Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013 NVIDIA Corporation
4 */
5
6#include <linux/clk.h>
7#include <linux/clk-provider.h>
8#include <linux/debugfs.h>
9#include <linux/io.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/platform_device.h>
13#include <linux/pm_runtime.h>
14#include <linux/regulator/consumer.h>
15#include <linux/reset.h>
16
17#include <soc/tegra/pmc.h>
18
19#include <drm/display/drm_dp_helper.h>
20#include <drm/display/drm_scdc_helper.h>
21#include <drm/drm_atomic_helper.h>
22#include <drm/drm_debugfs.h>
23#include <drm/drm_edid.h>
24#include <drm/drm_eld.h>
25#include <drm/drm_file.h>
26#include <drm/drm_panel.h>
27#include <drm/drm_print.h>
28#include <drm/drm_simple_kms_helper.h>
29
30#include "dc.h"
31#include "dp.h"
32#include "drm.h"
33#include "hda.h"
34#include "sor.h"
35#include "trace.h"
36
37#define SOR_REKEY 0x38
38
39struct tegra_sor_hdmi_settings {
40 unsigned long frequency;
41
42 u8 vcocap;
43 u8 filter;
44 u8 ichpmp;
45 u8 loadadj;
46 u8 tmds_termadj;
47 u8 tx_pu_value;
48 u8 bg_temp_coef;
49 u8 bg_vref_level;
50 u8 avdd10_level;
51 u8 avdd14_level;
52 u8 sparepll;
53
54 u8 drive_current[4];
55 u8 preemphasis[4];
56};
57
58#if 1
59static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
60 {
61 .frequency = 54000000,
62 .vcocap = 0x0,
63 .filter = 0x0,
64 .ichpmp = 0x1,
65 .loadadj = 0x3,
66 .tmds_termadj = 0x9,
67 .tx_pu_value = 0x10,
68 .bg_temp_coef = 0x3,
69 .bg_vref_level = 0x8,
70 .avdd10_level = 0x4,
71 .avdd14_level = 0x4,
72 .sparepll = 0x0,
73 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
74 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
75 }, {
76 .frequency = 75000000,
77 .vcocap = 0x3,
78 .filter = 0x0,
79 .ichpmp = 0x1,
80 .loadadj = 0x3,
81 .tmds_termadj = 0x9,
82 .tx_pu_value = 0x40,
83 .bg_temp_coef = 0x3,
84 .bg_vref_level = 0x8,
85 .avdd10_level = 0x4,
86 .avdd14_level = 0x4,
87 .sparepll = 0x0,
88 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
89 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
90 }, {
91 .frequency = 150000000,
92 .vcocap = 0x3,
93 .filter = 0x0,
94 .ichpmp = 0x1,
95 .loadadj = 0x3,
96 .tmds_termadj = 0x9,
97 .tx_pu_value = 0x66,
98 .bg_temp_coef = 0x3,
99 .bg_vref_level = 0x8,
100 .avdd10_level = 0x4,
101 .avdd14_level = 0x4,
102 .sparepll = 0x0,
103 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
104 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
105 }, {
106 .frequency = 300000000,
107 .vcocap = 0x3,
108 .filter = 0x0,
109 .ichpmp = 0x1,
110 .loadadj = 0x3,
111 .tmds_termadj = 0x9,
112 .tx_pu_value = 0x66,
113 .bg_temp_coef = 0x3,
114 .bg_vref_level = 0xa,
115 .avdd10_level = 0x4,
116 .avdd14_level = 0x4,
117 .sparepll = 0x0,
118 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
119 .preemphasis = { 0x00, 0x17, 0x17, 0x17 },
120 }, {
121 .frequency = 600000000,
122 .vcocap = 0x3,
123 .filter = 0x0,
124 .ichpmp = 0x1,
125 .loadadj = 0x3,
126 .tmds_termadj = 0x9,
127 .tx_pu_value = 0x66,
128 .bg_temp_coef = 0x3,
129 .bg_vref_level = 0x8,
130 .avdd10_level = 0x4,
131 .avdd14_level = 0x4,
132 .sparepll = 0x0,
133 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
134 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
135 },
136};
137#else
138static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
139 {
140 .frequency = 75000000,
141 .vcocap = 0x3,
142 .filter = 0x0,
143 .ichpmp = 0x1,
144 .loadadj = 0x3,
145 .tmds_termadj = 0x9,
146 .tx_pu_value = 0x40,
147 .bg_temp_coef = 0x3,
148 .bg_vref_level = 0x8,
149 .avdd10_level = 0x4,
150 .avdd14_level = 0x4,
151 .sparepll = 0x0,
152 .drive_current = { 0x29, 0x29, 0x29, 0x29 },
153 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
154 }, {
155 .frequency = 150000000,
156 .vcocap = 0x3,
157 .filter = 0x0,
158 .ichpmp = 0x1,
159 .loadadj = 0x3,
160 .tmds_termadj = 0x9,
161 .tx_pu_value = 0x66,
162 .bg_temp_coef = 0x3,
163 .bg_vref_level = 0x8,
164 .avdd10_level = 0x4,
165 .avdd14_level = 0x4,
166 .sparepll = 0x0,
167 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
168 .preemphasis = { 0x01, 0x02, 0x02, 0x02 },
169 }, {
170 .frequency = 300000000,
171 .vcocap = 0x3,
172 .filter = 0x0,
173 .ichpmp = 0x6,
174 .loadadj = 0x3,
175 .tmds_termadj = 0x9,
176 .tx_pu_value = 0x66,
177 .bg_temp_coef = 0x3,
178 .bg_vref_level = 0xf,
179 .avdd10_level = 0x4,
180 .avdd14_level = 0x4,
181 .sparepll = 0x0,
182 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
183 .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
184 }, {
185 .frequency = 600000000,
186 .vcocap = 0x3,
187 .filter = 0x0,
188 .ichpmp = 0xa,
189 .loadadj = 0x3,
190 .tmds_termadj = 0xb,
191 .tx_pu_value = 0x66,
192 .bg_temp_coef = 0x3,
193 .bg_vref_level = 0xe,
194 .avdd10_level = 0x4,
195 .avdd14_level = 0x4,
196 .sparepll = 0x0,
197 .drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
198 .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
199 },
200};
201#endif
202
203static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
204 {
205 .frequency = 54000000,
206 .vcocap = 0,
207 .filter = 5,
208 .ichpmp = 5,
209 .loadadj = 3,
210 .tmds_termadj = 0xf,
211 .tx_pu_value = 0,
212 .bg_temp_coef = 3,
213 .bg_vref_level = 8,
214 .avdd10_level = 4,
215 .avdd14_level = 4,
216 .sparepll = 0x54,
217 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
218 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
219 }, {
220 .frequency = 75000000,
221 .vcocap = 1,
222 .filter = 5,
223 .ichpmp = 5,
224 .loadadj = 3,
225 .tmds_termadj = 0xf,
226 .tx_pu_value = 0,
227 .bg_temp_coef = 3,
228 .bg_vref_level = 8,
229 .avdd10_level = 4,
230 .avdd14_level = 4,
231 .sparepll = 0x44,
232 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
233 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
234 }, {
235 .frequency = 150000000,
236 .vcocap = 3,
237 .filter = 5,
238 .ichpmp = 5,
239 .loadadj = 3,
240 .tmds_termadj = 15,
241 .tx_pu_value = 0x66 /* 0 */,
242 .bg_temp_coef = 3,
243 .bg_vref_level = 8,
244 .avdd10_level = 4,
245 .avdd14_level = 4,
246 .sparepll = 0x00, /* 0x34 */
247 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
248 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
249 }, {
250 .frequency = 300000000,
251 .vcocap = 3,
252 .filter = 5,
253 .ichpmp = 5,
254 .loadadj = 3,
255 .tmds_termadj = 15,
256 .tx_pu_value = 64,
257 .bg_temp_coef = 3,
258 .bg_vref_level = 8,
259 .avdd10_level = 4,
260 .avdd14_level = 4,
261 .sparepll = 0x34,
262 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
263 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
264 }, {
265 .frequency = 600000000,
266 .vcocap = 3,
267 .filter = 5,
268 .ichpmp = 5,
269 .loadadj = 3,
270 .tmds_termadj = 12,
271 .tx_pu_value = 96,
272 .bg_temp_coef = 3,
273 .bg_vref_level = 8,
274 .avdd10_level = 4,
275 .avdd14_level = 4,
276 .sparepll = 0x34,
277 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
278 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
279 }
280};
281
282static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
283 {
284 .frequency = 54000000,
285 .vcocap = 0,
286 .filter = 5,
287 .ichpmp = 5,
288 .loadadj = 3,
289 .tmds_termadj = 0xf,
290 .tx_pu_value = 0,
291 .bg_temp_coef = 3,
292 .bg_vref_level = 8,
293 .avdd10_level = 4,
294 .avdd14_level = 4,
295 .sparepll = 0x54,
296 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
297 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
298 }, {
299 .frequency = 75000000,
300 .vcocap = 1,
301 .filter = 5,
302 .ichpmp = 5,
303 .loadadj = 3,
304 .tmds_termadj = 0xf,
305 .tx_pu_value = 0,
306 .bg_temp_coef = 3,
307 .bg_vref_level = 8,
308 .avdd10_level = 4,
309 .avdd14_level = 4,
310 .sparepll = 0x44,
311 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
312 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
313 }, {
314 .frequency = 150000000,
315 .vcocap = 3,
316 .filter = 5,
317 .ichpmp = 5,
318 .loadadj = 3,
319 .tmds_termadj = 15,
320 .tx_pu_value = 0x66 /* 0 */,
321 .bg_temp_coef = 3,
322 .bg_vref_level = 8,
323 .avdd10_level = 4,
324 .avdd14_level = 4,
325 .sparepll = 0x00, /* 0x34 */
326 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
327 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
328 }, {
329 .frequency = 300000000,
330 .vcocap = 3,
331 .filter = 5,
332 .ichpmp = 5,
333 .loadadj = 3,
334 .tmds_termadj = 15,
335 .tx_pu_value = 64,
336 .bg_temp_coef = 3,
337 .bg_vref_level = 8,
338 .avdd10_level = 4,
339 .avdd14_level = 4,
340 .sparepll = 0x34,
341 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
342 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
343 }, {
344 .frequency = 600000000,
345 .vcocap = 3,
346 .filter = 5,
347 .ichpmp = 5,
348 .loadadj = 3,
349 .tmds_termadj = 12,
350 .tx_pu_value = 96,
351 .bg_temp_coef = 3,
352 .bg_vref_level = 8,
353 .avdd10_level = 4,
354 .avdd14_level = 4,
355 .sparepll = 0x34,
356 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
357 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
358 }
359};
360
361struct tegra_sor_regs {
362 unsigned int head_state0;
363 unsigned int head_state1;
364 unsigned int head_state2;
365 unsigned int head_state3;
366 unsigned int head_state4;
367 unsigned int head_state5;
368 unsigned int pll0;
369 unsigned int pll1;
370 unsigned int pll2;
371 unsigned int pll3;
372 unsigned int dp_padctl0;
373 unsigned int dp_padctl2;
374};
375
376struct tegra_sor_soc {
377 bool supports_lvds;
378 bool supports_hdmi;
379 bool supports_dp;
380 bool supports_audio;
381 bool supports_hdcp;
382
383 const struct tegra_sor_regs *regs;
384 bool has_nvdisplay;
385
386 const struct tegra_sor_hdmi_settings *settings;
387 unsigned int num_settings;
388
389 const u8 *xbar_cfg;
390 const u8 *lane_map;
391
392 const u8 (*voltage_swing)[4][4];
393 const u8 (*pre_emphasis)[4][4];
394 const u8 (*post_cursor)[4][4];
395 const u8 (*tx_pu)[4][4];
396};
397
398struct tegra_sor;
399
400struct tegra_sor_ops {
401 const char *name;
402 int (*probe)(struct tegra_sor *sor);
403 void (*audio_enable)(struct tegra_sor *sor);
404 void (*audio_disable)(struct tegra_sor *sor);
405};
406
407struct tegra_sor {
408 struct host1x_client client;
409 struct tegra_output output;
410 struct device *dev;
411
412 const struct tegra_sor_soc *soc;
413 void __iomem *regs;
414 unsigned int index;
415 unsigned int irq;
416
417 struct reset_control *rst;
418 struct clk *clk_parent;
419 struct clk *clk_safe;
420 struct clk *clk_out;
421 struct clk *clk_pad;
422 struct clk *clk_dp;
423 struct clk *clk;
424
425 u8 xbar_cfg[5];
426
427 struct drm_dp_link link;
428 struct drm_dp_aux *aux;
429
430 struct drm_info_list *debugfs_files;
431
432 const struct tegra_sor_ops *ops;
433 enum tegra_io_pad pad;
434
435 /* for HDMI 2.0 */
436 struct tegra_sor_hdmi_settings *settings;
437 unsigned int num_settings;
438
439 struct regulator *avdd_io_supply;
440 struct regulator *vdd_pll_supply;
441 struct regulator *hdmi_supply;
442
443 struct delayed_work scdc;
444 bool scdc_enabled;
445
446 struct tegra_hda_format format;
447};
448
449struct tegra_sor_state {
450 struct drm_connector_state base;
451
452 unsigned int link_speed;
453 unsigned long pclk;
454 unsigned int bpc;
455};
456
457static inline struct tegra_sor_state *
458to_sor_state(struct drm_connector_state *state)
459{
460 return container_of(state, struct tegra_sor_state, base);
461}
462
463struct tegra_sor_config {
464 u32 bits_per_pixel;
465
466 u32 active_polarity;
467 u32 active_count;
468 u32 tu_size;
469 u32 active_frac;
470 u32 watermark;
471
472 u32 hblank_symbols;
473 u32 vblank_symbols;
474};
475
476static inline struct tegra_sor *
477host1x_client_to_sor(struct host1x_client *client)
478{
479 return container_of(client, struct tegra_sor, client);
480}
481
482static inline struct tegra_sor *to_sor(struct tegra_output *output)
483{
484 return container_of(output, struct tegra_sor, output);
485}
486
487static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
488{
489 u32 value = readl(sor->regs + (offset << 2));
490
491 trace_sor_readl(sor->dev, offset, value);
492
493 return value;
494}
495
496static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
497 unsigned int offset)
498{
499 trace_sor_writel(sor->dev, offset, value);
500 writel(value, sor->regs + (offset << 2));
501}
502
503static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
504{
505 int err;
506
507 clk_disable_unprepare(sor->clk);
508
509 err = clk_set_parent(sor->clk_out, parent);
510 if (err < 0)
511 return err;
512
513 err = clk_prepare_enable(sor->clk);
514 if (err < 0)
515 return err;
516
517 return 0;
518}
519
520struct tegra_clk_sor_pad {
521 struct clk_hw hw;
522 struct tegra_sor *sor;
523};
524
525static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
526{
527 return container_of(hw, struct tegra_clk_sor_pad, hw);
528}
529
530static const char * const tegra_clk_sor_pad_parents[2][2] = {
531 { "pll_d_out0", "pll_dp" },
532 { "pll_d2_out0", "pll_dp" },
533};
534
535/*
536 * Implementing ->set_parent() here isn't really required because the parent
537 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
538 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
539 * Tegra186 and later SoC generations where the BPMP implements this clock
540 * and doesn't expose the mux via the common clock framework.
541 */
542
543static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
544{
545 struct tegra_clk_sor_pad *pad = to_pad(hw);
546 struct tegra_sor *sor = pad->sor;
547 u32 value;
548
549 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
550 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
551
552 switch (index) {
553 case 0:
554 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
555 break;
556
557 case 1:
558 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
559 break;
560 }
561
562 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
563
564 return 0;
565}
566
567static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
568{
569 struct tegra_clk_sor_pad *pad = to_pad(hw);
570 struct tegra_sor *sor = pad->sor;
571 u8 parent = U8_MAX;
572 u32 value;
573
574 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
575
576 switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
577 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
578 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
579 parent = 0;
580 break;
581
582 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
583 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
584 parent = 1;
585 break;
586 }
587
588 return parent;
589}
590
591static const struct clk_ops tegra_clk_sor_pad_ops = {
592 .determine_rate = clk_hw_determine_rate_no_reparent,
593 .set_parent = tegra_clk_sor_pad_set_parent,
594 .get_parent = tegra_clk_sor_pad_get_parent,
595};
596
597static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
598 const char *name)
599{
600 struct tegra_clk_sor_pad *pad;
601 struct clk_init_data init;
602 struct clk *clk;
603
604 pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
605 if (!pad)
606 return ERR_PTR(-ENOMEM);
607
608 pad->sor = sor;
609
610 init.name = name;
611 init.flags = 0;
612 init.parent_names = tegra_clk_sor_pad_parents[sor->index];
613 init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
614 init.ops = &tegra_clk_sor_pad_ops;
615
616 pad->hw.init = &init;
617
618 clk = devm_clk_register(sor->dev, &pad->hw);
619
620 return clk;
621}
622
623static void tegra_sor_filter_rates(struct tegra_sor *sor)
624{
625 struct drm_dp_link *link = &sor->link;
626 unsigned int i;
627
628 /* Tegra only supports RBR, HBR and HBR2 */
629 for (i = 0; i < link->num_rates; i++) {
630 switch (link->rates[i]) {
631 case 1620000:
632 case 2700000:
633 case 5400000:
634 break;
635
636 default:
637 DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
638 link->rates[i]);
639 link->rates[i] = 0;
640 break;
641 }
642 }
643
644 drm_dp_link_update_rates(link);
645}
646
647static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
648{
649 unsigned long timeout;
650 u32 value;
651
652 /*
653 * Clear or set the PD_TXD bit corresponding to each lane, depending
654 * on whether it is used or not.
655 */
656 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
657
658 if (lanes <= 2)
659 value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
660 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
661 else
662 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
663 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
664
665 if (lanes <= 1)
666 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
667 else
668 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
669
670 if (lanes == 0)
671 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
672 else
673 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
674
675 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
676
677 /* start lane sequencer */
678 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
679 SOR_LANE_SEQ_CTL_POWER_STATE_UP;
680 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
681
682 timeout = jiffies + msecs_to_jiffies(250);
683
684 while (time_before(jiffies, timeout)) {
685 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
686 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
687 break;
688
689 usleep_range(250, 1000);
690 }
691
692 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
693 return -ETIMEDOUT;
694
695 return 0;
696}
697
698static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
699{
700 unsigned long timeout;
701 u32 value;
702
703 /* power down all lanes */
704 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
705 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
706 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
707 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
708
709 /* start lane sequencer */
710 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
711 SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
712 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
713
714 timeout = jiffies + msecs_to_jiffies(250);
715
716 while (time_before(jiffies, timeout)) {
717 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
718 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
719 break;
720
721 usleep_range(25, 100);
722 }
723
724 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
725 return -ETIMEDOUT;
726
727 return 0;
728}
729
730static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
731{
732 u32 value;
733
734 /* pre-charge all used lanes */
735 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
736
737 if (lanes <= 2)
738 value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
739 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
740 else
741 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
742 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
743
744 if (lanes <= 1)
745 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
746 else
747 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
748
749 if (lanes == 0)
750 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
751 else
752 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
753
754 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
755
756 usleep_range(15, 100);
757
758 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
759 value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
760 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
761 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
762}
763
764static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
765{
766 u32 mask = 0x08, adj = 0, value;
767
768 /* enable pad calibration logic */
769 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
770 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
771 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
772
773 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
774 value |= SOR_PLL1_TMDS_TERM;
775 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
776
777 while (mask) {
778 adj |= mask;
779
780 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
781 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
782 value |= SOR_PLL1_TMDS_TERMADJ(adj);
783 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
784
785 usleep_range(100, 200);
786
787 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
788 if (value & SOR_PLL1_TERM_COMPOUT)
789 adj &= ~mask;
790
791 mask >>= 1;
792 }
793
794 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
795 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
796 value |= SOR_PLL1_TMDS_TERMADJ(adj);
797 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
798
799 /* disable pad calibration logic */
800 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
801 value |= SOR_DP_PADCTL_PAD_CAL_PD;
802 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
803}
804
805static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
806{
807 struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
808 u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
809 const struct tegra_sor_soc *soc = sor->soc;
810 u32 pattern = 0, tx_pu = 0, value;
811 unsigned int i;
812
813 for (value = 0, i = 0; i < link->lanes; i++) {
814 u8 vs = link->train.request.voltage_swing[i];
815 u8 pe = link->train.request.pre_emphasis[i];
816 u8 pc = link->train.request.post_cursor[i];
817 u8 shift = sor->soc->lane_map[i] << 3;
818
819 voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
820 pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
821 post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
822
823 if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
824 tx_pu = sor->soc->tx_pu[pc][vs][pe];
825
826 switch (link->train.pattern) {
827 case DP_TRAINING_PATTERN_DISABLE:
828 value = SOR_DP_TPG_SCRAMBLER_GALIOS |
829 SOR_DP_TPG_PATTERN_NONE;
830 break;
831
832 case DP_TRAINING_PATTERN_1:
833 value = SOR_DP_TPG_SCRAMBLER_NONE |
834 SOR_DP_TPG_PATTERN_TRAIN1;
835 break;
836
837 case DP_TRAINING_PATTERN_2:
838 value = SOR_DP_TPG_SCRAMBLER_NONE |
839 SOR_DP_TPG_PATTERN_TRAIN2;
840 break;
841
842 case DP_TRAINING_PATTERN_3:
843 value = SOR_DP_TPG_SCRAMBLER_NONE |
844 SOR_DP_TPG_PATTERN_TRAIN3;
845 break;
846
847 default:
848 return -EINVAL;
849 }
850
851 if (link->caps.channel_coding)
852 value |= SOR_DP_TPG_CHANNEL_CODING;
853
854 pattern = pattern << 8 | value;
855 }
856
857 tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
858 tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
859
860 if (link->caps.tps3_supported)
861 tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
862
863 tegra_sor_writel(sor, pattern, SOR_DP_TPG);
864
865 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
866 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
867 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
868 value |= SOR_DP_PADCTL_TX_PU(tx_pu);
869 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
870
871 usleep_range(20, 100);
872
873 return 0;
874}
875
876static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
877{
878 struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
879 unsigned int rate, lanes;
880 u32 value;
881 int err;
882
883 rate = drm_dp_link_rate_to_bw_code(link->rate);
884 lanes = link->lanes;
885
886 /* configure link speed and lane count */
887 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
888 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
889 value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
890 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
891
892 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
893 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
894 value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
895
896 if (link->caps.enhanced_framing)
897 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
898
899 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
900
901 usleep_range(400, 1000);
902
903 /* configure load pulse position adjustment */
904 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
905 value &= ~SOR_PLL1_LOADADJ_MASK;
906
907 switch (rate) {
908 case DP_LINK_BW_1_62:
909 value |= SOR_PLL1_LOADADJ(0x3);
910 break;
911
912 case DP_LINK_BW_2_7:
913 value |= SOR_PLL1_LOADADJ(0x4);
914 break;
915
916 case DP_LINK_BW_5_4:
917 value |= SOR_PLL1_LOADADJ(0x6);
918 break;
919 }
920
921 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
922
923 /* use alternate scrambler reset for eDP */
924 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
925
926 if (link->edp == 0)
927 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
928 else
929 value |= SOR_DP_SPARE_PANEL_INTERNAL;
930
931 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
932
933 err = tegra_sor_power_down_lanes(sor);
934 if (err < 0) {
935 dev_err(sor->dev, "failed to power down lanes: %d\n", err);
936 return err;
937 }
938
939 /* power up and pre-charge lanes */
940 err = tegra_sor_power_up_lanes(sor, lanes);
941 if (err < 0) {
942 dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
943 lanes, (lanes != 1) ? "s" : "", err);
944 return err;
945 }
946
947 tegra_sor_dp_precharge(sor, lanes);
948
949 return 0;
950}
951
952static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
953 .apply_training = tegra_sor_dp_link_apply_training,
954 .configure = tegra_sor_dp_link_configure,
955};
956
957static void tegra_sor_super_update(struct tegra_sor *sor)
958{
959 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
960 tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
961 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
962}
963
964static void tegra_sor_update(struct tegra_sor *sor)
965{
966 tegra_sor_writel(sor, 0, SOR_STATE0);
967 tegra_sor_writel(sor, 1, SOR_STATE0);
968 tegra_sor_writel(sor, 0, SOR_STATE0);
969}
970
971static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
972{
973 u32 value;
974
975 value = tegra_sor_readl(sor, SOR_PWM_DIV);
976 value &= ~SOR_PWM_DIV_MASK;
977 value |= 0x400; /* period */
978 tegra_sor_writel(sor, value, SOR_PWM_DIV);
979
980 value = tegra_sor_readl(sor, SOR_PWM_CTL);
981 value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
982 value |= 0x400; /* duty cycle */
983 value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
984 value |= SOR_PWM_CTL_TRIGGER;
985 tegra_sor_writel(sor, value, SOR_PWM_CTL);
986
987 timeout = jiffies + msecs_to_jiffies(timeout);
988
989 while (time_before(jiffies, timeout)) {
990 value = tegra_sor_readl(sor, SOR_PWM_CTL);
991 if ((value & SOR_PWM_CTL_TRIGGER) == 0)
992 return 0;
993
994 usleep_range(25, 100);
995 }
996
997 return -ETIMEDOUT;
998}
999
1000static int tegra_sor_attach(struct tegra_sor *sor)
1001{
1002 unsigned long value, timeout;
1003
1004 /* wake up in normal mode */
1005 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1006 value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1007 value |= SOR_SUPER_STATE_MODE_NORMAL;
1008 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1009 tegra_sor_super_update(sor);
1010
1011 /* attach */
1012 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1013 value |= SOR_SUPER_STATE_ATTACHED;
1014 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1015 tegra_sor_super_update(sor);
1016
1017 timeout = jiffies + msecs_to_jiffies(250);
1018
1019 while (time_before(jiffies, timeout)) {
1020 value = tegra_sor_readl(sor, SOR_TEST);
1021 if ((value & SOR_TEST_ATTACHED) != 0)
1022 return 0;
1023
1024 usleep_range(25, 100);
1025 }
1026
1027 return -ETIMEDOUT;
1028}
1029
1030static int tegra_sor_wakeup(struct tegra_sor *sor)
1031{
1032 unsigned long value, timeout;
1033
1034 timeout = jiffies + msecs_to_jiffies(250);
1035
1036 /* wait for head to wake up */
1037 while (time_before(jiffies, timeout)) {
1038 value = tegra_sor_readl(sor, SOR_TEST);
1039 value &= SOR_TEST_HEAD_MODE_MASK;
1040
1041 if (value == SOR_TEST_HEAD_MODE_AWAKE)
1042 return 0;
1043
1044 usleep_range(25, 100);
1045 }
1046
1047 return -ETIMEDOUT;
1048}
1049
1050static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1051{
1052 u32 value;
1053
1054 value = tegra_sor_readl(sor, SOR_PWR);
1055 value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1056 tegra_sor_writel(sor, value, SOR_PWR);
1057
1058 timeout = jiffies + msecs_to_jiffies(timeout);
1059
1060 while (time_before(jiffies, timeout)) {
1061 value = tegra_sor_readl(sor, SOR_PWR);
1062 if ((value & SOR_PWR_TRIGGER) == 0)
1063 return 0;
1064
1065 usleep_range(25, 100);
1066 }
1067
1068 return -ETIMEDOUT;
1069}
1070
1071struct tegra_sor_params {
1072 /* number of link clocks per line */
1073 unsigned int num_clocks;
1074 /* ratio between input and output */
1075 u64 ratio;
1076 /* precision factor */
1077 u64 precision;
1078
1079 unsigned int active_polarity;
1080 unsigned int active_count;
1081 unsigned int active_frac;
1082 unsigned int tu_size;
1083 unsigned int error;
1084};
1085
1086static int tegra_sor_compute_params(struct tegra_sor *sor,
1087 struct tegra_sor_params *params,
1088 unsigned int tu_size)
1089{
1090 u64 active_sym, active_count, frac, approx;
1091 u32 active_polarity, active_frac = 0;
1092 const u64 f = params->precision;
1093 s64 error;
1094
1095 active_sym = params->ratio * tu_size;
1096 active_count = div_u64(active_sym, f) * f;
1097 frac = active_sym - active_count;
1098
1099 /* fraction < 0.5 */
1100 if (frac >= (f / 2)) {
1101 active_polarity = 1;
1102 frac = f - frac;
1103 } else {
1104 active_polarity = 0;
1105 }
1106
1107 if (frac != 0) {
1108 frac = div_u64(f * f, frac); /* 1/fraction */
1109 if (frac <= (15 * f)) {
1110 active_frac = div_u64(frac, f);
1111
1112 /* round up */
1113 if (active_polarity)
1114 active_frac++;
1115 } else {
1116 active_frac = active_polarity ? 1 : 15;
1117 }
1118 }
1119
1120 if (active_frac == 1)
1121 active_polarity = 0;
1122
1123 if (active_polarity == 1) {
1124 if (active_frac) {
1125 approx = active_count + (active_frac * (f - 1)) * f;
1126 approx = div_u64(approx, active_frac * f);
1127 } else {
1128 approx = active_count + f;
1129 }
1130 } else {
1131 if (active_frac)
1132 approx = active_count + div_u64(f, active_frac);
1133 else
1134 approx = active_count;
1135 }
1136
1137 error = div_s64(active_sym - approx, tu_size);
1138 error *= params->num_clocks;
1139
1140 if (error <= 0 && abs(error) < params->error) {
1141 params->active_count = div_u64(active_count, f);
1142 params->active_polarity = active_polarity;
1143 params->active_frac = active_frac;
1144 params->error = abs(error);
1145 params->tu_size = tu_size;
1146
1147 if (error == 0)
1148 return true;
1149 }
1150
1151 return false;
1152}
1153
1154static int tegra_sor_compute_config(struct tegra_sor *sor,
1155 const struct drm_display_mode *mode,
1156 struct tegra_sor_config *config,
1157 struct drm_dp_link *link)
1158{
1159 const u64 f = 100000, link_rate = link->rate * 1000;
1160 const u64 pclk = (u64)mode->clock * 1000;
1161 u64 input, output, watermark, num;
1162 struct tegra_sor_params params;
1163 u32 num_syms_per_line;
1164 unsigned int i;
1165
1166 if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1167 return -EINVAL;
1168
1169 input = pclk * config->bits_per_pixel;
1170 output = link_rate * 8 * link->lanes;
1171
1172 if (input >= output)
1173 return -ERANGE;
1174
1175 memset(¶ms, 0, sizeof(params));
1176 params.ratio = div64_u64(input * f, output);
1177 params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1178 params.precision = f;
1179 params.error = 64 * f;
1180 params.tu_size = 64;
1181
1182 for (i = params.tu_size; i >= 32; i--)
1183 if (tegra_sor_compute_params(sor, ¶ms, i))
1184 break;
1185
1186 if (params.active_frac == 0) {
1187 config->active_polarity = 0;
1188 config->active_count = params.active_count;
1189
1190 if (!params.active_polarity)
1191 config->active_count--;
1192
1193 config->tu_size = params.tu_size;
1194 config->active_frac = 1;
1195 } else {
1196 config->active_polarity = params.active_polarity;
1197 config->active_count = params.active_count;
1198 config->active_frac = params.active_frac;
1199 config->tu_size = params.tu_size;
1200 }
1201
1202 dev_dbg(sor->dev,
1203 "polarity: %d active count: %d tu size: %d active frac: %d\n",
1204 config->active_polarity, config->active_count,
1205 config->tu_size, config->active_frac);
1206
1207 watermark = params.ratio * config->tu_size * (f - params.ratio);
1208 watermark = div_u64(watermark, f);
1209
1210 watermark = div_u64(watermark + params.error, f);
1211 config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1212 num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1213 (link->lanes * 8);
1214
1215 if (config->watermark > 30) {
1216 config->watermark = 30;
1217 dev_err(sor->dev,
1218 "unable to compute TU size, forcing watermark to %u\n",
1219 config->watermark);
1220 } else if (config->watermark > num_syms_per_line) {
1221 config->watermark = num_syms_per_line;
1222 dev_err(sor->dev, "watermark too high, forcing to %u\n",
1223 config->watermark);
1224 }
1225
1226 /* compute the number of symbols per horizontal blanking interval */
1227 num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1228 config->hblank_symbols = div_u64(num, pclk);
1229
1230 if (link->caps.enhanced_framing)
1231 config->hblank_symbols -= 3;
1232
1233 config->hblank_symbols -= 12 / link->lanes;
1234
1235 /* compute the number of symbols per vertical blanking interval */
1236 num = (mode->hdisplay - 25) * link_rate;
1237 config->vblank_symbols = div_u64(num, pclk);
1238 config->vblank_symbols -= 36 / link->lanes + 4;
1239
1240 dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1241 config->vblank_symbols);
1242
1243 return 0;
1244}
1245
1246static void tegra_sor_apply_config(struct tegra_sor *sor,
1247 const struct tegra_sor_config *config)
1248{
1249 u32 value;
1250
1251 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1252 value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1253 value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1254 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1255
1256 value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1257 value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1258 value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1259
1260 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1261 value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1262
1263 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1264 value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1265
1266 if (config->active_polarity)
1267 value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1268 else
1269 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1270
1271 value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1272 value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1273 tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1274
1275 value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1276 value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1277 value |= config->hblank_symbols & 0xffff;
1278 tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1279
1280 value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1281 value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1282 value |= config->vblank_symbols & 0xffff;
1283 tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1284}
1285
1286static void tegra_sor_mode_set(struct tegra_sor *sor,
1287 const struct drm_display_mode *mode,
1288 struct tegra_sor_state *state)
1289{
1290 struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1291 unsigned int vbe, vse, hbe, hse, vbs, hbs;
1292 u32 value;
1293
1294 value = tegra_sor_readl(sor, SOR_STATE1);
1295 value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1296 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1297 value &= ~SOR_STATE_ASY_OWNER_MASK;
1298
1299 value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1300 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1301
1302 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1303 value &= ~SOR_STATE_ASY_HSYNCPOL;
1304
1305 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1306 value |= SOR_STATE_ASY_HSYNCPOL;
1307
1308 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1309 value &= ~SOR_STATE_ASY_VSYNCPOL;
1310
1311 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1312 value |= SOR_STATE_ASY_VSYNCPOL;
1313
1314 switch (state->bpc) {
1315 case 16:
1316 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1317 break;
1318
1319 case 12:
1320 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1321 break;
1322
1323 case 10:
1324 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1325 break;
1326
1327 case 8:
1328 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1329 break;
1330
1331 case 6:
1332 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1333 break;
1334
1335 default:
1336 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1337 break;
1338 }
1339
1340 tegra_sor_writel(sor, value, SOR_STATE1);
1341
1342 /*
1343 * TODO: The video timing programming below doesn't seem to match the
1344 * register definitions.
1345 */
1346
1347 value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1348 tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1349
1350 /* sync end = sync width - 1 */
1351 vse = mode->vsync_end - mode->vsync_start - 1;
1352 hse = mode->hsync_end - mode->hsync_start - 1;
1353
1354 value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1355 tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1356
1357 /* blank end = sync end + back porch */
1358 vbe = vse + (mode->vtotal - mode->vsync_end);
1359 hbe = hse + (mode->htotal - mode->hsync_end);
1360
1361 value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1362 tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1363
1364 /* blank start = blank end + active */
1365 vbs = vbe + mode->vdisplay;
1366 hbs = hbe + mode->hdisplay;
1367
1368 value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1369 tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1370
1371 /* XXX interlacing support */
1372 tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1373}
1374
1375static int tegra_sor_detach(struct tegra_sor *sor)
1376{
1377 unsigned long value, timeout;
1378
1379 /* switch to safe mode */
1380 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1381 value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1382 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1383 tegra_sor_super_update(sor);
1384
1385 timeout = jiffies + msecs_to_jiffies(250);
1386
1387 while (time_before(jiffies, timeout)) {
1388 value = tegra_sor_readl(sor, SOR_PWR);
1389 if (value & SOR_PWR_MODE_SAFE)
1390 break;
1391 }
1392
1393 if ((value & SOR_PWR_MODE_SAFE) == 0)
1394 return -ETIMEDOUT;
1395
1396 /* go to sleep */
1397 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1398 value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1399 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1400 tegra_sor_super_update(sor);
1401
1402 /* detach */
1403 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1404 value &= ~SOR_SUPER_STATE_ATTACHED;
1405 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1406 tegra_sor_super_update(sor);
1407
1408 timeout = jiffies + msecs_to_jiffies(250);
1409
1410 while (time_before(jiffies, timeout)) {
1411 value = tegra_sor_readl(sor, SOR_TEST);
1412 if ((value & SOR_TEST_ATTACHED) == 0)
1413 break;
1414
1415 usleep_range(25, 100);
1416 }
1417
1418 if ((value & SOR_TEST_ATTACHED) != 0)
1419 return -ETIMEDOUT;
1420
1421 return 0;
1422}
1423
1424static int tegra_sor_power_down(struct tegra_sor *sor)
1425{
1426 unsigned long value, timeout;
1427 int err;
1428
1429 value = tegra_sor_readl(sor, SOR_PWR);
1430 value &= ~SOR_PWR_NORMAL_STATE_PU;
1431 value |= SOR_PWR_TRIGGER;
1432 tegra_sor_writel(sor, value, SOR_PWR);
1433
1434 timeout = jiffies + msecs_to_jiffies(250);
1435
1436 while (time_before(jiffies, timeout)) {
1437 value = tegra_sor_readl(sor, SOR_PWR);
1438 if ((value & SOR_PWR_TRIGGER) == 0)
1439 return 0;
1440
1441 usleep_range(25, 100);
1442 }
1443
1444 if ((value & SOR_PWR_TRIGGER) != 0)
1445 return -ETIMEDOUT;
1446
1447 /* switch to safe parent clock */
1448 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1449 if (err < 0) {
1450 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1451 return err;
1452 }
1453
1454 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1455 value |= SOR_PLL2_PORT_POWERDOWN;
1456 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1457
1458 usleep_range(20, 100);
1459
1460 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1461 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1462 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1463
1464 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1465 value |= SOR_PLL2_SEQ_PLLCAPPD;
1466 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1467 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1468
1469 usleep_range(20, 100);
1470
1471 return 0;
1472}
1473
1474static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1475{
1476 u32 value;
1477
1478 timeout = jiffies + msecs_to_jiffies(timeout);
1479
1480 while (time_before(jiffies, timeout)) {
1481 value = tegra_sor_readl(sor, SOR_CRCA);
1482 if (value & SOR_CRCA_VALID)
1483 return 0;
1484
1485 usleep_range(100, 200);
1486 }
1487
1488 return -ETIMEDOUT;
1489}
1490
1491static int tegra_sor_show_crc(struct seq_file *s, void *data)
1492{
1493 struct drm_info_node *node = s->private;
1494 struct tegra_sor *sor = node->info_ent->data;
1495 struct drm_crtc *crtc = sor->output.encoder.crtc;
1496 struct drm_device *drm = node->minor->dev;
1497 int err = 0;
1498 u32 value;
1499
1500 drm_modeset_lock_all(drm);
1501
1502 if (!crtc || !crtc->state->active) {
1503 err = -EBUSY;
1504 goto unlock;
1505 }
1506
1507 value = tegra_sor_readl(sor, SOR_STATE1);
1508 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1509 tegra_sor_writel(sor, value, SOR_STATE1);
1510
1511 value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1512 value |= SOR_CRC_CNTRL_ENABLE;
1513 tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1514
1515 value = tegra_sor_readl(sor, SOR_TEST);
1516 value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1517 tegra_sor_writel(sor, value, SOR_TEST);
1518
1519 err = tegra_sor_crc_wait(sor, 100);
1520 if (err < 0)
1521 goto unlock;
1522
1523 tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1524 value = tegra_sor_readl(sor, SOR_CRCB);
1525
1526 seq_printf(s, "%08x\n", value);
1527
1528unlock:
1529 drm_modeset_unlock_all(drm);
1530 return err;
1531}
1532
1533#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1534
1535static const struct debugfs_reg32 tegra_sor_regs[] = {
1536 DEBUGFS_REG32(SOR_CTXSW),
1537 DEBUGFS_REG32(SOR_SUPER_STATE0),
1538 DEBUGFS_REG32(SOR_SUPER_STATE1),
1539 DEBUGFS_REG32(SOR_STATE0),
1540 DEBUGFS_REG32(SOR_STATE1),
1541 DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1542 DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1543 DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1544 DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1545 DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1546 DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1547 DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1548 DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1549 DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1550 DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1551 DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1552 DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1553 DEBUGFS_REG32(SOR_CRC_CNTRL),
1554 DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1555 DEBUGFS_REG32(SOR_CLK_CNTRL),
1556 DEBUGFS_REG32(SOR_CAP),
1557 DEBUGFS_REG32(SOR_PWR),
1558 DEBUGFS_REG32(SOR_TEST),
1559 DEBUGFS_REG32(SOR_PLL0),
1560 DEBUGFS_REG32(SOR_PLL1),
1561 DEBUGFS_REG32(SOR_PLL2),
1562 DEBUGFS_REG32(SOR_PLL3),
1563 DEBUGFS_REG32(SOR_CSTM),
1564 DEBUGFS_REG32(SOR_LVDS),
1565 DEBUGFS_REG32(SOR_CRCA),
1566 DEBUGFS_REG32(SOR_CRCB),
1567 DEBUGFS_REG32(SOR_BLANK),
1568 DEBUGFS_REG32(SOR_SEQ_CTL),
1569 DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1570 DEBUGFS_REG32(SOR_SEQ_INST(0)),
1571 DEBUGFS_REG32(SOR_SEQ_INST(1)),
1572 DEBUGFS_REG32(SOR_SEQ_INST(2)),
1573 DEBUGFS_REG32(SOR_SEQ_INST(3)),
1574 DEBUGFS_REG32(SOR_SEQ_INST(4)),
1575 DEBUGFS_REG32(SOR_SEQ_INST(5)),
1576 DEBUGFS_REG32(SOR_SEQ_INST(6)),
1577 DEBUGFS_REG32(SOR_SEQ_INST(7)),
1578 DEBUGFS_REG32(SOR_SEQ_INST(8)),
1579 DEBUGFS_REG32(SOR_SEQ_INST(9)),
1580 DEBUGFS_REG32(SOR_SEQ_INST(10)),
1581 DEBUGFS_REG32(SOR_SEQ_INST(11)),
1582 DEBUGFS_REG32(SOR_SEQ_INST(12)),
1583 DEBUGFS_REG32(SOR_SEQ_INST(13)),
1584 DEBUGFS_REG32(SOR_SEQ_INST(14)),
1585 DEBUGFS_REG32(SOR_SEQ_INST(15)),
1586 DEBUGFS_REG32(SOR_PWM_DIV),
1587 DEBUGFS_REG32(SOR_PWM_CTL),
1588 DEBUGFS_REG32(SOR_VCRC_A0),
1589 DEBUGFS_REG32(SOR_VCRC_A1),
1590 DEBUGFS_REG32(SOR_VCRC_B0),
1591 DEBUGFS_REG32(SOR_VCRC_B1),
1592 DEBUGFS_REG32(SOR_CCRC_A0),
1593 DEBUGFS_REG32(SOR_CCRC_A1),
1594 DEBUGFS_REG32(SOR_CCRC_B0),
1595 DEBUGFS_REG32(SOR_CCRC_B1),
1596 DEBUGFS_REG32(SOR_EDATA_A0),
1597 DEBUGFS_REG32(SOR_EDATA_A1),
1598 DEBUGFS_REG32(SOR_EDATA_B0),
1599 DEBUGFS_REG32(SOR_EDATA_B1),
1600 DEBUGFS_REG32(SOR_COUNT_A0),
1601 DEBUGFS_REG32(SOR_COUNT_A1),
1602 DEBUGFS_REG32(SOR_COUNT_B0),
1603 DEBUGFS_REG32(SOR_COUNT_B1),
1604 DEBUGFS_REG32(SOR_DEBUG_A0),
1605 DEBUGFS_REG32(SOR_DEBUG_A1),
1606 DEBUGFS_REG32(SOR_DEBUG_B0),
1607 DEBUGFS_REG32(SOR_DEBUG_B1),
1608 DEBUGFS_REG32(SOR_TRIG),
1609 DEBUGFS_REG32(SOR_MSCHECK),
1610 DEBUGFS_REG32(SOR_XBAR_CTRL),
1611 DEBUGFS_REG32(SOR_XBAR_POL),
1612 DEBUGFS_REG32(SOR_DP_LINKCTL0),
1613 DEBUGFS_REG32(SOR_DP_LINKCTL1),
1614 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1615 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1616 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1617 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1618 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1619 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1620 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1621 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1622 DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1623 DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1624 DEBUGFS_REG32(SOR_DP_CONFIG0),
1625 DEBUGFS_REG32(SOR_DP_CONFIG1),
1626 DEBUGFS_REG32(SOR_DP_MN0),
1627 DEBUGFS_REG32(SOR_DP_MN1),
1628 DEBUGFS_REG32(SOR_DP_PADCTL0),
1629 DEBUGFS_REG32(SOR_DP_PADCTL1),
1630 DEBUGFS_REG32(SOR_DP_PADCTL2),
1631 DEBUGFS_REG32(SOR_DP_DEBUG0),
1632 DEBUGFS_REG32(SOR_DP_DEBUG1),
1633 DEBUGFS_REG32(SOR_DP_SPARE0),
1634 DEBUGFS_REG32(SOR_DP_SPARE1),
1635 DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1636 DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1637 DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1638 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1639 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1640 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1641 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1642 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1643 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1644 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1645 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1646 DEBUGFS_REG32(SOR_DP_TPG),
1647 DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1648 DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1649 DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1650 DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1651};
1652
1653static int tegra_sor_show_regs(struct seq_file *s, void *data)
1654{
1655 struct drm_info_node *node = s->private;
1656 struct tegra_sor *sor = node->info_ent->data;
1657 struct drm_crtc *crtc = sor->output.encoder.crtc;
1658 struct drm_device *drm = node->minor->dev;
1659 unsigned int i;
1660 int err = 0;
1661
1662 drm_modeset_lock_all(drm);
1663
1664 if (!crtc || !crtc->state->active) {
1665 err = -EBUSY;
1666 goto unlock;
1667 }
1668
1669 for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1670 unsigned int offset = tegra_sor_regs[i].offset;
1671
1672 seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1673 offset, tegra_sor_readl(sor, offset));
1674 }
1675
1676unlock:
1677 drm_modeset_unlock_all(drm);
1678 return err;
1679}
1680
1681static const struct drm_info_list debugfs_files[] = {
1682 { "crc", tegra_sor_show_crc, 0, NULL },
1683 { "regs", tegra_sor_show_regs, 0, NULL },
1684};
1685
1686static int tegra_sor_late_register(struct drm_connector *connector)
1687{
1688 struct tegra_output *output = connector_to_output(connector);
1689 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1690 struct drm_minor *minor = connector->dev->primary;
1691 struct dentry *root = connector->debugfs_entry;
1692 struct tegra_sor *sor = to_sor(output);
1693
1694 sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1695 GFP_KERNEL);
1696 if (!sor->debugfs_files)
1697 return -ENOMEM;
1698
1699 for (i = 0; i < count; i++)
1700 sor->debugfs_files[i].data = sor;
1701
1702 drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1703
1704 return 0;
1705}
1706
1707static void tegra_sor_early_unregister(struct drm_connector *connector)
1708{
1709 struct tegra_output *output = connector_to_output(connector);
1710 unsigned int count = ARRAY_SIZE(debugfs_files);
1711 struct tegra_sor *sor = to_sor(output);
1712
1713 drm_debugfs_remove_files(sor->debugfs_files, count,
1714 connector->debugfs_entry,
1715 connector->dev->primary);
1716 kfree(sor->debugfs_files);
1717 sor->debugfs_files = NULL;
1718}
1719
1720static void tegra_sor_connector_reset(struct drm_connector *connector)
1721{
1722 struct tegra_sor_state *state;
1723
1724 state = kzalloc(sizeof(*state), GFP_KERNEL);
1725 if (!state)
1726 return;
1727
1728 if (connector->state) {
1729 __drm_atomic_helper_connector_destroy_state(connector->state);
1730 kfree(connector->state);
1731 }
1732
1733 __drm_atomic_helper_connector_reset(connector, &state->base);
1734}
1735
1736static enum drm_connector_status
1737tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1738{
1739 struct tegra_output *output = connector_to_output(connector);
1740 struct tegra_sor *sor = to_sor(output);
1741
1742 if (sor->aux)
1743 return drm_dp_aux_detect(sor->aux);
1744
1745 return tegra_output_connector_detect(connector, force);
1746}
1747
1748static struct drm_connector_state *
1749tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1750{
1751 struct tegra_sor_state *state = to_sor_state(connector->state);
1752 struct tegra_sor_state *copy;
1753
1754 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1755 if (!copy)
1756 return NULL;
1757
1758 __drm_atomic_helper_connector_duplicate_state(connector, ©->base);
1759
1760 return ©->base;
1761}
1762
1763static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1764 .reset = tegra_sor_connector_reset,
1765 .detect = tegra_sor_connector_detect,
1766 .fill_modes = drm_helper_probe_single_connector_modes,
1767 .destroy = tegra_output_connector_destroy,
1768 .atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1769 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1770 .late_register = tegra_sor_late_register,
1771 .early_unregister = tegra_sor_early_unregister,
1772};
1773
1774static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1775{
1776 struct tegra_output *output = connector_to_output(connector);
1777 struct tegra_sor *sor = to_sor(output);
1778 int err;
1779
1780 if (sor->aux)
1781 drm_dp_aux_enable(sor->aux);
1782
1783 err = tegra_output_connector_get_modes(connector);
1784
1785 if (sor->aux)
1786 drm_dp_aux_disable(sor->aux);
1787
1788 return err;
1789}
1790
1791static enum drm_mode_status
1792tegra_sor_connector_mode_valid(struct drm_connector *connector,
1793 const struct drm_display_mode *mode)
1794{
1795 return MODE_OK;
1796}
1797
1798static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1799 .get_modes = tegra_sor_connector_get_modes,
1800 .mode_valid = tegra_sor_connector_mode_valid,
1801};
1802
1803static int
1804tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1805 struct drm_crtc_state *crtc_state,
1806 struct drm_connector_state *conn_state)
1807{
1808 struct tegra_output *output = encoder_to_output(encoder);
1809 struct tegra_sor_state *state = to_sor_state(conn_state);
1810 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1811 unsigned long pclk = crtc_state->mode.clock * 1000;
1812 struct tegra_sor *sor = to_sor(output);
1813 struct drm_display_info *info;
1814 int err;
1815
1816 info = &output->connector.display_info;
1817
1818 /*
1819 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1820 * the pixel clock must be corrected accordingly.
1821 */
1822 if (pclk >= 340000000) {
1823 state->link_speed = 20;
1824 state->pclk = pclk / 2;
1825 } else {
1826 state->link_speed = 10;
1827 state->pclk = pclk;
1828 }
1829
1830 err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1831 pclk, 0);
1832 if (err < 0) {
1833 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1834 return err;
1835 }
1836
1837 switch (info->bpc) {
1838 case 8:
1839 case 6:
1840 state->bpc = info->bpc;
1841 break;
1842
1843 default:
1844 DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1845 state->bpc = 8;
1846 break;
1847 }
1848
1849 return 0;
1850}
1851
1852static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1853{
1854 u32 value = 0;
1855 size_t i;
1856
1857 for (i = size; i > 0; i--)
1858 value = (value << 8) | ptr[i - 1];
1859
1860 return value;
1861}
1862
1863static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1864 const void *data, size_t size)
1865{
1866 const u8 *ptr = data;
1867 unsigned long offset;
1868 size_t i;
1869 u32 value;
1870
1871 switch (ptr[0]) {
1872 case HDMI_INFOFRAME_TYPE_AVI:
1873 offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1874 break;
1875
1876 case HDMI_INFOFRAME_TYPE_AUDIO:
1877 offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1878 break;
1879
1880 case HDMI_INFOFRAME_TYPE_VENDOR:
1881 offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1882 break;
1883
1884 default:
1885 dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1886 ptr[0]);
1887 return;
1888 }
1889
1890 value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1891 INFOFRAME_HEADER_VERSION(ptr[1]) |
1892 INFOFRAME_HEADER_LEN(ptr[2]);
1893 tegra_sor_writel(sor, value, offset);
1894 offset++;
1895
1896 /*
1897 * Each subpack contains 7 bytes, divided into:
1898 * - subpack_low: bytes 0 - 3
1899 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1900 */
1901 for (i = 3; i < size; i += 7) {
1902 size_t rem = size - i, num = min_t(size_t, rem, 4);
1903
1904 value = tegra_sor_hdmi_subpack(&ptr[i], num);
1905 tegra_sor_writel(sor, value, offset++);
1906
1907 num = min_t(size_t, rem - num, 3);
1908
1909 value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1910 tegra_sor_writel(sor, value, offset++);
1911 }
1912}
1913
1914static int
1915tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1916 const struct drm_display_mode *mode)
1917{
1918 u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1919 struct hdmi_avi_infoframe frame;
1920 u32 value;
1921 int err;
1922
1923 /* disable AVI infoframe */
1924 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1925 value &= ~INFOFRAME_CTRL_SINGLE;
1926 value &= ~INFOFRAME_CTRL_OTHER;
1927 value &= ~INFOFRAME_CTRL_ENABLE;
1928 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1929
1930 err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1931 &sor->output.connector, mode);
1932 if (err < 0) {
1933 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1934 return err;
1935 }
1936
1937 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1938 if (err < 0) {
1939 dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1940 return err;
1941 }
1942
1943 tegra_sor_hdmi_write_infopack(sor, buffer, err);
1944
1945 /* enable AVI infoframe */
1946 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1947 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1948 value |= INFOFRAME_CTRL_ENABLE;
1949 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1950
1951 return 0;
1952}
1953
1954static void tegra_sor_write_eld(struct tegra_sor *sor)
1955{
1956 size_t length = drm_eld_size(sor->output.connector.eld), i;
1957
1958 for (i = 0; i < length; i++)
1959 tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1960 SOR_AUDIO_HDA_ELD_BUFWR);
1961
1962 /*
1963 * The HDA codec will always report an ELD buffer size of 96 bytes and
1964 * the HDA codec driver will check that each byte read from the buffer
1965 * is valid. Therefore every byte must be written, even if no 96 bytes
1966 * were parsed from EDID.
1967 */
1968 for (i = length; i < 96; i++)
1969 tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1970}
1971
1972static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1973{
1974 u32 value;
1975
1976 /*
1977 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1978 * is used for interoperability between the HDA codec driver and the
1979 * HDMI/DP driver.
1980 */
1981 value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1982 tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1983 tegra_sor_writel(sor, value, SOR_INT_MASK);
1984
1985 tegra_sor_write_eld(sor);
1986
1987 value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1988 tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1989}
1990
1991static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1992{
1993 tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1994 tegra_sor_writel(sor, 0, SOR_INT_MASK);
1995 tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1996}
1997
1998static void tegra_sor_audio_enable(struct tegra_sor *sor)
1999{
2000 u32 value;
2001
2002 value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2003
2004 /* select HDA audio input */
2005 value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2006 value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2007
2008 /* inject null samples */
2009 if (sor->format.channels != 2)
2010 value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2011 else
2012 value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2013
2014 value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2015
2016 tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2017
2018 /* enable advertising HBR capability */
2019 tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2020}
2021
2022static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2023{
2024 u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2025 struct hdmi_audio_infoframe frame;
2026 u32 value;
2027 int err;
2028
2029 err = hdmi_audio_infoframe_init(&frame);
2030 if (err < 0) {
2031 dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2032 return err;
2033 }
2034
2035 frame.channels = sor->format.channels;
2036
2037 err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2038 if (err < 0) {
2039 dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2040 return err;
2041 }
2042
2043 tegra_sor_hdmi_write_infopack(sor, buffer, err);
2044
2045 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2046 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2047 value |= INFOFRAME_CTRL_ENABLE;
2048 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2049
2050 return 0;
2051}
2052
2053static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2054{
2055 u32 value;
2056
2057 tegra_sor_audio_enable(sor);
2058
2059 tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2060
2061 value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2062 SOR_HDMI_SPARE_CTS_RESET(1) |
2063 SOR_HDMI_SPARE_HW_CTS_ENABLE;
2064 tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2065
2066 /* enable HW CTS */
2067 value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2068 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2069
2070 /* allow packet to be sent */
2071 value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2072 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2073
2074 /* reset N counter and enable lookup */
2075 value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2076 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2077
2078 value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2079 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2080 tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2081
2082 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2083 tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2084
2085 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2086 tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2087
2088 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2089 tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2090
2091 value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2092 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2093 tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2094
2095 value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2096 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2097 tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2098
2099 value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2100 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2101 tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2102
2103 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2104 value &= ~SOR_HDMI_AUDIO_N_RESET;
2105 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2106
2107 tegra_sor_hdmi_enable_audio_infoframe(sor);
2108}
2109
2110static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2111{
2112 u32 value;
2113
2114 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2115 value &= ~INFOFRAME_CTRL_ENABLE;
2116 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2117}
2118
2119static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2120{
2121 tegra_sor_hdmi_disable_audio_infoframe(sor);
2122}
2123
2124static struct tegra_sor_hdmi_settings *
2125tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2126{
2127 unsigned int i;
2128
2129 for (i = 0; i < sor->num_settings; i++)
2130 if (frequency <= sor->settings[i].frequency)
2131 return &sor->settings[i];
2132
2133 return NULL;
2134}
2135
2136static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2137{
2138 u32 value;
2139
2140 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2141 value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2142 value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2143 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2144}
2145
2146static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2147{
2148 drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2149 drm_scdc_set_scrambling(&sor->output.connector, false);
2150
2151 tegra_sor_hdmi_disable_scrambling(sor);
2152}
2153
2154static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2155{
2156 if (sor->scdc_enabled) {
2157 cancel_delayed_work_sync(&sor->scdc);
2158 tegra_sor_hdmi_scdc_disable(sor);
2159 }
2160}
2161
2162static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2163{
2164 u32 value;
2165
2166 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2167 value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2168 value |= SOR_HDMI2_CTRL_SCRAMBLE;
2169 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2170}
2171
2172static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2173{
2174 drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2175 drm_scdc_set_scrambling(&sor->output.connector, true);
2176
2177 tegra_sor_hdmi_enable_scrambling(sor);
2178}
2179
2180static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2181{
2182 struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2183
2184 if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2185 DRM_DEBUG_KMS("SCDC not scrambled\n");
2186 tegra_sor_hdmi_scdc_enable(sor);
2187 }
2188
2189 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2190}
2191
2192static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2193{
2194 struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2195 struct drm_display_mode *mode;
2196
2197 mode = &sor->output.encoder.crtc->state->adjusted_mode;
2198
2199 if (mode->clock >= 340000 && scdc->supported) {
2200 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2201 tegra_sor_hdmi_scdc_enable(sor);
2202 sor->scdc_enabled = true;
2203 }
2204}
2205
2206static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2207{
2208 struct tegra_output *output = encoder_to_output(encoder);
2209 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2210 struct tegra_sor *sor = to_sor(output);
2211 u32 value;
2212 int err;
2213
2214 tegra_sor_audio_unprepare(sor);
2215 tegra_sor_hdmi_scdc_stop(sor);
2216
2217 err = tegra_sor_detach(sor);
2218 if (err < 0)
2219 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2220
2221 tegra_sor_writel(sor, 0, SOR_STATE1);
2222 tegra_sor_update(sor);
2223
2224 /* disable display to SOR clock */
2225 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2226
2227 if (!sor->soc->has_nvdisplay)
2228 value &= ~SOR1_TIMING_CYA;
2229
2230 value &= ~SOR_ENABLE(sor->index);
2231
2232 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2233
2234 tegra_dc_commit(dc);
2235
2236 err = tegra_sor_power_down(sor);
2237 if (err < 0)
2238 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2239
2240 err = tegra_io_pad_power_disable(sor->pad);
2241 if (err < 0)
2242 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2243
2244 host1x_client_suspend(&sor->client);
2245}
2246
2247static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2248{
2249 struct tegra_output *output = encoder_to_output(encoder);
2250 unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2251 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2252 struct tegra_sor_hdmi_settings *settings;
2253 struct tegra_sor *sor = to_sor(output);
2254 struct tegra_sor_state *state;
2255 struct drm_display_mode *mode;
2256 unsigned long rate, pclk;
2257 unsigned int div, i;
2258 u32 value;
2259 int err;
2260
2261 state = to_sor_state(output->connector.state);
2262 mode = &encoder->crtc->state->adjusted_mode;
2263 pclk = mode->clock * 1000;
2264
2265 err = host1x_client_resume(&sor->client);
2266 if (err < 0) {
2267 dev_err(sor->dev, "failed to resume: %d\n", err);
2268 return;
2269 }
2270
2271 /* switch to safe parent clock */
2272 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2273 if (err < 0) {
2274 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2275 return;
2276 }
2277
2278 div = clk_get_rate(sor->clk) / 1000000 * 4;
2279
2280 err = tegra_io_pad_power_enable(sor->pad);
2281 if (err < 0)
2282 dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2283
2284 usleep_range(20, 100);
2285
2286 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2287 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2288 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2289
2290 usleep_range(20, 100);
2291
2292 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2293 value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2294 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2295
2296 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2297 value &= ~SOR_PLL0_VCOPD;
2298 value &= ~SOR_PLL0_PWR;
2299 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2300
2301 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2302 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2303 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2304
2305 usleep_range(200, 400);
2306
2307 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2308 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2309 value &= ~SOR_PLL2_PORT_POWERDOWN;
2310 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2311
2312 usleep_range(20, 100);
2313
2314 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2315 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2316 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2317 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2318
2319 while (true) {
2320 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2321 if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2322 break;
2323
2324 usleep_range(250, 1000);
2325 }
2326
2327 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2328 SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2329 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2330
2331 while (true) {
2332 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2333 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2334 break;
2335
2336 usleep_range(250, 1000);
2337 }
2338
2339 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2340 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2341 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2342
2343 if (mode->clock < 340000) {
2344 DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2345 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2346 } else {
2347 DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2348 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2349 }
2350
2351 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2352 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2353
2354 /* SOR pad PLL stabilization time */
2355 usleep_range(250, 1000);
2356
2357 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2358 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2359 value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2360 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2361
2362 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2363 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2364 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2365 value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2366 value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2367 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2368
2369 value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2370 SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2371 tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2372
2373 value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2374 SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2375 tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2376 tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2377
2378 if (!sor->soc->has_nvdisplay) {
2379 /* program the reference clock */
2380 value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2381 tegra_sor_writel(sor, value, SOR_REFCLK);
2382 }
2383
2384 /* XXX not in TRM */
2385 for (value = 0, i = 0; i < 5; i++)
2386 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2387 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2388
2389 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2390 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2391
2392 /*
2393 * Switch the pad clock to the DP clock. Note that we cannot actually
2394 * do this because Tegra186 and later don't support clk_set_parent()
2395 * on the sorX_pad_clkout clocks. We already do the equivalent above
2396 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2397 */
2398#if 0
2399 err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2400 if (err < 0) {
2401 dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2402 err);
2403 return;
2404 }
2405#endif
2406
2407 /* switch the SOR clock to the pad clock */
2408 err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2409 if (err < 0) {
2410 dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2411 err);
2412 return;
2413 }
2414
2415 /* switch the output clock to the parent pixel clock */
2416 err = clk_set_parent(sor->clk, sor->clk_parent);
2417 if (err < 0) {
2418 dev_err(sor->dev, "failed to select output parent clock: %d\n",
2419 err);
2420 return;
2421 }
2422
2423 /* adjust clock rate for HDMI 2.0 modes */
2424 rate = clk_get_rate(sor->clk_parent);
2425
2426 if (mode->clock >= 340000)
2427 rate /= 2;
2428
2429 DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2430
2431 clk_set_rate(sor->clk, rate);
2432
2433 if (!sor->soc->has_nvdisplay) {
2434 value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2435
2436 /* XXX is this the proper check? */
2437 if (mode->clock < 75000)
2438 value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2439
2440 tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2441 }
2442
2443 max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2444
2445 value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2446 SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2447 tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2448
2449 if (!dc->soc->has_nvdisplay) {
2450 /* H_PULSE2 setup */
2451 pulse_start = h_ref_to_sync +
2452 (mode->hsync_end - mode->hsync_start) +
2453 (mode->htotal - mode->hsync_end) - 10;
2454
2455 value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2456 PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2457 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2458
2459 value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2460 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2461
2462 value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2463 value |= H_PULSE2_ENABLE;
2464 tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2465 }
2466
2467 /* infoframe setup */
2468 err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2469 if (err < 0)
2470 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2471
2472 /* XXX HDMI audio support not implemented yet */
2473 tegra_sor_hdmi_disable_audio_infoframe(sor);
2474
2475 /* use single TMDS protocol */
2476 value = tegra_sor_readl(sor, SOR_STATE1);
2477 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2478 value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2479 tegra_sor_writel(sor, value, SOR_STATE1);
2480
2481 /* power up pad calibration */
2482 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2483 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2484 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2485
2486 /* production settings */
2487 settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2488 if (!settings) {
2489 dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2490 mode->clock * 1000);
2491 return;
2492 }
2493
2494 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2495 value &= ~SOR_PLL0_ICHPMP_MASK;
2496 value &= ~SOR_PLL0_FILTER_MASK;
2497 value &= ~SOR_PLL0_VCOCAP_MASK;
2498 value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2499 value |= SOR_PLL0_FILTER(settings->filter);
2500 value |= SOR_PLL0_VCOCAP(settings->vcocap);
2501 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2502
2503 /* XXX not in TRM */
2504 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2505 value &= ~SOR_PLL1_LOADADJ_MASK;
2506 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2507 value |= SOR_PLL1_LOADADJ(settings->loadadj);
2508 value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2509 value |= SOR_PLL1_TMDS_TERM;
2510 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2511
2512 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2513 value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2514 value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2515 value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2516 value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2517 value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2518 value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2519 value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2520 value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2521 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2522
2523 value = settings->drive_current[3] << 24 |
2524 settings->drive_current[2] << 16 |
2525 settings->drive_current[1] << 8 |
2526 settings->drive_current[0] << 0;
2527 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2528
2529 value = settings->preemphasis[3] << 24 |
2530 settings->preemphasis[2] << 16 |
2531 settings->preemphasis[1] << 8 |
2532 settings->preemphasis[0] << 0;
2533 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2534
2535 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2536 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2537 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2538 value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2539 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2540
2541 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2542 value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2543 value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2544 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2545
2546 /* power down pad calibration */
2547 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2548 value |= SOR_DP_PADCTL_PAD_CAL_PD;
2549 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2550
2551 if (!dc->soc->has_nvdisplay) {
2552 /* miscellaneous display controller settings */
2553 value = VSYNC_H_POSITION(1);
2554 tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2555 }
2556
2557 value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2558 value &= ~DITHER_CONTROL_MASK;
2559 value &= ~BASE_COLOR_SIZE_MASK;
2560
2561 switch (state->bpc) {
2562 case 6:
2563 value |= BASE_COLOR_SIZE_666;
2564 break;
2565
2566 case 8:
2567 value |= BASE_COLOR_SIZE_888;
2568 break;
2569
2570 case 10:
2571 value |= BASE_COLOR_SIZE_101010;
2572 break;
2573
2574 case 12:
2575 value |= BASE_COLOR_SIZE_121212;
2576 break;
2577
2578 default:
2579 WARN(1, "%u bits-per-color not supported\n", state->bpc);
2580 value |= BASE_COLOR_SIZE_888;
2581 break;
2582 }
2583
2584 tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2585
2586 /* XXX set display head owner */
2587 value = tegra_sor_readl(sor, SOR_STATE1);
2588 value &= ~SOR_STATE_ASY_OWNER_MASK;
2589 value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2590 tegra_sor_writel(sor, value, SOR_STATE1);
2591
2592 err = tegra_sor_power_up(sor, 250);
2593 if (err < 0)
2594 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2595
2596 /* configure dynamic range of output */
2597 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2598 value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2599 value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2600 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2601
2602 /* configure colorspace */
2603 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2604 value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2605 value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2606 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2607
2608 tegra_sor_mode_set(sor, mode, state);
2609
2610 tegra_sor_update(sor);
2611
2612 /* program preamble timing in SOR (XXX) */
2613 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2614 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2615 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2616
2617 err = tegra_sor_attach(sor);
2618 if (err < 0)
2619 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2620
2621 /* enable display to SOR clock and generate HDMI preamble */
2622 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2623
2624 if (!sor->soc->has_nvdisplay)
2625 value |= SOR1_TIMING_CYA;
2626
2627 value |= SOR_ENABLE(sor->index);
2628
2629 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2630
2631 if (dc->soc->has_nvdisplay) {
2632 value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2633 value &= ~PROTOCOL_MASK;
2634 value |= PROTOCOL_SINGLE_TMDS_A;
2635 tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2636 }
2637
2638 tegra_dc_commit(dc);
2639
2640 err = tegra_sor_wakeup(sor);
2641 if (err < 0)
2642 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2643
2644 tegra_sor_hdmi_scdc_start(sor);
2645 tegra_sor_audio_prepare(sor);
2646}
2647
2648static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2649 .disable = tegra_sor_hdmi_disable,
2650 .enable = tegra_sor_hdmi_enable,
2651 .atomic_check = tegra_sor_encoder_atomic_check,
2652};
2653
2654static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2655{
2656 struct tegra_output *output = encoder_to_output(encoder);
2657 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2658 struct tegra_sor *sor = to_sor(output);
2659 u32 value;
2660 int err;
2661
2662 if (output->panel)
2663 drm_panel_disable(output->panel);
2664
2665 /*
2666 * Do not attempt to power down a DP link if we're not connected since
2667 * the AUX transactions would just be timing out.
2668 */
2669 if (output->connector.status != connector_status_disconnected) {
2670 err = drm_dp_link_power_down(sor->aux, sor->link.revision);
2671 if (err < 0)
2672 dev_err(sor->dev, "failed to power down link: %d\n",
2673 err);
2674 }
2675
2676 err = tegra_sor_detach(sor);
2677 if (err < 0)
2678 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2679
2680 tegra_sor_writel(sor, 0, SOR_STATE1);
2681 tegra_sor_update(sor);
2682
2683 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2684 value &= ~SOR_ENABLE(sor->index);
2685 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2686 tegra_dc_commit(dc);
2687
2688 value = tegra_sor_readl(sor, SOR_STATE1);
2689 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2690 value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2691 value &= ~SOR_STATE_ASY_OWNER_MASK;
2692 tegra_sor_writel(sor, value, SOR_STATE1);
2693 tegra_sor_update(sor);
2694
2695 /* switch to safe parent clock */
2696 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2697 if (err < 0)
2698 dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2699
2700 err = tegra_sor_power_down(sor);
2701 if (err < 0)
2702 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2703
2704 err = tegra_io_pad_power_disable(sor->pad);
2705 if (err < 0)
2706 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2707
2708 err = drm_dp_aux_disable(sor->aux);
2709 if (err < 0)
2710 dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2711
2712 if (output->panel)
2713 drm_panel_unprepare(output->panel);
2714
2715 host1x_client_suspend(&sor->client);
2716}
2717
2718static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2719{
2720 struct tegra_output *output = encoder_to_output(encoder);
2721 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2722 struct tegra_sor *sor = to_sor(output);
2723 struct tegra_sor_config config;
2724 struct tegra_sor_state *state;
2725 struct drm_display_mode *mode;
2726 struct drm_display_info *info;
2727 unsigned int i;
2728 u32 value;
2729 int err;
2730
2731 state = to_sor_state(output->connector.state);
2732 mode = &encoder->crtc->state->adjusted_mode;
2733 info = &output->connector.display_info;
2734
2735 err = host1x_client_resume(&sor->client);
2736 if (err < 0) {
2737 dev_err(sor->dev, "failed to resume: %d\n", err);
2738 return;
2739 }
2740
2741 /* switch to safe parent clock */
2742 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2743 if (err < 0)
2744 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2745
2746 err = tegra_io_pad_power_enable(sor->pad);
2747 if (err < 0)
2748 dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2749
2750 usleep_range(20, 100);
2751
2752 err = drm_dp_aux_enable(sor->aux);
2753 if (err < 0)
2754 dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2755
2756 err = drm_dp_link_probe(sor->aux, &sor->link);
2757 if (err < 0)
2758 dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2759
2760 tegra_sor_filter_rates(sor);
2761
2762 err = drm_dp_link_choose(&sor->link, mode, info);
2763 if (err < 0)
2764 dev_err(sor->dev, "failed to choose link: %d\n", err);
2765
2766 if (output->panel)
2767 drm_panel_prepare(output->panel);
2768
2769 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2770 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2771 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2772
2773 usleep_range(20, 40);
2774
2775 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2776 value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2777 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2778
2779 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2780 value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2781 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2782
2783 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2784 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2785 value |= SOR_PLL2_SEQ_PLLCAPPD;
2786 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2787
2788 usleep_range(200, 400);
2789
2790 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2791 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2792 value &= ~SOR_PLL2_PORT_POWERDOWN;
2793 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2794
2795 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2796 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2797
2798 if (output->panel)
2799 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2800 else
2801 value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2802
2803 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2804
2805 usleep_range(200, 400);
2806
2807 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2808 /* XXX not in TRM */
2809 if (output->panel)
2810 value |= SOR_DP_SPARE_PANEL_INTERNAL;
2811 else
2812 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2813
2814 value |= SOR_DP_SPARE_SEQ_ENABLE;
2815 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2816
2817 /* XXX not in TRM */
2818 tegra_sor_writel(sor, 0, SOR_LVDS);
2819
2820 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2821 value &= ~SOR_PLL0_ICHPMP_MASK;
2822 value &= ~SOR_PLL0_VCOCAP_MASK;
2823 value |= SOR_PLL0_ICHPMP(0x1);
2824 value |= SOR_PLL0_VCOCAP(0x3);
2825 value |= SOR_PLL0_RESISTOR_EXT;
2826 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2827
2828 /* XXX not in TRM */
2829 for (value = 0, i = 0; i < 5; i++)
2830 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2831 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2832
2833 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2834 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2835
2836 /*
2837 * Switch the pad clock to the DP clock. Note that we cannot actually
2838 * do this because Tegra186 and later don't support clk_set_parent()
2839 * on the sorX_pad_clkout clocks. We already do the equivalent above
2840 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2841 */
2842#if 0
2843 err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2844 if (err < 0) {
2845 dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2846 err);
2847 return;
2848 }
2849#endif
2850
2851 /* switch the SOR clock to the pad clock */
2852 err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2853 if (err < 0) {
2854 dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2855 err);
2856 return;
2857 }
2858
2859 /* switch the output clock to the parent pixel clock */
2860 err = clk_set_parent(sor->clk, sor->clk_parent);
2861 if (err < 0) {
2862 dev_err(sor->dev, "failed to select output parent clock: %d\n",
2863 err);
2864 return;
2865 }
2866
2867 /* use DP-A protocol */
2868 value = tegra_sor_readl(sor, SOR_STATE1);
2869 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2870 value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2871 tegra_sor_writel(sor, value, SOR_STATE1);
2872
2873 /* enable port */
2874 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2875 value |= SOR_DP_LINKCTL_ENABLE;
2876 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2877
2878 tegra_sor_dp_term_calibrate(sor);
2879
2880 err = drm_dp_link_train(&sor->link);
2881 if (err < 0)
2882 dev_err(sor->dev, "link training failed: %d\n", err);
2883 else
2884 dev_dbg(sor->dev, "link training succeeded\n");
2885
2886 err = drm_dp_link_power_up(sor->aux, sor->link.revision);
2887 if (err < 0)
2888 dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2889
2890 /* compute configuration */
2891 memset(&config, 0, sizeof(config));
2892 config.bits_per_pixel = state->bpc * 3;
2893
2894 err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2895 if (err < 0)
2896 dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2897
2898 tegra_sor_apply_config(sor, &config);
2899 tegra_sor_mode_set(sor, mode, state);
2900
2901 if (output->panel) {
2902 /* CSTM (LVDS, link A/B, upper) */
2903 value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2904 SOR_CSTM_UPPER;
2905 tegra_sor_writel(sor, value, SOR_CSTM);
2906
2907 /* PWM setup */
2908 err = tegra_sor_setup_pwm(sor, 250);
2909 if (err < 0)
2910 dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2911 }
2912
2913 tegra_sor_update(sor);
2914
2915 err = tegra_sor_power_up(sor, 250);
2916 if (err < 0)
2917 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2918
2919 /* attach and wake up */
2920 err = tegra_sor_attach(sor);
2921 if (err < 0)
2922 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2923
2924 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2925 value |= SOR_ENABLE(sor->index);
2926 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2927
2928 tegra_dc_commit(dc);
2929
2930 err = tegra_sor_wakeup(sor);
2931 if (err < 0)
2932 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2933
2934 if (output->panel)
2935 drm_panel_enable(output->panel);
2936}
2937
2938static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2939 .disable = tegra_sor_dp_disable,
2940 .enable = tegra_sor_dp_enable,
2941 .atomic_check = tegra_sor_encoder_atomic_check,
2942};
2943
2944static void tegra_sor_disable_regulator(void *data)
2945{
2946 struct regulator *reg = data;
2947
2948 regulator_disable(reg);
2949}
2950
2951static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2952{
2953 int err;
2954
2955 err = regulator_enable(reg);
2956 if (err)
2957 return err;
2958
2959 return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2960}
2961
2962static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2963{
2964 int err;
2965
2966 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2967 if (IS_ERR(sor->avdd_io_supply))
2968 return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2969 "cannot get AVDD I/O supply\n");
2970
2971 err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2972 if (err < 0) {
2973 dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2974 err);
2975 return err;
2976 }
2977
2978 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2979 if (IS_ERR(sor->vdd_pll_supply))
2980 return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2981 "cannot get VDD PLL supply\n");
2982
2983 err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2984 if (err < 0) {
2985 dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2986 err);
2987 return err;
2988 }
2989
2990 sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2991 if (IS_ERR(sor->hdmi_supply))
2992 return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2993 "cannot get HDMI supply\n");
2994
2995 err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2996 if (err < 0) {
2997 dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2998 return err;
2999 }
3000
3001 INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3002
3003 return 0;
3004}
3005
3006static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3007 .name = "HDMI",
3008 .probe = tegra_sor_hdmi_probe,
3009 .audio_enable = tegra_sor_hdmi_audio_enable,
3010 .audio_disable = tegra_sor_hdmi_audio_disable,
3011};
3012
3013static int tegra_sor_dp_probe(struct tegra_sor *sor)
3014{
3015 int err;
3016
3017 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3018 if (IS_ERR(sor->avdd_io_supply))
3019 return PTR_ERR(sor->avdd_io_supply);
3020
3021 err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3022 if (err < 0)
3023 return err;
3024
3025 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3026 if (IS_ERR(sor->vdd_pll_supply))
3027 return PTR_ERR(sor->vdd_pll_supply);
3028
3029 err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3030 if (err < 0)
3031 return err;
3032
3033 return 0;
3034}
3035
3036static const struct tegra_sor_ops tegra_sor_dp_ops = {
3037 .name = "DP",
3038 .probe = tegra_sor_dp_probe,
3039};
3040
3041static int tegra_sor_init(struct host1x_client *client)
3042{
3043 struct drm_device *drm = dev_get_drvdata(client->host);
3044 const struct drm_encoder_helper_funcs *helpers = NULL;
3045 struct tegra_sor *sor = host1x_client_to_sor(client);
3046 int connector = DRM_MODE_CONNECTOR_Unknown;
3047 int encoder = DRM_MODE_ENCODER_NONE;
3048 int err;
3049
3050 if (!sor->aux) {
3051 if (sor->ops == &tegra_sor_hdmi_ops) {
3052 connector = DRM_MODE_CONNECTOR_HDMIA;
3053 encoder = DRM_MODE_ENCODER_TMDS;
3054 helpers = &tegra_sor_hdmi_helpers;
3055 } else if (sor->soc->supports_lvds) {
3056 connector = DRM_MODE_CONNECTOR_LVDS;
3057 encoder = DRM_MODE_ENCODER_LVDS;
3058 }
3059 } else {
3060 if (sor->output.panel) {
3061 connector = DRM_MODE_CONNECTOR_eDP;
3062 encoder = DRM_MODE_ENCODER_TMDS;
3063 helpers = &tegra_sor_dp_helpers;
3064 } else {
3065 connector = DRM_MODE_CONNECTOR_DisplayPort;
3066 encoder = DRM_MODE_ENCODER_TMDS;
3067 helpers = &tegra_sor_dp_helpers;
3068 }
3069
3070 sor->link.ops = &tegra_sor_dp_link_ops;
3071 sor->link.aux = sor->aux;
3072 }
3073
3074 sor->output.dev = sor->dev;
3075
3076 drm_connector_init_with_ddc(drm, &sor->output.connector,
3077 &tegra_sor_connector_funcs,
3078 connector,
3079 sor->output.ddc);
3080 drm_connector_helper_add(&sor->output.connector,
3081 &tegra_sor_connector_helper_funcs);
3082 sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3083
3084 drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3085 drm_encoder_helper_add(&sor->output.encoder, helpers);
3086
3087 drm_connector_attach_encoder(&sor->output.connector,
3088 &sor->output.encoder);
3089 drm_connector_register(&sor->output.connector);
3090
3091 err = tegra_output_init(drm, &sor->output);
3092 if (err < 0) {
3093 dev_err(client->dev, "failed to initialize output: %d\n", err);
3094 return err;
3095 }
3096
3097 tegra_output_find_possible_crtcs(&sor->output, drm);
3098
3099 if (sor->aux) {
3100 err = drm_dp_aux_attach(sor->aux, &sor->output);
3101 if (err < 0) {
3102 dev_err(sor->dev, "failed to attach DP: %d\n", err);
3103 return err;
3104 }
3105 }
3106
3107 /*
3108 * XXX: Remove this reset once proper hand-over from firmware to
3109 * kernel is possible.
3110 */
3111 if (sor->rst) {
3112 err = pm_runtime_resume_and_get(sor->dev);
3113 if (err < 0) {
3114 dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3115 return err;
3116 }
3117
3118 err = reset_control_acquire(sor->rst);
3119 if (err < 0) {
3120 dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3121 err);
3122 goto rpm_put;
3123 }
3124
3125 err = reset_control_assert(sor->rst);
3126 if (err < 0) {
3127 dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3128 err);
3129 goto rpm_put;
3130 }
3131 }
3132
3133 err = clk_prepare_enable(sor->clk);
3134 if (err < 0) {
3135 dev_err(sor->dev, "failed to enable clock: %d\n", err);
3136 goto rpm_put;
3137 }
3138
3139 usleep_range(1000, 3000);
3140
3141 if (sor->rst) {
3142 err = reset_control_deassert(sor->rst);
3143 if (err < 0) {
3144 dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3145 err);
3146 clk_disable_unprepare(sor->clk);
3147 goto rpm_put;
3148 }
3149
3150 reset_control_release(sor->rst);
3151 pm_runtime_put(sor->dev);
3152 }
3153
3154 err = clk_prepare_enable(sor->clk_safe);
3155 if (err < 0) {
3156 clk_disable_unprepare(sor->clk);
3157 return err;
3158 }
3159
3160 err = clk_prepare_enable(sor->clk_dp);
3161 if (err < 0) {
3162 clk_disable_unprepare(sor->clk_safe);
3163 clk_disable_unprepare(sor->clk);
3164 return err;
3165 }
3166
3167 return 0;
3168
3169rpm_put:
3170 if (sor->rst)
3171 pm_runtime_put(sor->dev);
3172
3173 return err;
3174}
3175
3176static int tegra_sor_exit(struct host1x_client *client)
3177{
3178 struct tegra_sor *sor = host1x_client_to_sor(client);
3179 int err;
3180
3181 tegra_output_exit(&sor->output);
3182
3183 if (sor->aux) {
3184 err = drm_dp_aux_detach(sor->aux);
3185 if (err < 0) {
3186 dev_err(sor->dev, "failed to detach DP: %d\n", err);
3187 return err;
3188 }
3189 }
3190
3191 clk_disable_unprepare(sor->clk_safe);
3192 clk_disable_unprepare(sor->clk_dp);
3193 clk_disable_unprepare(sor->clk);
3194
3195 return 0;
3196}
3197
3198static int tegra_sor_runtime_suspend(struct host1x_client *client)
3199{
3200 struct tegra_sor *sor = host1x_client_to_sor(client);
3201 struct device *dev = client->dev;
3202 int err;
3203
3204 if (sor->rst) {
3205 err = reset_control_assert(sor->rst);
3206 if (err < 0) {
3207 dev_err(dev, "failed to assert reset: %d\n", err);
3208 return err;
3209 }
3210
3211 reset_control_release(sor->rst);
3212 }
3213
3214 usleep_range(1000, 2000);
3215
3216 clk_disable_unprepare(sor->clk);
3217 pm_runtime_put_sync(dev);
3218
3219 return 0;
3220}
3221
3222static int tegra_sor_runtime_resume(struct host1x_client *client)
3223{
3224 struct tegra_sor *sor = host1x_client_to_sor(client);
3225 struct device *dev = client->dev;
3226 int err;
3227
3228 err = pm_runtime_resume_and_get(dev);
3229 if (err < 0) {
3230 dev_err(dev, "failed to get runtime PM: %d\n", err);
3231 return err;
3232 }
3233
3234 err = clk_prepare_enable(sor->clk);
3235 if (err < 0) {
3236 dev_err(dev, "failed to enable clock: %d\n", err);
3237 goto put_rpm;
3238 }
3239
3240 usleep_range(1000, 2000);
3241
3242 if (sor->rst) {
3243 err = reset_control_acquire(sor->rst);
3244 if (err < 0) {
3245 dev_err(dev, "failed to acquire reset: %d\n", err);
3246 goto disable_clk;
3247 }
3248
3249 err = reset_control_deassert(sor->rst);
3250 if (err < 0) {
3251 dev_err(dev, "failed to deassert reset: %d\n", err);
3252 goto release_reset;
3253 }
3254 }
3255
3256 return 0;
3257
3258release_reset:
3259 reset_control_release(sor->rst);
3260disable_clk:
3261 clk_disable_unprepare(sor->clk);
3262put_rpm:
3263 pm_runtime_put_sync(dev);
3264 return err;
3265}
3266
3267static const struct host1x_client_ops sor_client_ops = {
3268 .init = tegra_sor_init,
3269 .exit = tegra_sor_exit,
3270 .suspend = tegra_sor_runtime_suspend,
3271 .resume = tegra_sor_runtime_resume,
3272};
3273
3274static const u8 tegra124_sor_xbar_cfg[5] = {
3275 0, 1, 2, 3, 4
3276};
3277
3278static const struct tegra_sor_regs tegra124_sor_regs = {
3279 .head_state0 = 0x05,
3280 .head_state1 = 0x07,
3281 .head_state2 = 0x09,
3282 .head_state3 = 0x0b,
3283 .head_state4 = 0x0d,
3284 .head_state5 = 0x0f,
3285 .pll0 = 0x17,
3286 .pll1 = 0x18,
3287 .pll2 = 0x19,
3288 .pll3 = 0x1a,
3289 .dp_padctl0 = 0x5c,
3290 .dp_padctl2 = 0x73,
3291};
3292
3293/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3294static const u8 tegra124_sor_lane_map[4] = {
3295 2, 1, 0, 3,
3296};
3297
3298static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3299 {
3300 { 0x13, 0x19, 0x1e, 0x28 },
3301 { 0x1e, 0x25, 0x2d, },
3302 { 0x28, 0x32, },
3303 { 0x3c, },
3304 }, {
3305 { 0x12, 0x17, 0x1b, 0x25 },
3306 { 0x1c, 0x23, 0x2a, },
3307 { 0x25, 0x2f, },
3308 { 0x39, }
3309 }, {
3310 { 0x12, 0x16, 0x1a, 0x22 },
3311 { 0x1b, 0x20, 0x27, },
3312 { 0x24, 0x2d, },
3313 { 0x36, },
3314 }, {
3315 { 0x11, 0x14, 0x17, 0x1f },
3316 { 0x19, 0x1e, 0x24, },
3317 { 0x22, 0x2a, },
3318 { 0x32, },
3319 },
3320};
3321
3322static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3323 {
3324 { 0x00, 0x09, 0x13, 0x25 },
3325 { 0x00, 0x0f, 0x1e, },
3326 { 0x00, 0x14, },
3327 { 0x00, },
3328 }, {
3329 { 0x00, 0x0a, 0x14, 0x28 },
3330 { 0x00, 0x0f, 0x1e, },
3331 { 0x00, 0x14, },
3332 { 0x00 },
3333 }, {
3334 { 0x00, 0x0a, 0x14, 0x28 },
3335 { 0x00, 0x0f, 0x1e, },
3336 { 0x00, 0x14, },
3337 { 0x00, },
3338 }, {
3339 { 0x00, 0x0a, 0x14, 0x28 },
3340 { 0x00, 0x0f, 0x1e, },
3341 { 0x00, 0x14, },
3342 { 0x00, },
3343 },
3344};
3345
3346static const u8 tegra124_sor_post_cursor[4][4][4] = {
3347 {
3348 { 0x00, 0x00, 0x00, 0x00 },
3349 { 0x00, 0x00, 0x00, },
3350 { 0x00, 0x00, },
3351 { 0x00, },
3352 }, {
3353 { 0x02, 0x02, 0x04, 0x05 },
3354 { 0x02, 0x04, 0x05, },
3355 { 0x04, 0x05, },
3356 { 0x05, },
3357 }, {
3358 { 0x04, 0x05, 0x08, 0x0b },
3359 { 0x05, 0x09, 0x0b, },
3360 { 0x08, 0x0a, },
3361 { 0x0b, },
3362 }, {
3363 { 0x05, 0x09, 0x0b, 0x12 },
3364 { 0x09, 0x0d, 0x12, },
3365 { 0x0b, 0x0f, },
3366 { 0x12, },
3367 },
3368};
3369
3370static const u8 tegra124_sor_tx_pu[4][4][4] = {
3371 {
3372 { 0x20, 0x30, 0x40, 0x60 },
3373 { 0x30, 0x40, 0x60, },
3374 { 0x40, 0x60, },
3375 { 0x60, },
3376 }, {
3377 { 0x20, 0x20, 0x30, 0x50 },
3378 { 0x30, 0x40, 0x50, },
3379 { 0x40, 0x50, },
3380 { 0x60, },
3381 }, {
3382 { 0x20, 0x20, 0x30, 0x40, },
3383 { 0x30, 0x30, 0x40, },
3384 { 0x40, 0x50, },
3385 { 0x60, },
3386 }, {
3387 { 0x20, 0x20, 0x20, 0x40, },
3388 { 0x30, 0x30, 0x40, },
3389 { 0x40, 0x40, },
3390 { 0x60, },
3391 },
3392};
3393
3394static const struct tegra_sor_soc tegra124_sor = {
3395 .supports_lvds = true,
3396 .supports_hdmi = false,
3397 .supports_dp = true,
3398 .supports_audio = false,
3399 .supports_hdcp = false,
3400 .regs = &tegra124_sor_regs,
3401 .has_nvdisplay = false,
3402 .xbar_cfg = tegra124_sor_xbar_cfg,
3403 .lane_map = tegra124_sor_lane_map,
3404 .voltage_swing = tegra124_sor_voltage_swing,
3405 .pre_emphasis = tegra124_sor_pre_emphasis,
3406 .post_cursor = tegra124_sor_post_cursor,
3407 .tx_pu = tegra124_sor_tx_pu,
3408};
3409
3410static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3411 {
3412 { 0x00, 0x08, 0x12, 0x24 },
3413 { 0x01, 0x0e, 0x1d, },
3414 { 0x01, 0x13, },
3415 { 0x00, },
3416 }, {
3417 { 0x00, 0x08, 0x12, 0x24 },
3418 { 0x00, 0x0e, 0x1d, },
3419 { 0x00, 0x13, },
3420 { 0x00 },
3421 }, {
3422 { 0x00, 0x08, 0x12, 0x24 },
3423 { 0x00, 0x0e, 0x1d, },
3424 { 0x00, 0x13, },
3425 { 0x00, },
3426 }, {
3427 { 0x00, 0x08, 0x12, 0x24 },
3428 { 0x00, 0x0e, 0x1d, },
3429 { 0x00, 0x13, },
3430 { 0x00, },
3431 },
3432};
3433
3434static const struct tegra_sor_soc tegra132_sor = {
3435 .supports_lvds = true,
3436 .supports_hdmi = false,
3437 .supports_dp = true,
3438 .supports_audio = false,
3439 .supports_hdcp = false,
3440 .regs = &tegra124_sor_regs,
3441 .has_nvdisplay = false,
3442 .xbar_cfg = tegra124_sor_xbar_cfg,
3443 .lane_map = tegra124_sor_lane_map,
3444 .voltage_swing = tegra124_sor_voltage_swing,
3445 .pre_emphasis = tegra132_sor_pre_emphasis,
3446 .post_cursor = tegra124_sor_post_cursor,
3447 .tx_pu = tegra124_sor_tx_pu,
3448};
3449
3450static const struct tegra_sor_regs tegra210_sor_regs = {
3451 .head_state0 = 0x05,
3452 .head_state1 = 0x07,
3453 .head_state2 = 0x09,
3454 .head_state3 = 0x0b,
3455 .head_state4 = 0x0d,
3456 .head_state5 = 0x0f,
3457 .pll0 = 0x17,
3458 .pll1 = 0x18,
3459 .pll2 = 0x19,
3460 .pll3 = 0x1a,
3461 .dp_padctl0 = 0x5c,
3462 .dp_padctl2 = 0x73,
3463};
3464
3465static const u8 tegra210_sor_xbar_cfg[5] = {
3466 2, 1, 0, 3, 4
3467};
3468
3469static const u8 tegra210_sor_lane_map[4] = {
3470 0, 1, 2, 3,
3471};
3472
3473static const struct tegra_sor_soc tegra210_sor = {
3474 .supports_lvds = false,
3475 .supports_hdmi = false,
3476 .supports_dp = true,
3477 .supports_audio = false,
3478 .supports_hdcp = false,
3479
3480 .regs = &tegra210_sor_regs,
3481 .has_nvdisplay = false,
3482
3483 .xbar_cfg = tegra210_sor_xbar_cfg,
3484 .lane_map = tegra210_sor_lane_map,
3485 .voltage_swing = tegra124_sor_voltage_swing,
3486 .pre_emphasis = tegra124_sor_pre_emphasis,
3487 .post_cursor = tegra124_sor_post_cursor,
3488 .tx_pu = tegra124_sor_tx_pu,
3489};
3490
3491static const struct tegra_sor_soc tegra210_sor1 = {
3492 .supports_lvds = false,
3493 .supports_hdmi = true,
3494 .supports_dp = true,
3495 .supports_audio = true,
3496 .supports_hdcp = true,
3497
3498 .regs = &tegra210_sor_regs,
3499 .has_nvdisplay = false,
3500
3501 .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3502 .settings = tegra210_sor_hdmi_defaults,
3503 .xbar_cfg = tegra210_sor_xbar_cfg,
3504 .lane_map = tegra210_sor_lane_map,
3505 .voltage_swing = tegra124_sor_voltage_swing,
3506 .pre_emphasis = tegra124_sor_pre_emphasis,
3507 .post_cursor = tegra124_sor_post_cursor,
3508 .tx_pu = tegra124_sor_tx_pu,
3509};
3510
3511static const struct tegra_sor_regs tegra186_sor_regs = {
3512 .head_state0 = 0x151,
3513 .head_state1 = 0x154,
3514 .head_state2 = 0x157,
3515 .head_state3 = 0x15a,
3516 .head_state4 = 0x15d,
3517 .head_state5 = 0x160,
3518 .pll0 = 0x163,
3519 .pll1 = 0x164,
3520 .pll2 = 0x165,
3521 .pll3 = 0x166,
3522 .dp_padctl0 = 0x168,
3523 .dp_padctl2 = 0x16a,
3524};
3525
3526static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3527 {
3528 { 0x13, 0x19, 0x1e, 0x28 },
3529 { 0x1e, 0x25, 0x2d, },
3530 { 0x28, 0x32, },
3531 { 0x39, },
3532 }, {
3533 { 0x12, 0x16, 0x1b, 0x25 },
3534 { 0x1c, 0x23, 0x2a, },
3535 { 0x25, 0x2f, },
3536 { 0x37, }
3537 }, {
3538 { 0x12, 0x16, 0x1a, 0x22 },
3539 { 0x1b, 0x20, 0x27, },
3540 { 0x24, 0x2d, },
3541 { 0x35, },
3542 }, {
3543 { 0x11, 0x14, 0x17, 0x1f },
3544 { 0x19, 0x1e, 0x24, },
3545 { 0x22, 0x2a, },
3546 { 0x32, },
3547 },
3548};
3549
3550static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3551 {
3552 { 0x00, 0x08, 0x12, 0x24 },
3553 { 0x01, 0x0e, 0x1d, },
3554 { 0x01, 0x13, },
3555 { 0x00, },
3556 }, {
3557 { 0x00, 0x08, 0x12, 0x24 },
3558 { 0x00, 0x0e, 0x1d, },
3559 { 0x00, 0x13, },
3560 { 0x00 },
3561 }, {
3562 { 0x00, 0x08, 0x14, 0x24 },
3563 { 0x00, 0x0e, 0x1d, },
3564 { 0x00, 0x13, },
3565 { 0x00, },
3566 }, {
3567 { 0x00, 0x08, 0x12, 0x24 },
3568 { 0x00, 0x0e, 0x1d, },
3569 { 0x00, 0x13, },
3570 { 0x00, },
3571 },
3572};
3573
3574static const struct tegra_sor_soc tegra186_sor = {
3575 .supports_lvds = false,
3576 .supports_hdmi = true,
3577 .supports_dp = true,
3578 .supports_audio = true,
3579 .supports_hdcp = true,
3580
3581 .regs = &tegra186_sor_regs,
3582 .has_nvdisplay = true,
3583
3584 .num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3585 .settings = tegra186_sor_hdmi_defaults,
3586 .xbar_cfg = tegra124_sor_xbar_cfg,
3587 .lane_map = tegra124_sor_lane_map,
3588 .voltage_swing = tegra186_sor_voltage_swing,
3589 .pre_emphasis = tegra186_sor_pre_emphasis,
3590 .post_cursor = tegra124_sor_post_cursor,
3591 .tx_pu = tegra124_sor_tx_pu,
3592};
3593
3594static const struct tegra_sor_regs tegra194_sor_regs = {
3595 .head_state0 = 0x151,
3596 .head_state1 = 0x155,
3597 .head_state2 = 0x159,
3598 .head_state3 = 0x15d,
3599 .head_state4 = 0x161,
3600 .head_state5 = 0x165,
3601 .pll0 = 0x169,
3602 .pll1 = 0x16a,
3603 .pll2 = 0x16b,
3604 .pll3 = 0x16c,
3605 .dp_padctl0 = 0x16e,
3606 .dp_padctl2 = 0x16f,
3607};
3608
3609static const struct tegra_sor_soc tegra194_sor = {
3610 .supports_lvds = false,
3611 .supports_hdmi = true,
3612 .supports_dp = true,
3613 .supports_audio = true,
3614 .supports_hdcp = true,
3615
3616 .regs = &tegra194_sor_regs,
3617 .has_nvdisplay = true,
3618
3619 .num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3620 .settings = tegra194_sor_hdmi_defaults,
3621
3622 .xbar_cfg = tegra210_sor_xbar_cfg,
3623 .lane_map = tegra124_sor_lane_map,
3624 .voltage_swing = tegra186_sor_voltage_swing,
3625 .pre_emphasis = tegra186_sor_pre_emphasis,
3626 .post_cursor = tegra124_sor_post_cursor,
3627 .tx_pu = tegra124_sor_tx_pu,
3628};
3629
3630static const struct of_device_id tegra_sor_of_match[] = {
3631 { .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3632 { .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3633 { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3634 { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3635 { .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3636 { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3637 { },
3638};
3639MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3640
3641static int tegra_sor_parse_dt(struct tegra_sor *sor)
3642{
3643 struct device_node *np = sor->dev->of_node;
3644 u32 xbar_cfg[5];
3645 unsigned int i;
3646 u32 value;
3647 int err;
3648
3649 if (sor->soc->has_nvdisplay) {
3650 err = of_property_read_u32(np, "nvidia,interface", &value);
3651 if (err < 0)
3652 return err;
3653
3654 sor->index = value;
3655
3656 /*
3657 * override the default that we already set for Tegra210 and
3658 * earlier
3659 */
3660 sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3661 } else {
3662 if (!sor->soc->supports_audio)
3663 sor->index = 0;
3664 else
3665 sor->index = 1;
3666 }
3667
3668 err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3669 if (err < 0) {
3670 /* fall back to default per-SoC XBAR configuration */
3671 for (i = 0; i < 5; i++)
3672 sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3673 } else {
3674 /* copy cells to SOR XBAR configuration */
3675 for (i = 0; i < 5; i++)
3676 sor->xbar_cfg[i] = xbar_cfg[i];
3677 }
3678
3679 return 0;
3680}
3681
3682static irqreturn_t tegra_sor_irq(int irq, void *data)
3683{
3684 struct tegra_sor *sor = data;
3685 u32 value;
3686
3687 value = tegra_sor_readl(sor, SOR_INT_STATUS);
3688 tegra_sor_writel(sor, value, SOR_INT_STATUS);
3689
3690 if (value & SOR_INT_CODEC_SCRATCH0) {
3691 value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3692
3693 if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3694 unsigned int format;
3695
3696 format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3697
3698 tegra_hda_parse_format(format, &sor->format);
3699
3700 if (sor->ops->audio_enable)
3701 sor->ops->audio_enable(sor);
3702 } else {
3703 if (sor->ops->audio_disable)
3704 sor->ops->audio_disable(sor);
3705 }
3706 }
3707
3708 return IRQ_HANDLED;
3709}
3710
3711static int tegra_sor_probe(struct platform_device *pdev)
3712{
3713 struct device_node *np;
3714 struct tegra_sor *sor;
3715 int err;
3716
3717 sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3718 if (!sor)
3719 return -ENOMEM;
3720
3721 sor->soc = of_device_get_match_data(&pdev->dev);
3722 sor->output.dev = sor->dev = &pdev->dev;
3723
3724 sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3725 sor->soc->num_settings *
3726 sizeof(*sor->settings),
3727 GFP_KERNEL);
3728 if (!sor->settings)
3729 return -ENOMEM;
3730
3731 sor->num_settings = sor->soc->num_settings;
3732
3733 np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3734 if (np) {
3735 sor->aux = drm_dp_aux_find_by_of_node(np);
3736 of_node_put(np);
3737
3738 if (!sor->aux)
3739 return -EPROBE_DEFER;
3740
3741 if (get_device(sor->aux->dev))
3742 sor->output.ddc = &sor->aux->ddc;
3743 }
3744
3745 if (!sor->aux) {
3746 if (sor->soc->supports_hdmi) {
3747 sor->ops = &tegra_sor_hdmi_ops;
3748 sor->pad = TEGRA_IO_PAD_HDMI;
3749 } else if (sor->soc->supports_lvds) {
3750 dev_err(&pdev->dev, "LVDS not supported yet\n");
3751 return -ENODEV;
3752 } else {
3753 dev_err(&pdev->dev, "unknown (non-DP) support\n");
3754 return -ENODEV;
3755 }
3756 } else {
3757 np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3758 /*
3759 * No need to keep this around since we only use it as a check
3760 * to see if a panel is connected (eDP) or not (DP).
3761 */
3762 of_node_put(np);
3763
3764 sor->ops = &tegra_sor_dp_ops;
3765 sor->pad = TEGRA_IO_PAD_LVDS;
3766 }
3767
3768 err = tegra_sor_parse_dt(sor);
3769 if (err < 0)
3770 goto put_aux;
3771
3772 err = tegra_output_probe(&sor->output);
3773 if (err < 0) {
3774 dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3775 goto put_aux;
3776 }
3777
3778 if (sor->ops && sor->ops->probe) {
3779 err = sor->ops->probe(sor);
3780 if (err < 0) {
3781 dev_err(&pdev->dev, "failed to probe %s: %d\n",
3782 sor->ops->name, err);
3783 goto remove;
3784 }
3785 }
3786
3787 sor->regs = devm_platform_ioremap_resource(pdev, 0);
3788 if (IS_ERR(sor->regs)) {
3789 err = PTR_ERR(sor->regs);
3790 goto remove;
3791 }
3792
3793 err = platform_get_irq(pdev, 0);
3794 if (err < 0)
3795 goto remove;
3796
3797 sor->irq = err;
3798
3799 err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3800 dev_name(sor->dev), sor);
3801 if (err < 0) {
3802 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3803 goto remove;
3804 }
3805
3806 sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3807 if (IS_ERR(sor->rst)) {
3808 err = PTR_ERR(sor->rst);
3809
3810 if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3811 dev_err(&pdev->dev, "failed to get reset control: %d\n",
3812 err);
3813 goto remove;
3814 }
3815
3816 /*
3817 * At this point, the reset control is most likely being used
3818 * by the generic power domain implementation. With any luck
3819 * the power domain will have taken care of resetting the SOR
3820 * and we don't have to do anything.
3821 */
3822 sor->rst = NULL;
3823 }
3824
3825 sor->clk = devm_clk_get(&pdev->dev, NULL);
3826 if (IS_ERR(sor->clk)) {
3827 err = PTR_ERR(sor->clk);
3828 dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3829 goto remove;
3830 }
3831
3832 if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3833 struct device_node *np = pdev->dev.of_node;
3834 const char *name;
3835
3836 /*
3837 * For backwards compatibility with Tegra210 device trees,
3838 * fall back to the old clock name "source" if the new "out"
3839 * clock is not available.
3840 */
3841 if (of_property_match_string(np, "clock-names", "out") < 0)
3842 name = "source";
3843 else
3844 name = "out";
3845
3846 sor->clk_out = devm_clk_get(&pdev->dev, name);
3847 if (IS_ERR(sor->clk_out)) {
3848 err = PTR_ERR(sor->clk_out);
3849 dev_err(sor->dev, "failed to get %s clock: %d\n",
3850 name, err);
3851 goto remove;
3852 }
3853 } else {
3854 /* fall back to the module clock on SOR0 (eDP/LVDS only) */
3855 sor->clk_out = sor->clk;
3856 }
3857
3858 sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3859 if (IS_ERR(sor->clk_parent)) {
3860 err = PTR_ERR(sor->clk_parent);
3861 dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3862 goto remove;
3863 }
3864
3865 sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3866 if (IS_ERR(sor->clk_safe)) {
3867 err = PTR_ERR(sor->clk_safe);
3868 dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3869 goto remove;
3870 }
3871
3872 sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3873 if (IS_ERR(sor->clk_dp)) {
3874 err = PTR_ERR(sor->clk_dp);
3875 dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3876 goto remove;
3877 }
3878
3879 /*
3880 * Starting with Tegra186, the BPMP provides an implementation for
3881 * the pad output clock, so we have to look it up from device tree.
3882 */
3883 sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3884 if (IS_ERR(sor->clk_pad)) {
3885 if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3886 err = PTR_ERR(sor->clk_pad);
3887 goto remove;
3888 }
3889
3890 /*
3891 * If the pad output clock is not available, then we assume
3892 * we're on Tegra210 or earlier and have to provide our own
3893 * implementation.
3894 */
3895 sor->clk_pad = NULL;
3896 }
3897
3898 /*
3899 * The bootloader may have set up the SOR such that it's module clock
3900 * is sourced by one of the display PLLs. However, that doesn't work
3901 * without properly having set up other bits of the SOR.
3902 */
3903 err = clk_set_parent(sor->clk_out, sor->clk_safe);
3904 if (err < 0) {
3905 dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3906 goto remove;
3907 }
3908
3909 platform_set_drvdata(pdev, sor);
3910 pm_runtime_enable(&pdev->dev);
3911
3912 host1x_client_init(&sor->client);
3913 sor->client.ops = &sor_client_ops;
3914 sor->client.dev = &pdev->dev;
3915
3916 /*
3917 * On Tegra210 and earlier, provide our own implementation for the
3918 * pad output clock.
3919 */
3920 if (!sor->clk_pad) {
3921 char *name;
3922
3923 name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3924 sor->index);
3925 if (!name) {
3926 err = -ENOMEM;
3927 goto uninit;
3928 }
3929
3930 err = host1x_client_resume(&sor->client);
3931 if (err < 0) {
3932 dev_err(sor->dev, "failed to resume: %d\n", err);
3933 goto uninit;
3934 }
3935
3936 sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3937 host1x_client_suspend(&sor->client);
3938 }
3939
3940 if (IS_ERR(sor->clk_pad)) {
3941 err = PTR_ERR(sor->clk_pad);
3942 dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3943 err);
3944 goto uninit;
3945 }
3946
3947 err = __host1x_client_register(&sor->client);
3948 if (err < 0) {
3949 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3950 err);
3951 goto uninit;
3952 }
3953
3954 return 0;
3955
3956uninit:
3957 host1x_client_exit(&sor->client);
3958 pm_runtime_disable(&pdev->dev);
3959remove:
3960 if (sor->aux)
3961 sor->output.ddc = NULL;
3962
3963 tegra_output_remove(&sor->output);
3964put_aux:
3965 if (sor->aux)
3966 put_device(sor->aux->dev);
3967
3968 return err;
3969}
3970
3971static void tegra_sor_remove(struct platform_device *pdev)
3972{
3973 struct tegra_sor *sor = platform_get_drvdata(pdev);
3974
3975 host1x_client_unregister(&sor->client);
3976
3977 pm_runtime_disable(&pdev->dev);
3978
3979 if (sor->aux) {
3980 put_device(sor->aux->dev);
3981 sor->output.ddc = NULL;
3982 }
3983
3984 tegra_output_remove(&sor->output);
3985}
3986
3987static int __maybe_unused tegra_sor_suspend(struct device *dev)
3988{
3989 struct tegra_sor *sor = dev_get_drvdata(dev);
3990 int err;
3991
3992 err = tegra_output_suspend(&sor->output);
3993 if (err < 0) {
3994 dev_err(dev, "failed to suspend output: %d\n", err);
3995 return err;
3996 }
3997
3998 if (sor->hdmi_supply) {
3999 err = regulator_disable(sor->hdmi_supply);
4000 if (err < 0) {
4001 tegra_output_resume(&sor->output);
4002 return err;
4003 }
4004 }
4005
4006 return 0;
4007}
4008
4009static int __maybe_unused tegra_sor_resume(struct device *dev)
4010{
4011 struct tegra_sor *sor = dev_get_drvdata(dev);
4012 int err;
4013
4014 if (sor->hdmi_supply) {
4015 err = regulator_enable(sor->hdmi_supply);
4016 if (err < 0)
4017 return err;
4018 }
4019
4020 err = tegra_output_resume(&sor->output);
4021 if (err < 0) {
4022 dev_err(dev, "failed to resume output: %d\n", err);
4023
4024 if (sor->hdmi_supply)
4025 regulator_disable(sor->hdmi_supply);
4026
4027 return err;
4028 }
4029
4030 return 0;
4031}
4032
4033static const struct dev_pm_ops tegra_sor_pm_ops = {
4034 SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4035};
4036
4037struct platform_driver tegra_sor_driver = {
4038 .driver = {
4039 .name = "tegra-sor",
4040 .of_match_table = tegra_sor_of_match,
4041 .pm = &tegra_sor_pm_ops,
4042 },
4043 .probe = tegra_sor_probe,
4044 .remove = tegra_sor_remove,
4045};