3474 &remainder); 3475 nano_seconds_step = remainder; 3476 if (nano_seconds < nano_seconds_step) { 3477 set_seconds--; 3478 nano_seconds += 1000000000; 3479 } 3480 nano_seconds -= nano_seconds_step; 3481 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3482 lan8814_ptp_update_target(phydev, set_seconds); 3483 return; 3484 } 3485 3486 /* do clock step */ 3487 if (time_step_ns >= 0) { 3488 abs_time_step_ns = (u64)time_step_ns; 3489 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3490 &remainder); 3491 nano_seconds = remainder; 3492 } else { 3493 abs_time_step_ns = (u64)(-time_step_ns); 3494 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3495 &remainder)); 3496 nano_seconds = remainder; 3497 if (nano_seconds > 0) { 3498 /* subtracting nano seconds is not allowed 3499 * convert to subtracting from seconds, 3500 * and adding to nanoseconds 3501 */ 3502 seconds--; 3503 nano_seconds = (1000000000 - nano_seconds); 3504 } 3505 } 3506 3507 if (nano_seconds > 0) { 3508 /* add 8 ns to cover the likely normal increment */ 3509 nano_seconds += 8; 3510 } 3511 3512 if (nano_seconds >= 1000000000) { 3513 /* carry into seconds */ 3514 seconds++; 3515 nano_seconds -= 1000000000; 3516 } 3517 3518 while (seconds) { 3519 u32 nsec; 3520 3521 if (seconds > 0) { 3522 u32 adjustment_value = (u32)seconds; 3523 u16 adjustment_value_lo, adjustment_value_hi; 3524 3525 if (adjustment_value > 0xF) 3526 adjustment_value = 0xF; 3527 3528 adjustment_value_lo = adjustment_value & 0xffff; 3529 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3530 3531 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3532 PTP_LTC_STEP_ADJ_LO, 3533 adjustment_value_lo); 3534 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3535 PTP_LTC_STEP_ADJ_HI, 3536 PTP_LTC_STEP_ADJ_DIR_ | 3537 adjustment_value_hi); 3538 seconds -= ((s32)adjustment_value); 3539 3540 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3541 set_seconds -= adjustment_value; 3542 lan8814_ptp_update_target(phydev, set_seconds); 3543 } else { 3544 u32 adjustment_value = (u32)(-seconds); 3545 u16 adjustment_value_lo, adjustment_value_hi; 3546 3547 if (adjustment_value > 0xF) 3548 adjustment_value = 0xF; 3549 3550 adjustment_value_lo = adjustment_value & 0xffff; 3551 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3552 3553 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3554 PTP_LTC_STEP_ADJ_LO, 3555 adjustment_value_lo); 3556 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3557 PTP_LTC_STEP_ADJ_HI, 3558 adjustment_value_hi); 3559 seconds += ((s32)adjustment_value); 3560 3561 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3562 set_seconds += adjustment_value; 3563 lan8814_ptp_update_target(phydev, set_seconds); 3564 } 3565 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3566 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3567 } 3568 if (nano_seconds) { 3569 u16 nano_seconds_lo; 3570 u16 nano_seconds_hi; 3571 3572 nano_seconds_lo = nano_seconds & 0xffff; 3573 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3574 3575 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3576 PTP_LTC_STEP_ADJ_LO, 3577 nano_seconds_lo); 3578 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3579 PTP_LTC_STEP_ADJ_HI, 3580 PTP_LTC_STEP_ADJ_DIR_ | 3581 nano_seconds_hi); 3582 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3583 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3584 } 3585} 3586 3587static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3588{ 3589 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3590 ptp_clock_info); 3591 struct phy_device *phydev = shared->phydev; 3592 3593 mutex_lock(&shared->shared_lock); 3594 lan8814_ptp_clock_step(phydev, delta); 3595 mutex_unlock(&shared->shared_lock); 3596 3597 return 0; 3598} 3599 3600static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3601{ 3602 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3603 ptp_clock_info); 3604 struct phy_device *phydev = shared->phydev; 3605 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3606 bool positive = true; 3607 u32 kszphy_rate_adj; 3608 3609 if (scaled_ppm < 0) { 3610 scaled_ppm = -scaled_ppm; 3611 positive = false; 3612 } 3613 3614 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3615 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3616 3617 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3618 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3619 3620 if (positive) 3621 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3622 3623 mutex_lock(&shared->shared_lock); 3624 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3625 kszphy_rate_adj_hi); 3626 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3627 kszphy_rate_adj_lo); 3628 mutex_unlock(&shared->shared_lock); 3629 3630 return 0; 3631} 3632 3633static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3634 s64 period_sec, u32 period_nsec) 3635{ 3636 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3637 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3638 lower_16_bits(period_sec)); 3639 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3640 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3641 upper_16_bits(period_sec)); 3642 3643 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3644 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3645 lower_16_bits(period_nsec)); 3646 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3647 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3648 upper_16_bits(period_nsec) & 0x3fff); 3649} 3650 3651static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3652 int pulse_width) 3653{ 3654 /* Set the pulse width of the event, 3655 * Make sure that the target clock will be incremented each time when 3656 * local time reaches or pass it 3657 * Set the polarity high 3658 */ 3659 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3660 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3661 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3662 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3663 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3664 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3665 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3666} 3667 3668static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3669{ 3670 /* Set target to too far in the future, effectively disabling it */ 3671 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3672 3673 /* And then reload once it reaches the target */ 3674 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3675 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3676 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3677} 3678 3679static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3680{ 3681 /* Disable gpio alternate function, 3682 * 1: select as gpio, 3683 * 0: select alt func 3684 */ 3685 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3686 LAN8814_GPIO_EN_ADDR(pin), 3687 LAN8814_GPIO_EN_BIT(pin), 3688 LAN8814_GPIO_EN_BIT(pin)); 3689 3690 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3691 LAN8814_GPIO_DIR_ADDR(pin), 3692 LAN8814_GPIO_DIR_BIT(pin), 3693 0); 3694 3695 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3696 LAN8814_GPIO_BUF_ADDR(pin), 3697 LAN8814_GPIO_BUF_BIT(pin), 3698 0); 3699} 3700 3701static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3702{ 3703 /* Set as gpio output */ 3704 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3705 LAN8814_GPIO_DIR_ADDR(pin), 3706 LAN8814_GPIO_DIR_BIT(pin), 3707 LAN8814_GPIO_DIR_BIT(pin)); 3708 3709 /* Enable gpio 0:for alternate function, 1:gpio */ 3710 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3711 LAN8814_GPIO_EN_ADDR(pin), 3712 LAN8814_GPIO_EN_BIT(pin), 3713 0); 3714 3715 /* Set buffer type to push pull */ 3716 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3717 LAN8814_GPIO_BUF_ADDR(pin), 3718 LAN8814_GPIO_BUF_BIT(pin), 3719 LAN8814_GPIO_BUF_BIT(pin)); 3720} 3721 3722static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3723 struct ptp_clock_request *rq, int on) 3724{ 3725 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3726 ptp_clock_info); 3727 struct phy_device *phydev = shared->phydev; 3728 struct timespec64 ts_on, ts_period; 3729 s64 on_nsec, period_nsec; 3730 int pulse_width; 3731 int pin, event; 3732 3733 mutex_lock(&shared->shared_lock); 3734 event = rq->perout.index; 3735 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3736 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3737 mutex_unlock(&shared->shared_lock); 3738 return -EBUSY; 3739 } 3740 3741 if (!on) { 3742 lan8814_ptp_perout_off(phydev, pin); 3743 lan8814_ptp_disable_event(phydev, event); 3744 mutex_unlock(&shared->shared_lock); 3745 return 0; 3746 } 3747 3748 ts_on.tv_sec = rq->perout.on.sec; 3749 ts_on.tv_nsec = rq->perout.on.nsec; 3750 on_nsec = timespec64_to_ns(&ts_on); 3751 3752 ts_period.tv_sec = rq->perout.period.sec; 3753 ts_period.tv_nsec = rq->perout.period.nsec; 3754 period_nsec = timespec64_to_ns(&ts_period); 3755 3756 if (period_nsec < 200) { 3757 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3758 phydev_name(phydev)); 3759 mutex_unlock(&shared->shared_lock); 3760 return -EOPNOTSUPP; 3761 } 3762 3763 if (on_nsec >= period_nsec) { 3764 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3765 phydev_name(phydev)); 3766 mutex_unlock(&shared->shared_lock); 3767 return -EINVAL; 3768 } 3769 3770 switch (on_nsec) { 3771 case 200000000: 3772 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3773 break; 3774 case 100000000: 3775 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3776 break; 3777 case 50000000: 3778 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3779 break; 3780 case 10000000: 3781 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3782 break; 3783 case 5000000: 3784 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3785 break; 3786 case 1000000: 3787 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3788 break; 3789 case 500000: 3790 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3791 break; 3792 case 100000: 3793 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3794 break; 3795 case 50000: 3796 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3797 break; 3798 case 10000: 3799 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3800 break; 3801 case 5000: 3802 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3803 break; 3804 case 1000: 3805 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3806 break; 3807 case 500: 3808 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3809 break; 3810 case 100: 3811 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3812 break; 3813 default: 3814 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3815 phydev_name(phydev)); 3816 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3817 break; 3818 } 3819 3820 /* Configure to pulse every period */ 3821 lan8814_ptp_enable_event(phydev, event, pulse_width); 3822 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3823 rq->perout.start.nsec); 3824 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3825 rq->perout.period.nsec); 3826 lan8814_ptp_perout_on(phydev, pin); 3827 mutex_unlock(&shared->shared_lock); 3828 3829 return 0; 3830} 3831 3832static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3833{ 3834 /* Set as gpio input */ 3835 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3836 LAN8814_GPIO_DIR_ADDR(pin), 3837 LAN8814_GPIO_DIR_BIT(pin), 3838 0); 3839 3840 /* Map the pin to ltc pin 0 of the capture map registers */ 3841 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3842 PTP_GPIO_CAP_MAP_LO, pin, pin); 3843 3844 /* Enable capture on the edges of the ltc pin */ 3845 if (flags & PTP_RISING_EDGE) 3846 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3847 PTP_GPIO_CAP_EN, 3848 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3849 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3850 if (flags & PTP_FALLING_EDGE) 3851 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3852 PTP_GPIO_CAP_EN, 3853 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3854 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3855 3856 /* Enable interrupt top interrupt */ 3857 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3858 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3859 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3860} 3861 3862static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3863{ 3864 /* Set as gpio out */ 3865 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3866 LAN8814_GPIO_DIR_ADDR(pin), 3867 LAN8814_GPIO_DIR_BIT(pin), 3868 LAN8814_GPIO_DIR_BIT(pin)); 3869 3870 /* Enable alternate, 0:for alternate function, 1:gpio */ 3871 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3872 LAN8814_GPIO_EN_ADDR(pin), 3873 LAN8814_GPIO_EN_BIT(pin), 3874 0); 3875 3876 /* Clear the mapping of pin to registers 0 of the capture registers */ 3877 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3878 PTP_GPIO_CAP_MAP_LO, 3879 GENMASK(3, 0), 3880 0); 3881 3882 /* Disable capture on both of the edges */ 3883 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3884 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3885 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3886 0); 3887 3888 /* Disable interrupt top interrupt */ 3889 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3890 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3891 0); 3892} 3893 3894static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3895 struct ptp_clock_request *rq, int on) 3896{ 3897 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3898 ptp_clock_info); 3899 struct phy_device *phydev = shared->phydev; 3900 int pin; 3901 3902 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3903 rq->extts.index); 3904 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3905 return -EINVAL; 3906 3907 mutex_lock(&shared->shared_lock); 3908 if (on) 3909 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3910 else 3911 lan8814_ptp_extts_off(phydev, pin); 3912 3913 mutex_unlock(&shared->shared_lock); 3914 3915 return 0; 3916} 3917 3918static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3919 struct ptp_clock_request *rq, int on) 3920{ 3921 switch (rq->type) { 3922 case PTP_CLK_REQ_PEROUT: 3923 return lan8814_ptp_perout(ptpci, rq, on); 3924 case PTP_CLK_REQ_EXTTS: 3925 return lan8814_ptp_extts(ptpci, rq, on); 3926 default: 3927 return -EINVAL; 3928 } 3929} 3930 3931static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3932 enum ptp_pin_function func, unsigned int chan) 3933{ 3934 switch (func) { 3935 case PTP_PF_NONE: 3936 case PTP_PF_PEROUT: 3937 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3938 * there is only chan 0 (event A) and for pin 1 there is only 3939 * chan 1 (event B) 3940 */ 3941 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3942 return -1; 3943 break; 3944 case PTP_PF_EXTTS: 3945 if (pin != LAN8814_PTP_EXTTS_NUM) 3946 return -1; 3947 break; 3948 default: 3949 return -1; 3950 } 3951 3952 return 0; 3953} 3954 3955static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3956{ 3957 struct ptp_header *ptp_header; 3958 u32 type; 3959 3960 type = ptp_classify_raw(skb); 3961 ptp_header = ptp_parse_header(skb, type); 3962 3963 if (!ptp_header) 3964 return false; 3965 3966 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3967 return true; 3968} 3969 3970static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3971 u32 seconds, u32 nsec, u16 seq_id) 3972{ 3973 struct skb_shared_hwtstamps shhwtstamps; 3974 struct sk_buff *skb, *skb_tmp; 3975 unsigned long flags; 3976 bool ret = false; 3977 u16 skb_sig; 3978 3979 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3980 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3981 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3982 continue; 3983 3984 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3985 continue; 3986 3987 __skb_unlink(skb, &ptp_priv->tx_queue); 3988 ret = true; 3989 break; 3990 } 3991 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3992 3993 if (ret) { 3994 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3995 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3996 skb_complete_tx_timestamp(skb, &shhwtstamps); 3997 } 3998} 3999 4000static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 4001{ 4002 struct phy_device *phydev = ptp_priv->phydev; 4003 u32 seconds, nsec; 4004 u16 seq_id; 4005 4006 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 4007 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 4008} 4009 4010static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4011{ 4012 struct phy_device *phydev = ptp_priv->phydev; 4013 u32 reg; 4014 4015 do { 4016 lan8814_dequeue_tx_skb(ptp_priv); 4017 4018 /* If other timestamps are available in the FIFO, 4019 * process them. 4020 */ 4021 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4022 PTP_CAP_INFO); 4023 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 4024} 4025 4026static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 4027 struct lan8814_ptp_rx_ts *rx_ts) 4028{ 4029 struct skb_shared_hwtstamps *shhwtstamps; 4030 struct sk_buff *skb, *skb_tmp; 4031 unsigned long flags; 4032 bool ret = false; 4033 u16 skb_sig; 4034 4035 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 4036 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 4037 if (!lan8814_get_sig_rx(skb, &skb_sig)) 4038 continue; 4039 4040 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 4041 continue; 4042 4043 __skb_unlink(skb, &ptp_priv->rx_queue); 4044 4045 ret = true; 4046 break; 4047 } 4048 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 4049 4050 if (ret) { 4051 shhwtstamps = skb_hwtstamps(skb); 4052 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4053 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 4054 netif_rx(skb); 4055 } 4056 4057 return ret; 4058} 4059 4060static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 4061 struct lan8814_ptp_rx_ts *rx_ts) 4062{ 4063 unsigned long flags; 4064 4065 /* If we failed to match the skb add it to the queue for when 4066 * the frame will come 4067 */ 4068 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 4069 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 4070 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 4071 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 4072 } else { 4073 kfree(rx_ts); 4074 } 4075} 4076 4077static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 4078{ 4079 struct phy_device *phydev = ptp_priv->phydev; 4080 struct lan8814_ptp_rx_ts *rx_ts; 4081 u32 reg; 4082 4083 do { 4084 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 4085 if (!rx_ts) 4086 return; 4087 4088 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 4089 &rx_ts->seq_id); 4090 lan8814_match_rx_ts(ptp_priv, rx_ts); 4091 4092 /* If other timestamps are available in the FIFO, 4093 * process them. 4094 */ 4095 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4096 PTP_CAP_INFO); 4097 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 4098} 4099 4100static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 4101{ 4102 struct kszphy_priv *priv = phydev->priv; 4103 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4104 4105 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 4106 lan8814_get_tx_ts(ptp_priv); 4107 4108 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 4109 lan8814_get_rx_ts(ptp_priv); 4110 4111 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 4112 lan8814_flush_fifo(phydev, true); 4113 skb_queue_purge(&ptp_priv->tx_queue); 4114 } 4115 4116 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 4117 lan8814_flush_fifo(phydev, false); 4118 skb_queue_purge(&ptp_priv->rx_queue); 4119 } 4120} 4121 4122static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 4123{ 4124 struct phy_device *phydev = shared->phydev; 4125 struct ptp_clock_event ptp_event = {0}; 4126 unsigned long nsec; 4127 s64 sec; 4128 u16 tmp; 4129 4130 /* This is 0 because whatever was the input pin it was mapped it to 4131 * ltc gpio pin 0 4132 */ 4133 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4134 PTP_GPIO_SEL_GPIO_SEL(0), 4135 PTP_GPIO_SEL_GPIO_SEL(0)); 4136 4137 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4138 PTP_GPIO_CAP_STS); 4139 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4140 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4141 return -1; 4142 4143 if (tmp & BIT(0)) { 4144 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4145 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4146 sec <<= 16; 4147 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4148 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4149 4150 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4151 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4152 nsec <<= 16; 4153 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4154 PTP_GPIO_RE_LTC_NS_LO_CAP); 4155 } else { 4156 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4157 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4158 sec <<= 16; 4159 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4160 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4161 4162 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4163 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4164 nsec <<= 16; 4165 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4166 PTP_GPIO_RE_LTC_NS_LO_CAP); 4167 } 4168 4169 ptp_event.index = 0; 4170 ptp_event.timestamp = ktime_set(sec, nsec); 4171 ptp_event.type = PTP_CLOCK_EXTTS; 4172 ptp_clock_event(shared->ptp_clock, &ptp_event); 4173 4174 return 0; 4175} 4176 4177static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4178{ 4179 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4180 int ret; 4181 4182 mutex_lock(&shared->shared_lock); 4183 ret = lan8814_gpio_process_cap(shared); 4184 mutex_unlock(&shared->shared_lock); 4185 4186 return ret; 4187} 4188 4189static int lan8804_config_init(struct phy_device *phydev) 4190{ 4191 /* MDI-X setting for swap A,B transmit */ 4192 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4193 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4194 LAN8804_ALIGN_TX_A_B_SWAP); 4195 4196 /* Make sure that the PHY will not stop generating the clock when the 4197 * link partner goes down 4198 */ 4199 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4200 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4201 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4202 4203 return 0; 4204} 4205 4206static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4207{ 4208 int status; 4209 4210 status = phy_read(phydev, LAN8814_INTS); 4211 if (status < 0) { 4212 phy_error(phydev); 4213 return IRQ_NONE; 4214 } 4215 4216 if (status > 0) 4217 phy_trigger_machine(phydev); 4218 4219 return IRQ_HANDLED; 4220} 4221 4222#define LAN8804_OUTPUT_CONTROL 25 4223#define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4224#define LAN8804_CONTROL 31 4225#define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4226 4227static int lan8804_config_intr(struct phy_device *phydev) 4228{ 4229 int err; 4230 4231 /* This is an internal PHY of lan966x and is not possible to change the 4232 * polarity on the GIC found in lan966x, therefore change the polarity 4233 * of the interrupt in the PHY from being active low instead of active 4234 * high. 4235 */ 4236 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4237 4238 /* By default interrupt buffer is open-drain in which case the interrupt 4239 * can be active only low. Therefore change the interrupt buffer to be 4240 * push-pull to be able to change interrupt polarity 4241 */ 4242 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4243 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4244 4245 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4246 err = phy_read(phydev, LAN8814_INTS); 4247 if (err < 0) 4248 return err; 4249 4250 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4251 if (err) 4252 return err; 4253 } else { 4254 err = phy_write(phydev, LAN8814_INTC, 0); 4255 if (err) 4256 return err; 4257 4258 err = phy_read(phydev, LAN8814_INTS); 4259 if (err < 0) 4260 return err; 4261 } 4262 4263 return 0; 4264} 4265 4266/* Check if the PHY has 1588 support. There are multiple skus of the PHY and 4267 * some of them support PTP while others don't support it. This function will 4268 * return true is the sku supports it, otherwise will return false. 4269 */ 4270static bool lan8814_has_ptp(struct phy_device *phydev) 4271{ 4272 struct kszphy_priv *priv = phydev->priv; 4273 4274 return priv->is_ptp_available; 4275} 4276 4277static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4278{ 4279 int ret = IRQ_NONE; 4280 int irq_status; 4281 4282 irq_status = phy_read(phydev, LAN8814_INTS); 4283 if (irq_status < 0) { 4284 phy_error(phydev); 4285 return IRQ_NONE; 4286 } 4287 4288 if (irq_status & LAN8814_INT_LINK) { 4289 phy_trigger_machine(phydev); 4290 ret = IRQ_HANDLED; 4291 } 4292 4293 if (!lan8814_has_ptp(phydev)) 4294 return ret; 4295 4296 while (true) { 4297 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4298 PTP_TSU_INT_STS); 4299 if (!irq_status) 4300 break; 4301 4302 lan8814_handle_ptp_interrupt(phydev, irq_status); 4303 ret = IRQ_HANDLED; 4304 } 4305 4306 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4307 ret = IRQ_HANDLED; 4308 4309 return ret; 4310} 4311 4312static int lan8814_ack_interrupt(struct phy_device *phydev) 4313{ 4314 /* bit[12..0] int status, which is a read and clear register. */ 4315 int rc; 4316 4317 rc = phy_read(phydev, LAN8814_INTS); 4318 4319 return (rc < 0) ? rc : 0; 4320} 4321 4322static int lan8814_config_intr(struct phy_device *phydev) 4323{ 4324 int err; 4325 4326 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4327 LAN8814_INTR_CTRL_REG_POLARITY | 4328 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4329 4330 /* enable / disable interrupts */ 4331 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4332 err = lan8814_ack_interrupt(phydev); 4333 if (err) 4334 return err; 4335 4336 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4337 } else { 4338 err = phy_write(phydev, LAN8814_INTC, 0); 4339 if (err) 4340 return err; 4341 4342 err = lan8814_ack_interrupt(phydev); 4343 } 4344 4345 return err; 4346} 4347 4348static void lan8814_ptp_init(struct phy_device *phydev) 4349{ 4350 struct kszphy_priv *priv = phydev->priv; 4351 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4352 4353 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4354 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4355 return; 4356 4357 if (!lan8814_has_ptp(phydev)) 4358 return; 4359 4360 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4361 TSU_HARD_RESET, TSU_HARD_RESET_); 4362 4363 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4364 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4365 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4366 4367 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4368 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4369 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4370 4371 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4372 PTP_RX_PARSE_CONFIG, 0); 4373 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4374 PTP_TX_PARSE_CONFIG, 0); 4375 4376 /* Removing default registers configs related to L2 and IP */ 4377 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4378 PTP_TX_PARSE_L2_ADDR_EN, 0); 4379 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4380 PTP_RX_PARSE_L2_ADDR_EN, 0); 4381 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4382 PTP_TX_PARSE_IP_ADDR_EN, 0); 4383 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4384 PTP_RX_PARSE_IP_ADDR_EN, 0); 4385 4386 /* Disable checking for minorVersionPTP field */ 4387 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4388 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4389 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4390 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4391 4392 skb_queue_head_init(&ptp_priv->tx_queue); 4393 skb_queue_head_init(&ptp_priv->rx_queue); 4394 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4395 spin_lock_init(&ptp_priv->rx_ts_lock); 4396 4397 ptp_priv->phydev = phydev; 4398 4399 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4400 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4401 ptp_priv->mii_ts.hwtstamp_set = lan8814_hwtstamp_set; 4402 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4403 4404 phydev->mii_ts = &ptp_priv->mii_ts; 4405 4406 /* Timestamp selected by default to keep legacy API */ 4407 phydev->default_timestamp = true; 4408} 4409 4410static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4411 int gpios) 4412{ 4413 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4414 4415 shared->phydev = phydev; 4416 4417 /* Initialise shared lock for clock*/ 4418 mutex_init(&shared->shared_lock); 4419 4420 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4421 gpios, 4422 sizeof(*shared->pin_config), 4423 GFP_KERNEL); 4424 if (!shared->pin_config) 4425 return -ENOMEM; 4426 4427 for (int i = 0; i < gpios; i++) { 4428 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4429 4430 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4431 snprintf(ptp_pin->name, 4432 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4433 ptp_pin->index = i; 4434 ptp_pin->func = PTP_PF_NONE; 4435 } 4436 4437 shared->ptp_clock_info.owner = THIS_MODULE; 4438 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4439 shared->ptp_clock_info.max_adj = 31249999; 4440 shared->ptp_clock_info.n_alarm = 0; 4441 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4442 shared->ptp_clock_info.n_pins = gpios; 4443 shared->ptp_clock_info.pps = 0; 4444 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4445 PTP_FALLING_EDGE | 4446 PTP_STRICT_FLAGS; 4447 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4448 shared->ptp_clock_info.pin_config = shared->pin_config; 4449 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4450 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4451 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4452 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4453 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4454 shared->ptp_clock_info.getcrosststamp = NULL; 4455 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4456 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4457 4458 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4459 &phydev->mdio.dev); 4460 if (IS_ERR(shared->ptp_clock)) { 4461 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4462 shared->ptp_clock); 4463 return -EINVAL; 4464 } 4465 4466 /* Check if PHC support is missing at the configuration level */ 4467 if (!shared->ptp_clock) 4468 return 0; 4469 4470 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4471 4472 /* The EP.4 is shared between all the PHYs in the package and also it 4473 * can be accessed by any of the PHYs 4474 */ 4475 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4476 LTC_HARD_RESET, LTC_HARD_RESET_); 4477 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4478 PTP_OPERATING_MODE_STANDALONE_); 4479 4480 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4481 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4482 PTP_CMD_CTL_PTP_ENABLE_); 4483 4484 return 0; 4485} 4486 4487static int lan8814_ptp_probe_once(struct phy_device *phydev) 4488{ 4489 if (!lan8814_has_ptp(phydev)) 4490 return 0; 4491 4492 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4493 LAN8814_PTP_GPIO_NUM); 4494} 4495 4496static void lan8814_setup_led(struct phy_device *phydev, int val) 4497{ 4498 int temp; 4499 4500 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4501 LAN8814_LED_CTRL_1); 4502 4503 if (val) 4504 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4505 else 4506 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4507 4508 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4509 LAN8814_LED_CTRL_1, temp); 4510} 4511 4512static int lan8814_config_init(struct phy_device *phydev) 4513{ 4514 struct kszphy_priv *lan8814 = phydev->priv; 4515 int ret; 4516 4517 /* Based on the interface type select how the advertise ability is 4518 * encoded, to set as SGMII or as USGMII. 4519 */ 4520 if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) 4521 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4522 LAN8814_QSGMII_TX_CONFIG, 4523 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4524 LAN8814_QSGMII_TX_CONFIG_QSGMII); 4525 else 4526 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4527 LAN8814_QSGMII_TX_CONFIG, 4528 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4529 0); 4530 4531 if (ret < 0) 4532 return ret; 4533 4534 /* MDI-X setting for swap A,B transmit */ 4535 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4536 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4537 LAN8814_ALIGN_TX_A_B_SWAP); 4538 4539 if (lan8814->led_mode >= 0) 4540 lan8814_setup_led(phydev, lan8814->led_mode); 4541 4542 return 0; 4543} 4544 4545/* It is expected that there will not be any 'lan8814_take_coma_mode' 4546 * function called in suspend. Because the GPIO line can be shared, so if one of 4547 * the phys goes back in coma mode, then all the other PHYs will go, which is 4548 * wrong. 4549 */ 4550static int lan8814_release_coma_mode(struct phy_device *phydev) 4551{ 4552 struct gpio_desc *gpiod; 4553 4554 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4555 GPIOD_OUT_HIGH_OPEN_DRAIN | 4556 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4557 if (IS_ERR(gpiod)) 4558 return PTR_ERR(gpiod); 4559 4560 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4561 gpiod_set_value_cansleep(gpiod, 0); 4562 4563 return 0; 4564} 4565 4566static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4567{ 4568 /* It was noticed that when traffic is passing through the PHY and the 4569 * cable is removed then the LED was still on even though there is no 4570 * link 4571 */ 4572 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4573 LAN8814_EEE_STATE_MASK2P5P, 4574 0); 4575} 4576 4577static void lan8814_update_meas_time(struct phy_device *phydev) 4578{ 4579 /* By setting the measure time to a value of 0xb this will allow cables 4580 * longer than 100m to be used. This configuration can be used 4581 * regardless of the mode of operation of the PHY 4582 */ 4583 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4584 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4585 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4586} 4587 4588static int lan8814_probe(struct phy_device *phydev) 4589{ 4590 const struct kszphy_type *type = phydev->drv->driver_data; 4591 struct kszphy_priv *priv; 4592 u16 addr; 4593 int err; 4594 4595 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4596 if (!priv) 4597 return -ENOMEM; 4598 4599 phydev->priv = priv; 4600 4601 priv->type = type; 4602 4603 kszphy_parse_led_mode(phydev); 4604 4605 /* Strap-in value for PHY address, below register read gives starting 4606 * phy address value 4607 */ 4608 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4609 devm_phy_package_join(&phydev->mdio.dev, phydev, 4610 addr, sizeof(struct lan8814_shared_priv)); 4611 4612 /* There are lan8814 SKUs that don't support PTP. Make sure that for 4613 * those skus no PTP device is created. Here we check if the SKU 4614 * supports PTP. 4615 */ 4616 err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4617 LAN8814_SKUS); 4618 if (err < 0) 4619 return err; 4620 4621 priv->is_ptp_available = err == LAN8814_REV_LAN8814 || 4622 err == LAN8814_REV_LAN8818; 4623 4624 if (phy_package_init_once(phydev)) { 4625 /* Reset the PHY */ 4626 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4627 LAN8814_QSGMII_SOFT_RESET, 4628 LAN8814_QSGMII_SOFT_RESET_BIT, 4629 LAN8814_QSGMII_SOFT_RESET_BIT); 4630 4631 err = lan8814_release_coma_mode(phydev); 4632 if (err) 4633 return err; 4634 4635 err = lan8814_ptp_probe_once(phydev); 4636 if (err) 4637 return err; 4638 } 4639 4640 lan8814_ptp_init(phydev); 4641 4642 /* Errata workarounds */ 4643 lan8814_clear_2psp_bit(phydev); 4644 lan8814_update_meas_time(phydev); 4645 4646 return 0; 4647} 4648 4649#define LAN8841_MMD_TIMER_REG 0 4650#define LAN8841_MMD0_REGISTER_17 17 4651#define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4652#define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4653#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4654#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4655#define LAN8841_MMD_ANALOG_REG 28 4656#define LAN8841_ANALOG_CONTROL_1 1 4657#define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4658#define LAN8841_ANALOG_CONTROL_10 13 4659#define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4660#define LAN8841_ANALOG_CONTROL_11 14 4661#define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4662#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4663#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4664#define LAN8841_BTRX_POWER_DOWN 70 4665#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4666#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4667#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4668#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4669#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4670#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4671#define LAN8841_ADC_CHANNEL_MASK 198 4672#define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4673#define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4674#define LAN8841_PTP_RX_VERSION 374 4675#define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4676#define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4677#define LAN8841_PTP_TX_VERSION 438 4678#define LAN8841_PTP_CMD_CTL 256 4679#define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4680#define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4681#define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4682#define LAN8841_PTP_RX_PARSE_CONFIG 368 4683#define LAN8841_PTP_TX_PARSE_CONFIG 432 4684#define LAN8841_PTP_RX_MODE 381 4685#define LAN8841_PTP_INSERT_TS_EN BIT(0) 4686#define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4687 4688static int lan8841_config_init(struct phy_device *phydev) 4689{ 4690 int ret; 4691 4692 ret = ksz9131_config_init(phydev); 4693 if (ret) 4694 return ret; 4695 4696 /* Initialize the HW by resetting everything */ 4697 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4698 LAN8841_PTP_CMD_CTL, 4699 LAN8841_PTP_CMD_CTL_PTP_RESET, 4700 LAN8841_PTP_CMD_CTL_PTP_RESET); 4701 4702 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4703 LAN8841_PTP_CMD_CTL, 4704 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4705 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4706 4707 /* Don't process any frames */ 4708 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4709 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4710 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4711 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4712 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4713 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4714 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4715 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4716 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4717 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4718 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4719 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4720 4721 /* Disable checking for minorVersionPTP field */ 4722 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4723 LAN8841_PTP_RX_VERSION, 0xff00); 4724 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4725 LAN8841_PTP_TX_VERSION, 0xff00); 4726 4727 /* 100BT Clause 40 improvement errata */ 4728 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4729 LAN8841_ANALOG_CONTROL_1, 4730 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4731 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4732 LAN8841_ANALOG_CONTROL_10, 4733 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4734 4735 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4736 * Magnetics 4737 */ 4738 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4739 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4740 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4741 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4742 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4743 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4744 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4745 LAN8841_BTRX_POWER_DOWN, 4746 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4747 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4748 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4749 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4750 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4751 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4752 } 4753 4754 /* LDO Adjustment errata */ 4755 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4756 LAN8841_ANALOG_CONTROL_11, 4757 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4758 4759 /* 100BT RGMII latency tuning errata */ 4760 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4761 LAN8841_ADC_CHANNEL_MASK, 0x0); 4762 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4763 LAN8841_MMD0_REGISTER_17, 4764 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4765 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4766 4767 return 0; 4768} 4769 4770#define LAN8841_OUTPUT_CTRL 25 4771#define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4772#define LAN8841_INT_PTP BIT(9) 4773 4774static int lan8841_config_intr(struct phy_device *phydev) 4775{ 4776 int err; 4777 4778 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4779 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4780 4781 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4782 err = phy_read(phydev, LAN8814_INTS); 4783 if (err < 0) 4784 return err; 4785 4786 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4787 * even if it PTP is not enabled. Because the underneath blocks 4788 * will not enable the PTP so we will never get the PTP 4789 * interrupt. 4790 */ 4791 err = phy_write(phydev, LAN8814_INTC, 4792 LAN8814_INT_LINK | LAN8841_INT_PTP); 4793 } else { 4794 err = phy_write(phydev, LAN8814_INTC, 0); 4795 if (err) 4796 return err; 4797 4798 err = phy_read(phydev, LAN8814_INTS); 4799 if (err < 0) 4800 return err; 4801 4802 /* Getting a positive value doesn't mean that is an error, it 4803 * just indicates what was the status. Therefore make sure to 4804 * clear the value and say that there is no error. 4805 */ 4806 err = 0; 4807 } 4808 4809 return err; 4810} 4811 4812#define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4813#define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4814#define LAN8841_PTP_TX_EGRESS_NS_LO 451 4815#define LAN8841_PTP_TX_EGRESS_NS_HI 450 4816#define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4817#define LAN8841_PTP_TX_MSG_HEADER2 455 4818 4819static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4820 u32 *sec, u32 *nsec, u16 *seq) 4821{ 4822 struct phy_device *phydev = ptp_priv->phydev; 4823 4824 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4825 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4826 return false; 4827 4828 *nsec = ((*nsec & 0x3fff) << 16); 4829 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4830 4831 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4832 *sec = *sec << 16; 4833 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4834 4835 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4836 4837 return true; 4838} 4839 4840static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4841{ 4842 u32 sec, nsec; 4843 u16 seq; 4844 4845 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4846 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4847} 4848 4849#define LAN8841_PTP_INT_STS 259 4850#define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4851#define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4852#define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4853 4854static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4855{ 4856 struct phy_device *phydev = ptp_priv->phydev; 4857 int i; 4858 4859 for (i = 0; i < FIFO_SIZE; ++i) 4860 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4861 4862 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4863} 4864 4865#define LAN8841_PTP_GPIO_CAP_STS 506 4866#define LAN8841_PTP_GPIO_SEL 327 4867#define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4868#define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4869#define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4870#define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4871#define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4872#define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4873#define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4874#define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4875#define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4876 4877static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4878{ 4879 struct phy_device *phydev = ptp_priv->phydev; 4880 struct ptp_clock_event ptp_event = {0}; 4881 int pin, ret, tmp; 4882 s32 sec, nsec; 4883 4884 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4885 if (pin == -1) 4886 return; 4887 4888 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4889 if (tmp < 0) 4890 return; 4891 4892 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4893 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4894 if (ret) 4895 return; 4896 4897 mutex_lock(&ptp_priv->ptp_lock); 4898 if (tmp & BIT(pin)) { 4899 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4900 sec <<= 16; 4901 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4902 4903 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4904 nsec <<= 16; 4905 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4906 } else { 4907 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4908 sec <<= 16; 4909 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4910 4911 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4912 nsec <<= 16; 4913 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4914 } 4915 mutex_unlock(&ptp_priv->ptp_lock); 4916 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4917 if (ret) 4918 return; 4919 4920 ptp_event.index = 0; 4921 ptp_event.timestamp = ktime_set(sec, nsec); 4922 ptp_event.type = PTP_CLOCK_EXTTS; 4923 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4924} 4925 4926static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4927{ 4928 struct kszphy_priv *priv = phydev->priv; 4929 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4930 u16 status; 4931 4932 do { 4933 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4934 4935 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4936 lan8841_ptp_process_tx_ts(ptp_priv); 4937 4938 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4939 lan8841_gpio_process_cap(ptp_priv); 4940 4941 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4942 lan8841_ptp_flush_fifo(ptp_priv); 4943 skb_queue_purge(&ptp_priv->tx_queue); 4944 } 4945 4946 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4947 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4948 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4949} 4950 4951#define LAN8841_INTS_PTP BIT(9) 4952 4953static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4954{ 4955 irqreturn_t ret = IRQ_NONE; 4956 int irq_status; 4957 4958 irq_status = phy_read(phydev, LAN8814_INTS); 4959 if (irq_status < 0) { 4960 phy_error(phydev); 4961 return IRQ_NONE; 4962 } 4963 4964 if (irq_status & LAN8814_INT_LINK) { 4965 phy_trigger_machine(phydev); 4966 ret = IRQ_HANDLED; 4967 } 4968 4969 if (irq_status & LAN8841_INTS_PTP) { 4970 lan8841_handle_ptp_interrupt(phydev); 4971 ret = IRQ_HANDLED; 4972 } 4973 4974 return ret; 4975} 4976 4977static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4978 struct kernel_ethtool_ts_info *info) 4979{ 4980 struct kszphy_ptp_priv *ptp_priv; 4981 4982 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4983 4984 info->phc_index = ptp_priv->ptp_clock ? 4985 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4986 if (info->phc_index == -1) 4987 return 0; 4988 4989 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4990 SOF_TIMESTAMPING_RX_HARDWARE | 4991 SOF_TIMESTAMPING_RAW_HARDWARE; 4992 4993 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4994 (1 << HWTSTAMP_TX_ON) | 4995 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4996 4997 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4998 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4999 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 5000 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 5001 5002 return 0; 5003} 5004 5005#define LAN8841_PTP_INT_EN 260 5006#define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 5007#define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 5008 5009static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 5010 bool enable) 5011{ 5012 struct phy_device *phydev = ptp_priv->phydev; 5013 5014 if (enable) { 5015 /* Enable interrupts on the TX side */ 5016 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5017 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5018 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 5019 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5020 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 5021 5022 /* Enable the modification of the frame on RX side, 5023 * this will add the ns and 2 bits of sec in the reserved field 5024 * of the PTP header 5025 */ 5026 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5027 LAN8841_PTP_RX_MODE, 5028 LAN8841_PTP_INSERT_TS_EN | 5029 LAN8841_PTP_INSERT_TS_32BIT, 5030 LAN8841_PTP_INSERT_TS_EN | 5031 LAN8841_PTP_INSERT_TS_32BIT); 5032 5033 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 5034 } else { 5035 /* Disable interrupts on the TX side */ 5036 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5037 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5038 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 5039 5040 /* Disable modification of the RX frames */ 5041 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5042 LAN8841_PTP_RX_MODE, 5043 LAN8841_PTP_INSERT_TS_EN | 5044 LAN8841_PTP_INSERT_TS_32BIT, 0); 5045 5046 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5047 } 5048} 5049 5050#define LAN8841_PTP_RX_TIMESTAMP_EN 379 5051#define LAN8841_PTP_TX_TIMESTAMP_EN 443 5052#define LAN8841_PTP_TX_MOD 445 5053 5054static int lan8841_hwtstamp_set(struct mii_timestamper *mii_ts, 5055 struct kernel_hwtstamp_config *config, 5056 struct netlink_ext_ack *extack) 5057{ 5058 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5059 struct phy_device *phydev = ptp_priv->phydev; 5060 int txcfg = 0, rxcfg = 0; 5061 int pkt_ts_enable; 5062 5063 ptp_priv->hwts_tx_type = config->tx_type; 5064 ptp_priv->rx_filter = config->rx_filter; 5065 5066 switch (config->rx_filter) { 5067 case HWTSTAMP_FILTER_NONE: 5068 ptp_priv->layer = 0; 5069 ptp_priv->version = 0; 5070 break; 5071 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 5072 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5073 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5074 ptp_priv->layer = PTP_CLASS_L4; 5075 ptp_priv->version = PTP_CLASS_V2; 5076 break; 5077 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 5078 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5079 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5080 ptp_priv->layer = PTP_CLASS_L2; 5081 ptp_priv->version = PTP_CLASS_V2; 5082 break; 5083 case HWTSTAMP_FILTER_PTP_V2_EVENT: 5084 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5085 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5086 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 5087 ptp_priv->version = PTP_CLASS_V2; 5088 break; 5089 default: 5090 return -ERANGE; 5091 } 5092 5093 /* Setup parsing of the frames and enable the timestamping for ptp 5094 * frames 5095 */ 5096 if (ptp_priv->layer & PTP_CLASS_L2) { 5097 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 5098 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 5099 } else if (ptp_priv->layer & PTP_CLASS_L4) { 5100 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 5101 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 5102 } 5103 5104 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 5105 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 5106 5107 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 5108 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 5109 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 5110 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 5111 5112 /* Enable / disable of the TX timestamp in the SYNC frames */ 5113 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 5114 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 5115 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 5116 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 5117 5118 /* Now enable/disable the timestamping */ 5119 lan8841_ptp_enable_processing(ptp_priv, 5120 config->rx_filter != HWTSTAMP_FILTER_NONE); 5121 5122 skb_queue_purge(&ptp_priv->tx_queue); 5123 5124 lan8841_ptp_flush_fifo(ptp_priv); 5125 5126 return 0; 5127} 5128 5129static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 5130 struct sk_buff *skb, int type) 5131{ 5132 struct kszphy_ptp_priv *ptp_priv = 5133 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5134 struct ptp_header *header = ptp_parse_header(skb, type); 5135 struct skb_shared_hwtstamps *shhwtstamps; 5136 struct timespec64 ts; 5137 unsigned long flags; 5138 u32 ts_header; 5139 5140 if (!header) 5141 return false; 5142 5143 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 5144 type == PTP_CLASS_NONE) 5145 return false; 5146 5147 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 5148 return false; 5149 5150 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5151 ts.tv_sec = ptp_priv->seconds; 5152 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5153 ts_header = __be32_to_cpu(header->reserved2); 5154 5155 shhwtstamps = skb_hwtstamps(skb); 5156 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5157 5158 /* Check for any wrap arounds for the second part */ 5159 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5160 ts.tv_sec -= GENMASK(1, 0) + 1; 5161 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5162 ts.tv_sec += 1; 5163 5164 shhwtstamps->hwtstamp = 5165 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5166 ts_header & GENMASK(29, 0)); 5167 header->reserved2 = 0; 5168 5169 netif_rx(skb); 5170 5171 return true; 5172} 5173 5174#define LAN8841_EVENT_A 0 5175#define LAN8841_EVENT_B 1 5176#define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5177#define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5178#define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5179#define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5180 5181static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5182 s64 sec, u32 nsec) 5183{ 5184 struct phy_device *phydev = ptp_priv->phydev; 5185 int ret; 5186 5187 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5188 upper_16_bits(sec)); 5189 if (ret) 5190 return ret; 5191 5192 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5193 lower_16_bits(sec)); 5194 if (ret) 5195 return ret; 5196 5197 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5198 upper_16_bits(nsec)); 5199 if (ret) 5200 return ret; 5201 5202 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5203 lower_16_bits(nsec)); 5204} 5205 5206#define LAN8841_BUFFER_TIME 2 5207 5208static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5209 const struct timespec64 *ts) 5210{ 5211 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5212 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5213} 5214 5215#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5216#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5217#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5218#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5219 5220static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5221 s64 sec, u32 nsec) 5222{ 5223 struct phy_device *phydev = ptp_priv->phydev; 5224 int ret; 5225 5226 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5227 upper_16_bits(sec)); 5228 if (ret) 5229 return ret; 5230 5231 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5232 lower_16_bits(sec)); 5233 if (ret) 5234 return ret; 5235 5236 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5237 upper_16_bits(nsec)); 5238 if (ret) 5239 return ret; 5240 5241 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5242 lower_16_bits(nsec)); 5243} 5244 5245#define LAN8841_PTP_LTC_SET_SEC_HI 262 5246#define LAN8841_PTP_LTC_SET_SEC_MID 263 5247#define LAN8841_PTP_LTC_SET_SEC_LO 264 5248#define LAN8841_PTP_LTC_SET_NS_HI 265 5249#define LAN8841_PTP_LTC_SET_NS_LO 266 5250#define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5251 5252static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5253 const struct timespec64 *ts) 5254{ 5255 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5256 ptp_clock_info); 5257 struct phy_device *phydev = ptp_priv->phydev; 5258 unsigned long flags; 5259 int ret; 5260 5261 /* Set the value to be stored */ 5262 mutex_lock(&ptp_priv->ptp_lock); 5263 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5264 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5265 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5266 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5267 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5268 5269 /* Set the command to load the LTC */ 5270 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5271 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5272 ret = lan8841_ptp_update_target(ptp_priv, ts); 5273 mutex_unlock(&ptp_priv->ptp_lock); 5274 5275 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5276 ptp_priv->seconds = ts->tv_sec; 5277 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5278 5279 return ret; 5280} 5281 5282#define LAN8841_PTP_LTC_RD_SEC_HI 358 5283#define LAN8841_PTP_LTC_RD_SEC_MID 359 5284#define LAN8841_PTP_LTC_RD_SEC_LO 360 5285#define LAN8841_PTP_LTC_RD_NS_HI 361 5286#define LAN8841_PTP_LTC_RD_NS_LO 362 5287#define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5288 5289static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5290 struct timespec64 *ts) 5291{ 5292 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5293 ptp_clock_info); 5294 struct phy_device *phydev = ptp_priv->phydev; 5295 time64_t s; 5296 s64 ns; 5297 5298 mutex_lock(&ptp_priv->ptp_lock); 5299 /* Issue the command to read the LTC */ 5300 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5301 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5302 5303 /* Read the LTC */ 5304 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5305 s <<= 16; 5306 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5307 s <<= 16; 5308 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5309 5310 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5311 ns <<= 16; 5312 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5313 mutex_unlock(&ptp_priv->ptp_lock); 5314 5315 set_normalized_timespec64(ts, s, ns); 5316 return 0; 5317} 5318 5319static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5320 struct timespec64 *ts) 5321{ 5322 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5323 ptp_clock_info); 5324 struct phy_device *phydev = ptp_priv->phydev; 5325 time64_t s; 5326 5327 mutex_lock(&ptp_priv->ptp_lock); 5328 /* Issue the command to read the LTC */ 5329 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5330 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5331 5332 /* Read the LTC */ 5333 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5334 s <<= 16; 5335 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5336 s <<= 16; 5337 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5338 mutex_unlock(&ptp_priv->ptp_lock); 5339 5340 set_normalized_timespec64(ts, s, 0); 5341} 5342 5343#define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5344#define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5345#define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5346#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5347#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5348 5349static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5350{ 5351 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5352 ptp_clock_info); 5353 struct phy_device *phydev = ptp_priv->phydev; 5354 struct timespec64 ts; 5355 bool add = true; 5356 u32 nsec; 5357 s32 sec; 5358 int ret; 5359 5360 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5361 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5362 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5363 * increment so the value can be bigger than 15 sec. Therefore limit the 5364 * possible adjustments so we will not have these corner cases 5365 */ 5366 if (delta > 10000000000LL || delta < -10000000000LL) { 5367 /* The timeadjustment is too big, so fall back using set time */ 5368 u64 now; 5369 5370 ptp->gettime64(ptp, &ts); 5371 5372 now = ktime_to_ns(timespec64_to_ktime(ts)); 5373 ts = ns_to_timespec64(now + delta); 5374 5375 ptp->settime64(ptp, &ts); 5376 return 0; 5377 } 5378 5379 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5380 if (delta < 0 && nsec != 0) { 5381 /* It is not allowed to adjust low the nsec part, therefore 5382 * subtract more from second part and add to nanosecond such 5383 * that would roll over, so the second part will increase 5384 */ 5385 sec--; 5386 nsec = NSEC_PER_SEC - nsec; 5387 } 5388 5389 /* Calculate the adjustments and the direction */ 5390 if (delta < 0) 5391 add = false; 5392 5393 if (nsec > 0) 5394 /* add 8 ns to cover the likely normal increment */ 5395 nsec += 8; 5396 5397 if (nsec >= NSEC_PER_SEC) { 5398 /* carry into seconds */ 5399 sec++; 5400 nsec -= NSEC_PER_SEC; 5401 } 5402 5403 mutex_lock(&ptp_priv->ptp_lock); 5404 if (sec) { 5405 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5406 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5407 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5408 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5409 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5410 } 5411 5412 if (nsec) { 5413 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5414 nsec & 0xffff); 5415 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5416 (nsec >> 16) & 0x3fff); 5417 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5418 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5419 } 5420 mutex_unlock(&ptp_priv->ptp_lock); 5421 5422 /* Update the target clock */ 5423 ptp->gettime64(ptp, &ts); 5424 mutex_lock(&ptp_priv->ptp_lock); 5425 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5426 mutex_unlock(&ptp_priv->ptp_lock); 5427 5428 return ret; 5429} 5430 5431#define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5432#define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5433#define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5434 5435static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5436{ 5437 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5438 ptp_clock_info); 5439 struct phy_device *phydev = ptp_priv->phydev; 5440 bool faster = true; 5441 u32 rate; 5442 5443 if (!scaled_ppm) 5444 return 0; 5445 5446 if (scaled_ppm < 0) { 5447 scaled_ppm = -scaled_ppm; 5448 faster = false; 5449 } 5450 5451 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5452 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5453 5454 mutex_lock(&ptp_priv->ptp_lock); 5455 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5456 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5457 : upper_16_bits(rate) & 0x3fff); 5458 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5459 mutex_unlock(&ptp_priv->ptp_lock); 5460 5461 return 0; 5462} 5463 5464static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5465 enum ptp_pin_function func, unsigned int chan) 5466{ 5467 switch (func) { 5468 case PTP_PF_NONE: 5469 case PTP_PF_PEROUT: 5470 case PTP_PF_EXTTS: 5471 break; 5472 default: 5473 return -1; 5474 } 5475 5476 return 0; 5477} 5478 5479#define LAN8841_PTP_GPIO_NUM 10 5480#define LAN8841_GPIO_EN 128 5481#define LAN8841_GPIO_DIR 129 5482#define LAN8841_GPIO_BUF 130 5483 5484static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5485{ 5486 struct phy_device *phydev = ptp_priv->phydev; 5487 int ret; 5488 5489 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5490 if (ret) 5491 return ret; 5492 5493 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5494 if (ret) 5495 return ret; 5496 5497 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5498} 5499 5500static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5501{ 5502 struct phy_device *phydev = ptp_priv->phydev; 5503 int ret; 5504 5505 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5506 if (ret) 5507 return ret; 5508 5509 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5510 if (ret) 5511 return ret; 5512 5513 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5514} 5515 5516#define LAN8841_GPIO_DATA_SEL1 131 5517#define LAN8841_GPIO_DATA_SEL2 132 5518#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5519#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5520#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5521#define LAN8841_PTP_GENERAL_CONFIG 257 5522#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5523#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5524#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5525#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5526#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5527#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5528 5529static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5530 u8 event) 5531{ 5532 struct phy_device *phydev = ptp_priv->phydev; 5533 u16 tmp; 5534 int ret; 5535 5536 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5537 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5538 * depending on the pin, it requires to read a different register 5539 */ 5540 if (pin < 5) { 5541 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5542 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5543 } else { 5544 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5545 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5546 } 5547 if (ret) 5548 return ret; 5549 5550 /* Disable the event */ 5551 if (event == LAN8841_EVENT_A) 5552 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5553 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5554 else 5555 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5556 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5557 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5558} 5559 5560static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5561 u8 event, int pulse_width) 5562{ 5563 struct phy_device *phydev = ptp_priv->phydev; 5564 u16 tmp; 5565 int ret; 5566 5567 /* Enable the event */ 5568 if (event == LAN8841_EVENT_A) 5569 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5570 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5571 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5572 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5573 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5574 else 5575 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5576 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5577 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5578 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5579 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5580 if (ret) 5581 return ret; 5582 5583 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5584 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5585 * depending on the pin, it requires to read a different register 5586 */ 5587 if (event == LAN8841_EVENT_A) 5588 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5589 else 5590 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5591 5592 if (pin < 5) 5593 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5594 tmp << (3 * pin)); 5595 else 5596 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5597 tmp << (3 * (pin - 5))); 5598 5599 return ret; 5600} 5601 5602#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5603#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5604#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5605#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5606#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5607#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5608#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5609#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5610#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5611#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5612#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5613#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5614#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5615#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5616 5617static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5618 struct ptp_clock_request *rq, int on) 5619{ 5620 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5621 ptp_clock_info); 5622 struct phy_device *phydev = ptp_priv->phydev; 5623 struct timespec64 ts_on, ts_period; 5624 s64 on_nsec, period_nsec; 5625 int pulse_width; 5626 int pin; 5627 int ret; 5628 5629 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5630 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5631 return -EINVAL; 5632 5633 if (!on) { 5634 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5635 if (ret) 5636 return ret; 5637 5638 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5639 } 5640 5641 ts_on.tv_sec = rq->perout.on.sec; 5642 ts_on.tv_nsec = rq->perout.on.nsec; 5643 on_nsec = timespec64_to_ns(&ts_on); 5644 5645 ts_period.tv_sec = rq->perout.period.sec; 5646 ts_period.tv_nsec = rq->perout.period.nsec; 5647 period_nsec = timespec64_to_ns(&ts_period); 5648 5649 if (period_nsec < 200) { 5650 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5651 phydev_name(phydev)); 5652 return -EOPNOTSUPP; 5653 } 5654 5655 if (on_nsec >= period_nsec) { 5656 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5657 phydev_name(phydev)); 5658 return -EINVAL; 5659 } 5660 5661 switch (on_nsec) { 5662 case 200000000: 5663 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5664 break; 5665 case 100000000: 5666 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5667 break; 5668 case 50000000: 5669 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5670 break; 5671 case 10000000: 5672 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5673 break; 5674 case 5000000: 5675 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5676 break; 5677 case 1000000: 5678 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5679 break; 5680 case 500000: 5681 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5682 break; 5683 case 100000: 5684 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5685 break; 5686 case 50000: 5687 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5688 break; 5689 case 10000: 5690 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5691 break; 5692 case 5000: 5693 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5694 break; 5695 case 1000: 5696 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5697 break; 5698 case 500: 5699 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5700 break; 5701 case 100: 5702 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5703 break; 5704 default: 5705 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5706 phydev_name(phydev)); 5707 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5708 break; 5709 } 5710 5711 mutex_lock(&ptp_priv->ptp_lock); 5712 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5713 rq->perout.start.nsec); 5714 mutex_unlock(&ptp_priv->ptp_lock); 5715 if (ret) 5716 return ret; 5717 5718 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5719 rq->perout.period.nsec); 5720 if (ret) 5721 return ret; 5722 5723 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5724 pulse_width); 5725 if (ret) 5726 return ret; 5727 5728 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5729 if (ret) 5730 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5731 5732 return ret; 5733} 5734 5735#define LAN8841_PTP_GPIO_CAP_EN 496 5736#define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5737#define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5738#define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5739 5740static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5741 u32 flags) 5742{ 5743 struct phy_device *phydev = ptp_priv->phydev; 5744 u16 tmp = 0; 5745 int ret; 5746 5747 /* Set GPIO to be input */ 5748 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5749 if (ret) 5750 return ret; 5751 5752 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5753 if (ret) 5754 return ret; 5755 5756 /* Enable capture on the edges of the pin */ 5757 if (flags & PTP_RISING_EDGE) 5758 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5759 if (flags & PTP_FALLING_EDGE) 5760 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5761 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5762 if (ret) 5763 return ret; 5764 5765 /* Enable interrupt */ 5766 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5767 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5768 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5769} 5770 5771static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5772{ 5773 struct phy_device *phydev = ptp_priv->phydev; 5774 int ret; 5775 5776 /* Set GPIO to be output */ 5777 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5778 if (ret) 5779 return ret; 5780 5781 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5782 if (ret) 5783 return ret; 5784 5785 /* Disable capture on both of the edges */ 5786 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5787 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5788 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5789 0); 5790 if (ret) 5791 return ret; 5792 5793 /* Disable interrupt */ 5794 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5795 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5796 0); 5797} 5798 5799static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5800 struct ptp_clock_request *rq, int on) 5801{ 5802 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5803 ptp_clock_info); 5804 int pin; 5805 int ret; 5806 5807 /* Reject requests with unsupported flags */ 5808 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5809 PTP_EXTTS_EDGES | 5810 PTP_STRICT_FLAGS)) 5811 return -EOPNOTSUPP; 5812 5813 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5814 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5815 return -EINVAL; 5816 5817 mutex_lock(&ptp_priv->ptp_lock); 5818 if (on) 5819 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5820 else 5821 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5822 mutex_unlock(&ptp_priv->ptp_lock); 5823 5824 return ret; 5825} 5826 5827static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5828 struct ptp_clock_request *rq, int on) 5829{ 5830 switch (rq->type) { 5831 case PTP_CLK_REQ_EXTTS: 5832 return lan8841_ptp_extts(ptp, rq, on); 5833 case PTP_CLK_REQ_PEROUT: 5834 return lan8841_ptp_perout(ptp, rq, on); 5835 default: 5836 return -EOPNOTSUPP; 5837 } 5838 5839 return 0; 5840} 5841 5842static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5843{ 5844 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5845 ptp_clock_info); 5846 struct timespec64 ts; 5847 unsigned long flags; 5848 5849 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5850 5851 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5852 ptp_priv->seconds = ts.tv_sec; 5853 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5854 5855 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5856} 5857 5858static struct ptp_clock_info lan8841_ptp_clock_info = { 5859 .owner = THIS_MODULE, 5860 .name = "lan8841 ptp", 5861 .max_adj = 31249999, 5862 .gettime64 = lan8841_ptp_gettime64, 5863 .settime64 = lan8841_ptp_settime64, 5864 .adjtime = lan8841_ptp_adjtime, 5865 .adjfine = lan8841_ptp_adjfine, 5866 .verify = lan8841_ptp_verify, 5867 .enable = lan8841_ptp_enable, 5868 .do_aux_work = lan8841_ptp_do_aux_work, 5869 .n_per_out = LAN8841_PTP_GPIO_NUM, 5870 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5871 .n_pins = LAN8841_PTP_GPIO_NUM, 5872 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5873}; 5874 5875#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5876#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5877 5878static int lan8841_probe(struct phy_device *phydev) 5879{ 5880 struct kszphy_ptp_priv *ptp_priv; 5881 struct kszphy_priv *priv; 5882 int err; 5883 5884 err = kszphy_probe(phydev); 5885 if (err) 5886 return err; 5887 5888 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5889 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5890 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5891 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5892 5893 /* Register the clock */ 5894 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5895 return 0; 5896 5897 priv = phydev->priv; 5898 ptp_priv = &priv->ptp_priv; 5899 5900 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5901 LAN8841_PTP_GPIO_NUM, 5902 sizeof(*ptp_priv->pin_config), 5903 GFP_KERNEL); 5904 if (!ptp_priv->pin_config) 5905 return -ENOMEM; 5906 5907 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5908 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5909 5910 snprintf(p->name, sizeof(p->name), "pin%d", i); 5911 p->index = i; 5912 p->func = PTP_PF_NONE; 5913 } 5914 5915 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5916 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5917 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5918 &phydev->mdio.dev); 5919 if (IS_ERR(ptp_priv->ptp_clock)) { 5920 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5921 ptp_priv->ptp_clock); 5922 return -EINVAL; 5923 } 5924 5925 if (!ptp_priv->ptp_clock) 5926 return 0; 5927 5928 /* Initialize the SW */ 5929 skb_queue_head_init(&ptp_priv->tx_queue); 5930 ptp_priv->phydev = phydev; 5931 mutex_init(&ptp_priv->ptp_lock); 5932 spin_lock_init(&ptp_priv->seconds_lock); 5933 5934 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5935 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5936 ptp_priv->mii_ts.hwtstamp_set = lan8841_hwtstamp_set; 5937 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5938 5939 phydev->mii_ts = &ptp_priv->mii_ts; 5940 5941 /* Timestamp selected by default to keep legacy API */ 5942 phydev->default_timestamp = true; 5943 5944 return 0; 5945} 5946 5947static int lan8804_resume(struct phy_device *phydev) 5948{ 5949 return kszphy_resume(phydev); 5950} 5951 5952static int lan8804_suspend(struct phy_device *phydev) 5953{ 5954 return kszphy_generic_suspend(phydev); 5955} 5956 5957static int lan8841_resume(struct phy_device *phydev) 5958{ 5959 return kszphy_generic_resume(phydev); 5960} 5961 5962static int lan8841_suspend(struct phy_device *phydev) 5963{ 5964 struct kszphy_priv *priv = phydev->priv; 5965 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5966 5967 if (ptp_priv->ptp_clock) 5968 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5969 5970 return kszphy_generic_suspend(phydev); 5971} 5972 5973static int ksz9131_resume(struct phy_device *phydev) 5974{ 5975 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5976 ksz9131_config_rgmii_delay(phydev); 5977 5978 return kszphy_resume(phydev); 5979} 5980 5981#define LAN8842_PTP_GPIO_NUM 16 5982 5983static int lan8842_ptp_probe_once(struct phy_device *phydev) 5984{ 5985 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5986 LAN8842_PTP_GPIO_NUM); 5987} 5988 5989#define LAN8842_STRAP_REG 0 /* 0x0 */ 5990#define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5991#define LAN8842_SKU_REG 11 /* 0x0b */ 5992#define LAN8842_SELF_TEST 14 /* 0x0e */ 5993#define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5994#define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5995 5996static int lan8842_probe(struct phy_device *phydev) 5997{ 5998 struct lan8842_priv *priv; 5999 int addr; 6000 int ret; 6001 6002 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 6003 if (!priv) 6004 return -ENOMEM; 6005 6006 phydev->priv = priv; 6007 6008 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 6009 * to enable to pass any traffic through it. Therefore use the same 6010 * function as lan8814 6011 */ 6012 ret = lan8814_release_coma_mode(phydev); 6013 if (ret) 6014 return ret; 6015 6016 /* Enable to count the RX and TX packets */ 6017 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6018 LAN8842_SELF_TEST, 6019 LAN8842_SELF_TEST_RX_CNT_ENA | 6020 LAN8842_SELF_TEST_TX_CNT_ENA); 6021 if (ret < 0) 6022 return ret; 6023 6024 /* Revision lan8832 doesn't have support for PTP, therefore don't add 6025 * any PTP clocks 6026 */ 6027 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6028 LAN8842_SKU_REG); 6029 if (ret < 0) 6030 return ret; 6031 6032 priv->rev = ret; 6033 if (priv->rev == LAN8842_REV_8832) 6034 return 0; 6035 6036 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 6037 * only difference is the number of the GPIOs, then make sure that the 6038 * lan8842 initialized also the shared data pointer as this is used in 6039 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 6040 * PHYs in the same package. 6041 */ 6042 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6043 LAN8842_STRAP_REG); 6044 if (addr < 0) 6045 return addr; 6046 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 6047 6048 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 6049 sizeof(struct lan8814_shared_priv)); 6050 if (ret) 6051 return ret; 6052 6053 if (phy_package_init_once(phydev)) { 6054 ret = lan8842_ptp_probe_once(phydev); 6055 if (ret) 6056 return ret; 6057 } 6058 6059 lan8814_ptp_init(phydev); 6060 6061 return 0; 6062} 6063 6064#define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI 0x13 6065#define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX 0x14 6066#define LAN8814_POWER_MGMT_MODE_5_10BT_MDI 0x15 6067#define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX 0x16 6068#define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN 0x17 6069#define LAN8814_POWER_MGMT_MODE_8_100BT_MDI 0x18 6070#define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX 0x19 6071#define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX 0x1a 6072#define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX 0x1b 6073#define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX 0x1c 6074#define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX 0x1d 6075#define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX 0x1e 6076 6077#define LAN8814_POWER_MGMT_DLLPD_D BIT(0) 6078#define LAN8814_POWER_MGMT_ADCPD_D BIT(1) 6079#define LAN8814_POWER_MGMT_PGAPD_D BIT(2) 6080#define LAN8814_POWER_MGMT_TXPD_D BIT(3) 6081#define LAN8814_POWER_MGMT_DLLPD_C BIT(4) 6082#define LAN8814_POWER_MGMT_ADCPD_C BIT(5) 6083#define LAN8814_POWER_MGMT_PGAPD_C BIT(6) 6084#define LAN8814_POWER_MGMT_TXPD_C BIT(7) 6085#define LAN8814_POWER_MGMT_DLLPD_B BIT(8) 6086#define LAN8814_POWER_MGMT_ADCPD_B BIT(9) 6087#define LAN8814_POWER_MGMT_PGAPD_B BIT(10) 6088#define LAN8814_POWER_MGMT_TXPD_B BIT(11) 6089#define LAN8814_POWER_MGMT_DLLPD_A BIT(12) 6090#define LAN8814_POWER_MGMT_ADCPD_A BIT(13) 6091#define LAN8814_POWER_MGMT_PGAPD_A BIT(14) 6092#define LAN8814_POWER_MGMT_TXPD_A BIT(15) 6093 6094#define LAN8814_POWER_MGMT_C_D (LAN8814_POWER_MGMT_DLLPD_D | \ 6095 LAN8814_POWER_MGMT_ADCPD_D | \ 6096 LAN8814_POWER_MGMT_PGAPD_D | \ 6097 LAN8814_POWER_MGMT_DLLPD_C | \ 6098 LAN8814_POWER_MGMT_ADCPD_C | \ 6099 LAN8814_POWER_MGMT_PGAPD_C) 6100 6101#define LAN8814_POWER_MGMT_B_C_D (LAN8814_POWER_MGMT_C_D | \ 6102 LAN8814_POWER_MGMT_DLLPD_B | \ 6103 LAN8814_POWER_MGMT_ADCPD_B | \ 6104 LAN8814_POWER_MGMT_PGAPD_B) 6105 6106#define LAN8814_POWER_MGMT_VAL1 (LAN8814_POWER_MGMT_C_D | \ 6107 LAN8814_POWER_MGMT_ADCPD_B | \ 6108 LAN8814_POWER_MGMT_PGAPD_B | \ 6109 LAN8814_POWER_MGMT_ADCPD_A | \ 6110 LAN8814_POWER_MGMT_PGAPD_A) 6111 6112#define LAN8814_POWER_MGMT_VAL2 LAN8814_POWER_MGMT_C_D 6113 6114#define LAN8814_POWER_MGMT_VAL3 (LAN8814_POWER_MGMT_C_D | \ 6115 LAN8814_POWER_MGMT_DLLPD_B | \ 6116 LAN8814_POWER_MGMT_ADCPD_B | \ 6117 LAN8814_POWER_MGMT_PGAPD_A) 6118 6119#define LAN8814_POWER_MGMT_VAL4 (LAN8814_POWER_MGMT_B_C_D | \ 6120 LAN8814_POWER_MGMT_ADCPD_A | \ 6121 LAN8814_POWER_MGMT_PGAPD_A) 6122 6123#define LAN8814_POWER_MGMT_VAL5 LAN8814_POWER_MGMT_B_C_D 6124 6125#define LAN8814_EEE_WAKE_TX_TIMER 0x0e 6126#define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL 0x1f 6127 6128static const struct lanphy_reg_data short_center_tap_errata[] = { 6129 { LAN8814_PAGE_POWER_REGS, 6130 LAN8814_POWER_MGMT_MODE_3_ANEG_MDI, 6131 LAN8814_POWER_MGMT_VAL1 }, 6132 { LAN8814_PAGE_POWER_REGS, 6133 LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX, 6134 LAN8814_POWER_MGMT_VAL1 }, 6135 { LAN8814_PAGE_POWER_REGS, 6136 LAN8814_POWER_MGMT_MODE_5_10BT_MDI, 6137 LAN8814_POWER_MGMT_VAL1 }, 6138 { LAN8814_PAGE_POWER_REGS, 6139 LAN8814_POWER_MGMT_MODE_6_10BT_MDIX, 6140 LAN8814_POWER_MGMT_VAL1 }, 6141 { LAN8814_PAGE_POWER_REGS, 6142 LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN, 6143 LAN8814_POWER_MGMT_VAL2 }, 6144 { LAN8814_PAGE_POWER_REGS, 6145 LAN8814_POWER_MGMT_MODE_8_100BT_MDI, 6146 LAN8814_POWER_MGMT_VAL3 }, 6147 { LAN8814_PAGE_POWER_REGS, 6148 LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX, 6149 LAN8814_POWER_MGMT_VAL3 }, 6150 { LAN8814_PAGE_POWER_REGS, 6151 LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX, 6152 LAN8814_POWER_MGMT_VAL4 }, 6153 { LAN8814_PAGE_POWER_REGS, 6154 LAN8814_POWER_MGMT_MODE_11_100BT_MDIX, 6155 LAN8814_POWER_MGMT_VAL5 }, 6156 { LAN8814_PAGE_POWER_REGS, 6157 LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX, 6158 LAN8814_POWER_MGMT_VAL5 }, 6159 { LAN8814_PAGE_POWER_REGS, 6160 LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX, 6161 LAN8814_POWER_MGMT_VAL4 }, 6162 { LAN8814_PAGE_POWER_REGS, 6163 LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX, 6164 LAN8814_POWER_MGMT_VAL4 }, 6165}; 6166 6167static const struct lanphy_reg_data waketx_timer_errata[] = { 6168 { LAN8814_PAGE_EEE, 6169 LAN8814_EEE_WAKE_TX_TIMER, 6170 LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL }, 6171}; 6172 6173static int lanphy_write_reg_data(struct phy_device *phydev, 6174 const struct lanphy_reg_data *data, 6175 size_t num) 6176{ 6177 int ret = 0; 6178 6179 while (num--) { 6180 ret = lanphy_write_page_reg(phydev, data->page, data->addr, 6181 data->val); 6182 if (ret) 6183 break; 6184 } 6185 6186 return ret; 6187} 6188 6189static int lan8842_erratas(struct phy_device *phydev) 6190{ 6191 int ret; 6192 6193 ret = lanphy_write_reg_data(phydev, short_center_tap_errata, 6194 ARRAY_SIZE(short_center_tap_errata)); 6195 if (ret) 6196 return ret; 6197 6198 return lanphy_write_reg_data(phydev, waketx_timer_errata, 6199 ARRAY_SIZE(waketx_timer_errata)); 6200} 6201 6202static int lan8842_config_init(struct phy_device *phydev) 6203{ 6204 int ret; 6205 6206 /* Reset the PHY */ 6207 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6208 LAN8814_QSGMII_SOFT_RESET, 6209 LAN8814_QSGMII_SOFT_RESET_BIT, 6210 LAN8814_QSGMII_SOFT_RESET_BIT); 6211 if (ret < 0) 6212 return ret; 6213 6214 /* Apply the erratas for this device */ 6215 ret = lan8842_erratas(phydev); 6216 if (ret < 0) 6217 return ret; 6218 6219 /* Even if the GPIOs are set to control the LEDs the behaviour of the 6220 * LEDs is wrong, they are not blinking when there is traffic. 6221 * To fix this it is required to set extended LED mode 6222 */ 6223 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6224 LAN8814_LED_CTRL_1, 6225 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 6226 if (ret < 0) 6227 return ret; 6228 6229 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6230 LAN8814_LED_CTRL_2, 6231 LAN8814_LED_CTRL_2_LED1_COM_DIS, 6232 LAN8814_LED_CTRL_2_LED1_COM_DIS); 6233 if (ret < 0) 6234 return ret; 6235 6236 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 6237 * a function mode and not the GPIO. Apparently by default the value is 6238 * GPIO and not function even though the datasheet it says that it is 6239 * function. Therefore set this value. 6240 */ 6241 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6242 LAN8814_GPIO_EN2, 0); 6243} 6244 6245#define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 6246 6247static int lan8842_config_intr(struct phy_device *phydev) 6248{ 6249 int err; 6250 6251 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6252 LAN8842_INTR_CTRL_REG, 6253 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 6254 6255 /* enable / disable interrupts */ 6256 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 6257 err = lan8814_ack_interrupt(phydev); 6258 if (err) 6259 return err; 6260 6261 err = phy_write(phydev, LAN8814_INTC, 6262 LAN8814_INT_LINK | LAN8814_INT_FLF); 6263 } else { 6264 err = phy_write(phydev, LAN8814_INTC, 0); 6265 if (err) 6266 return err; 6267 6268 err = lan8814_ack_interrupt(phydev); 6269 } 6270 6271 return err; 6272} 6273 6274static unsigned int lan8842_inband_caps(struct phy_device *phydev, 6275 phy_interface_t interface) 6276{ 6277 /* Inband configuration can be enabled or disabled using the registers 6278 * PCS1G_ANEG_CONFIG. 6279 */ 6280 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 6281} 6282 6283static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 6284{ 6285 bool enable; 6286 6287 if (modes == LINK_INBAND_DISABLE) 6288 enable = false; 6289 else 6290 enable = true; 6291 6292 /* Disable or enable in-band autoneg with PCS Host side 6293 * It has the same address as lan8814 6294 */ 6295 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6296 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6297 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6298 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6299} 6300 6301static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6302{ 6303 struct kszphy_ptp_priv *ptp_priv; 6304 struct lan8842_priv *priv; 6305 6306 priv = phydev->priv; 6307 ptp_priv = &priv->ptp_priv; 6308 6309 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6310 lan8814_get_tx_ts(ptp_priv); 6311 6312 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6313 lan8814_get_rx_ts(ptp_priv); 6314 6315 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6316 lan8814_flush_fifo(phydev, true); 6317 skb_queue_purge(&ptp_priv->tx_queue); 6318 } 6319 6320 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6321 lan8814_flush_fifo(phydev, false); 6322 skb_queue_purge(&ptp_priv->rx_queue); 6323 } 6324} 6325 6326static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6327{ 6328 struct lan8842_priv *priv = phydev->priv; 6329 int ret = IRQ_NONE; 6330 int irq_status; 6331 6332 irq_status = phy_read(phydev, LAN8814_INTS); 6333 if (irq_status < 0) { 6334 phy_error(phydev); 6335 return IRQ_NONE; 6336 } 6337 6338 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6339 phy_trigger_machine(phydev); 6340 ret = IRQ_HANDLED; 6341 } 6342 6343 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6344 * not need to check the PTP and GPIO interrupts 6345 */ 6346 if (priv->rev == LAN8842_REV_8832) 6347 goto out; 6348 6349 while (true) { 6350 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6351 PTP_TSU_INT_STS); 6352 if (!irq_status) 6353 break; 6354 6355 lan8842_handle_ptp_interrupt(phydev, irq_status); 6356 ret = IRQ_HANDLED; 6357 } 6358 6359 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6360 ret = IRQ_HANDLED; 6361 6362out: 6363 return ret; 6364} 6365 6366static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6367{ 6368 u64 ret = 0; 6369 int val; 6370 6371 for (int j = 0; j < count; ++j) { 6372 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6373 regs[j]); 6374 if (val < 0) 6375 return U64_MAX; 6376 6377 ret <<= 16; 6378 ret += val; 6379 } 6380 return ret; 6381} 6382 6383static int lan8842_update_stats(struct phy_device *phydev) 6384{ 6385 struct lan8842_priv *priv = phydev->priv; 6386 int rx_packets_regs[] = {88, 61, 60}; 6387 int rx_errors_regs[] = {63, 62}; 6388 int tx_packets_regs[] = {89, 85, 84}; 6389 int tx_errors_regs[] = {87, 86}; 6390 6391 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6392 ARRAY_SIZE(rx_packets_regs), 6393 rx_packets_regs); 6394 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6395 ARRAY_SIZE(rx_errors_regs), 6396 rx_errors_regs); 6397 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6398 ARRAY_SIZE(tx_packets_regs), 6399 tx_packets_regs); 6400 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6401 ARRAY_SIZE(tx_errors_regs), 6402 tx_errors_regs); 6403 6404 return 0; 6405} 6406 6407#define LAN8842_FLF 15 /* 0x0e */ 6408#define LAN8842_FLF_ENA BIT(1) 6409#define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6410 6411static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6412{ 6413 int ret; 6414 6415 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6416 if (ret < 0) 6417 return ret; 6418 6419 if (ret & LAN8842_FLF_ENA) 6420 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6421 else 6422 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6423 6424 return 0; 6425} 6426 6427static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6428{ 6429 u16 flf; 6430 6431 switch (*msecs) { 6432 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6433 flf = 0; 6434 break; 6435 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6436 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6437 break; 6438 default: 6439 return -EINVAL; 6440 } 6441 6442 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6443 LAN8842_FLF, 6444 LAN8842_FLF_ENA | 6445 LAN8842_FLF_ENA_LINK_DOWN, flf); 6446} 6447 6448static int lan8842_get_tunable(struct phy_device *phydev, 6449 struct ethtool_tunable *tuna, void *data) 6450{ 6451 switch (tuna->id) { 6452 case ETHTOOL_PHY_FAST_LINK_DOWN: 6453 return lan8842_get_fast_down(phydev, data); 6454 default: 6455 return -EOPNOTSUPP; 6456 } 6457} 6458 6459static int lan8842_set_tunable(struct phy_device *phydev, 6460 struct ethtool_tunable *tuna, const void *data) 6461{ 6462 switch (tuna->id) { 6463 case ETHTOOL_PHY_FAST_LINK_DOWN: 6464 return lan8842_set_fast_down(phydev, data); 6465 default: 6466 return -EOPNOTSUPP; 6467 } 6468} 6469 6470static void lan8842_get_phy_stats(struct phy_device *phydev, 6471 struct ethtool_eth_phy_stats *eth_stats, 6472 struct ethtool_phy_stats *stats) 6473{ 6474 struct lan8842_priv *priv = phydev->priv; 6475 6476 stats->rx_packets = priv->phy_stats.rx_packets; 6477 stats->rx_errors = priv->phy_stats.rx_errors; 6478 stats->tx_packets = priv->phy_stats.tx_packets; 6479 stats->tx_errors = priv->phy_stats.tx_errors; 6480} 6481 6482static struct phy_driver ksphy_driver[] = { 6483{ 6484 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6485 .name = "Micrel KS8737", 6486 /* PHY_BASIC_FEATURES */ 6487 .driver_data = &ks8737_type, 6488 .probe = kszphy_probe, 6489 .config_init = kszphy_config_init, 6490 .config_intr = kszphy_config_intr, 6491 .handle_interrupt = kszphy_handle_interrupt, 6492 .suspend = kszphy_suspend, 6493 .resume = kszphy_resume, 6494}, { 6495 .phy_id = PHY_ID_KSZ8021, 6496 .phy_id_mask = 0x00ffffff, 6497 .name = "Micrel KSZ8021 or KSZ8031", 6498 /* PHY_BASIC_FEATURES */ 6499 .driver_data = &ksz8021_type, 6500 .probe = kszphy_probe, 6501 .config_init = kszphy_config_init, 6502 .config_intr = kszphy_config_intr, 6503 .handle_interrupt = kszphy_handle_interrupt, 6504 .get_sset_count = kszphy_get_sset_count, 6505 .get_strings = kszphy_get_strings, 6506 .get_stats = kszphy_get_stats, 6507 .suspend = kszphy_suspend, 6508 .resume = kszphy_resume, 6509}, { 6510 .phy_id = PHY_ID_KSZ8031, 6511 .phy_id_mask = 0x00ffffff, 6512 .name = "Micrel KSZ8031", 6513 /* PHY_BASIC_FEATURES */ 6514 .driver_data = &ksz8021_type, 6515 .probe = kszphy_probe, 6516 .config_init = kszphy_config_init, 6517 .config_intr = kszphy_config_intr, 6518 .handle_interrupt = kszphy_handle_interrupt, 6519 .get_sset_count = kszphy_get_sset_count, 6520 .get_strings = kszphy_get_strings, 6521 .get_stats = kszphy_get_stats, 6522 .suspend = kszphy_suspend, 6523 .resume = kszphy_resume, 6524}, { 6525 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6526 .name = "Micrel KSZ8041", 6527 /* PHY_BASIC_FEATURES */ 6528 .driver_data = &ksz8041_type, 6529 .probe = kszphy_probe, 6530 .config_init = ksz8041_config_init, 6531 .config_aneg = ksz8041_config_aneg, 6532 .config_intr = kszphy_config_intr, 6533 .handle_interrupt = kszphy_handle_interrupt, 6534 .get_sset_count = kszphy_get_sset_count, 6535 .get_strings = kszphy_get_strings, 6536 .get_stats = kszphy_get_stats, 6537 .suspend = ksz8041_suspend, 6538 .resume = ksz8041_resume, 6539}, { 6540 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6541 .name = "Micrel KSZ8041RNLI", 6542 /* PHY_BASIC_FEATURES */ 6543 .driver_data = &ksz8041_type, 6544 .probe = kszphy_probe, 6545 .config_init = kszphy_config_init, 6546 .config_intr = kszphy_config_intr, 6547 .handle_interrupt = kszphy_handle_interrupt, 6548 .get_sset_count = kszphy_get_sset_count, 6549 .get_strings = kszphy_get_strings, 6550 .get_stats = kszphy_get_stats, 6551 .suspend = kszphy_suspend, 6552 .resume = kszphy_resume, 6553}, { 6554 .name = "Micrel KSZ8051", 6555 /* PHY_BASIC_FEATURES */ 6556 .driver_data = &ksz8051_type, 6557 .probe = kszphy_probe, 6558 .config_init = kszphy_config_init, 6559 .config_intr = kszphy_config_intr, 6560 .handle_interrupt = kszphy_handle_interrupt, 6561 .get_sset_count = kszphy_get_sset_count, 6562 .get_strings = kszphy_get_strings, 6563 .get_stats = kszphy_get_stats, 6564 .match_phy_device = ksz8051_match_phy_device, 6565 .suspend = kszphy_suspend, 6566 .resume = kszphy_resume, 6567}, { 6568 .phy_id = PHY_ID_KSZ8001, 6569 .name = "Micrel KSZ8001 or KS8721", 6570 .phy_id_mask = 0x00fffffc, 6571 /* PHY_BASIC_FEATURES */ 6572 .driver_data = &ksz8041_type, 6573 .probe = kszphy_probe, 6574 .config_init = kszphy_config_init, 6575 .config_intr = kszphy_config_intr, 6576 .handle_interrupt = kszphy_handle_interrupt, 6577 .get_sset_count = kszphy_get_sset_count, 6578 .get_strings = kszphy_get_strings, 6579 .get_stats = kszphy_get_stats, 6580 .suspend = kszphy_suspend, 6581 .resume = kszphy_resume, 6582}, { 6583 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6584 .name = "Micrel KSZ8081 or KSZ8091", 6585 .flags = PHY_POLL_CABLE_TEST, 6586 /* PHY_BASIC_FEATURES */ 6587 .driver_data = &ksz8081_type, 6588 .probe = kszphy_probe, 6589 .config_init = ksz8081_config_init, 6590 .soft_reset = genphy_soft_reset, 6591 .config_aneg = ksz8081_config_aneg, 6592 .read_status = ksz8081_read_status, 6593 .config_intr = kszphy_config_intr, 6594 .handle_interrupt = kszphy_handle_interrupt, 6595 .get_sset_count = kszphy_get_sset_count, 6596 .get_strings = kszphy_get_strings, 6597 .get_stats = kszphy_get_stats, 6598 .suspend = kszphy_suspend, 6599 .resume = kszphy_resume, 6600 .cable_test_start = ksz886x_cable_test_start, 6601 .cable_test_get_status = ksz886x_cable_test_get_status, 6602}, { 6603 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6604 .name = "Micrel KSZ8061", 6605 /* PHY_BASIC_FEATURES */ 6606 .probe = kszphy_probe, 6607 .config_init = ksz8061_config_init, 6608 .soft_reset = genphy_soft_reset, 6609 .config_intr = kszphy_config_intr, 6610 .handle_interrupt = kszphy_handle_interrupt, 6611 .suspend = ksz8061_suspend, 6612 .resume = ksz8061_resume, 6613}, { 6614 .phy_id = PHY_ID_KSZ9021, 6615 .phy_id_mask = 0x000ffffe, 6616 .name = "Micrel KSZ9021 Gigabit PHY", 6617 /* PHY_GBIT_FEATURES */ 6618 .driver_data = &ksz9021_type, 6619 .probe = kszphy_probe, 6620 .get_features = ksz9031_get_features, 6621 .config_init = ksz9021_config_init, 6622 .config_intr = kszphy_config_intr, 6623 .handle_interrupt = kszphy_handle_interrupt, 6624 .get_sset_count = kszphy_get_sset_count, 6625 .get_strings = kszphy_get_strings, 6626 .get_stats = kszphy_get_stats, 6627 .suspend = kszphy_suspend, 6628 .resume = kszphy_resume, 6629 .read_mmd = genphy_read_mmd_unsupported, 6630 .write_mmd = genphy_write_mmd_unsupported, 6631}, { 6632 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6633 .name = "Micrel KSZ9031 Gigabit PHY", 6634 .flags = PHY_POLL_CABLE_TEST, 6635 .driver_data = &ksz9021_type, 6636 .probe = kszphy_probe, 6637 .get_features = ksz9031_get_features, 6638 .config_init = ksz9031_config_init, 6639 .soft_reset = genphy_soft_reset, 6640 .read_status = ksz9031_read_status, 6641 .config_intr = kszphy_config_intr, 6642 .handle_interrupt = kszphy_handle_interrupt, 6643 .get_sset_count = kszphy_get_sset_count, 6644 .get_strings = kszphy_get_strings, 6645 .get_stats = kszphy_get_stats, 6646 .suspend = kszphy_suspend, 6647 .resume = kszphy_resume, 6648 .cable_test_start = ksz9x31_cable_test_start, 6649 .cable_test_get_status = ksz9x31_cable_test_get_status, 6650 .set_loopback = ksz9031_set_loopback, 6651}, { 6652 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6653 .name = "Microchip INDY Gigabit Quad PHY", 6654 .flags = PHY_POLL_CABLE_TEST, 6655 .config_init = lan8814_config_init, 6656 .driver_data = &lan8814_type, 6657 .probe = lan8814_probe, 6658 .soft_reset = genphy_soft_reset, 6659 .read_status = ksz9031_read_status, 6660 .get_sset_count = kszphy_get_sset_count, 6661 .get_strings = kszphy_get_strings, 6662 .get_stats = kszphy_get_stats, 6663 .suspend = genphy_suspend, 6664 .resume = kszphy_resume, 6665 .config_intr = lan8814_config_intr, 6666 .inband_caps = lan8842_inband_caps, 6667 .config_inband = lan8842_config_inband, 6668 .handle_interrupt = lan8814_handle_interrupt, 6669 .cable_test_start = lan8814_cable_test_start, 6670 .cable_test_get_status = ksz886x_cable_test_get_status, 6671}, { 6672 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6673 .name = "Microchip LAN966X Gigabit PHY", 6674 .config_init = lan8804_config_init, 6675 .driver_data = &ksz9021_type, 6676 .probe = kszphy_probe, 6677 .soft_reset = genphy_soft_reset, 6678 .read_status = ksz9031_read_status, 6679 .get_sset_count = kszphy_get_sset_count, 6680 .get_strings = kszphy_get_strings, 6681 .get_stats = kszphy_get_stats, 6682 .suspend = lan8804_suspend, 6683 .resume = lan8804_resume, 6684 .config_intr = lan8804_config_intr, 6685 .handle_interrupt = lan8804_handle_interrupt, 6686}, { 6687 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6688 .name = "Microchip LAN8841 Gigabit PHY", 6689 .flags = PHY_POLL_CABLE_TEST, 6690 .driver_data = &lan8841_type, 6691 .config_init = lan8841_config_init, 6692 .probe = lan8841_probe, 6693 .soft_reset = genphy_soft_reset, 6694 .config_intr = lan8841_config_intr, 6695 .handle_interrupt = lan8841_handle_interrupt, 6696 .get_sset_count = kszphy_get_sset_count, 6697 .get_strings = kszphy_get_strings, 6698 .get_stats = kszphy_get_stats, 6699 .suspend = lan8841_suspend, 6700 .resume = lan8841_resume, 6701 .cable_test_start = lan8814_cable_test_start, 6702 .cable_test_get_status = ksz886x_cable_test_get_status, 6703}, { 6704 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6705 .name = "Microchip LAN8842 Gigabit PHY", 6706 .flags = PHY_POLL_CABLE_TEST, 6707 .driver_data = &lan8814_type, 6708 .probe = lan8842_probe, 6709 .config_init = lan8842_config_init, 6710 .config_intr = lan8842_config_intr, 6711 .inband_caps = lan8842_inband_caps, 6712 .config_inband = lan8842_config_inband, 6713 .handle_interrupt = lan8842_handle_interrupt, 6714 .get_phy_stats = lan8842_get_phy_stats, 6715 .update_stats = lan8842_update_stats, 6716 .get_tunable = lan8842_get_tunable, 6717 .set_tunable = lan8842_set_tunable, 6718 .cable_test_start = lan8814_cable_test_start, 6719 .cable_test_get_status = ksz886x_cable_test_get_status, 6720}, { 6721 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6722 .name = "Microchip KSZ9131 Gigabit PHY", 6723 /* PHY_GBIT_FEATURES */ 6724 .flags = PHY_POLL_CABLE_TEST, 6725 .driver_data = &ksz9131_type, 6726 .probe = kszphy_probe, 6727 .soft_reset = genphy_soft_reset, 6728 .config_init = ksz9131_config_init, 6729 .config_intr = kszphy_config_intr, 6730 .config_aneg = ksz9131_config_aneg, 6731 .read_status = ksz9131_read_status, 6732 .handle_interrupt = kszphy_handle_interrupt, 6733 .get_sset_count = kszphy_get_sset_count, 6734 .get_strings = kszphy_get_strings, 6735 .get_stats = kszphy_get_stats, 6736 .suspend = kszphy_suspend, 6737 .resume = ksz9131_resume, 6738 .cable_test_start = ksz9x31_cable_test_start, 6739 .cable_test_get_status = ksz9x31_cable_test_get_status, 6740 .get_features = ksz9477_get_features, 6741}, { 6742 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6743 .name = "Micrel KSZ8873MLL Switch", 6744 /* PHY_BASIC_FEATURES */ 6745 .config_init = kszphy_config_init, 6746 .config_aneg = ksz8873mll_config_aneg, 6747 .read_status = ksz8873mll_read_status, 6748 .suspend = genphy_suspend, 6749 .resume = genphy_resume, 6750}, { 6751 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6752 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6753 .driver_data = &ksz886x_type, 6754 /* PHY_BASIC_FEATURES */ 6755 .flags = PHY_POLL_CABLE_TEST, 6756 .config_init = kszphy_config_init, 6757 .config_aneg = ksz886x_config_aneg, 6758 .read_status = ksz886x_read_status, 6759 .suspend = genphy_suspend, 6760 .resume = genphy_resume, 6761 .cable_test_start = ksz886x_cable_test_start, 6762 .cable_test_get_status = ksz886x_cable_test_get_status, 6763}, { 6764 .name = "Micrel KSZ87XX Switch", 6765 /* PHY_BASIC_FEATURES */ 6766 .config_init = kszphy_config_init, 6767 .match_phy_device = ksz8795_match_phy_device, 6768 .suspend = genphy_suspend, 6769 .resume = genphy_resume, 6770}, { 6771 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6772 .name = "Microchip KSZ9477", 6773 .probe = kszphy_probe, 6774 /* PHY_GBIT_FEATURES */ 6775 .config_init = ksz9477_config_init, 6776 .config_intr = kszphy_config_intr, 6777 .config_aneg = ksz9477_config_aneg, 6778 .read_status = ksz9477_read_status, 6779 .handle_interrupt = kszphy_handle_interrupt, 6780 .suspend = genphy_suspend, 6781 .resume = ksz9477_resume, 6782 .get_phy_stats = kszphy_get_phy_stats, 6783 .update_stats = kszphy_update_stats, 6784 .cable_test_start = ksz9x31_cable_test_start, 6785 .cable_test_get_status = ksz9x31_cable_test_get_status, 6786 .get_sqi = kszphy_get_sqi, 6787 .get_sqi_max = kszphy_get_sqi_max, 6788 .get_mse_capability = kszphy_get_mse_capability, 6789 .get_mse_snapshot = kszphy_get_mse_snapshot, 6790} }; 6791 6792module_phy_driver(ksphy_driver); 6793 6794MODULE_DESCRIPTION("Micrel PHY driver"); 6795MODULE_AUTHOR("David J. Choi"); 6796MODULE_LICENSE("GPL"); 6797 6798static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6799 { PHY_ID_KSZ9021, 0x000ffffe }, 6800 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6801 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6802 { PHY_ID_KSZ8001, 0x00fffffc }, 6803 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6804 { PHY_ID_KSZ8021, 0x00ffffff }, 6805 { PHY_ID_KSZ8031, 0x00ffffff }, 6806 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6807 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6808 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6809 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6810 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6811 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6812 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6813 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6814 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6815 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6816 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6817 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6818 { } 6819}; 6820 6821MODULE_DEVICE_TABLE(mdio, micrel_tbl);