Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/string.h>
15#include <linux/pm_runtime.h>
16#include <linux/random.h>
17#include <linux/sysfs.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "card.h"
25#include "host.h"
26#include "bus.h"
27#include "mmc_ops.h"
28#include "quirks.h"
29#include "sd_ops.h"
30#include "pwrseq.h"
31
32#define DEFAULT_CMD6_TIMEOUT_MS 500
33#define MIN_CACHE_EN_TIMEOUT_MS 1600
34#define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
35
36enum mmc_poweroff_type {
37 MMC_POWEROFF_SUSPEND,
38 MMC_POWEROFF_SHUTDOWN,
39 MMC_POWEROFF_UNDERVOLTAGE,
40 MMC_POWEROFF_UNBIND,
41};
42
43static const unsigned int tran_exp[] = {
44 10000, 100000, 1000000, 10000000,
45 0, 0, 0, 0
46};
47
48static const unsigned char tran_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51};
52
53static const unsigned int taac_exp[] = {
54 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
55};
56
57static const unsigned int taac_mant[] = {
58 0, 10, 12, 13, 15, 20, 25, 30,
59 35, 40, 45, 50, 55, 60, 70, 80,
60};
61
62/*
63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
64 */
65static int mmc_decode_cid(struct mmc_card *card)
66{
67 u32 *resp = card->raw_cid;
68
69 /*
70 * Add the raw card ID (cid) data to the entropy pool. It doesn't
71 * matter that not all of it is unique, it's just bonus entropy.
72 */
73 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
74
75 /*
76 * The selection of the format here is based upon published
77 * specs from SanDisk and from what people have reported.
78 */
79 switch (card->csd.mmca_vsn) {
80 case 0: /* MMC v1.0 - v1.2 */
81 case 1: /* MMC v1.4 */
82 card->cid.manfid = unstuff_bits(resp, 104, 24);
83 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
84 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
85 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
86 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
87 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
88 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
89 card->cid.prod_name[6] = unstuff_bits(resp, 48, 8);
90 card->cid.hwrev = unstuff_bits(resp, 44, 4);
91 card->cid.fwrev = unstuff_bits(resp, 40, 4);
92 card->cid.serial = unstuff_bits(resp, 16, 24);
93 card->cid.month = unstuff_bits(resp, 12, 4);
94 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
95 break;
96
97 case 2: /* MMC v2.0 - v2.2 */
98 case 3: /* MMC v3.1 - v3.3 */
99 case 4: /* MMC v4 */
100 card->cid.manfid = unstuff_bits(resp, 120, 8);
101 card->cid.oemid = unstuff_bits(resp, 104, 16);
102 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
103 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
104 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
105 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
106 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
107 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
108 card->cid.prv = unstuff_bits(resp, 48, 8);
109 card->cid.serial = unstuff_bits(resp, 16, 32);
110 card->cid.month = unstuff_bits(resp, 12, 4);
111 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
112 break;
113
114 default:
115 pr_err("%s: card has unknown MMCA version %d\n",
116 mmc_hostname(card->host), card->csd.mmca_vsn);
117 return -EINVAL;
118 }
119
120 /* some product names include trailing whitespace */
121 strim(card->cid.prod_name);
122
123 return 0;
124}
125
126static void mmc_set_erase_size(struct mmc_card *card)
127{
128 if (card->ext_csd.erase_group_def & 1)
129 card->erase_size = card->ext_csd.hc_erase_size;
130 else
131 card->erase_size = card->csd.erase_size;
132
133 mmc_init_erase(card);
134}
135
136
137static void mmc_set_wp_grp_size(struct mmc_card *card)
138{
139 if (card->ext_csd.erase_group_def & 1)
140 card->wp_grp_size = card->ext_csd.hc_erase_size *
141 card->ext_csd.raw_hc_erase_gap_size;
142 else
143 card->wp_grp_size = card->csd.erase_size *
144 (card->csd.wp_grp_size + 1);
145}
146
147/*
148 * Given a 128-bit response, decode to our card CSD structure.
149 */
150static int mmc_decode_csd(struct mmc_card *card)
151{
152 struct mmc_csd *csd = &card->csd;
153 unsigned int e, m, a, b;
154 u32 *resp = card->raw_csd;
155
156 /*
157 * We only understand CSD structure v1.1 and v1.2.
158 * v1.2 has extra information in bits 15, 11 and 10.
159 * We also support eMMC v4.4 & v4.41.
160 */
161 csd->structure = unstuff_bits(resp, 126, 2);
162 if (csd->structure == 0) {
163 pr_err("%s: unrecognised CSD structure version %d\n",
164 mmc_hostname(card->host), csd->structure);
165 return -EINVAL;
166 }
167
168 csd->mmca_vsn = unstuff_bits(resp, 122, 4);
169 m = unstuff_bits(resp, 115, 4);
170 e = unstuff_bits(resp, 112, 3);
171 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
172 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
173
174 m = unstuff_bits(resp, 99, 4);
175 e = unstuff_bits(resp, 96, 3);
176 csd->max_dtr = tran_exp[e] * tran_mant[m];
177 csd->cmdclass = unstuff_bits(resp, 84, 12);
178
179 e = unstuff_bits(resp, 47, 3);
180 m = unstuff_bits(resp, 62, 12);
181 csd->capacity = (1 + m) << (e + 2);
182
183 csd->read_blkbits = unstuff_bits(resp, 80, 4);
184 csd->read_partial = unstuff_bits(resp, 79, 1);
185 csd->write_misalign = unstuff_bits(resp, 78, 1);
186 csd->read_misalign = unstuff_bits(resp, 77, 1);
187 csd->dsr_imp = unstuff_bits(resp, 76, 1);
188 csd->r2w_factor = unstuff_bits(resp, 26, 3);
189 csd->write_blkbits = unstuff_bits(resp, 22, 4);
190 csd->write_partial = unstuff_bits(resp, 21, 1);
191
192 if (csd->write_blkbits >= 9) {
193 a = unstuff_bits(resp, 42, 5);
194 b = unstuff_bits(resp, 37, 5);
195 csd->erase_size = (a + 1) * (b + 1);
196 csd->erase_size <<= csd->write_blkbits - 9;
197 csd->wp_grp_size = unstuff_bits(resp, 32, 5);
198 }
199
200 return 0;
201}
202
203static void mmc_select_card_type(struct mmc_card *card)
204{
205 struct mmc_host *host = card->host;
206 u8 card_type = card->ext_csd.raw_card_type;
207 u32 caps = host->caps, caps2 = host->caps2;
208 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
209 unsigned int avail_type = 0;
210
211 if (caps & MMC_CAP_MMC_HIGHSPEED &&
212 card_type & EXT_CSD_CARD_TYPE_HS_26) {
213 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
214 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
215 }
216
217 if (caps & MMC_CAP_MMC_HIGHSPEED &&
218 card_type & EXT_CSD_CARD_TYPE_HS_52) {
219 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
220 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
221 }
222
223 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
224 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
225 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
226 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
227 }
228
229 if (caps & MMC_CAP_1_2V_DDR &&
230 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
231 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
232 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
233 }
234
235 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
236 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
237 hs200_max_dtr = MMC_HS200_MAX_DTR;
238 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
239 }
240
241 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
242 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
243 hs200_max_dtr = MMC_HS200_MAX_DTR;
244 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
245 }
246
247 if (caps2 & MMC_CAP2_HS400_1_8V &&
248 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
249 hs200_max_dtr = MMC_HS200_MAX_DTR;
250 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
251 }
252
253 if (caps2 & MMC_CAP2_HS400_1_2V &&
254 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
255 hs200_max_dtr = MMC_HS200_MAX_DTR;
256 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
257 }
258
259 if ((caps2 & MMC_CAP2_HS400_ES) &&
260 card->ext_csd.strobe_support &&
261 (avail_type & EXT_CSD_CARD_TYPE_HS400))
262 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
263
264 card->ext_csd.hs_max_dtr = hs_max_dtr;
265 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
266 card->mmc_avail_type = avail_type;
267}
268
269static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
270{
271 u8 hc_erase_grp_sz, hc_wp_grp_sz;
272
273 /*
274 * Disable these attributes by default
275 */
276 card->ext_csd.enhanced_area_offset = -EINVAL;
277 card->ext_csd.enhanced_area_size = -EINVAL;
278
279 /*
280 * Enhanced area feature support -- check whether the eMMC
281 * card has the Enhanced area enabled. If so, export enhanced
282 * area offset and size to user by adding sysfs interface.
283 */
284 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
285 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
286 if (card->ext_csd.partition_setting_completed) {
287 hc_erase_grp_sz =
288 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
289 hc_wp_grp_sz =
290 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
291
292 /*
293 * calculate the enhanced data area offset, in bytes
294 */
295 card->ext_csd.enhanced_area_offset =
296 (((unsigned long long)ext_csd[139]) << 24) +
297 (((unsigned long long)ext_csd[138]) << 16) +
298 (((unsigned long long)ext_csd[137]) << 8) +
299 (((unsigned long long)ext_csd[136]));
300 if (mmc_card_blockaddr(card))
301 card->ext_csd.enhanced_area_offset <<= 9;
302 /*
303 * calculate the enhanced data area size, in kilobytes
304 */
305 card->ext_csd.enhanced_area_size =
306 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
307 ext_csd[140];
308 card->ext_csd.enhanced_area_size *=
309 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
310 card->ext_csd.enhanced_area_size <<= 9;
311 } else {
312 pr_warn("%s: defines enhanced area without partition setting complete\n",
313 mmc_hostname(card->host));
314 }
315 }
316}
317
318static void mmc_part_add(struct mmc_card *card, u64 size,
319 unsigned int part_cfg, char *name, int idx, bool ro,
320 int area_type)
321{
322 card->part[card->nr_parts].size = size;
323 card->part[card->nr_parts].part_cfg = part_cfg;
324 sprintf(card->part[card->nr_parts].name, name, idx);
325 card->part[card->nr_parts].force_ro = ro;
326 card->part[card->nr_parts].area_type = area_type;
327 card->nr_parts++;
328}
329
330static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
331{
332 int idx;
333 u8 hc_erase_grp_sz, hc_wp_grp_sz;
334 u64 part_size;
335
336 /*
337 * General purpose partition feature support --
338 * If ext_csd has the size of general purpose partitions,
339 * set size, part_cfg, partition name in mmc_part.
340 */
341 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
342 EXT_CSD_PART_SUPPORT_PART_EN) {
343 hc_erase_grp_sz =
344 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
345 hc_wp_grp_sz =
346 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
347
348 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
349 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
350 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
351 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
352 continue;
353 if (card->ext_csd.partition_setting_completed == 0) {
354 pr_warn("%s: has partition size defined without partition complete\n",
355 mmc_hostname(card->host));
356 break;
357 }
358 part_size =
359 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
360 << 16) +
361 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
362 << 8) +
363 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
364 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
365 mmc_part_add(card, part_size << 19,
366 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
367 "gp%d", idx, false,
368 MMC_BLK_DATA_AREA_GP);
369 }
370 }
371}
372
373/* Minimum partition switch timeout in milliseconds */
374#define MMC_MIN_PART_SWITCH_TIME 300
375
376/*
377 * Decode extended CSD.
378 */
379static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
380{
381 int err = 0, idx;
382 u64 part_size;
383 struct device_node *np;
384 bool broken_hpi = false;
385
386 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
387 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
388 if (card->csd.structure == 3) {
389 if (card->ext_csd.raw_ext_csd_structure > 2) {
390 pr_err("%s: unrecognised EXT_CSD structure "
391 "version %d\n", mmc_hostname(card->host),
392 card->ext_csd.raw_ext_csd_structure);
393 err = -EINVAL;
394 goto out;
395 }
396 }
397
398 np = mmc_of_find_child_device(card->host, 0);
399 if (np && of_device_is_compatible(np, "mmc-card"))
400 broken_hpi = of_property_read_bool(np, "broken-hpi");
401 of_node_put(np);
402
403 /*
404 * The EXT_CSD format is meant to be forward compatible. As long
405 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
406 * are authorized, see JEDEC JESD84-B50 section B.8.
407 */
408 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
409
410 /* fixup device after ext_csd revision field is updated */
411 mmc_fixup_device(card, mmc_ext_csd_fixups);
412
413 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
414 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
415 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
416 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
417 if (card->ext_csd.rev >= 2) {
418 card->ext_csd.sectors =
419 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
420 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
421 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
422 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
423
424 /* Cards with density > 2GiB are sector addressed */
425 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
426 mmc_card_set_blockaddr(card);
427 }
428
429 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
430 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
431
432 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
433 card->ext_csd.raw_erase_timeout_mult =
434 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
435 card->ext_csd.raw_hc_erase_grp_size =
436 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
437 card->ext_csd.raw_boot_mult =
438 ext_csd[EXT_CSD_BOOT_MULT];
439 if (card->ext_csd.rev >= 3) {
440 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
441 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
442
443 /* EXT_CSD value is in units of 10ms, but we store in ms */
444 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
445
446 /* Sleep / awake timeout in 100ns units */
447 if (sa_shift > 0 && sa_shift <= 0x17)
448 card->ext_csd.sa_timeout =
449 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
450 card->ext_csd.erase_group_def =
451 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
452 card->ext_csd.hc_erase_timeout = 300 *
453 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
454 card->ext_csd.hc_erase_size =
455 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
456
457 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
458
459 /*
460 * There are two boot regions of equal size, defined in
461 * multiples of 128K.
462 */
463 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_host_can_access_boot(card->host)) {
464 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
465 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
466 mmc_part_add(card, part_size,
467 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
468 "boot%d", idx, true,
469 MMC_BLK_DATA_AREA_BOOT);
470 }
471 }
472 }
473
474 card->ext_csd.raw_hc_erase_gap_size =
475 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
476 card->ext_csd.raw_sec_trim_mult =
477 ext_csd[EXT_CSD_SEC_TRIM_MULT];
478 card->ext_csd.raw_sec_erase_mult =
479 ext_csd[EXT_CSD_SEC_ERASE_MULT];
480 card->ext_csd.raw_sec_feature_support =
481 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
482 card->ext_csd.raw_trim_mult =
483 ext_csd[EXT_CSD_TRIM_MULT];
484 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
485 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
486 if (card->ext_csd.rev >= 4) {
487 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
488 EXT_CSD_PART_SETTING_COMPLETED)
489 card->ext_csd.partition_setting_completed = 1;
490 else
491 card->ext_csd.partition_setting_completed = 0;
492
493 mmc_manage_enhanced_area(card, ext_csd);
494
495 mmc_manage_gp_partitions(card, ext_csd);
496
497 card->ext_csd.sec_trim_mult =
498 ext_csd[EXT_CSD_SEC_TRIM_MULT];
499 card->ext_csd.sec_erase_mult =
500 ext_csd[EXT_CSD_SEC_ERASE_MULT];
501 card->ext_csd.sec_feature_support =
502 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
503 card->ext_csd.trim_timeout = 300 *
504 ext_csd[EXT_CSD_TRIM_MULT];
505
506 /*
507 * Note that the call to mmc_part_add above defaults to read
508 * only. If this default assumption is changed, the call must
509 * take into account the value of boot_locked below.
510 */
511 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
512 card->ext_csd.boot_ro_lockable = true;
513
514 /* Save power class values */
515 card->ext_csd.raw_pwr_cl_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_52_195];
517 card->ext_csd.raw_pwr_cl_26_195 =
518 ext_csd[EXT_CSD_PWR_CL_26_195];
519 card->ext_csd.raw_pwr_cl_52_360 =
520 ext_csd[EXT_CSD_PWR_CL_52_360];
521 card->ext_csd.raw_pwr_cl_26_360 =
522 ext_csd[EXT_CSD_PWR_CL_26_360];
523 card->ext_csd.raw_pwr_cl_200_195 =
524 ext_csd[EXT_CSD_PWR_CL_200_195];
525 card->ext_csd.raw_pwr_cl_200_360 =
526 ext_csd[EXT_CSD_PWR_CL_200_360];
527 card->ext_csd.raw_pwr_cl_ddr_52_195 =
528 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
529 card->ext_csd.raw_pwr_cl_ddr_52_360 =
530 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
531 card->ext_csd.raw_pwr_cl_ddr_200_360 =
532 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
533 }
534
535 if (card->ext_csd.rev >= 5) {
536 /* Adjust production date as per JEDEC JESD84-B451 */
537 if (card->cid.year < 2010)
538 card->cid.year += 16;
539
540 /* check whether the eMMC card supports BKOPS */
541 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
542 card->ext_csd.bkops = 1;
543 card->ext_csd.man_bkops_en =
544 (ext_csd[EXT_CSD_BKOPS_EN] &
545 EXT_CSD_MANUAL_BKOPS_MASK);
546 card->ext_csd.raw_bkops_status =
547 ext_csd[EXT_CSD_BKOPS_STATUS];
548 if (card->ext_csd.man_bkops_en)
549 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
550 mmc_hostname(card->host));
551 card->ext_csd.auto_bkops_en =
552 (ext_csd[EXT_CSD_BKOPS_EN] &
553 EXT_CSD_AUTO_BKOPS_MASK);
554 if (card->ext_csd.auto_bkops_en)
555 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
556 mmc_hostname(card->host));
557 }
558
559 /* check whether the eMMC card supports HPI */
560 if (!mmc_card_broken_hpi(card) &&
561 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
562 card->ext_csd.hpi = 1;
563 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
564 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
565 else
566 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
567 /*
568 * Indicate the maximum timeout to close
569 * a command interrupted by HPI
570 */
571 card->ext_csd.out_of_int_time =
572 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
573 }
574
575 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
576 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
577
578 /*
579 * RPMB regions are defined in multiples of 128K.
580 */
581 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
582 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_can_cmd23(card->host)) {
583 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
584 EXT_CSD_PART_CONFIG_ACC_RPMB,
585 "rpmb", 0, false,
586 MMC_BLK_DATA_AREA_RPMB);
587 }
588 }
589
590 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
591 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
592 card->erased_byte = 0xFF;
593 else
594 card->erased_byte = 0x0;
595
596 /* eMMC v4.5 or later */
597 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
598 if (card->ext_csd.rev >= 6) {
599 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
600
601 card->ext_csd.generic_cmd6_time = 10 *
602 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
603 card->ext_csd.power_off_longtime = 10 *
604 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
605
606 card->ext_csd.cache_size =
607 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
608 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
609 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
610 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
611
612 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
613 card->ext_csd.data_sector_size = 4096;
614 else
615 card->ext_csd.data_sector_size = 512;
616
617 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
618 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
619 card->ext_csd.data_tag_unit_size =
620 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
621 (card->ext_csd.data_sector_size);
622 } else {
623 card->ext_csd.data_tag_unit_size = 0;
624 }
625 } else {
626 card->ext_csd.data_sector_size = 512;
627 }
628
629 /*
630 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
631 * when accessing a specific field", so use it here if there is no
632 * PARTITION_SWITCH_TIME.
633 */
634 if (!card->ext_csd.part_time)
635 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
636 /* Some eMMC set the value too low so set a minimum */
637 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
638 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
639
640 /* eMMC v5 or later */
641 if (card->ext_csd.rev >= 7) {
642 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
643 MMC_FIRMWARE_LEN);
644 card->ext_csd.ffu_capable =
645 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
646 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
647
648 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
649 card->ext_csd.device_life_time_est_typ_a =
650 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
651 card->ext_csd.device_life_time_est_typ_b =
652 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
653 }
654
655 /* eMMC v5.1 or later */
656 if (card->ext_csd.rev >= 8) {
657 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
658 EXT_CSD_CMDQ_SUPPORTED;
659 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
660 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
661 /* Exclude inefficiently small queue depths */
662 if (card->ext_csd.cmdq_depth <= 2) {
663 card->ext_csd.cmdq_support = false;
664 card->ext_csd.cmdq_depth = 0;
665 }
666 if (card->ext_csd.cmdq_support) {
667 pr_debug("%s: Command Queue supported depth %u\n",
668 mmc_hostname(card->host),
669 card->ext_csd.cmdq_depth);
670 }
671 card->ext_csd.enhanced_rpmb_supported =
672 (card->ext_csd.rel_param &
673 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
674 }
675out:
676 return err;
677}
678
679static int mmc_read_ext_csd(struct mmc_card *card)
680{
681 u8 *ext_csd;
682 int err;
683
684 if (!mmc_card_can_ext_csd(card))
685 return 0;
686
687 err = mmc_get_ext_csd(card, &ext_csd);
688 if (err) {
689 /* If the host or the card can't do the switch,
690 * fail more gracefully. */
691 if ((err != -EINVAL)
692 && (err != -ENOSYS)
693 && (err != -EFAULT))
694 return err;
695
696 /*
697 * High capacity cards should have this "magic" size
698 * stored in their CSD.
699 */
700 if (card->csd.capacity == (4096 * 512)) {
701 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
702 mmc_hostname(card->host));
703 } else {
704 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
705 mmc_hostname(card->host));
706 err = 0;
707 }
708
709 return err;
710 }
711
712 err = mmc_decode_ext_csd(card, ext_csd);
713 kfree(ext_csd);
714 return err;
715}
716
717static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
718{
719 u8 *bw_ext_csd;
720 int err;
721
722 if (bus_width == MMC_BUS_WIDTH_1)
723 return 0;
724
725 err = mmc_get_ext_csd(card, &bw_ext_csd);
726 if (err)
727 return err;
728
729 /* only compare read only fields */
730 err = !((card->ext_csd.raw_partition_support ==
731 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
732 (card->ext_csd.raw_erased_mem_count ==
733 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
734 (card->ext_csd.rev ==
735 bw_ext_csd[EXT_CSD_REV]) &&
736 (card->ext_csd.raw_ext_csd_structure ==
737 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
738 (card->ext_csd.raw_card_type ==
739 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
740 (card->ext_csd.raw_s_a_timeout ==
741 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
742 (card->ext_csd.raw_hc_erase_gap_size ==
743 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
744 (card->ext_csd.raw_erase_timeout_mult ==
745 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
746 (card->ext_csd.raw_hc_erase_grp_size ==
747 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
748 (card->ext_csd.raw_sec_trim_mult ==
749 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
750 (card->ext_csd.raw_sec_erase_mult ==
751 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
752 (card->ext_csd.raw_sec_feature_support ==
753 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
754 (card->ext_csd.raw_trim_mult ==
755 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
756 (card->ext_csd.raw_sectors[0] ==
757 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
758 (card->ext_csd.raw_sectors[1] ==
759 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
760 (card->ext_csd.raw_sectors[2] ==
761 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
762 (card->ext_csd.raw_sectors[3] ==
763 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
764 (card->ext_csd.raw_pwr_cl_52_195 ==
765 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
766 (card->ext_csd.raw_pwr_cl_26_195 ==
767 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
768 (card->ext_csd.raw_pwr_cl_52_360 ==
769 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
770 (card->ext_csd.raw_pwr_cl_26_360 ==
771 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
772 (card->ext_csd.raw_pwr_cl_200_195 ==
773 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
774 (card->ext_csd.raw_pwr_cl_200_360 ==
775 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
776 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
777 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
778 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
779 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
780 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
781 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
782
783 if (err)
784 err = -EINVAL;
785
786 kfree(bw_ext_csd);
787 return err;
788}
789
790MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
791 card->raw_cid[2], card->raw_cid[3]);
792MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
793 card->raw_csd[2], card->raw_csd[3]);
794MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
795MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
796MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
797MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
798MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
799MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
800MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
801MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
802MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
803MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
804MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
805MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
806MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
807 card->ext_csd.device_life_time_est_typ_a,
808 card->ext_csd.device_life_time_est_typ_b);
809MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
810MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
811 card->ext_csd.enhanced_area_offset);
812MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
813MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
814MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
815 card->ext_csd.enhanced_rpmb_supported);
816MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
817MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
818MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
819MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
820
821static ssize_t mmc_fwrev_show(struct device *dev,
822 struct device_attribute *attr,
823 char *buf)
824{
825 struct mmc_card *card = mmc_dev_to_card(dev);
826
827 if (card->ext_csd.rev < 7)
828 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
829 else
830 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
831 card->ext_csd.fwrev);
832}
833
834static DEVICE_ATTR(fwrev, 0444, mmc_fwrev_show, NULL);
835
836static ssize_t mmc_dsr_show(struct device *dev,
837 struct device_attribute *attr,
838 char *buf)
839{
840 struct mmc_card *card = mmc_dev_to_card(dev);
841 struct mmc_host *host = card->host;
842
843 if (card->csd.dsr_imp && host->dsr_req)
844 return sysfs_emit(buf, "0x%x\n", host->dsr);
845 else
846 /* return default DSR value */
847 return sysfs_emit(buf, "0x%x\n", 0x404);
848}
849
850static DEVICE_ATTR(dsr, 0444, mmc_dsr_show, NULL);
851
852static struct attribute *mmc_std_attrs[] = {
853 &dev_attr_cid.attr,
854 &dev_attr_csd.attr,
855 &dev_attr_date.attr,
856 &dev_attr_erase_size.attr,
857 &dev_attr_preferred_erase_size.attr,
858 &dev_attr_wp_grp_size.attr,
859 &dev_attr_fwrev.attr,
860 &dev_attr_ffu_capable.attr,
861 &dev_attr_hwrev.attr,
862 &dev_attr_manfid.attr,
863 &dev_attr_name.attr,
864 &dev_attr_oemid.attr,
865 &dev_attr_prv.attr,
866 &dev_attr_rev.attr,
867 &dev_attr_pre_eol_info.attr,
868 &dev_attr_life_time.attr,
869 &dev_attr_serial.attr,
870 &dev_attr_enhanced_area_offset.attr,
871 &dev_attr_enhanced_area_size.attr,
872 &dev_attr_raw_rpmb_size_mult.attr,
873 &dev_attr_enhanced_rpmb_supported.attr,
874 &dev_attr_rel_sectors.attr,
875 &dev_attr_ocr.attr,
876 &dev_attr_rca.attr,
877 &dev_attr_dsr.attr,
878 &dev_attr_cmdq_en.attr,
879 NULL,
880};
881ATTRIBUTE_GROUPS(mmc_std);
882
883static const struct device_type mmc_type = {
884 .groups = mmc_std_groups,
885};
886
887/*
888 * Select the PowerClass for the current bus width
889 * If power class is defined for 4/8 bit bus in the
890 * extended CSD register, select it by executing the
891 * mmc_switch command.
892 */
893static int __mmc_select_powerclass(struct mmc_card *card,
894 unsigned int bus_width)
895{
896 struct mmc_host *host = card->host;
897 struct mmc_ext_csd *ext_csd = &card->ext_csd;
898 unsigned int pwrclass_val = 0;
899 int err = 0;
900
901 switch (1 << host->ios.vdd) {
902 case MMC_VDD_165_195:
903 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
904 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
905 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
906 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
907 ext_csd->raw_pwr_cl_52_195 :
908 ext_csd->raw_pwr_cl_ddr_52_195;
909 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
910 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
911 break;
912 case MMC_VDD_27_28:
913 case MMC_VDD_28_29:
914 case MMC_VDD_29_30:
915 case MMC_VDD_30_31:
916 case MMC_VDD_31_32:
917 case MMC_VDD_32_33:
918 case MMC_VDD_33_34:
919 case MMC_VDD_34_35:
920 case MMC_VDD_35_36:
921 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
922 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
923 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
924 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
925 ext_csd->raw_pwr_cl_52_360 :
926 ext_csd->raw_pwr_cl_ddr_52_360;
927 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
928 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
929 ext_csd->raw_pwr_cl_ddr_200_360 :
930 ext_csd->raw_pwr_cl_200_360;
931 break;
932 default:
933 pr_warn("%s: Voltage range not supported for power class\n",
934 mmc_hostname(host));
935 return -EINVAL;
936 }
937
938 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
939 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
940 EXT_CSD_PWR_CL_8BIT_SHIFT;
941 else
942 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
943 EXT_CSD_PWR_CL_4BIT_SHIFT;
944
945 /* If the power class is different from the default value */
946 if (pwrclass_val > 0) {
947 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
948 EXT_CSD_POWER_CLASS,
949 pwrclass_val,
950 card->ext_csd.generic_cmd6_time);
951 }
952
953 return err;
954}
955
956static int mmc_select_powerclass(struct mmc_card *card)
957{
958 struct mmc_host *host = card->host;
959 u32 bus_width, ext_csd_bits;
960 int err, ddr;
961
962 /* Power class selection is supported for versions >= 4.0 */
963 if (!mmc_card_can_ext_csd(card))
964 return 0;
965
966 bus_width = host->ios.bus_width;
967 /* Power class values are defined only for 4/8 bit bus */
968 if (bus_width == MMC_BUS_WIDTH_1)
969 return 0;
970
971 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
972 if (ddr)
973 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
974 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
975 else
976 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
977 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
978
979 err = __mmc_select_powerclass(card, ext_csd_bits);
980 if (err)
981 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
982 mmc_hostname(host), 1 << bus_width, ddr);
983
984 return err;
985}
986
987/*
988 * Set the bus speed for the selected speed mode.
989 */
990static void mmc_set_bus_speed(struct mmc_card *card)
991{
992 unsigned int max_dtr = (unsigned int)-1;
993
994 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
995 max_dtr > card->ext_csd.hs200_max_dtr)
996 max_dtr = card->ext_csd.hs200_max_dtr;
997 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
998 max_dtr = card->ext_csd.hs_max_dtr;
999 else if (max_dtr > card->csd.max_dtr)
1000 max_dtr = card->csd.max_dtr;
1001
1002 mmc_set_clock(card->host, max_dtr);
1003}
1004
1005/*
1006 * Select the bus width amoung 4-bit and 8-bit(SDR).
1007 * If the bus width is changed successfully, return the selected width value.
1008 * Zero is returned instead of error value if the wide width is not supported.
1009 */
1010static int mmc_select_bus_width(struct mmc_card *card)
1011{
1012 static unsigned ext_csd_bits[] = {
1013 EXT_CSD_BUS_WIDTH_8,
1014 EXT_CSD_BUS_WIDTH_4,
1015 EXT_CSD_BUS_WIDTH_1,
1016 };
1017 static unsigned bus_widths[] = {
1018 MMC_BUS_WIDTH_8,
1019 MMC_BUS_WIDTH_4,
1020 MMC_BUS_WIDTH_1,
1021 };
1022 struct mmc_host *host = card->host;
1023 unsigned idx, bus_width = 0;
1024 int err = 0;
1025
1026 if (!mmc_card_can_ext_csd(card) ||
1027 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1028 return 0;
1029
1030 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1031
1032 /*
1033 * Unlike SD, MMC cards dont have a configuration register to notify
1034 * supported bus width. So bus test command should be run to identify
1035 * the supported bus width or compare the ext csd values of current
1036 * bus width and ext csd values of 1 bit mode read earlier.
1037 */
1038 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1039 /*
1040 * Host is capable of 8bit transfer, then switch
1041 * the device to work in 8bit transfer mode. If the
1042 * mmc switch command returns error then switch to
1043 * 4bit transfer mode. On success set the corresponding
1044 * bus width on the host.
1045 */
1046 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1047 EXT_CSD_BUS_WIDTH,
1048 ext_csd_bits[idx],
1049 card->ext_csd.generic_cmd6_time);
1050 if (err)
1051 continue;
1052
1053 bus_width = bus_widths[idx];
1054 mmc_set_bus_width(host, bus_width);
1055
1056 /*
1057 * If controller can't handle bus width test,
1058 * compare ext_csd previously read in 1 bit mode
1059 * against ext_csd at new bus width
1060 */
1061 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1062 err = mmc_compare_ext_csds(card, bus_width);
1063 else
1064 err = mmc_bus_test(card, bus_width);
1065
1066 if (!err) {
1067 err = bus_width;
1068 break;
1069 } else {
1070 pr_warn("%s: switch to bus width %d failed\n",
1071 mmc_hostname(host), 1 << bus_width);
1072 }
1073 }
1074
1075 return err;
1076}
1077
1078/*
1079 * Switch to the high-speed mode
1080 */
1081static int mmc_select_hs(struct mmc_card *card)
1082{
1083 int err;
1084
1085 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1087 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1088 true, true, MMC_CMD_RETRIES);
1089 if (err)
1090 pr_warn("%s: switch to high-speed failed, err:%d\n",
1091 mmc_hostname(card->host), err);
1092
1093 return err;
1094}
1095
1096/*
1097 * Activate wide bus and DDR if supported.
1098 */
1099static int mmc_select_hs_ddr(struct mmc_card *card)
1100{
1101 struct mmc_host *host = card->host;
1102 u32 bus_width, ext_csd_bits;
1103 int err = 0;
1104
1105 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1106 return 0;
1107
1108 bus_width = host->ios.bus_width;
1109 if (bus_width == MMC_BUS_WIDTH_1)
1110 return 0;
1111
1112 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1113 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1114
1115 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1116 EXT_CSD_BUS_WIDTH,
1117 ext_csd_bits,
1118 card->ext_csd.generic_cmd6_time,
1119 MMC_TIMING_MMC_DDR52,
1120 true, true, MMC_CMD_RETRIES);
1121 if (err) {
1122 pr_err("%s: switch to bus width %d ddr failed\n",
1123 mmc_hostname(host), 1 << bus_width);
1124 return err;
1125 }
1126
1127 /*
1128 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1129 * signaling.
1130 *
1131 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1132 *
1133 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1134 * in the JEDEC spec for DDR.
1135 *
1136 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1137 * host controller can support this, like some of the SDHCI
1138 * controller which connect to an eMMC device. Some of these
1139 * host controller still needs to use 1.8v vccq for supporting
1140 * DDR mode.
1141 *
1142 * So the sequence will be:
1143 * if (host and device can both support 1.2v IO)
1144 * use 1.2v IO;
1145 * else if (host and device can both support 1.8v IO)
1146 * use 1.8v IO;
1147 * so if host and device can only support 3.3v IO, this is the
1148 * last choice.
1149 *
1150 * WARNING: eMMC rules are NOT the same as SD DDR
1151 */
1152 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1154 if (!err)
1155 return 0;
1156 }
1157
1158 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1159 host->caps & MMC_CAP_1_8V_DDR)
1160 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1161
1162 /* make sure vccq is 3.3v after switching disaster */
1163 if (err)
1164 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1165
1166 return err;
1167}
1168
1169static int mmc_select_hs400(struct mmc_card *card)
1170{
1171 struct mmc_host *host = card->host;
1172 unsigned int max_dtr;
1173 int err = 0;
1174 u8 val;
1175
1176 /*
1177 * HS400 mode requires 8-bit bus width
1178 */
1179 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1180 host->ios.bus_width == MMC_BUS_WIDTH_8))
1181 return 0;
1182
1183 /* Switch card to HS mode */
1184 val = EXT_CSD_TIMING_HS;
1185 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 EXT_CSD_HS_TIMING, val,
1187 card->ext_csd.generic_cmd6_time, 0,
1188 false, true, MMC_CMD_RETRIES);
1189 if (err) {
1190 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1191 mmc_hostname(host), err);
1192 return err;
1193 }
1194
1195 /* Prepare host to downgrade to HS timing */
1196 if (host->ops->hs400_downgrade)
1197 host->ops->hs400_downgrade(host);
1198
1199 /* Set host controller to HS timing */
1200 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1201
1202 /* Reduce frequency to HS frequency */
1203 max_dtr = card->ext_csd.hs_max_dtr;
1204 mmc_set_clock(host, max_dtr);
1205
1206 err = mmc_switch_status(card, true);
1207 if (err)
1208 goto out_err;
1209
1210 if (host->ops->hs400_prepare_ddr)
1211 host->ops->hs400_prepare_ddr(host);
1212
1213 /* Switch card to DDR */
1214 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1215 EXT_CSD_BUS_WIDTH,
1216 EXT_CSD_DDR_BUS_WIDTH_8,
1217 card->ext_csd.generic_cmd6_time);
1218 if (err) {
1219 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1220 mmc_hostname(host), err);
1221 return err;
1222 }
1223
1224 /* Switch card to HS400 */
1225 val = EXT_CSD_TIMING_HS400 |
1226 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1227 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1228 EXT_CSD_HS_TIMING, val,
1229 card->ext_csd.generic_cmd6_time, 0,
1230 false, true, MMC_CMD_RETRIES);
1231 if (err) {
1232 pr_err("%s: switch to hs400 failed, err:%d\n",
1233 mmc_hostname(host), err);
1234 return err;
1235 }
1236
1237 /* Set host controller to HS400 timing and frequency */
1238 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1239 mmc_set_bus_speed(card);
1240
1241 if (host->ops->execute_hs400_tuning) {
1242 mmc_retune_disable(host);
1243 err = host->ops->execute_hs400_tuning(host, card);
1244 mmc_retune_enable(host);
1245 if (err)
1246 goto out_err;
1247 }
1248
1249 if (host->ops->hs400_complete)
1250 host->ops->hs400_complete(host);
1251
1252 err = mmc_switch_status(card, true);
1253 if (err)
1254 goto out_err;
1255
1256 return 0;
1257
1258out_err:
1259 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1260 __func__, err);
1261 return err;
1262}
1263
1264int mmc_hs200_to_hs400(struct mmc_card *card)
1265{
1266 return mmc_select_hs400(card);
1267}
1268
1269int mmc_hs400_to_hs200(struct mmc_card *card)
1270{
1271 struct mmc_host *host = card->host;
1272 unsigned int max_dtr;
1273 int err;
1274 u8 val;
1275
1276 /* Reduce frequency to HS */
1277 max_dtr = card->ext_csd.hs_max_dtr;
1278 mmc_set_clock(host, max_dtr);
1279
1280 /* Switch HS400 to HS DDR */
1281 val = EXT_CSD_TIMING_HS;
1282 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1283 val, card->ext_csd.generic_cmd6_time, 0,
1284 false, true, MMC_CMD_RETRIES);
1285 if (err)
1286 goto out_err;
1287
1288 if (host->ops->hs400_downgrade)
1289 host->ops->hs400_downgrade(host);
1290
1291 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1292
1293 err = mmc_switch_status(card, true);
1294 if (err)
1295 goto out_err;
1296
1297 /* Switch HS DDR to HS */
1298 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1299 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1300 0, false, true, MMC_CMD_RETRIES);
1301 if (err)
1302 goto out_err;
1303
1304 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1305
1306 err = mmc_switch_status(card, true);
1307 if (err)
1308 goto out_err;
1309
1310 /* Switch HS to HS200 */
1311 val = EXT_CSD_TIMING_HS200 |
1312 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1313 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1314 val, card->ext_csd.generic_cmd6_time, 0,
1315 false, true, MMC_CMD_RETRIES);
1316 if (err)
1317 goto out_err;
1318
1319 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1320
1321 /*
1322 * For HS200, CRC errors are not a reliable way to know the switch
1323 * failed. If there really is a problem, we would expect tuning will
1324 * fail and the result ends up the same.
1325 */
1326 err = mmc_switch_status(card, false);
1327 if (err)
1328 goto out_err;
1329
1330 mmc_set_bus_speed(card);
1331
1332 /* Prepare tuning for HS400 mode. */
1333 if (host->ops->prepare_hs400_tuning)
1334 host->ops->prepare_hs400_tuning(host, &host->ios);
1335
1336 return 0;
1337
1338out_err:
1339 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1340 __func__, err);
1341 return err;
1342}
1343
1344static void mmc_select_driver_type(struct mmc_card *card)
1345{
1346 int card_drv_type, drive_strength, drv_type = 0;
1347 int fixed_drv_type = card->host->fixed_drv_type;
1348
1349 card_drv_type = card->ext_csd.raw_driver_strength |
1350 mmc_driver_type_mask(0);
1351
1352 if (fixed_drv_type >= 0)
1353 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1354 ? fixed_drv_type : 0;
1355 else
1356 drive_strength = mmc_select_drive_strength(card,
1357 card->ext_csd.hs200_max_dtr,
1358 card_drv_type, &drv_type);
1359
1360 card->drive_strength = drive_strength;
1361
1362 if (drv_type)
1363 mmc_set_driver_type(card->host, drv_type);
1364}
1365
1366static int mmc_select_hs400es(struct mmc_card *card)
1367{
1368 struct mmc_host *host = card->host;
1369 int err = -EINVAL;
1370 u8 val;
1371
1372 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1373 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1374
1375 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1376 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1377
1378 /* If fails try again during next card power cycle */
1379 if (err)
1380 goto out_err;
1381
1382 err = mmc_select_bus_width(card);
1383 if (err != MMC_BUS_WIDTH_8) {
1384 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1385 mmc_hostname(host), err);
1386 err = err < 0 ? err : -ENOTSUPP;
1387 goto out_err;
1388 }
1389
1390 /* Switch card to HS mode */
1391 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1392 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1393 card->ext_csd.generic_cmd6_time, 0,
1394 false, true, MMC_CMD_RETRIES);
1395 if (err) {
1396 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1397 mmc_hostname(host), err);
1398 goto out_err;
1399 }
1400
1401 /*
1402 * Bump to HS timing and frequency. Some cards don't handle
1403 * SEND_STATUS reliably at the initial frequency.
1404 */
1405 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1406 mmc_set_bus_speed(card);
1407
1408 err = mmc_switch_status(card, true);
1409 if (err)
1410 goto out_err;
1411
1412 /* Switch card to DDR with strobe bit */
1413 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1414 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1415 EXT_CSD_BUS_WIDTH,
1416 val,
1417 card->ext_csd.generic_cmd6_time);
1418 if (err) {
1419 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1420 mmc_hostname(host), err);
1421 goto out_err;
1422 }
1423
1424 mmc_select_driver_type(card);
1425
1426 /* Switch card to HS400 */
1427 val = EXT_CSD_TIMING_HS400 |
1428 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1429 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1430 EXT_CSD_HS_TIMING, val,
1431 card->ext_csd.generic_cmd6_time, 0,
1432 false, true, MMC_CMD_RETRIES);
1433 if (err) {
1434 pr_err("%s: switch to hs400es failed, err:%d\n",
1435 mmc_hostname(host), err);
1436 goto out_err;
1437 }
1438
1439 /* Set host controller to HS400 timing and frequency */
1440 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1441
1442 /* Controller enable enhanced strobe function */
1443 host->ios.enhanced_strobe = true;
1444 if (host->ops->hs400_enhanced_strobe)
1445 host->ops->hs400_enhanced_strobe(host, &host->ios);
1446
1447 err = mmc_switch_status(card, true);
1448 if (err)
1449 goto out_err;
1450
1451 return 0;
1452
1453out_err:
1454 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1455 __func__, err);
1456 return err;
1457}
1458
1459/*
1460 * For device supporting HS200 mode, the following sequence
1461 * should be done before executing the tuning process.
1462 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1463 * 2. switch to HS200 mode
1464 * 3. set the clock to > 52Mhz and <=200MHz
1465 */
1466static int mmc_select_hs200(struct mmc_card *card)
1467{
1468 struct mmc_host *host = card->host;
1469 unsigned int old_timing, old_signal_voltage, old_clock;
1470 int err = -EINVAL;
1471 u8 val;
1472
1473 old_signal_voltage = host->ios.signal_voltage;
1474 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1475 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1476
1477 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1478 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1479
1480 /* If fails try again during next card power cycle */
1481 if (err)
1482 return err;
1483
1484 mmc_select_driver_type(card);
1485
1486 /*
1487 * Set the bus width(4 or 8) with host's support and
1488 * switch to HS200 mode if bus width is set successfully.
1489 */
1490 err = mmc_select_bus_width(card);
1491 if (err > 0) {
1492 val = EXT_CSD_TIMING_HS200 |
1493 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1494 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1495 EXT_CSD_HS_TIMING, val,
1496 card->ext_csd.generic_cmd6_time, 0,
1497 false, true, MMC_CMD_RETRIES);
1498 if (err)
1499 goto err;
1500
1501 /*
1502 * Bump to HS timing and frequency. Some cards don't handle
1503 * SEND_STATUS reliably at the initial frequency.
1504 * NB: We can't move to full (HS200) speeds until after we've
1505 * successfully switched over.
1506 */
1507 old_timing = host->ios.timing;
1508 old_clock = host->ios.clock;
1509 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1510 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1511
1512 /*
1513 * For HS200, CRC errors are not a reliable way to know the
1514 * switch failed. If there really is a problem, we would expect
1515 * tuning will fail and the result ends up the same.
1516 */
1517 err = mmc_switch_status(card, false);
1518
1519 /*
1520 * mmc_select_timing() assumes timing has not changed if
1521 * it is a switch error.
1522 */
1523 if (err == -EBADMSG) {
1524 mmc_set_clock(host, old_clock);
1525 mmc_set_timing(host, old_timing);
1526 }
1527 }
1528err:
1529 if (err) {
1530 /* fall back to the old signal voltage, if fails report error */
1531 if (mmc_set_signal_voltage(host, old_signal_voltage))
1532 err = -EIO;
1533
1534 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1535 __func__, err);
1536 }
1537 return err;
1538}
1539
1540/*
1541 * Activate High Speed, HS200 or HS400ES mode if supported.
1542 */
1543static int mmc_select_timing(struct mmc_card *card)
1544{
1545 int err = 0;
1546
1547 if (!mmc_card_can_ext_csd(card))
1548 goto bus_speed;
1549
1550 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1551 err = mmc_select_hs400es(card);
1552 goto out;
1553 }
1554
1555 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1556 err = mmc_select_hs200(card);
1557 if (err == -EBADMSG)
1558 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1559 else
1560 goto out;
1561 }
1562
1563 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1564 err = mmc_select_hs(card);
1565
1566out:
1567 if (err && err != -EBADMSG)
1568 return err;
1569
1570bus_speed:
1571 /*
1572 * Set the bus speed to the selected bus timing.
1573 * If timing is not selected, backward compatible is the default.
1574 */
1575 mmc_set_bus_speed(card);
1576 return 0;
1577}
1578
1579/*
1580 * Execute tuning sequence to seek the proper bus operating
1581 * conditions for HS200 and HS400, which sends CMD21 to the device.
1582 */
1583static int mmc_hs200_tuning(struct mmc_card *card)
1584{
1585 struct mmc_host *host = card->host;
1586
1587 /*
1588 * Timing should be adjusted to the HS400 target
1589 * operation frequency for tuning process
1590 */
1591 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1592 host->ios.bus_width == MMC_BUS_WIDTH_8)
1593 if (host->ops->prepare_hs400_tuning)
1594 host->ops->prepare_hs400_tuning(host, &host->ios);
1595
1596 return mmc_execute_tuning(card);
1597}
1598
1599/*
1600 * Handle the detection and initialisation of a card.
1601 *
1602 * In the case of a resume, "oldcard" will contain the card
1603 * we're trying to reinitialise.
1604 */
1605static int mmc_init_card(struct mmc_host *host, u32 ocr,
1606 struct mmc_card *oldcard)
1607{
1608 struct mmc_card *card;
1609 int err;
1610 u32 cid[4];
1611 u32 rocr;
1612
1613 WARN_ON(!host->claimed);
1614
1615 /* Set correct bus mode for MMC before attempting init */
1616 if (!mmc_host_is_spi(host))
1617 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1618
1619 /*
1620 * Since we're changing the OCR value, we seem to
1621 * need to tell some cards to go back to the idle
1622 * state. We wait 1ms to give cards time to
1623 * respond.
1624 * mmc_go_idle is needed for eMMC that are asleep
1625 */
1626 mmc_go_idle(host);
1627
1628 /* The extra bit indicates that we support high capacity */
1629 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1630 if (err)
1631 goto err;
1632
1633 /*
1634 * For SPI, enable CRC as appropriate.
1635 */
1636 if (mmc_host_is_spi(host)) {
1637 err = mmc_spi_set_crc(host, use_spi_crc);
1638 if (err)
1639 goto err;
1640 }
1641
1642 /*
1643 * Fetch CID from card.
1644 */
1645 err = mmc_send_cid(host, cid);
1646 if (err)
1647 goto err;
1648
1649 if (oldcard) {
1650 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1651 pr_debug("%s: Perhaps the card was replaced\n",
1652 mmc_hostname(host));
1653 err = -ENOENT;
1654 goto err;
1655 }
1656
1657 card = oldcard;
1658 } else {
1659 /*
1660 * Allocate card structure.
1661 */
1662 card = mmc_alloc_card(host, &mmc_type);
1663 if (IS_ERR(card)) {
1664 err = PTR_ERR(card);
1665 goto err;
1666 }
1667
1668 card->ocr = ocr;
1669 card->type = MMC_TYPE_MMC;
1670 card->rca = 1;
1671 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1672 }
1673
1674 /*
1675 * Call the optional HC's init_card function to handle quirks.
1676 */
1677 if (host->ops->init_card)
1678 host->ops->init_card(host, card);
1679
1680 /*
1681 * For native busses: set card RCA and quit open drain mode.
1682 */
1683 if (!mmc_host_is_spi(host)) {
1684 err = mmc_set_relative_addr(card);
1685 if (err)
1686 goto free_card;
1687
1688 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1689 }
1690
1691 if (!oldcard) {
1692 /*
1693 * Fetch CSD from card.
1694 */
1695 err = mmc_send_csd(card, card->raw_csd);
1696 if (err)
1697 goto free_card;
1698
1699 err = mmc_decode_csd(card);
1700 if (err)
1701 goto free_card;
1702 err = mmc_decode_cid(card);
1703 if (err)
1704 goto free_card;
1705 }
1706
1707 /*
1708 * handling only for cards supporting DSR and hosts requesting
1709 * DSR configuration
1710 */
1711 if (card->csd.dsr_imp && host->dsr_req)
1712 mmc_set_dsr(host);
1713
1714 /*
1715 * Select card, as all following commands rely on that.
1716 */
1717 if (!mmc_host_is_spi(host)) {
1718 err = mmc_select_card(card);
1719 if (err)
1720 goto free_card;
1721 }
1722
1723 if (!oldcard) {
1724 /* Read extended CSD. */
1725 err = mmc_read_ext_csd(card);
1726 if (err)
1727 goto free_card;
1728
1729 /*
1730 * If doing byte addressing, check if required to do sector
1731 * addressing. Handle the case of <2GB cards needing sector
1732 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1733 * ocr register has bit 30 set for sector addressing.
1734 */
1735 if (rocr & BIT(30))
1736 mmc_card_set_blockaddr(card);
1737
1738 /* Erase size depends on CSD and Extended CSD */
1739 mmc_set_erase_size(card);
1740 }
1741
1742 /*
1743 * Reselect the card type since host caps could have been changed when
1744 * debugging even if the card is not new.
1745 */
1746 mmc_select_card_type(card);
1747
1748 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1749 if (card->ext_csd.rev >= 3) {
1750 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1751 EXT_CSD_ERASE_GROUP_DEF, 1,
1752 card->ext_csd.generic_cmd6_time);
1753
1754 if (err && err != -EBADMSG)
1755 goto free_card;
1756
1757 if (err) {
1758 /*
1759 * Just disable enhanced area off & sz
1760 * will try to enable ERASE_GROUP_DEF
1761 * during next time reinit
1762 */
1763 card->ext_csd.enhanced_area_offset = -EINVAL;
1764 card->ext_csd.enhanced_area_size = -EINVAL;
1765 } else {
1766 card->ext_csd.erase_group_def = 1;
1767 /*
1768 * enable ERASE_GRP_DEF successfully.
1769 * This will affect the erase size, so
1770 * here need to reset erase size
1771 */
1772 mmc_set_erase_size(card);
1773 }
1774 }
1775 mmc_set_wp_grp_size(card);
1776 /*
1777 * Ensure eMMC user default partition is enabled
1778 */
1779 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1780 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1781 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1782 card->ext_csd.part_config,
1783 card->ext_csd.part_time);
1784 if (err && err != -EBADMSG)
1785 goto free_card;
1786 }
1787
1788 /*
1789 * Enable power_off_notification byte in the ext_csd register
1790 */
1791 if (card->ext_csd.rev >= 6) {
1792 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1793 EXT_CSD_POWER_OFF_NOTIFICATION,
1794 EXT_CSD_POWER_ON,
1795 card->ext_csd.generic_cmd6_time);
1796 if (err && err != -EBADMSG)
1797 goto free_card;
1798
1799 /*
1800 * The err can be -EBADMSG or 0,
1801 * so check for success and update the flag
1802 */
1803 if (!err)
1804 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1805 }
1806
1807 /* set erase_arg */
1808 if (mmc_card_can_discard(card))
1809 card->erase_arg = MMC_DISCARD_ARG;
1810 else if (mmc_card_can_trim(card))
1811 card->erase_arg = MMC_TRIM_ARG;
1812 else
1813 card->erase_arg = MMC_ERASE_ARG;
1814
1815 /*
1816 * Select timing interface
1817 */
1818 err = mmc_select_timing(card);
1819 if (err)
1820 goto free_card;
1821
1822 if (mmc_card_hs200(card)) {
1823 host->doing_init_tune = 1;
1824
1825 err = mmc_hs200_tuning(card);
1826 if (!err)
1827 err = mmc_select_hs400(card);
1828
1829 host->doing_init_tune = 0;
1830
1831 if (err)
1832 goto free_card;
1833 } else if (mmc_card_hs400es(card)) {
1834 if (host->ops->execute_hs400_tuning) {
1835 err = host->ops->execute_hs400_tuning(host, card);
1836 if (err)
1837 goto free_card;
1838 }
1839 } else {
1840 /* Select the desired bus width optionally */
1841 err = mmc_select_bus_width(card);
1842 if (err > 0 && mmc_card_hs(card)) {
1843 err = mmc_select_hs_ddr(card);
1844 if (err)
1845 goto free_card;
1846 }
1847 }
1848
1849 /*
1850 * Choose the power class with selected bus interface
1851 */
1852 mmc_select_powerclass(card);
1853
1854 /*
1855 * Enable HPI feature (if supported)
1856 */
1857 if (card->ext_csd.hpi) {
1858 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1859 EXT_CSD_HPI_MGMT, 1,
1860 card->ext_csd.generic_cmd6_time);
1861 if (err && err != -EBADMSG)
1862 goto free_card;
1863 if (err) {
1864 pr_warn("%s: Enabling HPI failed\n",
1865 mmc_hostname(card->host));
1866 card->ext_csd.hpi_en = 0;
1867 } else {
1868 card->ext_csd.hpi_en = 1;
1869 }
1870 }
1871
1872 /*
1873 * If cache size is higher than 0, this indicates the existence of cache
1874 * and it can be turned on. Note that some eMMCs from Micron has been
1875 * reported to need ~800 ms timeout, while enabling the cache after
1876 * sudden power failure tests. Let's extend the timeout to a minimum of
1877 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1878 */
1879 if (card->ext_csd.cache_size > 0) {
1880 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1881
1882 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1883 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1884 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1885 if (err && err != -EBADMSG)
1886 goto free_card;
1887
1888 /*
1889 * Only if no error, cache is turned on successfully.
1890 */
1891 if (err) {
1892 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1893 mmc_hostname(card->host), err);
1894 card->ext_csd.cache_ctrl = 0;
1895 } else {
1896 card->ext_csd.cache_ctrl = 1;
1897 }
1898 }
1899
1900 /*
1901 * Enable Command Queue if supported. Note that Packed Commands cannot
1902 * be used with Command Queue.
1903 */
1904 card->ext_csd.cmdq_en = false;
1905 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1906 err = mmc_cmdq_enable(card);
1907 if (err && err != -EBADMSG)
1908 goto free_card;
1909 if (err) {
1910 pr_warn("%s: Enabling CMDQ failed\n",
1911 mmc_hostname(card->host));
1912 card->ext_csd.cmdq_support = false;
1913 card->ext_csd.cmdq_depth = 0;
1914 }
1915 }
1916 /*
1917 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1918 * disabled for a time, so a flag is needed to indicate to re-enable the
1919 * Command Queue.
1920 */
1921 card->reenable_cmdq = card->ext_csd.cmdq_en;
1922
1923 if (host->cqe_ops && !host->cqe_enabled) {
1924 err = host->cqe_ops->cqe_enable(host, card);
1925 if (!err) {
1926 host->cqe_enabled = true;
1927
1928 if (card->ext_csd.cmdq_en) {
1929 pr_info("%s: Command Queue Engine enabled\n",
1930 mmc_hostname(host));
1931 } else {
1932 host->hsq_enabled = true;
1933 pr_info("%s: Host Software Queue enabled\n",
1934 mmc_hostname(host));
1935 }
1936 }
1937 }
1938
1939 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1940 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1941 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1942 mmc_hostname(host));
1943 err = -EINVAL;
1944 goto free_card;
1945 }
1946
1947 if (!oldcard)
1948 host->card = card;
1949
1950 return 0;
1951
1952free_card:
1953 if (!oldcard)
1954 mmc_remove_card(card);
1955err:
1956 return err;
1957}
1958
1959static bool mmc_card_can_sleep(struct mmc_card *card)
1960{
1961 return card->ext_csd.rev >= 3;
1962}
1963
1964static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1965{
1966 struct mmc_host *host = cb_data;
1967
1968 *busy = host->ops->card_busy(host);
1969 return 0;
1970}
1971
1972static int mmc_sleep(struct mmc_host *host)
1973{
1974 struct mmc_command cmd = {};
1975 struct mmc_card *card = host->card;
1976 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1977 bool use_r1b_resp;
1978 int err;
1979
1980 /* Re-tuning can't be done once the card is deselected */
1981 mmc_retune_hold(host);
1982
1983 err = mmc_deselect_cards(host);
1984 if (err)
1985 goto out_release;
1986
1987 cmd.opcode = MMC_SLEEP_AWAKE;
1988 cmd.arg = card->rca << 16;
1989 cmd.arg |= 1 << 15;
1990 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1991
1992 err = mmc_wait_for_cmd(host, &cmd, 0);
1993 if (err)
1994 goto out_release;
1995
1996 /*
1997 * If the host does not wait while the card signals busy, then we can
1998 * try to poll, but only if the host supports HW polling, as the
1999 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
2000 * to wait the sleep/awake timeout.
2001 */
2002 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
2003 goto out_release;
2004
2005 if (!host->ops->card_busy) {
2006 mmc_delay(timeout_ms);
2007 goto out_release;
2008 }
2009
2010 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2011
2012out_release:
2013 mmc_retune_release(host);
2014 return err;
2015}
2016
2017static bool mmc_card_can_poweroff_notify(const struct mmc_card *card)
2018{
2019 return card &&
2020 mmc_card_mmc(card) &&
2021 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2022}
2023
2024static bool mmc_host_can_poweroff_notify(const struct mmc_host *host,
2025 enum mmc_poweroff_type pm_type)
2026{
2027 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)
2028 return true;
2029
2030 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND &&
2031 pm_type == MMC_POWEROFF_SUSPEND)
2032 return true;
2033
2034 return pm_type == MMC_POWEROFF_SHUTDOWN;
2035}
2036
2037static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2038{
2039 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2040 int err;
2041
2042 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2043 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2044 timeout = card->ext_csd.power_off_longtime;
2045
2046 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2047 EXT_CSD_POWER_OFF_NOTIFICATION,
2048 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2049 if (err)
2050 pr_err("%s: Power Off Notification timed out, %u\n",
2051 mmc_hostname(card->host), timeout);
2052
2053 /* Disable the power off notification after the switch operation. */
2054 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2055
2056 return err;
2057}
2058
2059/*
2060 * Card detection - card is alive.
2061 */
2062static int mmc_alive(struct mmc_host *host)
2063{
2064 return mmc_send_status(host->card, NULL);
2065}
2066
2067/*
2068 * Card detection callback from host.
2069 */
2070static void mmc_detect(struct mmc_host *host)
2071{
2072 int err;
2073
2074 mmc_get_card(host->card, NULL);
2075
2076 /*
2077 * Just check if our card has been removed.
2078 */
2079 err = _mmc_detect_card_removed(host);
2080
2081 mmc_put_card(host->card, NULL);
2082
2083 if (err) {
2084 mmc_remove_card(host->card);
2085 host->card = NULL;
2086
2087 mmc_claim_host(host);
2088 mmc_detach_bus(host);
2089 mmc_power_off(host);
2090 mmc_release_host(host);
2091 }
2092}
2093
2094static bool _mmc_cache_enabled(struct mmc_host *host)
2095{
2096 return host->card->ext_csd.cache_size > 0 &&
2097 host->card->ext_csd.cache_ctrl & 1;
2098}
2099
2100/*
2101 * Flush the internal cache of the eMMC to non-volatile storage.
2102 */
2103static int _mmc_flush_cache(struct mmc_host *host)
2104{
2105 int err = 0;
2106
2107 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2108 return 0;
2109
2110 if (_mmc_cache_enabled(host)) {
2111 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2112 EXT_CSD_FLUSH_CACHE, 1,
2113 CACHE_FLUSH_TIMEOUT_MS);
2114 if (err)
2115 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2116 else
2117 host->card->written_flag = false;
2118 }
2119
2120 return err;
2121}
2122
2123static int _mmc_suspend(struct mmc_host *host, enum mmc_poweroff_type pm_type)
2124{
2125 unsigned int notify_type = EXT_CSD_POWER_OFF_SHORT;
2126 int err = 0;
2127
2128 if (pm_type == MMC_POWEROFF_SHUTDOWN)
2129 notify_type = EXT_CSD_POWER_OFF_LONG;
2130
2131 mmc_claim_host(host);
2132
2133 if (mmc_card_suspended(host->card))
2134 goto out;
2135
2136 /*
2137 * For the undervoltage case, we care more about device integrity.
2138 * Avoid cache flush and notify the device to power off quickly.
2139 */
2140 if (pm_type != MMC_POWEROFF_UNDERVOLTAGE) {
2141 err = _mmc_flush_cache(host);
2142 if (err)
2143 goto out;
2144 }
2145
2146 if (mmc_card_can_poweroff_notify(host->card) &&
2147 mmc_host_can_poweroff_notify(host, pm_type))
2148 err = mmc_poweroff_notify(host->card, notify_type);
2149 else if (mmc_card_can_sleep(host->card))
2150 err = mmc_sleep(host);
2151 else if (!mmc_host_is_spi(host))
2152 err = mmc_deselect_cards(host);
2153
2154 if (!err) {
2155 mmc_power_off(host);
2156 mmc_card_set_suspended(host->card);
2157 }
2158out:
2159 mmc_release_host(host);
2160 return err;
2161}
2162
2163/*
2164 * Host is being removed. Free up the current card and do a graceful power-off.
2165 */
2166static void mmc_remove(struct mmc_host *host)
2167{
2168 get_device(&host->card->dev);
2169 mmc_remove_card(host->card);
2170
2171 _mmc_suspend(host, MMC_POWEROFF_UNBIND);
2172
2173 put_device(&host->card->dev);
2174 host->card = NULL;
2175}
2176
2177/*
2178 * Suspend callback
2179 */
2180static int mmc_suspend(struct mmc_host *host)
2181{
2182 int err;
2183
2184 err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2185 if (!err) {
2186 pm_runtime_disable(&host->card->dev);
2187 pm_runtime_set_suspended(&host->card->dev);
2188 }
2189
2190 return err;
2191}
2192
2193/*
2194 * This function tries to determine if the same card is still present
2195 * and, if so, restore all state to it.
2196 */
2197static int _mmc_resume(struct mmc_host *host)
2198{
2199 int err = 0;
2200
2201 mmc_claim_host(host);
2202
2203 if (!mmc_card_suspended(host->card))
2204 goto out;
2205
2206 mmc_power_up(host, host->card->ocr);
2207 err = mmc_init_card(host, host->card->ocr, host->card);
2208 mmc_card_clr_suspended(host->card);
2209
2210out:
2211 mmc_release_host(host);
2212 return err;
2213}
2214
2215/*
2216 * Shutdown callback
2217 */
2218static int mmc_shutdown(struct mmc_host *host)
2219{
2220 int err = 0;
2221
2222 /*
2223 * In case of undervoltage, the card will be powered off (removed) by
2224 * _mmc_handle_undervoltage()
2225 */
2226 if (mmc_card_removed(host->card))
2227 return 0;
2228
2229 /*
2230 * If the card remains suspended at this point and it was done by using
2231 * the sleep-cmd (CMD5), we may need to re-initialize it first, to allow
2232 * us to send the preferred poweroff-notification cmd at shutdown.
2233 */
2234 if (mmc_card_can_poweroff_notify(host->card) &&
2235 !mmc_host_can_poweroff_notify(host, MMC_POWEROFF_SUSPEND))
2236 err = _mmc_resume(host);
2237
2238 if (!err)
2239 err = _mmc_suspend(host, MMC_POWEROFF_SHUTDOWN);
2240
2241 return err;
2242}
2243
2244/*
2245 * Callback for resume.
2246 */
2247static int mmc_resume(struct mmc_host *host)
2248{
2249 pm_runtime_enable(&host->card->dev);
2250 return 0;
2251}
2252
2253/*
2254 * Callback for runtime_suspend.
2255 */
2256static int mmc_runtime_suspend(struct mmc_host *host)
2257{
2258 int err;
2259
2260 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2261 return 0;
2262
2263 err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2264 if (err)
2265 pr_err("%s: error %d doing aggressive suspend\n",
2266 mmc_hostname(host), err);
2267
2268 return err;
2269}
2270
2271/*
2272 * Callback for runtime_resume.
2273 */
2274static int mmc_runtime_resume(struct mmc_host *host)
2275{
2276 int err;
2277
2278 err = _mmc_resume(host);
2279 if (err && err != -ENOMEDIUM)
2280 pr_err("%s: error %d doing runtime resume\n",
2281 mmc_hostname(host), err);
2282
2283 return 0;
2284}
2285
2286static bool mmc_card_can_reset(struct mmc_card *card)
2287{
2288 u8 rst_n_function;
2289
2290 rst_n_function = card->ext_csd.rst_n_function;
2291 return ((rst_n_function & EXT_CSD_RST_N_EN_MASK) == EXT_CSD_RST_N_ENABLED);
2292}
2293
2294static int _mmc_hw_reset(struct mmc_host *host)
2295{
2296 struct mmc_card *card = host->card;
2297
2298 /*
2299 * In the case of recovery, we can't expect flushing the cache to work
2300 * always, but we have a go and ignore errors.
2301 */
2302 _mmc_flush_cache(host);
2303
2304 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2305 mmc_card_can_reset(card)) {
2306 /* If the card accept RST_n signal, send it. */
2307 mmc_set_clock(host, host->f_init);
2308 host->ops->card_hw_reset(host);
2309 /* Set initial state and call mmc_set_ios */
2310 mmc_set_initial_state(host);
2311 } else {
2312 /* Do a brute force power cycle */
2313 mmc_power_cycle(host, card->ocr);
2314 mmc_pwrseq_reset(host);
2315 }
2316 return mmc_init_card(host, card->ocr, card);
2317}
2318
2319/**
2320 * _mmc_handle_undervoltage - Handle an undervoltage event for MMC/eMMC devices
2321 * @host: MMC host structure
2322 *
2323 * This function is triggered when an undervoltage condition is detected.
2324 * It attempts to transition the device into a low-power or safe state to
2325 * prevent data corruption.
2326 *
2327 * Steps performed:
2328 * - Perform an emergency suspend using EXT_CSD_POWER_OFF_SHORT if possible.
2329 * - If power-off notify is not supported, fallback mechanisms like sleep or
2330 * deselecting the card are attempted.
2331 * - Cache flushing is skipped to reduce execution time.
2332 * - Mark the card as removed to prevent further interactions after
2333 * undervoltage.
2334 *
2335 * Note: This function does not handle host claiming or releasing. The caller
2336 * must ensure that the host is properly claimed before calling this
2337 * function and released afterward.
2338 *
2339 * Returns: 0 on success, or a negative error code if any step fails.
2340 */
2341static int _mmc_handle_undervoltage(struct mmc_host *host)
2342{
2343 struct mmc_card *card = host->card;
2344 int err;
2345
2346 /*
2347 * Perform an emergency suspend to power off the eMMC quickly.
2348 * This ensures the device enters a safe state before power is lost.
2349 * We first attempt EXT_CSD_POWER_OFF_SHORT, but if power-off notify
2350 * is not supported, we fall back to sleep mode or deselecting the card.
2351 * Cache flushing is skipped to minimize delay.
2352 */
2353 err = _mmc_suspend(host, MMC_POWEROFF_UNDERVOLTAGE);
2354 if (err)
2355 pr_err("%s: undervoltage suspend failed: %pe\n",
2356 mmc_hostname(host), ERR_PTR(err));
2357
2358 /*
2359 * Mark the card as removed to prevent further operations.
2360 * This ensures the system does not attempt to access the device
2361 * after an undervoltage event, avoiding potential corruption.
2362 */
2363 mmc_card_set_removed(card);
2364
2365 return err;
2366}
2367
2368static const struct mmc_bus_ops mmc_ops = {
2369 .remove = mmc_remove,
2370 .detect = mmc_detect,
2371 .suspend = mmc_suspend,
2372 .resume = mmc_resume,
2373 .runtime_suspend = mmc_runtime_suspend,
2374 .runtime_resume = mmc_runtime_resume,
2375 .alive = mmc_alive,
2376 .shutdown = mmc_shutdown,
2377 .hw_reset = _mmc_hw_reset,
2378 .cache_enabled = _mmc_cache_enabled,
2379 .flush_cache = _mmc_flush_cache,
2380 .handle_undervoltage = _mmc_handle_undervoltage,
2381};
2382
2383/*
2384 * Starting point for MMC card init.
2385 */
2386int mmc_attach_mmc(struct mmc_host *host)
2387{
2388 int err;
2389 u32 ocr, rocr;
2390
2391 WARN_ON(!host->claimed);
2392
2393 /* Set correct bus mode for MMC before attempting attach */
2394 if (!mmc_host_is_spi(host))
2395 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2396
2397 err = mmc_send_op_cond(host, 0, &ocr);
2398 if (err)
2399 return err;
2400
2401 mmc_attach_bus(host, &mmc_ops);
2402 if (host->ocr_avail_mmc)
2403 host->ocr_avail = host->ocr_avail_mmc;
2404
2405 /*
2406 * We need to get OCR a different way for SPI.
2407 */
2408 if (mmc_host_is_spi(host)) {
2409 err = mmc_spi_read_ocr(host, 1, &ocr);
2410 if (err)
2411 goto err;
2412 }
2413
2414 rocr = mmc_select_voltage(host, ocr);
2415
2416 /*
2417 * Can we support the voltage of the card?
2418 */
2419 if (!rocr) {
2420 err = -EINVAL;
2421 goto err;
2422 }
2423
2424 /*
2425 * Detect and init the card.
2426 */
2427 err = mmc_init_card(host, rocr, NULL);
2428 if (err)
2429 goto err;
2430
2431 mmc_release_host(host);
2432 err = mmc_add_card(host->card);
2433 if (err)
2434 goto remove_card;
2435
2436 mmc_claim_host(host);
2437 return 0;
2438
2439remove_card:
2440 mmc_remove_card(host->card);
2441 mmc_claim_host(host);
2442 host->card = NULL;
2443err:
2444 mmc_detach_bus(host);
2445
2446 pr_err("%s: error %d whilst initialising MMC card\n",
2447 mmc_hostname(host), err);
2448
2449 return err;
2450}