Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8#include "lkdtm.h"
9#include <linux/cpu.h>
10#include <linux/list.h>
11#include <linux/hrtimer.h>
12#include <linux/sched.h>
13#include <linux/sched/signal.h>
14#include <linux/sched/task_stack.h>
15#include <linux/slab.h>
16#include <linux/stop_machine.h>
17#include <linux/uaccess.h>
18
19#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
20#include <asm/desc.h>
21#endif
22
23struct lkdtm_list {
24 struct list_head node;
25};
26
27/*
28 * Make sure our attempts to over run the kernel stack doesn't trigger
29 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
30 * recurse past the end of THREAD_SIZE by default.
31 */
32#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
33#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
34#else
35#define REC_STACK_SIZE (THREAD_SIZE / 8UL)
36#endif
37#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
38
39static int recur_count = REC_NUM_DEFAULT;
40
41static DEFINE_SPINLOCK(lock_me_up);
42
43/*
44 * Make sure compiler does not optimize this function or stack frame away:
45 * - function marked noinline
46 * - stack variables are marked volatile
47 * - stack variables are written (memset()) and read (buf[..] passed as arg)
48 * - function may have external effects (memzero_explicit())
49 * - no tail recursion possible
50 */
51static int noinline recursive_loop(int remaining)
52{
53 volatile char buf[REC_STACK_SIZE];
54 volatile int ret;
55
56 memset((void *)buf, remaining & 0xFF, sizeof(buf));
57 if (!remaining)
58 ret = 0;
59 else
60 ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1);
61 memzero_explicit((void *)buf, sizeof(buf));
62 return ret;
63}
64
65/* If the depth is negative, use the default, otherwise keep parameter. */
66void __init lkdtm_bugs_init(int *recur_param)
67{
68 if (*recur_param < 0)
69 *recur_param = recur_count;
70 else
71 recur_count = *recur_param;
72}
73
74static void lkdtm_PANIC(void)
75{
76 panic("dumptest");
77}
78
79static int panic_stop_irqoff_fn(void *arg)
80{
81 atomic_t *v = arg;
82
83 /*
84 * As stop_machine() disables interrupts, all CPUs within this function
85 * have interrupts disabled and cannot take a regular IPI.
86 *
87 * The last CPU which enters here will trigger a panic, and as all CPUs
88 * cannot take a regular IPI, we'll only be able to stop secondaries if
89 * smp_send_stop() or crash_smp_send_stop() uses an NMI.
90 */
91 if (atomic_inc_return(v) == num_online_cpus())
92 panic("panic stop irqoff test");
93
94 for (;;)
95 cpu_relax();
96}
97
98static void lkdtm_PANIC_STOP_IRQOFF(void)
99{
100 atomic_t v = ATOMIC_INIT(0);
101 stop_machine(panic_stop_irqoff_fn, &v, cpu_online_mask);
102}
103
104static bool wait_for_panic;
105
106static enum hrtimer_restart panic_in_hardirq(struct hrtimer *timer)
107{
108 panic("from hard IRQ context");
109
110 wait_for_panic = false;
111 return HRTIMER_NORESTART;
112}
113
114static void lkdtm_PANIC_IN_HARDIRQ(void)
115{
116 struct hrtimer timer;
117
118 wait_for_panic = true;
119 hrtimer_setup_on_stack(&timer, panic_in_hardirq,
120 CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
121 hrtimer_start(&timer, us_to_ktime(100), HRTIMER_MODE_REL_HARD);
122
123 while (READ_ONCE(wait_for_panic))
124 cpu_relax();
125
126 hrtimer_cancel(&timer);
127}
128
129static void lkdtm_BUG(void)
130{
131 BUG();
132}
133
134static bool wait_for_bug;
135
136static enum hrtimer_restart bug_in_hardirq(struct hrtimer *timer)
137{
138 BUG();
139
140 wait_for_bug = false;
141 return HRTIMER_NORESTART;
142}
143
144static void lkdtm_BUG_IN_HARDIRQ(void)
145{
146 struct hrtimer timer;
147
148 wait_for_bug = true;
149 hrtimer_setup_on_stack(&timer, bug_in_hardirq,
150 CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
151 hrtimer_start(&timer, us_to_ktime(100), HRTIMER_MODE_REL_HARD);
152
153 while (READ_ONCE(wait_for_bug))
154 cpu_relax();
155
156 hrtimer_cancel(&timer);
157}
158
159static int warn_counter;
160
161static void lkdtm_WARNING(void)
162{
163 WARN_ON(++warn_counter);
164}
165
166static void lkdtm_WARNING_MESSAGE(void)
167{
168 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
169}
170
171static void lkdtm_EXCEPTION(void)
172{
173 *((volatile int *) 0) = 0;
174}
175
176static void lkdtm_LOOP(void)
177{
178 for (;;)
179 ;
180}
181
182static void lkdtm_EXHAUST_STACK(void)
183{
184 pr_info("Calling function with %lu frame size to depth %d ...\n",
185 REC_STACK_SIZE, recur_count);
186 recursive_loop(recur_count);
187 pr_info("FAIL: survived without exhausting stack?!\n");
188}
189
190static noinline void __lkdtm_CORRUPT_STACK(void *stack)
191{
192 memset(stack, '\xff', 64);
193}
194
195/* This should trip the stack canary, not corrupt the return address. */
196static noinline void lkdtm_CORRUPT_STACK(void)
197{
198 /* Use default char array length that triggers stack protection. */
199 char data[8] __aligned(sizeof(void *));
200
201 pr_info("Corrupting stack containing char array ...\n");
202 __lkdtm_CORRUPT_STACK((void *)&data);
203}
204
205/* Same as above but will only get a canary with -fstack-protector-strong */
206static noinline void lkdtm_CORRUPT_STACK_STRONG(void)
207{
208 union {
209 unsigned short shorts[4];
210 unsigned long *ptr;
211 } data __aligned(sizeof(void *));
212
213 pr_info("Corrupting stack containing union ...\n");
214 __lkdtm_CORRUPT_STACK((void *)&data);
215}
216
217static pid_t stack_pid;
218static unsigned long stack_addr;
219
220static void lkdtm_REPORT_STACK(void)
221{
222 volatile uintptr_t magic;
223 pid_t pid = task_pid_nr(current);
224
225 if (pid != stack_pid) {
226 pr_info("Starting stack offset tracking for pid %d\n", pid);
227 stack_pid = pid;
228 stack_addr = (uintptr_t)&magic;
229 }
230
231 pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
232}
233
234static pid_t stack_canary_pid;
235static unsigned long stack_canary;
236static unsigned long stack_canary_offset;
237
238static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
239{
240 int i = 0;
241 pid_t pid = task_pid_nr(current);
242 unsigned long *canary = (unsigned long *)stack;
243 unsigned long current_offset = 0, init_offset = 0;
244
245 /* Do our best to find the canary in a 16 word window ... */
246 for (i = 1; i < 16; i++) {
247 canary = (unsigned long *)stack + i;
248#ifdef CONFIG_STACKPROTECTOR
249 if (*canary == current->stack_canary)
250 current_offset = i;
251 if (*canary == init_task.stack_canary)
252 init_offset = i;
253#endif
254 }
255
256 if (current_offset == 0) {
257 /*
258 * If the canary doesn't match what's in the task_struct,
259 * we're either using a global canary or the stack frame
260 * layout changed.
261 */
262 if (init_offset != 0) {
263 pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
264 init_offset, pid);
265 } else {
266 pr_warn("FAIL: did not correctly locate stack canary :(\n");
267 pr_expected_config(CONFIG_STACKPROTECTOR);
268 }
269
270 return;
271 } else if (init_offset != 0) {
272 pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
273 }
274
275 canary = (unsigned long *)stack + current_offset;
276 if (stack_canary_pid == 0) {
277 stack_canary = *canary;
278 stack_canary_pid = pid;
279 stack_canary_offset = current_offset;
280 pr_info("Recorded stack canary for pid %d at offset %ld\n",
281 stack_canary_pid, stack_canary_offset);
282 } else if (pid == stack_canary_pid) {
283 pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
284 } else {
285 if (current_offset != stack_canary_offset) {
286 pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
287 stack_canary_offset, current_offset);
288 return;
289 }
290
291 if (*canary == stack_canary) {
292 pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
293 stack_canary_pid, pid, current_offset);
294 } else {
295 pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
296 stack_canary_pid, pid, current_offset);
297 /* Reset the test. */
298 stack_canary_pid = 0;
299 }
300 }
301}
302
303static void lkdtm_REPORT_STACK_CANARY(void)
304{
305 /* Use default char array length that triggers stack protection. */
306 char data[8] __aligned(sizeof(void *)) = { };
307
308 __lkdtm_REPORT_STACK_CANARY((void *)&data);
309}
310
311static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
312{
313 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
314 u32 *p;
315 u32 val = 0x12345678;
316
317 p = (u32 *)(data + 1);
318 if (*p == 0)
319 val = 0x87654321;
320 *p = val;
321
322 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
323 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
324}
325
326static void lkdtm_SOFTLOCKUP(void)
327{
328 preempt_disable();
329 for (;;)
330 cpu_relax();
331}
332
333static void lkdtm_HARDLOCKUP(void)
334{
335 local_irq_disable();
336 for (;;)
337 cpu_relax();
338}
339
340static void __lkdtm_SMP_CALL_LOCKUP(void *unused)
341{
342 for (;;)
343 cpu_relax();
344}
345
346static void lkdtm_SMP_CALL_LOCKUP(void)
347{
348 unsigned int cpu, target;
349
350 cpus_read_lock();
351
352 cpu = get_cpu();
353 target = cpumask_any_but(cpu_online_mask, cpu);
354
355 if (target >= nr_cpu_ids) {
356 pr_err("FAIL: no other online CPUs\n");
357 goto out_put_cpus;
358 }
359
360 smp_call_function_single(target, __lkdtm_SMP_CALL_LOCKUP, NULL, 1);
361
362 pr_err("FAIL: did not hang\n");
363
364out_put_cpus:
365 put_cpu();
366 cpus_read_unlock();
367}
368
369static void lkdtm_SPINLOCKUP(void)
370{
371 /* Must be called twice to trigger. */
372 spin_lock(&lock_me_up);
373 /* Let sparse know we intended to exit holding the lock. */
374 __release(&lock_me_up);
375}
376
377static void __noreturn lkdtm_HUNG_TASK(void)
378{
379 set_current_state(TASK_UNINTERRUPTIBLE);
380 schedule();
381 BUG();
382}
383
384static volatile unsigned int huge = INT_MAX - 2;
385static volatile unsigned int ignored;
386
387static void lkdtm_OVERFLOW_SIGNED(void)
388{
389 int value;
390
391 value = huge;
392 pr_info("Normal signed addition ...\n");
393 value += 1;
394 ignored = value;
395
396 pr_info("Overflowing signed addition ...\n");
397 value += 4;
398 ignored = value;
399}
400
401
402static void lkdtm_OVERFLOW_UNSIGNED(void)
403{
404 unsigned int value;
405
406 value = huge;
407 pr_info("Normal unsigned addition ...\n");
408 value += 1;
409 ignored = value;
410
411 pr_info("Overflowing unsigned addition ...\n");
412 value += 4;
413 ignored = value;
414}
415
416/* Intentionally using unannotated flex array definition. */
417struct array_bounds_flex_array {
418 int one;
419 int two;
420 char data[];
421};
422
423struct array_bounds {
424 int one;
425 int two;
426 char data[8];
427 int three;
428};
429
430static void lkdtm_ARRAY_BOUNDS(void)
431{
432 struct array_bounds_flex_array *not_checked;
433 struct array_bounds *checked;
434 volatile int i;
435
436 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
437 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
438 if (!not_checked || !checked) {
439 kfree(not_checked);
440 kfree(checked);
441 return;
442 }
443
444 pr_info("Array access within bounds ...\n");
445 /* For both, touch all bytes in the actual member size. */
446 for (i = 0; i < sizeof(checked->data); i++)
447 checked->data[i] = 'A';
448 /*
449 * For the uninstrumented flex array member, also touch 1 byte
450 * beyond to verify it is correctly uninstrumented.
451 */
452 for (i = 0; i < 2; i++)
453 not_checked->data[i] = 'A';
454
455 pr_info("Array access beyond bounds ...\n");
456 for (i = 0; i < sizeof(checked->data) + 1; i++)
457 checked->data[i] = 'B';
458
459 kfree(not_checked);
460 kfree(checked);
461 pr_err("FAIL: survived array bounds overflow!\n");
462 if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
463 pr_expected_config(CONFIG_UBSAN_TRAP);
464 else
465 pr_expected_config(CONFIG_UBSAN_BOUNDS);
466}
467
468struct lkdtm_annotated {
469 unsigned long flags;
470 int count;
471 int array[] __counted_by(count);
472};
473
474static volatile int fam_count = 4;
475
476static void lkdtm_FAM_BOUNDS(void)
477{
478 struct lkdtm_annotated *inst;
479
480 inst = kzalloc(struct_size(inst, array, fam_count + 1), GFP_KERNEL);
481 if (!inst) {
482 pr_err("FAIL: could not allocate test struct!\n");
483 return;
484 }
485
486 inst->count = fam_count;
487 pr_info("Array access within bounds ...\n");
488 inst->array[1] = fam_count;
489 ignored = inst->array[1];
490
491 pr_info("Array access beyond bounds ...\n");
492 inst->array[fam_count] = fam_count;
493 ignored = inst->array[fam_count];
494
495 kfree(inst);
496
497 pr_err("FAIL: survived access of invalid flexible array member index!\n");
498
499 if (!IS_ENABLED(CONFIG_CC_HAS_COUNTED_BY))
500 pr_warn("This is expected since this %s was built with a compiler that does not support __counted_by\n",
501 lkdtm_kernel_info);
502 else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
503 pr_expected_config(CONFIG_UBSAN_TRAP);
504 else
505 pr_expected_config(CONFIG_UBSAN_BOUNDS);
506}
507
508static void lkdtm_CORRUPT_LIST_ADD(void)
509{
510 /*
511 * Initially, an empty list via LIST_HEAD:
512 * test_head.next = &test_head
513 * test_head.prev = &test_head
514 */
515 LIST_HEAD(test_head);
516 struct lkdtm_list good, bad;
517 void *target[2] = { };
518 void *redirection = ⌖
519
520 pr_info("attempting good list addition\n");
521
522 /*
523 * Adding to the list performs these actions:
524 * test_head.next->prev = &good.node
525 * good.node.next = test_head.next
526 * good.node.prev = test_head
527 * test_head.next = good.node
528 */
529 list_add(&good.node, &test_head);
530
531 pr_info("attempting corrupted list addition\n");
532 /*
533 * In simulating this "write what where" primitive, the "what" is
534 * the address of &bad.node, and the "where" is the address held
535 * by "redirection".
536 */
537 test_head.next = redirection;
538 list_add(&bad.node, &test_head);
539
540 if (target[0] == NULL && target[1] == NULL)
541 pr_err("Overwrite did not happen, but no BUG?!\n");
542 else {
543 pr_err("list_add() corruption not detected!\n");
544 pr_expected_config(CONFIG_LIST_HARDENED);
545 }
546}
547
548static void lkdtm_CORRUPT_LIST_DEL(void)
549{
550 LIST_HEAD(test_head);
551 struct lkdtm_list item;
552 void *target[2] = { };
553 void *redirection = ⌖
554
555 list_add(&item.node, &test_head);
556
557 pr_info("attempting good list removal\n");
558 list_del(&item.node);
559
560 pr_info("attempting corrupted list removal\n");
561 list_add(&item.node, &test_head);
562
563 /* As with the list_add() test above, this corrupts "next". */
564 item.node.next = redirection;
565 list_del(&item.node);
566
567 if (target[0] == NULL && target[1] == NULL)
568 pr_err("Overwrite did not happen, but no BUG?!\n");
569 else {
570 pr_err("list_del() corruption not detected!\n");
571 pr_expected_config(CONFIG_LIST_HARDENED);
572 }
573}
574
575/* Test that VMAP_STACK is actually allocating with a leading guard page */
576static void lkdtm_STACK_GUARD_PAGE_LEADING(void)
577{
578 const unsigned char *stack = task_stack_page(current);
579 const unsigned char *ptr = stack - 1;
580 volatile unsigned char byte;
581
582 pr_info("attempting bad read from page below current stack\n");
583
584 byte = *ptr;
585
586 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
587}
588
589/* Test that VMAP_STACK is actually allocating with a trailing guard page */
590static void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
591{
592 const unsigned char *stack = task_stack_page(current);
593 const unsigned char *ptr = stack + THREAD_SIZE;
594 volatile unsigned char byte;
595
596 pr_info("attempting bad read from page above current stack\n");
597
598 byte = *ptr;
599
600 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
601}
602
603static void lkdtm_UNSET_SMEP(void)
604{
605#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
606#define MOV_CR4_DEPTH 64
607 void (*direct_write_cr4)(unsigned long val);
608 unsigned char *insn;
609 unsigned long cr4;
610 int i;
611
612 cr4 = native_read_cr4();
613
614 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
615 pr_err("FAIL: SMEP not in use\n");
616 return;
617 }
618 cr4 &= ~(X86_CR4_SMEP);
619
620 pr_info("trying to clear SMEP normally\n");
621 native_write_cr4(cr4);
622 if (cr4 == native_read_cr4()) {
623 pr_err("FAIL: pinning SMEP failed!\n");
624 cr4 |= X86_CR4_SMEP;
625 pr_info("restoring SMEP\n");
626 native_write_cr4(cr4);
627 return;
628 }
629 pr_info("ok: SMEP did not get cleared\n");
630
631 /*
632 * To test the post-write pinning verification we need to call
633 * directly into the middle of native_write_cr4() where the
634 * cr4 write happens, skipping any pinning. This searches for
635 * the cr4 writing instruction.
636 */
637 insn = (unsigned char *)native_write_cr4;
638 OPTIMIZER_HIDE_VAR(insn);
639 for (i = 0; i < MOV_CR4_DEPTH; i++) {
640 /* mov %rdi, %cr4 */
641 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
642 break;
643 /* mov %rdi,%rax; mov %rax, %cr4 */
644 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
645 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
646 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
647 break;
648 }
649 if (i >= MOV_CR4_DEPTH) {
650 pr_info("ok: cannot locate cr4 writing call gadget\n");
651 return;
652 }
653 direct_write_cr4 = (void *)(insn + i);
654
655 pr_info("trying to clear SMEP with call gadget\n");
656 direct_write_cr4(cr4);
657 if (native_read_cr4() & X86_CR4_SMEP) {
658 pr_info("ok: SMEP removal was reverted\n");
659 } else {
660 pr_err("FAIL: cleared SMEP not detected!\n");
661 cr4 |= X86_CR4_SMEP;
662 pr_info("restoring SMEP\n");
663 native_write_cr4(cr4);
664 }
665#else
666 pr_err("XFAIL: this test is x86_64-only\n");
667#endif
668}
669
670static void lkdtm_DOUBLE_FAULT(void)
671{
672#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
673 /*
674 * Trigger #DF by setting the stack limit to zero. This clobbers
675 * a GDT TLS slot, which is okay because the current task will die
676 * anyway due to the double fault.
677 */
678 struct desc_struct d = {
679 .type = 3, /* expand-up, writable, accessed data */
680 .p = 1, /* present */
681 .d = 1, /* 32-bit */
682 .g = 0, /* limit in bytes */
683 .s = 1, /* not system */
684 };
685
686 local_irq_disable();
687 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
688 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
689
690 /*
691 * Put our zero-limit segment in SS and then trigger a fault. The
692 * 4-byte access to (%esp) will fault with #SS, and the attempt to
693 * deliver the fault will recursively cause #SS and result in #DF.
694 * This whole process happens while NMIs and MCEs are blocked by the
695 * MOV SS window. This is nice because an NMI with an invalid SS
696 * would also double-fault, resulting in the NMI or MCE being lost.
697 */
698 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
699 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
700
701 pr_err("FAIL: tried to double fault but didn't die\n");
702#else
703 pr_err("XFAIL: this test is ia32-only\n");
704#endif
705}
706
707#ifdef CONFIG_ARM64
708static noinline void change_pac_parameters(void)
709{
710 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
711 /* Reset the keys of current task */
712 ptrauth_thread_init_kernel(current);
713 ptrauth_thread_switch_kernel(current);
714 }
715}
716#endif
717
718static noinline void lkdtm_CORRUPT_PAC(void)
719{
720#ifdef CONFIG_ARM64
721#define CORRUPT_PAC_ITERATE 10
722 int i;
723
724 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
725 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
726
727 if (!system_supports_address_auth()) {
728 pr_err("FAIL: CPU lacks pointer authentication feature\n");
729 return;
730 }
731
732 pr_info("changing PAC parameters to force function return failure...\n");
733 /*
734 * PAC is a hash value computed from input keys, return address and
735 * stack pointer. As pac has fewer bits so there is a chance of
736 * collision, so iterate few times to reduce the collision probability.
737 */
738 for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
739 change_pac_parameters();
740
741 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
742#else
743 pr_err("XFAIL: this test is arm64-only\n");
744#endif
745}
746
747static struct crashtype crashtypes[] = {
748 CRASHTYPE(PANIC),
749 CRASHTYPE(PANIC_STOP_IRQOFF),
750 CRASHTYPE(PANIC_IN_HARDIRQ),
751 CRASHTYPE(BUG),
752 CRASHTYPE(BUG_IN_HARDIRQ),
753 CRASHTYPE(WARNING),
754 CRASHTYPE(WARNING_MESSAGE),
755 CRASHTYPE(EXCEPTION),
756 CRASHTYPE(LOOP),
757 CRASHTYPE(EXHAUST_STACK),
758 CRASHTYPE(CORRUPT_STACK),
759 CRASHTYPE(CORRUPT_STACK_STRONG),
760 CRASHTYPE(REPORT_STACK),
761 CRASHTYPE(REPORT_STACK_CANARY),
762 CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE),
763 CRASHTYPE(SOFTLOCKUP),
764 CRASHTYPE(HARDLOCKUP),
765 CRASHTYPE(SMP_CALL_LOCKUP),
766 CRASHTYPE(SPINLOCKUP),
767 CRASHTYPE(HUNG_TASK),
768 CRASHTYPE(OVERFLOW_SIGNED),
769 CRASHTYPE(OVERFLOW_UNSIGNED),
770 CRASHTYPE(ARRAY_BOUNDS),
771 CRASHTYPE(FAM_BOUNDS),
772 CRASHTYPE(CORRUPT_LIST_ADD),
773 CRASHTYPE(CORRUPT_LIST_DEL),
774 CRASHTYPE(STACK_GUARD_PAGE_LEADING),
775 CRASHTYPE(STACK_GUARD_PAGE_TRAILING),
776 CRASHTYPE(UNSET_SMEP),
777 CRASHTYPE(DOUBLE_FAULT),
778 CRASHTYPE(CORRUPT_PAC),
779};
780
781struct crashtype_category bugs_crashtypes = {
782 .crashtypes = crashtypes,
783 .len = ARRAY_SIZE(crashtypes),
784};