at v6.19 1208 lines 28 kB view raw
1// SPDX-License-Identifier: GPL-2.0+ 2// Copyright IBM Corp 2019 3 4#include <linux/device.h> 5#include <linux/export.h> 6#include <linux/hwmon.h> 7#include <linux/hwmon-sysfs.h> 8#include <linux/jiffies.h> 9#include <linux/kernel.h> 10#include <linux/math64.h> 11#include <linux/module.h> 12#include <linux/mutex.h> 13#include <linux/property.h> 14#include <linux/sysfs.h> 15#include <linux/unaligned.h> 16 17#include "common.h" 18 19#define EXTN_FLAG_SENSOR_ID BIT(7) 20 21#define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */ 22 23#define OCC_STATE_SAFE 4 24#define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */ 25 26#define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000) 27 28#define OCC_TEMP_SENSOR_FAULT 0xFF 29 30#define OCC_FRU_TYPE_VRM 3 31 32/* OCC sensor type and version definitions */ 33 34struct temp_sensor_1 { 35 u16 sensor_id; 36 u16 value; 37} __packed; 38 39struct temp_sensor_2 { 40 u32 sensor_id; 41 u8 fru_type; 42 u8 value; 43} __packed; 44 45struct temp_sensor_10 { 46 u32 sensor_id; 47 u8 fru_type; 48 u8 value; 49 u8 throttle; 50 u8 reserved; 51} __packed; 52 53struct freq_sensor_1 { 54 u16 sensor_id; 55 u16 value; 56} __packed; 57 58struct freq_sensor_2 { 59 u32 sensor_id; 60 u16 value; 61} __packed; 62 63struct power_sensor_1 { 64 u16 sensor_id; 65 u32 update_tag; 66 u32 accumulator; 67 u16 value; 68} __packed; 69 70struct power_sensor_2 { 71 u32 sensor_id; 72 u8 function_id; 73 u8 apss_channel; 74 u16 reserved; 75 u32 update_tag; 76 u64 accumulator; 77 u16 value; 78} __packed; 79 80struct power_sensor_data { 81 u16 value; 82 u32 update_tag; 83 u64 accumulator; 84} __packed; 85 86struct power_sensor_data_and_time { 87 u16 update_time; 88 u16 value; 89 u32 update_tag; 90 u64 accumulator; 91} __packed; 92 93struct power_sensor_a0 { 94 u32 sensor_id; 95 struct power_sensor_data_and_time system; 96 u32 reserved; 97 struct power_sensor_data_and_time proc; 98 struct power_sensor_data vdd; 99 struct power_sensor_data vdn; 100} __packed; 101 102struct caps_sensor_2 { 103 u16 cap; 104 u16 system_power; 105 u16 n_cap; 106 u16 max; 107 u16 min; 108 u16 user; 109 u8 user_source; 110} __packed; 111 112struct caps_sensor_3 { 113 u16 cap; 114 u16 system_power; 115 u16 n_cap; 116 u16 max; 117 u16 hard_min; 118 u16 soft_min; 119 u16 user; 120 u8 user_source; 121} __packed; 122 123struct extended_sensor { 124 union { 125 u8 name[4]; 126 u32 sensor_id; 127 }; 128 u8 flags; 129 u8 reserved; 130 u8 data[6]; 131} __packed; 132 133static int occ_poll(struct occ *occ) 134{ 135 int rc; 136 u8 cmd[7]; 137 struct occ_poll_response_header *header; 138 139 /* big endian */ 140 cmd[0] = 0; /* sequence number */ 141 cmd[1] = 0; /* cmd type */ 142 cmd[2] = 0; /* data length msb */ 143 cmd[3] = 1; /* data length lsb */ 144 cmd[4] = occ->poll_cmd_data; /* data */ 145 cmd[5] = 0; /* checksum msb */ 146 cmd[6] = 0; /* checksum lsb */ 147 148 /* mutex should already be locked if necessary */ 149 rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp)); 150 if (rc) { 151 occ->last_error = rc; 152 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD) 153 occ->error = rc; 154 155 goto done; 156 } 157 158 /* clear error since communication was successful */ 159 occ->error_count = 0; 160 occ->last_error = 0; 161 occ->error = 0; 162 163 /* check for safe state */ 164 header = (struct occ_poll_response_header *)occ->resp.data; 165 if (header->occ_state == OCC_STATE_SAFE) { 166 if (occ->last_safe) { 167 if (time_after(jiffies, 168 occ->last_safe + OCC_SAFE_TIMEOUT)) 169 occ->error = -EHOSTDOWN; 170 } else { 171 occ->last_safe = jiffies; 172 } 173 } else { 174 occ->last_safe = 0; 175 } 176 177done: 178 occ_sysfs_poll_done(occ); 179 return rc; 180} 181 182static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap) 183{ 184 int rc; 185 u8 cmd[8]; 186 u8 resp[8]; 187 __be16 user_power_cap_be = cpu_to_be16(user_power_cap); 188 189 cmd[0] = 0; /* sequence number */ 190 cmd[1] = 0x22; /* cmd type */ 191 cmd[2] = 0; /* data length msb */ 192 cmd[3] = 2; /* data length lsb */ 193 194 memcpy(&cmd[4], &user_power_cap_be, 2); 195 196 cmd[6] = 0; /* checksum msb */ 197 cmd[7] = 0; /* checksum lsb */ 198 199 rc = mutex_lock_interruptible(&occ->lock); 200 if (rc) 201 return rc; 202 203 rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp)); 204 205 mutex_unlock(&occ->lock); 206 207 return rc; 208} 209 210int occ_update_response(struct occ *occ) 211{ 212 int rc = mutex_lock_interruptible(&occ->lock); 213 214 if (rc) 215 return rc; 216 217 /* limit the maximum rate of polling the OCC */ 218 if (time_after(jiffies, occ->next_update)) { 219 rc = occ_poll(occ); 220 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY; 221 } else { 222 rc = occ->last_error; 223 } 224 225 mutex_unlock(&occ->lock); 226 return rc; 227} 228 229static ssize_t occ_show_temp_1(struct device *dev, 230 struct device_attribute *attr, char *buf) 231{ 232 int rc; 233 u32 val = 0; 234 struct temp_sensor_1 *temp; 235 struct occ *occ = dev_get_drvdata(dev); 236 struct occ_sensors *sensors = &occ->sensors; 237 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 238 239 rc = occ_update_response(occ); 240 if (rc) 241 return rc; 242 243 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index; 244 245 switch (sattr->nr) { 246 case 0: 247 val = get_unaligned_be16(&temp->sensor_id); 248 break; 249 case 1: 250 /* 251 * If a sensor reading has expired and couldn't be refreshed, 252 * OCC returns 0xFFFF for that sensor. 253 */ 254 if (temp->value == 0xFFFF) 255 return -EREMOTEIO; 256 val = get_unaligned_be16(&temp->value) * 1000; 257 break; 258 default: 259 return -EINVAL; 260 } 261 262 return sysfs_emit(buf, "%u\n", val); 263} 264 265static ssize_t occ_show_temp_2(struct device *dev, 266 struct device_attribute *attr, char *buf) 267{ 268 int rc; 269 u32 val = 0; 270 struct temp_sensor_2 *temp; 271 struct occ *occ = dev_get_drvdata(dev); 272 struct occ_sensors *sensors = &occ->sensors; 273 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 274 275 rc = occ_update_response(occ); 276 if (rc) 277 return rc; 278 279 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index; 280 281 switch (sattr->nr) { 282 case 0: 283 val = get_unaligned_be32(&temp->sensor_id); 284 break; 285 case 1: 286 val = temp->value; 287 if (val == OCC_TEMP_SENSOR_FAULT) 288 return -EREMOTEIO; 289 290 /* 291 * VRM doesn't return temperature, only alarm bit. This 292 * attribute maps to tempX_alarm instead of tempX_input for 293 * VRM 294 */ 295 if (temp->fru_type != OCC_FRU_TYPE_VRM) { 296 /* sensor not ready */ 297 if (val == 0) 298 return -EAGAIN; 299 300 val *= 1000; 301 } 302 break; 303 case 2: 304 val = temp->fru_type; 305 break; 306 case 3: 307 val = temp->value == OCC_TEMP_SENSOR_FAULT; 308 break; 309 default: 310 return -EINVAL; 311 } 312 313 return sysfs_emit(buf, "%u\n", val); 314} 315 316static ssize_t occ_show_temp_10(struct device *dev, 317 struct device_attribute *attr, char *buf) 318{ 319 int rc; 320 u32 val = 0; 321 struct temp_sensor_10 *temp; 322 struct occ *occ = dev_get_drvdata(dev); 323 struct occ_sensors *sensors = &occ->sensors; 324 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 325 326 rc = occ_update_response(occ); 327 if (rc) 328 return rc; 329 330 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index; 331 332 switch (sattr->nr) { 333 case 0: 334 val = get_unaligned_be32(&temp->sensor_id); 335 break; 336 case 1: 337 val = temp->value; 338 if (val == OCC_TEMP_SENSOR_FAULT) 339 return -EREMOTEIO; 340 341 /* sensor not ready */ 342 if (val == 0) 343 return -EAGAIN; 344 345 val *= 1000; 346 break; 347 case 2: 348 val = temp->fru_type; 349 break; 350 case 3: 351 val = temp->value == OCC_TEMP_SENSOR_FAULT; 352 break; 353 case 4: 354 val = temp->throttle * 1000; 355 break; 356 default: 357 return -EINVAL; 358 } 359 360 return sysfs_emit(buf, "%u\n", val); 361} 362 363static ssize_t occ_show_freq_1(struct device *dev, 364 struct device_attribute *attr, char *buf) 365{ 366 int rc; 367 u16 val = 0; 368 struct freq_sensor_1 *freq; 369 struct occ *occ = dev_get_drvdata(dev); 370 struct occ_sensors *sensors = &occ->sensors; 371 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 372 373 rc = occ_update_response(occ); 374 if (rc) 375 return rc; 376 377 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index; 378 379 switch (sattr->nr) { 380 case 0: 381 val = get_unaligned_be16(&freq->sensor_id); 382 break; 383 case 1: 384 val = get_unaligned_be16(&freq->value); 385 break; 386 default: 387 return -EINVAL; 388 } 389 390 return sysfs_emit(buf, "%u\n", val); 391} 392 393static ssize_t occ_show_freq_2(struct device *dev, 394 struct device_attribute *attr, char *buf) 395{ 396 int rc; 397 u32 val = 0; 398 struct freq_sensor_2 *freq; 399 struct occ *occ = dev_get_drvdata(dev); 400 struct occ_sensors *sensors = &occ->sensors; 401 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 402 403 rc = occ_update_response(occ); 404 if (rc) 405 return rc; 406 407 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index; 408 409 switch (sattr->nr) { 410 case 0: 411 val = get_unaligned_be32(&freq->sensor_id); 412 break; 413 case 1: 414 val = get_unaligned_be16(&freq->value); 415 break; 416 default: 417 return -EINVAL; 418 } 419 420 return sysfs_emit(buf, "%u\n", val); 421} 422 423static ssize_t occ_show_power_1(struct device *dev, 424 struct device_attribute *attr, char *buf) 425{ 426 int rc; 427 u64 val = 0; 428 struct power_sensor_1 *power; 429 struct occ *occ = dev_get_drvdata(dev); 430 struct occ_sensors *sensors = &occ->sensors; 431 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 432 433 rc = occ_update_response(occ); 434 if (rc) 435 return rc; 436 437 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index; 438 439 switch (sattr->nr) { 440 case 0: 441 val = get_unaligned_be16(&power->sensor_id); 442 break; 443 case 1: 444 val = get_unaligned_be32(&power->accumulator) / 445 get_unaligned_be32(&power->update_tag); 446 val *= 1000000ULL; 447 break; 448 case 2: 449 val = (u64)get_unaligned_be32(&power->update_tag) * 450 occ->powr_sample_time_us; 451 break; 452 case 3: 453 val = get_unaligned_be16(&power->value) * 1000000ULL; 454 break; 455 default: 456 return -EINVAL; 457 } 458 459 return sysfs_emit(buf, "%llu\n", val); 460} 461 462static u64 occ_get_powr_avg(u64 accum, u32 samples) 463{ 464 return (samples == 0) ? 0 : 465 mul_u64_u32_div(accum, 1000000UL, samples); 466} 467 468static ssize_t occ_show_power_2(struct device *dev, 469 struct device_attribute *attr, char *buf) 470{ 471 int rc; 472 u64 val = 0; 473 struct power_sensor_2 *power; 474 struct occ *occ = dev_get_drvdata(dev); 475 struct occ_sensors *sensors = &occ->sensors; 476 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 477 478 rc = occ_update_response(occ); 479 if (rc) 480 return rc; 481 482 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index; 483 484 switch (sattr->nr) { 485 case 0: 486 return sysfs_emit(buf, "%u_%u_%u\n", 487 get_unaligned_be32(&power->sensor_id), 488 power->function_id, power->apss_channel); 489 case 1: 490 val = occ_get_powr_avg(get_unaligned_be64(&power->accumulator), 491 get_unaligned_be32(&power->update_tag)); 492 break; 493 case 2: 494 val = (u64)get_unaligned_be32(&power->update_tag) * 495 occ->powr_sample_time_us; 496 break; 497 case 3: 498 val = get_unaligned_be16(&power->value) * 1000000ULL; 499 break; 500 default: 501 return -EINVAL; 502 } 503 504 return sysfs_emit(buf, "%llu\n", val); 505} 506 507static ssize_t occ_show_power_a0(struct device *dev, 508 struct device_attribute *attr, char *buf) 509{ 510 int rc; 511 u64 val = 0; 512 struct power_sensor_a0 *power; 513 struct occ *occ = dev_get_drvdata(dev); 514 struct occ_sensors *sensors = &occ->sensors; 515 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 516 517 rc = occ_update_response(occ); 518 if (rc) 519 return rc; 520 521 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index; 522 523 switch (sattr->nr) { 524 case 0: 525 return sysfs_emit(buf, "%u_system\n", 526 get_unaligned_be32(&power->sensor_id)); 527 case 1: 528 val = occ_get_powr_avg(get_unaligned_be64(&power->system.accumulator), 529 get_unaligned_be32(&power->system.update_tag)); 530 break; 531 case 2: 532 val = (u64)get_unaligned_be32(&power->system.update_tag) * 533 occ->powr_sample_time_us; 534 break; 535 case 3: 536 val = get_unaligned_be16(&power->system.value) * 1000000ULL; 537 break; 538 case 4: 539 return sysfs_emit(buf, "%u_proc\n", 540 get_unaligned_be32(&power->sensor_id)); 541 case 5: 542 val = occ_get_powr_avg(get_unaligned_be64(&power->proc.accumulator), 543 get_unaligned_be32(&power->proc.update_tag)); 544 break; 545 case 6: 546 val = (u64)get_unaligned_be32(&power->proc.update_tag) * 547 occ->powr_sample_time_us; 548 break; 549 case 7: 550 val = get_unaligned_be16(&power->proc.value) * 1000000ULL; 551 break; 552 case 8: 553 return sysfs_emit(buf, "%u_vdd\n", 554 get_unaligned_be32(&power->sensor_id)); 555 case 9: 556 val = occ_get_powr_avg(get_unaligned_be64(&power->vdd.accumulator), 557 get_unaligned_be32(&power->vdd.update_tag)); 558 break; 559 case 10: 560 val = (u64)get_unaligned_be32(&power->vdd.update_tag) * 561 occ->powr_sample_time_us; 562 break; 563 case 11: 564 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL; 565 break; 566 case 12: 567 return sysfs_emit(buf, "%u_vdn\n", 568 get_unaligned_be32(&power->sensor_id)); 569 case 13: 570 val = occ_get_powr_avg(get_unaligned_be64(&power->vdn.accumulator), 571 get_unaligned_be32(&power->vdn.update_tag)); 572 break; 573 case 14: 574 val = (u64)get_unaligned_be32(&power->vdn.update_tag) * 575 occ->powr_sample_time_us; 576 break; 577 case 15: 578 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL; 579 break; 580 default: 581 return -EINVAL; 582 } 583 584 return sysfs_emit(buf, "%llu\n", val); 585} 586 587static ssize_t occ_show_caps_1_2(struct device *dev, 588 struct device_attribute *attr, char *buf) 589{ 590 int rc; 591 u64 val = 0; 592 struct caps_sensor_2 *caps; 593 struct occ *occ = dev_get_drvdata(dev); 594 struct occ_sensors *sensors = &occ->sensors; 595 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 596 597 rc = occ_update_response(occ); 598 if (rc) 599 return rc; 600 601 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index; 602 603 switch (sattr->nr) { 604 case 0: 605 return sysfs_emit(buf, "system\n"); 606 case 1: 607 val = get_unaligned_be16(&caps->cap) * 1000000ULL; 608 break; 609 case 2: 610 val = get_unaligned_be16(&caps->system_power) * 1000000ULL; 611 break; 612 case 3: 613 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; 614 break; 615 case 4: 616 val = get_unaligned_be16(&caps->max) * 1000000ULL; 617 break; 618 case 5: 619 val = get_unaligned_be16(&caps->min) * 1000000ULL; 620 break; 621 case 6: 622 val = get_unaligned_be16(&caps->user) * 1000000ULL; 623 break; 624 case 7: 625 if (occ->sensors.caps.version == 1) 626 return -EINVAL; 627 628 val = caps->user_source; 629 break; 630 default: 631 return -EINVAL; 632 } 633 634 return sysfs_emit(buf, "%llu\n", val); 635} 636 637static ssize_t occ_show_caps_3(struct device *dev, 638 struct device_attribute *attr, char *buf) 639{ 640 int rc; 641 u64 val = 0; 642 struct caps_sensor_3 *caps; 643 struct occ *occ = dev_get_drvdata(dev); 644 struct occ_sensors *sensors = &occ->sensors; 645 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 646 647 rc = occ_update_response(occ); 648 if (rc) 649 return rc; 650 651 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index; 652 653 switch (sattr->nr) { 654 case 0: 655 return sysfs_emit(buf, "system\n"); 656 case 1: 657 val = get_unaligned_be16(&caps->cap) * 1000000ULL; 658 break; 659 case 2: 660 val = get_unaligned_be16(&caps->system_power) * 1000000ULL; 661 break; 662 case 3: 663 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; 664 break; 665 case 4: 666 val = get_unaligned_be16(&caps->max) * 1000000ULL; 667 break; 668 case 5: 669 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL; 670 break; 671 case 6: 672 val = get_unaligned_be16(&caps->user) * 1000000ULL; 673 break; 674 case 7: 675 val = caps->user_source; 676 break; 677 case 8: 678 val = get_unaligned_be16(&caps->soft_min) * 1000000ULL; 679 break; 680 default: 681 return -EINVAL; 682 } 683 684 return sysfs_emit(buf, "%llu\n", val); 685} 686 687static ssize_t occ_store_caps_user(struct device *dev, 688 struct device_attribute *attr, 689 const char *buf, size_t count) 690{ 691 int rc; 692 u16 user_power_cap; 693 unsigned long long value; 694 struct occ *occ = dev_get_drvdata(dev); 695 696 rc = kstrtoull(buf, 0, &value); 697 if (rc) 698 return rc; 699 700 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */ 701 702 rc = occ_set_user_power_cap(occ, user_power_cap); 703 if (rc) 704 return rc; 705 706 return count; 707} 708 709static ssize_t occ_show_extended(struct device *dev, 710 struct device_attribute *attr, char *buf) 711{ 712 int rc; 713 struct extended_sensor *extn; 714 struct occ *occ = dev_get_drvdata(dev); 715 struct occ_sensors *sensors = &occ->sensors; 716 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 717 718 rc = occ_update_response(occ); 719 if (rc) 720 return rc; 721 722 extn = ((struct extended_sensor *)sensors->extended.data) + 723 sattr->index; 724 725 switch (sattr->nr) { 726 case 0: 727 if (extn->flags & EXTN_FLAG_SENSOR_ID) { 728 rc = sysfs_emit(buf, "%u", 729 get_unaligned_be32(&extn->sensor_id)); 730 } else { 731 rc = sysfs_emit(buf, "%4phN\n", extn->name); 732 } 733 break; 734 case 1: 735 rc = sysfs_emit(buf, "%02x\n", extn->flags); 736 break; 737 case 2: 738 rc = sysfs_emit(buf, "%6phN\n", extn->data); 739 break; 740 default: 741 return -EINVAL; 742 } 743 744 return rc; 745} 746 747/* 748 * A helper to make it easier to define an occ_attribute. Since these 749 * are dynamically allocated, we cannot use the existing kernel macros which 750 * stringify the name argument. 751 */ 752__printf(7, 8) 753static void occ_init_attribute(struct occ_attribute *attr, int mode, 754 ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf), 755 ssize_t (*store)(struct device *dev, struct device_attribute *attr, 756 const char *buf, size_t count), 757 int nr, int index, const char *fmt, ...) 758{ 759 va_list args; 760 761 va_start(args, fmt); 762 vsnprintf(attr->name, sizeof(attr->name), fmt, args); 763 va_end(args); 764 765 attr->sensor.dev_attr.attr.name = attr->name; 766 attr->sensor.dev_attr.attr.mode = mode; 767 attr->sensor.dev_attr.show = show; 768 attr->sensor.dev_attr.store = store; 769 attr->sensor.index = index; 770 attr->sensor.nr = nr; 771} 772 773/* 774 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to 775 * use our own instead of the built-in hwmon attribute types. 776 */ 777static int occ_setup_sensor_attrs(struct occ *occ) 778{ 779 unsigned int i, s, num_attrs = 0; 780 struct device *dev = occ->bus_dev; 781 struct occ_sensors *sensors = &occ->sensors; 782 struct occ_attribute *attr; 783 struct temp_sensor_2 *temp; 784 ssize_t (*show_temp)(struct device *, struct device_attribute *, 785 char *) = occ_show_temp_1; 786 ssize_t (*show_freq)(struct device *, struct device_attribute *, 787 char *) = occ_show_freq_1; 788 ssize_t (*show_power)(struct device *, struct device_attribute *, 789 char *) = occ_show_power_1; 790 ssize_t (*show_caps)(struct device *, struct device_attribute *, 791 char *) = occ_show_caps_1_2; 792 793 switch (sensors->temp.version) { 794 case 1: 795 num_attrs += (sensors->temp.num_sensors * 2); 796 break; 797 case 2: 798 num_attrs += (sensors->temp.num_sensors * 4); 799 show_temp = occ_show_temp_2; 800 break; 801 case 0x10: 802 num_attrs += (sensors->temp.num_sensors * 5); 803 show_temp = occ_show_temp_10; 804 break; 805 default: 806 sensors->temp.num_sensors = 0; 807 } 808 809 switch (sensors->freq.version) { 810 case 2: 811 show_freq = occ_show_freq_2; 812 fallthrough; 813 case 1: 814 num_attrs += (sensors->freq.num_sensors * 2); 815 break; 816 default: 817 sensors->freq.num_sensors = 0; 818 } 819 820 switch (sensors->power.version) { 821 case 2: 822 show_power = occ_show_power_2; 823 fallthrough; 824 case 1: 825 num_attrs += (sensors->power.num_sensors * 4); 826 break; 827 case 0xA0: 828 num_attrs += (sensors->power.num_sensors * 16); 829 show_power = occ_show_power_a0; 830 break; 831 default: 832 sensors->power.num_sensors = 0; 833 } 834 835 switch (sensors->caps.version) { 836 case 1: 837 num_attrs += (sensors->caps.num_sensors * 7); 838 break; 839 case 2: 840 num_attrs += (sensors->caps.num_sensors * 8); 841 break; 842 case 3: 843 show_caps = occ_show_caps_3; 844 num_attrs += (sensors->caps.num_sensors * 9); 845 break; 846 default: 847 sensors->caps.num_sensors = 0; 848 } 849 850 switch (sensors->extended.version) { 851 case 1: 852 num_attrs += (sensors->extended.num_sensors * 3); 853 break; 854 default: 855 sensors->extended.num_sensors = 0; 856 } 857 858 occ->attrs = devm_kcalloc(dev, num_attrs, sizeof(*occ->attrs), 859 GFP_KERNEL); 860 if (!occ->attrs) 861 return -ENOMEM; 862 863 /* null-terminated list */ 864 occ->group.attrs = devm_kcalloc(dev, num_attrs + 1, 865 sizeof(*occ->group.attrs), 866 GFP_KERNEL); 867 if (!occ->group.attrs) 868 return -ENOMEM; 869 870 attr = occ->attrs; 871 872 for (i = 0; i < sensors->temp.num_sensors; ++i) { 873 s = i + 1; 874 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i; 875 876 occ_init_attribute(attr, 0444, show_temp, NULL, 877 0, i, "temp%d_label", s); 878 attr++; 879 880 if (sensors->temp.version == 2 && 881 temp->fru_type == OCC_FRU_TYPE_VRM) { 882 occ_init_attribute(attr, 0444, show_temp, NULL, 883 1, i, "temp%d_alarm", s); 884 } else { 885 occ_init_attribute(attr, 0444, show_temp, NULL, 886 1, i, "temp%d_input", s); 887 } 888 889 attr++; 890 891 if (sensors->temp.version > 1) { 892 occ_init_attribute(attr, 0444, show_temp, NULL, 893 2, i, "temp%d_fru_type", s); 894 attr++; 895 896 occ_init_attribute(attr, 0444, show_temp, NULL, 897 3, i, "temp%d_fault", s); 898 attr++; 899 900 if (sensors->temp.version == 0x10) { 901 occ_init_attribute(attr, 0444, show_temp, NULL, 902 4, i, "temp%d_max", s); 903 attr++; 904 } 905 } 906 } 907 908 for (i = 0; i < sensors->freq.num_sensors; ++i) { 909 s = i + 1; 910 911 occ_init_attribute(attr, 0444, show_freq, NULL, 912 0, i, "freq%d_label", s); 913 attr++; 914 915 occ_init_attribute(attr, 0444, show_freq, NULL, 916 1, i, "freq%d_input", s); 917 attr++; 918 } 919 920 if (sensors->power.version == 0xA0) { 921 /* 922 * Special case for many-attribute power sensor. Split it into 923 * a sensor number per power type, emulating several sensors. 924 */ 925 for (i = 0; i < sensors->power.num_sensors; ++i) { 926 unsigned int j; 927 unsigned int nr = 0; 928 929 s = (i * 4) + 1; 930 931 for (j = 0; j < 4; ++j) { 932 occ_init_attribute(attr, 0444, show_power, 933 NULL, nr++, i, 934 "power%d_label", s); 935 attr++; 936 937 occ_init_attribute(attr, 0444, show_power, 938 NULL, nr++, i, 939 "power%d_average", s); 940 attr++; 941 942 occ_init_attribute(attr, 0444, show_power, 943 NULL, nr++, i, 944 "power%d_average_interval", s); 945 attr++; 946 947 occ_init_attribute(attr, 0444, show_power, 948 NULL, nr++, i, 949 "power%d_input", s); 950 attr++; 951 952 s++; 953 } 954 } 955 956 s = (sensors->power.num_sensors * 4) + 1; 957 } else { 958 for (i = 0; i < sensors->power.num_sensors; ++i) { 959 s = i + 1; 960 961 occ_init_attribute(attr, 0444, show_power, NULL, 962 0, i, "power%d_label", s); 963 attr++; 964 965 occ_init_attribute(attr, 0444, show_power, NULL, 966 1, i, "power%d_average", s); 967 attr++; 968 969 occ_init_attribute(attr, 0444, show_power, NULL, 970 2, i, "power%d_average_interval", s); 971 attr++; 972 973 occ_init_attribute(attr, 0444, show_power, NULL, 974 3, i, "power%d_input", s); 975 attr++; 976 } 977 978 s = sensors->power.num_sensors + 1; 979 } 980 981 if (sensors->caps.num_sensors >= 1) { 982 occ_init_attribute(attr, 0444, show_caps, NULL, 983 0, 0, "power%d_label", s); 984 attr++; 985 986 occ_init_attribute(attr, 0444, show_caps, NULL, 987 1, 0, "power%d_cap", s); 988 attr++; 989 990 occ_init_attribute(attr, 0444, show_caps, NULL, 991 2, 0, "power%d_input", s); 992 attr++; 993 994 occ_init_attribute(attr, 0444, show_caps, NULL, 995 3, 0, "power%d_cap_not_redundant", s); 996 attr++; 997 998 occ_init_attribute(attr, 0444, show_caps, NULL, 999 4, 0, "power%d_cap_max", s); 1000 attr++; 1001 1002 occ_init_attribute(attr, 0444, show_caps, NULL, 1003 5, 0, "power%d_cap_min", s); 1004 attr++; 1005 1006 occ_init_attribute(attr, 0644, show_caps, occ_store_caps_user, 1007 6, 0, "power%d_cap_user", s); 1008 attr++; 1009 1010 if (sensors->caps.version > 1) { 1011 occ_init_attribute(attr, 0444, show_caps, NULL, 1012 7, 0, "power%d_cap_user_source", s); 1013 attr++; 1014 1015 if (sensors->caps.version > 2) { 1016 occ_init_attribute(attr, 0444, show_caps, NULL, 1017 8, 0, 1018 "power%d_cap_min_soft", s); 1019 attr++; 1020 } 1021 } 1022 } 1023 1024 for (i = 0; i < sensors->extended.num_sensors; ++i) { 1025 s = i + 1; 1026 1027 occ_init_attribute(attr, 0444, occ_show_extended, NULL, 1028 0, i, "extn%d_label", s); 1029 attr++; 1030 1031 occ_init_attribute(attr, 0444, occ_show_extended, NULL, 1032 1, i, "extn%d_flags", s); 1033 attr++; 1034 1035 occ_init_attribute(attr, 0444, occ_show_extended, NULL, 1036 2, i, "extn%d_input", s); 1037 attr++; 1038 } 1039 1040 /* put the sensors in the group */ 1041 for (i = 0; i < num_attrs; ++i) { 1042 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr); 1043 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr; 1044 } 1045 1046 return 0; 1047} 1048 1049/* only need to do this once at startup, as OCC won't change sensors on us */ 1050static void occ_parse_poll_response(struct occ *occ) 1051{ 1052 unsigned int i, old_offset, offset = 0, size = 0; 1053 struct occ_sensor *sensor; 1054 struct occ_sensors *sensors = &occ->sensors; 1055 struct occ_response *resp = &occ->resp; 1056 struct occ_poll_response *poll = 1057 (struct occ_poll_response *)&resp->data[0]; 1058 struct occ_poll_response_header *header = &poll->header; 1059 struct occ_sensor_data_block *block = &poll->block; 1060 1061 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n", 1062 header->occ_code_level); 1063 1064 for (i = 0; i < header->num_sensor_data_blocks; ++i) { 1065 block = (struct occ_sensor_data_block *)((u8 *)block + offset); 1066 old_offset = offset; 1067 offset = (block->header.num_sensors * 1068 block->header.sensor_length) + sizeof(block->header); 1069 size += offset; 1070 1071 /* validate all the length/size fields */ 1072 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) { 1073 dev_warn(occ->bus_dev, "exceeded response buffer\n"); 1074 return; 1075 } 1076 1077 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n", 1078 old_offset, offset - 1, block->header.eye_catcher, 1079 block->header.num_sensors); 1080 1081 /* match sensor block type */ 1082 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0) 1083 sensor = &sensors->temp; 1084 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0) 1085 sensor = &sensors->freq; 1086 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0) 1087 sensor = &sensors->power; 1088 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0) 1089 sensor = &sensors->caps; 1090 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0) 1091 sensor = &sensors->extended; 1092 else { 1093 dev_warn(occ->bus_dev, "sensor not supported %.4s\n", 1094 block->header.eye_catcher); 1095 continue; 1096 } 1097 1098 sensor->num_sensors = block->header.num_sensors; 1099 sensor->version = block->header.sensor_format; 1100 sensor->data = &block->data; 1101 } 1102 1103 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size, 1104 sizeof(*header), size + sizeof(*header)); 1105} 1106 1107int occ_active(struct occ *occ, bool active) 1108{ 1109 int rc = mutex_lock_interruptible(&occ->lock); 1110 1111 if (rc) 1112 return rc; 1113 1114 if (active) { 1115 if (occ->active) { 1116 rc = -EALREADY; 1117 goto unlock; 1118 } 1119 1120 occ->error_count = 0; 1121 occ->last_safe = 0; 1122 1123 rc = occ_poll(occ); 1124 if (rc < 0) { 1125 dev_err(occ->bus_dev, 1126 "failed to get OCC poll response=%02x: %d\n", 1127 occ->resp.return_status, rc); 1128 goto unlock; 1129 } 1130 1131 occ->active = true; 1132 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY; 1133 occ_parse_poll_response(occ); 1134 1135 rc = occ_setup_sensor_attrs(occ); 1136 if (rc) { 1137 dev_err(occ->bus_dev, 1138 "failed to setup sensor attrs: %d\n", rc); 1139 goto unlock; 1140 } 1141 1142 occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev, 1143 "occ", occ, 1144 occ->groups); 1145 if (IS_ERR(occ->hwmon)) { 1146 rc = PTR_ERR(occ->hwmon); 1147 occ->hwmon = NULL; 1148 dev_err(occ->bus_dev, 1149 "failed to register hwmon device: %d\n", rc); 1150 goto unlock; 1151 } 1152 } else { 1153 if (!occ->active) { 1154 rc = -EALREADY; 1155 goto unlock; 1156 } 1157 1158 if (occ->hwmon) 1159 hwmon_device_unregister(occ->hwmon); 1160 occ->active = false; 1161 occ->hwmon = NULL; 1162 } 1163 1164unlock: 1165 mutex_unlock(&occ->lock); 1166 return rc; 1167} 1168 1169int occ_setup(struct occ *occ) 1170{ 1171 int rc; 1172 1173 mutex_init(&occ->lock); 1174 occ->groups[0] = &occ->group; 1175 1176 rc = occ_setup_sysfs(occ); 1177 if (rc) { 1178 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc); 1179 return rc; 1180 } 1181 1182 if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) { 1183 rc = occ_active(occ, true); 1184 if (rc) 1185 occ_shutdown_sysfs(occ); 1186 } 1187 1188 return rc; 1189} 1190EXPORT_SYMBOL_GPL(occ_setup); 1191 1192void occ_shutdown(struct occ *occ) 1193{ 1194 mutex_lock(&occ->lock); 1195 1196 occ_shutdown_sysfs(occ); 1197 1198 if (occ->hwmon) 1199 hwmon_device_unregister(occ->hwmon); 1200 occ->hwmon = NULL; 1201 1202 mutex_unlock(&occ->lock); 1203} 1204EXPORT_SYMBOL_GPL(occ_shutdown); 1205 1206MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); 1207MODULE_DESCRIPTION("Common OCC hwmon code"); 1208MODULE_LICENSE("GPL");