Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38#include "amdgpu_reset.h"
39
40struct mm_struct;
41
42#include "kfd_priv.h"
43#include "kfd_device_queue_manager.h"
44#include "kfd_svm.h"
45#include "kfd_smi_events.h"
46#include "kfd_debug.h"
47
48/*
49 * List of struct kfd_process (field kfd_process).
50 * Unique/indexed by mm_struct*
51 */
52DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53DEFINE_MUTEX(kfd_processes_mutex);
54
55DEFINE_SRCU(kfd_processes_srcu);
56
57/* For process termination handling */
58static struct workqueue_struct *kfd_process_wq;
59
60/* Ordered, single-threaded workqueue for restoring evicted
61 * processes. Restoring multiple processes concurrently under memory
62 * pressure can lead to processes blocking each other from validating
63 * their BOs and result in a live-lock situation where processes
64 * remain evicted indefinitely.
65 */
66static struct workqueue_struct *kfd_restore_wq;
67
68static struct kfd_process *find_process(const struct task_struct *thread,
69 bool ref);
70static void kfd_process_ref_release(struct kref *ref);
71static struct kfd_process *create_process(const struct task_struct *thread);
72
73static void evict_process_worker(struct work_struct *work);
74static void restore_process_worker(struct work_struct *work);
75
76static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77
78struct kfd_procfs_tree {
79 struct kobject *kobj;
80};
81
82static struct kfd_procfs_tree procfs;
83
84/*
85 * Structure for SDMA activity tracking
86 */
87struct kfd_sdma_activity_handler_workarea {
88 struct work_struct sdma_activity_work;
89 struct kfd_process_device *pdd;
90 uint64_t sdma_activity_counter;
91};
92
93struct temp_sdma_queue_list {
94 uint64_t __user *rptr;
95 uint64_t sdma_val;
96 unsigned int queue_id;
97 struct list_head list;
98};
99
100static void kfd_sdma_activity_worker(struct work_struct *work)
101{
102 struct kfd_sdma_activity_handler_workarea *workarea;
103 struct kfd_process_device *pdd;
104 uint64_t val;
105 struct mm_struct *mm;
106 struct queue *q;
107 struct qcm_process_device *qpd;
108 struct device_queue_manager *dqm;
109 int ret = 0;
110 struct temp_sdma_queue_list sdma_q_list;
111 struct temp_sdma_queue_list *sdma_q, *next;
112
113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 sdma_activity_work);
115
116 pdd = workarea->pdd;
117 if (!pdd)
118 return;
119 dqm = pdd->dev->dqm;
120 qpd = &pdd->qpd;
121 if (!dqm || !qpd)
122 return;
123 /*
124 * Total SDMA activity is current SDMA activity + past SDMA activity
125 * Past SDMA count is stored in pdd.
126 * To get the current activity counters for all active SDMA queues,
127 * we loop over all SDMA queues and get their counts from user-space.
128 *
129 * We cannot call get_user() with dqm_lock held as it can cause
130 * a circular lock dependency situation. To read the SDMA stats,
131 * we need to do the following:
132 *
133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 * with dqm_lock/dqm_unlock().
135 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 * Save the SDMA count for each node and also add the count to the total
137 * SDMA count counter.
138 * Its possible, during this step, a few SDMA queue nodes got deleted
139 * from the qpd->queues_list.
140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 * If any node got deleted, its SDMA count would be captured in the sdma
142 * past activity counter. So subtract the SDMA counter stored in step 2
143 * for this node from the total SDMA count.
144 */
145 INIT_LIST_HEAD(&sdma_q_list.list);
146
147 /*
148 * Create the temp list of all SDMA queues
149 */
150 dqm_lock(dqm);
151
152 list_for_each_entry(q, &qpd->queues_list, list) {
153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 continue;
156
157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 if (!sdma_q) {
159 dqm_unlock(dqm);
160 goto cleanup;
161 }
162
163 INIT_LIST_HEAD(&sdma_q->list);
164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 sdma_q->queue_id = q->properties.queue_id;
166 list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 }
168
169 /*
170 * If the temp list is empty, then no SDMA queues nodes were found in
171 * qpd->queues_list. Return the past activity count as the total sdma
172 * count
173 */
174 if (list_empty(&sdma_q_list.list)) {
175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 dqm_unlock(dqm);
177 return;
178 }
179
180 dqm_unlock(dqm);
181
182 /*
183 * Get the usage count for each SDMA queue in temp_list.
184 */
185 mm = get_task_mm(pdd->process->lead_thread);
186 if (!mm)
187 goto cleanup;
188
189 kthread_use_mm(mm);
190
191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 val = 0;
193 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 if (ret) {
195 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 sdma_q->queue_id);
197 } else {
198 sdma_q->sdma_val = val;
199 workarea->sdma_activity_counter += val;
200 }
201 }
202
203 kthread_unuse_mm(mm);
204 mmput(mm);
205
206 /*
207 * Do a second iteration over qpd_queues_list to check if any SDMA
208 * nodes got deleted while fetching SDMA counter.
209 */
210 dqm_lock(dqm);
211
212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213
214 list_for_each_entry(q, &qpd->queues_list, list) {
215 if (list_empty(&sdma_q_list.list))
216 break;
217
218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 continue;
221
222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 (sdma_q->queue_id == q->properties.queue_id)) {
225 list_del(&sdma_q->list);
226 kfree(sdma_q);
227 break;
228 }
229 }
230 }
231
232 dqm_unlock(dqm);
233
234 /*
235 * If temp list is not empty, it implies some queues got deleted
236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 * count for each node from the total SDMA count.
238 */
239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 list_del(&sdma_q->list);
242 kfree(sdma_q);
243 }
244
245 return;
246
247cleanup:
248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 list_del(&sdma_q->list);
250 kfree(sdma_q);
251 }
252}
253
254/**
255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256 * by current process. Translates acquired wave count into number of compute units
257 * that are occupied.
258 *
259 * @attr: Handle of attribute that allows reporting of wave count. The attribute
260 * handle encapsulates GPU device it is associated with, thereby allowing collection
261 * of waves in flight, etc
262 * @buffer: Handle of user provided buffer updated with wave count
263 *
264 * Return: Number of bytes written to user buffer or an error value
265 */
266static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267{
268 int cu_cnt;
269 int wave_cnt;
270 int max_waves_per_cu;
271 struct kfd_node *dev = NULL;
272 struct kfd_process *proc = NULL;
273 struct kfd_process_device *pdd = NULL;
274 int i;
275 struct kfd_cu_occupancy *cu_occupancy;
276 u32 queue_format;
277
278 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
279 dev = pdd->dev;
280 if (dev->kfd2kgd->get_cu_occupancy == NULL)
281 return -EINVAL;
282
283 cu_cnt = 0;
284 proc = pdd->process;
285 if (pdd->qpd.queue_count == 0) {
286 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
287 dev->id, (int)proc->lead_thread->pid);
288 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
289 }
290
291 /* Collect wave count from device if it supports */
292 wave_cnt = 0;
293 max_waves_per_cu = 0;
294
295 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
296 if (!cu_occupancy)
297 return -ENOMEM;
298
299 /*
300 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 * by number of XCCs in the partition to get the total wave counts across all
303 * XCCs in the partition.
304 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 */
306 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 &max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308
309 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 if (cu_occupancy[i].wave_cnt != 0 &&
311 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 cu_occupancy[i].doorbell_off,
313 &queue_format)) {
314 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 wave_cnt += cu_occupancy[i].wave_cnt;
316 else
317 wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 cu_occupancy[i].wave_cnt);
319 }
320 }
321
322 /* Translate wave count to number of compute units */
323 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 kfree(cu_occupancy);
325 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326}
327
328static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 char *buffer)
330{
331 if (strcmp(attr->name, "pasid") == 0)
332 return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
333 else if (strncmp(attr->name, "vram_", 5) == 0) {
334 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
335 attr_vram);
336 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
337 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
338 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
339 attr_sdma);
340 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
341
342 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
343 kfd_sdma_activity_worker);
344
345 sdma_activity_work_handler.pdd = pdd;
346 sdma_activity_work_handler.sdma_activity_counter = 0;
347
348 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
349
350 flush_work(&sdma_activity_work_handler.sdma_activity_work);
351 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
352
353 return snprintf(buffer, PAGE_SIZE, "%llu\n",
354 (sdma_activity_work_handler.sdma_activity_counter)/
355 SDMA_ACTIVITY_DIVISOR);
356 } else {
357 pr_err("Invalid attribute");
358 return -EINVAL;
359 }
360
361 return 0;
362}
363
364static void kfd_procfs_kobj_release(struct kobject *kobj)
365{
366 kfree(kobj);
367}
368
369static const struct sysfs_ops kfd_procfs_ops = {
370 .show = kfd_procfs_show,
371};
372
373static const struct kobj_type procfs_type = {
374 .release = kfd_procfs_kobj_release,
375 .sysfs_ops = &kfd_procfs_ops,
376};
377
378void kfd_procfs_init(void)
379{
380 int ret = 0;
381
382 procfs.kobj = kfd_alloc_struct(procfs.kobj);
383 if (!procfs.kobj)
384 return;
385
386 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
387 &kfd_device->kobj, "proc");
388 if (ret) {
389 pr_warn("Could not create procfs proc folder");
390 /* If we fail to create the procfs, clean up */
391 kfd_procfs_shutdown();
392 }
393}
394
395void kfd_procfs_shutdown(void)
396{
397 if (procfs.kobj) {
398 kobject_del(procfs.kobj);
399 kobject_put(procfs.kobj);
400 procfs.kobj = NULL;
401 }
402}
403
404static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
405 struct attribute *attr, char *buffer)
406{
407 struct queue *q = container_of(kobj, struct queue, kobj);
408
409 if (!strcmp(attr->name, "size"))
410 return snprintf(buffer, PAGE_SIZE, "%llu",
411 q->properties.queue_size);
412 else if (!strcmp(attr->name, "type"))
413 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
414 else if (!strcmp(attr->name, "gpuid"))
415 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
416 else
417 pr_err("Invalid attribute");
418
419 return 0;
420}
421
422static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
423 struct attribute *attr, char *buffer)
424{
425 if (strcmp(attr->name, "evicted_ms") == 0) {
426 struct kfd_process_device *pdd = container_of(attr,
427 struct kfd_process_device,
428 attr_evict);
429 uint64_t evict_jiffies;
430
431 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
432
433 return snprintf(buffer,
434 PAGE_SIZE,
435 "%llu\n",
436 jiffies64_to_msecs(evict_jiffies));
437
438 /* Sysfs handle that gets CU occupancy is per device */
439 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
440 return kfd_get_cu_occupancy(attr, buffer);
441 } else {
442 pr_err("Invalid attribute");
443 }
444
445 return 0;
446}
447
448static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
449 struct attribute *attr, char *buf)
450{
451 struct kfd_process_device *pdd;
452
453 if (!strcmp(attr->name, "faults")) {
454 pdd = container_of(attr, struct kfd_process_device,
455 attr_faults);
456 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
457 }
458 if (!strcmp(attr->name, "page_in")) {
459 pdd = container_of(attr, struct kfd_process_device,
460 attr_page_in);
461 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
462 }
463 if (!strcmp(attr->name, "page_out")) {
464 pdd = container_of(attr, struct kfd_process_device,
465 attr_page_out);
466 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
467 }
468 return 0;
469}
470
471static struct attribute attr_queue_size = {
472 .name = "size",
473 .mode = KFD_SYSFS_FILE_MODE
474};
475
476static struct attribute attr_queue_type = {
477 .name = "type",
478 .mode = KFD_SYSFS_FILE_MODE
479};
480
481static struct attribute attr_queue_gpuid = {
482 .name = "gpuid",
483 .mode = KFD_SYSFS_FILE_MODE
484};
485
486static struct attribute *procfs_queue_attrs[] = {
487 &attr_queue_size,
488 &attr_queue_type,
489 &attr_queue_gpuid,
490 NULL
491};
492ATTRIBUTE_GROUPS(procfs_queue);
493
494static const struct sysfs_ops procfs_queue_ops = {
495 .show = kfd_procfs_queue_show,
496};
497
498static const struct kobj_type procfs_queue_type = {
499 .sysfs_ops = &procfs_queue_ops,
500 .default_groups = procfs_queue_groups,
501};
502
503static const struct sysfs_ops procfs_stats_ops = {
504 .show = kfd_procfs_stats_show,
505};
506
507static const struct kobj_type procfs_stats_type = {
508 .sysfs_ops = &procfs_stats_ops,
509 .release = kfd_procfs_kobj_release,
510};
511
512static const struct sysfs_ops sysfs_counters_ops = {
513 .show = kfd_sysfs_counters_show,
514};
515
516static const struct kobj_type sysfs_counters_type = {
517 .sysfs_ops = &sysfs_counters_ops,
518 .release = kfd_procfs_kobj_release,
519};
520
521int kfd_procfs_add_queue(struct queue *q)
522{
523 struct kfd_process *proc;
524 int ret;
525
526 if (!q || !q->process)
527 return -EINVAL;
528 proc = q->process;
529
530 /* Create proc/<pid>/queues/<queue id> folder */
531 if (!proc->kobj_queues)
532 return -EFAULT;
533 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
534 proc->kobj_queues, "%u", q->properties.queue_id);
535 if (ret < 0) {
536 pr_warn("Creating proc/<pid>/queues/%u failed",
537 q->properties.queue_id);
538 kobject_put(&q->kobj);
539 return ret;
540 }
541
542 return 0;
543}
544
545static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
546 char *name)
547{
548 int ret;
549
550 if (!kobj || !attr || !name)
551 return;
552
553 attr->name = name;
554 attr->mode = KFD_SYSFS_FILE_MODE;
555 sysfs_attr_init(attr);
556
557 ret = sysfs_create_file(kobj, attr);
558 if (ret)
559 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
560}
561
562static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
563{
564 int ret;
565 int i;
566 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
567
568 if (!p || !p->kobj)
569 return;
570
571 /*
572 * Create sysfs files for each GPU:
573 * - proc/<pid>/stats_<gpuid>/
574 * - proc/<pid>/stats_<gpuid>/evicted_ms
575 * - proc/<pid>/stats_<gpuid>/cu_occupancy
576 */
577 for (i = 0; i < p->n_pdds; i++) {
578 struct kfd_process_device *pdd = p->pdds[i];
579
580 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
581 "stats_%u", pdd->dev->id);
582 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
583 if (!pdd->kobj_stats)
584 return;
585
586 ret = kobject_init_and_add(pdd->kobj_stats,
587 &procfs_stats_type,
588 p->kobj,
589 stats_dir_filename);
590
591 if (ret) {
592 pr_warn("Creating KFD proc/stats_%s folder failed",
593 stats_dir_filename);
594 kobject_put(pdd->kobj_stats);
595 pdd->kobj_stats = NULL;
596 return;
597 }
598
599 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
600 "evicted_ms");
601 /* Add sysfs file to report compute unit occupancy */
602 if (pdd->dev->kfd2kgd->get_cu_occupancy)
603 kfd_sysfs_create_file(pdd->kobj_stats,
604 &pdd->attr_cu_occupancy,
605 "cu_occupancy");
606 }
607}
608
609static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
610{
611 int ret = 0;
612 int i;
613 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
614
615 if (!p || !p->kobj)
616 return;
617
618 /*
619 * Create sysfs files for each GPU which supports SVM
620 * - proc/<pid>/counters_<gpuid>/
621 * - proc/<pid>/counters_<gpuid>/faults
622 * - proc/<pid>/counters_<gpuid>/page_in
623 * - proc/<pid>/counters_<gpuid>/page_out
624 */
625 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
626 struct kfd_process_device *pdd = p->pdds[i];
627 struct kobject *kobj_counters;
628
629 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
630 "counters_%u", pdd->dev->id);
631 kobj_counters = kfd_alloc_struct(kobj_counters);
632 if (!kobj_counters)
633 return;
634
635 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
636 p->kobj, counters_dir_filename);
637 if (ret) {
638 pr_warn("Creating KFD proc/%s folder failed",
639 counters_dir_filename);
640 kobject_put(kobj_counters);
641 return;
642 }
643
644 pdd->kobj_counters = kobj_counters;
645 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
646 "faults");
647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
648 "page_in");
649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
650 "page_out");
651 }
652}
653
654static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
655{
656 int i;
657
658 if (!p || !p->kobj)
659 return;
660
661 /*
662 * Create sysfs files for each GPU:
663 * - proc/<pid>/vram_<gpuid>
664 * - proc/<pid>/sdma_<gpuid>
665 */
666 for (i = 0; i < p->n_pdds; i++) {
667 struct kfd_process_device *pdd = p->pdds[i];
668
669 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
670 pdd->dev->id);
671 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
672 pdd->vram_filename);
673
674 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
675 pdd->dev->id);
676 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
677 pdd->sdma_filename);
678 }
679}
680
681void kfd_procfs_del_queue(struct queue *q)
682{
683 if (!q)
684 return;
685
686 kobject_del(&q->kobj);
687 kobject_put(&q->kobj);
688}
689
690int kfd_process_create_wq(void)
691{
692 if (!kfd_process_wq)
693 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
694 if (!kfd_restore_wq)
695 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
696 WQ_FREEZABLE);
697
698 if (!kfd_process_wq || !kfd_restore_wq) {
699 kfd_process_destroy_wq();
700 return -ENOMEM;
701 }
702
703 return 0;
704}
705
706void kfd_process_destroy_wq(void)
707{
708 if (kfd_process_wq) {
709 destroy_workqueue(kfd_process_wq);
710 kfd_process_wq = NULL;
711 }
712 if (kfd_restore_wq) {
713 destroy_workqueue(kfd_restore_wq);
714 kfd_restore_wq = NULL;
715 }
716}
717
718static void kfd_process_free_gpuvm(struct kgd_mem *mem,
719 struct kfd_process_device *pdd, void **kptr)
720{
721 struct kfd_node *dev = pdd->dev;
722
723 if (kptr && *kptr) {
724 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
725 *kptr = NULL;
726 }
727
728 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
729 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
730 NULL);
731}
732
733/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
734 * This function should be only called right after the process
735 * is created and when kfd_processes_mutex is still being held
736 * to avoid concurrency. Because of that exclusiveness, we do
737 * not need to take p->mutex.
738 */
739static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
740 uint64_t gpu_va, uint32_t size,
741 uint32_t flags, struct kgd_mem **mem, void **kptr)
742{
743 struct kfd_node *kdev = pdd->dev;
744 int err;
745
746 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
747 pdd->drm_priv, mem, NULL,
748 flags, false);
749 if (err)
750 goto err_alloc_mem;
751
752 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
753 pdd->drm_priv);
754 if (err)
755 goto err_map_mem;
756
757 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
758 if (err) {
759 pr_debug("Sync memory failed, wait interrupted by user signal\n");
760 goto sync_memory_failed;
761 }
762
763 if (kptr) {
764 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
765 (struct kgd_mem *)*mem, kptr, NULL);
766 if (err) {
767 pr_debug("Map GTT BO to kernel failed\n");
768 goto sync_memory_failed;
769 }
770 }
771
772 return err;
773
774sync_memory_failed:
775 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
776
777err_map_mem:
778 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
779 NULL);
780err_alloc_mem:
781 *mem = NULL;
782 *kptr = NULL;
783 return err;
784}
785
786/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
787 * process for IB usage The memory reserved is for KFD to submit
788 * IB to AMDGPU from kernel. If the memory is reserved
789 * successfully, ib_kaddr will have the CPU/kernel
790 * address. Check ib_kaddr before accessing the memory.
791 */
792static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
793{
794 struct qcm_process_device *qpd = &pdd->qpd;
795 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
796 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
797 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
798 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
799 struct kgd_mem *mem;
800 void *kaddr;
801 int ret;
802
803 if (qpd->ib_kaddr || !qpd->ib_base)
804 return 0;
805
806 /* ib_base is only set for dGPU */
807 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
808 &mem, &kaddr);
809 if (ret)
810 return ret;
811
812 qpd->ib_mem = mem;
813 qpd->ib_kaddr = kaddr;
814
815 return 0;
816}
817
818static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
819{
820 struct qcm_process_device *qpd = &pdd->qpd;
821
822 if (!qpd->ib_kaddr || !qpd->ib_base)
823 return;
824
825 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
826}
827
828struct kfd_process *kfd_create_process(struct task_struct *thread)
829{
830 struct kfd_process *process;
831 int ret;
832
833 if (!(thread->mm && mmget_not_zero(thread->mm)))
834 return ERR_PTR(-EINVAL);
835
836 /* Only the pthreads threading model is supported. */
837 if (thread->group_leader->mm != thread->mm) {
838 mmput(thread->mm);
839 return ERR_PTR(-EINVAL);
840 }
841
842 /* If the process just called exec(3), it is possible that the
843 * cleanup of the kfd_process (following the release of the mm
844 * of the old process image) is still in the cleanup work queue.
845 * Make sure to drain any job before trying to recreate any
846 * resource for this process.
847 */
848 flush_workqueue(kfd_process_wq);
849
850 /*
851 * take kfd processes mutex before starting of process creation
852 * so there won't be a case where two threads of the same process
853 * create two kfd_process structures
854 */
855 mutex_lock(&kfd_processes_mutex);
856
857 if (kfd_is_locked(NULL)) {
858 pr_debug("KFD is locked! Cannot create process");
859 process = ERR_PTR(-EINVAL);
860 goto out;
861 }
862
863 /* A prior open of /dev/kfd could have already created the process.
864 * find_process will increase process kref in this case
865 */
866 process = find_process(thread, true);
867 if (process) {
868 pr_debug("Process already found\n");
869 } else {
870 process = create_process(thread);
871 if (IS_ERR(process))
872 goto out;
873
874 if (!procfs.kobj)
875 goto out;
876
877 process->kobj = kfd_alloc_struct(process->kobj);
878 if (!process->kobj) {
879 pr_warn("Creating procfs kobject failed");
880 goto out;
881 }
882 ret = kobject_init_and_add(process->kobj, &procfs_type,
883 procfs.kobj, "%d",
884 (int)process->lead_thread->pid);
885 if (ret) {
886 pr_warn("Creating procfs pid directory failed");
887 kobject_put(process->kobj);
888 goto out;
889 }
890
891 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
892 "pasid");
893
894 process->kobj_queues = kobject_create_and_add("queues",
895 process->kobj);
896 if (!process->kobj_queues)
897 pr_warn("Creating KFD proc/queues folder failed");
898
899 kfd_procfs_add_sysfs_stats(process);
900 kfd_procfs_add_sysfs_files(process);
901 kfd_procfs_add_sysfs_counters(process);
902
903 kfd_debugfs_add_process(process);
904
905 init_waitqueue_head(&process->wait_irq_drain);
906 }
907out:
908 mutex_unlock(&kfd_processes_mutex);
909 mmput(thread->mm);
910
911 return process;
912}
913
914struct kfd_process *kfd_get_process(const struct task_struct *thread)
915{
916 struct kfd_process *process;
917
918 if (!thread->mm)
919 return ERR_PTR(-EINVAL);
920
921 /* Only the pthreads threading model is supported. */
922 if (thread->group_leader->mm != thread->mm)
923 return ERR_PTR(-EINVAL);
924
925 process = find_process(thread, false);
926 if (!process)
927 return ERR_PTR(-EINVAL);
928
929 return process;
930}
931
932static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
933{
934 struct kfd_process *process;
935
936 hash_for_each_possible_rcu(kfd_processes_table, process,
937 kfd_processes, (uintptr_t)mm)
938 if (process->mm == mm)
939 return process;
940
941 return NULL;
942}
943
944static struct kfd_process *find_process(const struct task_struct *thread,
945 bool ref)
946{
947 struct kfd_process *p;
948 int idx;
949
950 idx = srcu_read_lock(&kfd_processes_srcu);
951 p = find_process_by_mm(thread->mm);
952 if (p && ref)
953 kref_get(&p->ref);
954 srcu_read_unlock(&kfd_processes_srcu, idx);
955
956 return p;
957}
958
959void kfd_unref_process(struct kfd_process *p)
960{
961 kref_put(&p->ref, kfd_process_ref_release);
962}
963
964/* This increments the process->ref counter. */
965struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
966{
967 struct task_struct *task = NULL;
968 struct kfd_process *p = NULL;
969
970 if (!pid) {
971 task = current;
972 get_task_struct(task);
973 } else {
974 task = get_pid_task(pid, PIDTYPE_PID);
975 }
976
977 if (task) {
978 p = find_process(task, true);
979 put_task_struct(task);
980 }
981
982 return p;
983}
984
985static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
986{
987 struct kfd_process *p = pdd->process;
988 void *mem;
989 int id;
990 int i;
991
992 /*
993 * Remove all handles from idr and release appropriate
994 * local memory object
995 */
996 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
997
998 for (i = 0; i < p->n_pdds; i++) {
999 struct kfd_process_device *peer_pdd = p->pdds[i];
1000
1001 if (!peer_pdd->drm_priv)
1002 continue;
1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005 }
1006
1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008 pdd->drm_priv, NULL);
1009 kfd_process_device_remove_obj_handle(pdd, id);
1010 }
1011}
1012
1013/*
1014 * Just kunmap and unpin signal BO here. It will be freed in
1015 * kfd_process_free_outstanding_kfd_bos()
1016 */
1017static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018{
1019 struct kfd_process_device *pdd;
1020 struct kfd_node *kdev;
1021 void *mem;
1022
1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024 if (!kdev)
1025 return;
1026
1027 mutex_lock(&p->mutex);
1028
1029 pdd = kfd_get_process_device_data(kdev, p);
1030 if (!pdd)
1031 goto out;
1032
1033 mem = kfd_process_device_translate_handle(
1034 pdd, GET_IDR_HANDLE(p->signal_handle));
1035 if (!mem)
1036 goto out;
1037
1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039
1040out:
1041 mutex_unlock(&p->mutex);
1042}
1043
1044static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045{
1046 int i;
1047
1048 for (i = 0; i < p->n_pdds; i++)
1049 kfd_process_device_free_bos(p->pdds[i]);
1050}
1051
1052static void kfd_process_destroy_pdds(struct kfd_process *p)
1053{
1054 int i;
1055
1056 for (i = 0; i < p->n_pdds; i++) {
1057 struct kfd_process_device *pdd = p->pdds[i];
1058
1059 kfd_smi_event_process(pdd, false);
1060
1061 pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1062 pdd->dev->id, p->lead_thread->pid);
1063 kfd_process_device_destroy_cwsr_dgpu(pdd);
1064 kfd_process_device_destroy_ib_mem(pdd);
1065
1066 if (pdd->drm_file)
1067 fput(pdd->drm_file);
1068
1069 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1070 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1071 get_order(KFD_CWSR_TBA_TMA_SIZE));
1072
1073 idr_destroy(&pdd->alloc_idr);
1074
1075 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1076
1077 if (pdd->dev->kfd->shared_resources.enable_mes &&
1078 pdd->proc_ctx_cpu_ptr)
1079 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1080 &pdd->proc_ctx_bo);
1081 /*
1082 * before destroying pdd, make sure to report availability
1083 * for auto suspend
1084 */
1085 if (pdd->runtime_inuse) {
1086 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1087 pdd->runtime_inuse = false;
1088 }
1089
1090 atomic_dec(&pdd->dev->kfd->kfd_processes_count);
1091
1092 kfree(pdd);
1093 p->pdds[i] = NULL;
1094 }
1095 p->n_pdds = 0;
1096}
1097
1098static void kfd_process_remove_sysfs(struct kfd_process *p)
1099{
1100 struct kfd_process_device *pdd;
1101 int i;
1102
1103 if (!p->kobj)
1104 return;
1105
1106 sysfs_remove_file(p->kobj, &p->attr_pasid);
1107 kobject_del(p->kobj_queues);
1108 kobject_put(p->kobj_queues);
1109 p->kobj_queues = NULL;
1110
1111 for (i = 0; i < p->n_pdds; i++) {
1112 pdd = p->pdds[i];
1113
1114 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1115 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1116
1117 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1118 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1119 sysfs_remove_file(pdd->kobj_stats,
1120 &pdd->attr_cu_occupancy);
1121 kobject_del(pdd->kobj_stats);
1122 kobject_put(pdd->kobj_stats);
1123 pdd->kobj_stats = NULL;
1124 }
1125
1126 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1127 pdd = p->pdds[i];
1128
1129 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1131 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1132 kobject_del(pdd->kobj_counters);
1133 kobject_put(pdd->kobj_counters);
1134 pdd->kobj_counters = NULL;
1135 }
1136
1137 kobject_del(p->kobj);
1138 kobject_put(p->kobj);
1139 p->kobj = NULL;
1140}
1141
1142/*
1143 * If any GPU is ongoing reset, wait for reset complete.
1144 */
1145static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1146{
1147 int i;
1148
1149 for (i = 0; i < p->n_pdds; i++)
1150 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1151}
1152
1153/* No process locking is needed in this function, because the process
1154 * is not findable any more. We must assume that no other thread is
1155 * using it any more, otherwise we couldn't safely free the process
1156 * structure in the end.
1157 */
1158static void kfd_process_wq_release(struct work_struct *work)
1159{
1160 struct kfd_process *p = container_of(work, struct kfd_process,
1161 release_work);
1162 struct dma_fence *ef;
1163
1164 /*
1165 * If GPU in reset, user queues may still running, wait for reset complete.
1166 */
1167 kfd_process_wait_gpu_reset_complete(p);
1168
1169 /* Signal the eviction fence after user mode queues are
1170 * destroyed. This allows any BOs to be freed without
1171 * triggering pointless evictions or waiting for fences.
1172 */
1173 synchronize_rcu();
1174 ef = rcu_access_pointer(p->ef);
1175 if (ef)
1176 dma_fence_signal(ef);
1177
1178 kfd_process_remove_sysfs(p);
1179 kfd_debugfs_remove_process(p);
1180
1181 kfd_process_kunmap_signal_bo(p);
1182 kfd_process_free_outstanding_kfd_bos(p);
1183 svm_range_list_fini(p);
1184
1185 kfd_process_destroy_pdds(p);
1186 dma_fence_put(ef);
1187
1188 kfd_event_free_process(p);
1189
1190 mutex_destroy(&p->mutex);
1191
1192 put_task_struct(p->lead_thread);
1193
1194 kfree(p);
1195}
1196
1197static void kfd_process_ref_release(struct kref *ref)
1198{
1199 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1200
1201 INIT_WORK(&p->release_work, kfd_process_wq_release);
1202 queue_work(kfd_process_wq, &p->release_work);
1203}
1204
1205static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1206{
1207 /* This increments p->ref counter if kfd process p exists */
1208 struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1209
1210 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1211}
1212
1213static void kfd_process_free_notifier(struct mmu_notifier *mn)
1214{
1215 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1216}
1217
1218static void kfd_process_notifier_release_internal(struct kfd_process *p)
1219{
1220 int i;
1221
1222 cancel_delayed_work_sync(&p->eviction_work);
1223 cancel_delayed_work_sync(&p->restore_work);
1224
1225 /*
1226 * Dequeue and destroy user queues, it is not safe for GPU to access
1227 * system memory after mmu release notifier callback returns because
1228 * exit_mmap free process memory afterwards.
1229 */
1230 kfd_process_dequeue_from_all_devices(p);
1231 pqm_uninit(&p->pqm);
1232
1233 for (i = 0; i < p->n_pdds; i++) {
1234 struct kfd_process_device *pdd = p->pdds[i];
1235
1236 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1237 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1238 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1239 }
1240
1241 /* Indicate to other users that MM is no longer valid */
1242 p->mm = NULL;
1243 kfd_dbg_trap_disable(p);
1244
1245 if (atomic_read(&p->debugged_process_count) > 0) {
1246 struct kfd_process *target;
1247 unsigned int temp;
1248 int idx = srcu_read_lock(&kfd_processes_srcu);
1249
1250 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1251 if (target->debugger_process && target->debugger_process == p) {
1252 mutex_lock_nested(&target->mutex, 1);
1253 kfd_dbg_trap_disable(target);
1254 mutex_unlock(&target->mutex);
1255 if (atomic_read(&p->debugged_process_count) == 0)
1256 break;
1257 }
1258 }
1259
1260 srcu_read_unlock(&kfd_processes_srcu, idx);
1261 }
1262
1263 mmu_notifier_put(&p->mmu_notifier);
1264}
1265
1266static void kfd_process_notifier_release(struct mmu_notifier *mn,
1267 struct mm_struct *mm)
1268{
1269 struct kfd_process *p;
1270
1271 /*
1272 * The kfd_process structure can not be free because the
1273 * mmu_notifier srcu is read locked
1274 */
1275 p = container_of(mn, struct kfd_process, mmu_notifier);
1276 if (WARN_ON(p->mm != mm))
1277 return;
1278
1279 mutex_lock(&kfd_processes_mutex);
1280 /*
1281 * Do early return if table is empty.
1282 *
1283 * This could potentially happen if this function is called concurrently
1284 * by mmu_notifier and by kfd_cleanup_pocesses.
1285 *
1286 */
1287 if (hash_empty(kfd_processes_table)) {
1288 mutex_unlock(&kfd_processes_mutex);
1289 return;
1290 }
1291 hash_del_rcu(&p->kfd_processes);
1292 mutex_unlock(&kfd_processes_mutex);
1293 synchronize_srcu(&kfd_processes_srcu);
1294
1295 kfd_process_notifier_release_internal(p);
1296}
1297
1298static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1299 .release = kfd_process_notifier_release,
1300 .alloc_notifier = kfd_process_alloc_notifier,
1301 .free_notifier = kfd_process_free_notifier,
1302};
1303
1304/*
1305 * This code handles the case when driver is being unloaded before all
1306 * mm_struct are released. We need to safely free the kfd_process and
1307 * avoid race conditions with mmu_notifier that might try to free them.
1308 *
1309 */
1310void kfd_cleanup_processes(void)
1311{
1312 struct kfd_process *p;
1313 struct hlist_node *p_temp;
1314 unsigned int temp;
1315 HLIST_HEAD(cleanup_list);
1316
1317 /*
1318 * Move all remaining kfd_process from the process table to a
1319 * temp list for processing. Once done, callback from mmu_notifier
1320 * release will not see the kfd_process in the table and do early return,
1321 * avoiding double free issues.
1322 */
1323 mutex_lock(&kfd_processes_mutex);
1324 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1325 hash_del_rcu(&p->kfd_processes);
1326 synchronize_srcu(&kfd_processes_srcu);
1327 hlist_add_head(&p->kfd_processes, &cleanup_list);
1328 }
1329 mutex_unlock(&kfd_processes_mutex);
1330
1331 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1332 kfd_process_notifier_release_internal(p);
1333
1334 /*
1335 * Ensures that all outstanding free_notifier get called, triggering
1336 * the release of the kfd_process struct.
1337 */
1338 mmu_notifier_synchronize();
1339}
1340
1341int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1342{
1343 unsigned long offset;
1344 int i;
1345
1346 if (p->has_cwsr)
1347 return 0;
1348
1349 for (i = 0; i < p->n_pdds; i++) {
1350 struct kfd_node *dev = p->pdds[i]->dev;
1351 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1352
1353 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1354 continue;
1355
1356 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1357 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1358 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1359 MAP_SHARED, offset);
1360
1361 if (IS_ERR_VALUE(qpd->tba_addr)) {
1362 int err = qpd->tba_addr;
1363
1364 dev_err(dev->adev->dev,
1365 "Failure to set tba address. error %d.\n", err);
1366 qpd->tba_addr = 0;
1367 qpd->cwsr_kaddr = NULL;
1368 return err;
1369 }
1370
1371 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1372
1373 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1374
1375 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1376 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1377 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1378 }
1379
1380 p->has_cwsr = true;
1381
1382 return 0;
1383}
1384
1385static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1386{
1387 struct kfd_node *dev = pdd->dev;
1388 struct qcm_process_device *qpd = &pdd->qpd;
1389 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1390 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1391 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1392 struct kgd_mem *mem;
1393 void *kaddr;
1394 int ret;
1395
1396 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1397 return 0;
1398
1399 /* cwsr_base is only set for dGPU */
1400 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1401 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1402 if (ret)
1403 return ret;
1404
1405 qpd->cwsr_mem = mem;
1406 qpd->cwsr_kaddr = kaddr;
1407 qpd->tba_addr = qpd->cwsr_base;
1408
1409 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1410
1411 kfd_process_set_trap_debug_flag(&pdd->qpd,
1412 pdd->process->debug_trap_enabled);
1413
1414 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1415 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1416 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1417
1418 return 0;
1419}
1420
1421static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1422{
1423 struct kfd_node *dev = pdd->dev;
1424 struct qcm_process_device *qpd = &pdd->qpd;
1425
1426 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1427 return;
1428
1429 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1430}
1431
1432void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1433 uint64_t tba_addr,
1434 uint64_t tma_addr)
1435{
1436 if (qpd->cwsr_kaddr) {
1437 /* KFD trap handler is bound, record as second-level TBA/TMA
1438 * in first-level TMA. First-level trap will jump to second.
1439 */
1440 uint64_t *tma =
1441 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1442 tma[0] = tba_addr;
1443 tma[1] = tma_addr;
1444 } else {
1445 /* No trap handler bound, bind as first-level TBA/TMA. */
1446 qpd->tba_addr = tba_addr;
1447 qpd->tma_addr = tma_addr;
1448 }
1449}
1450
1451bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1452{
1453 int i;
1454
1455 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1456 * boot time retry setting. Mixing processes with different
1457 * XNACK/retry settings can hang the GPU.
1458 *
1459 * Different GPUs can have different noretry settings depending
1460 * on HW bugs or limitations. We need to find at least one
1461 * XNACK mode for this process that's compatible with all GPUs.
1462 * Fortunately GPUs with retry enabled (noretry=0) can run code
1463 * built for XNACK-off. On GFXv9 it may perform slower.
1464 *
1465 * Therefore applications built for XNACK-off can always be
1466 * supported and will be our fallback if any GPU does not
1467 * support retry.
1468 */
1469 for (i = 0; i < p->n_pdds; i++) {
1470 struct kfd_node *dev = p->pdds[i]->dev;
1471
1472 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1473 * support the SVM APIs and don't need to be considered
1474 * for the XNACK mode selection.
1475 */
1476 if (!KFD_IS_SOC15(dev))
1477 continue;
1478 /* Aldebaran can always support XNACK because it can support
1479 * per-process XNACK mode selection. But let the dev->noretry
1480 * setting still influence the default XNACK mode.
1481 */
1482 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1483 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1484 pr_debug("SRIOV platform xnack not supported\n");
1485 return false;
1486 }
1487 continue;
1488 }
1489
1490 /* GFXv10 and later GPUs do not support shader preemption
1491 * during page faults. This can lead to poor QoS for queue
1492 * management and memory-manager-related preemptions or
1493 * even deadlocks.
1494 */
1495 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1496 return false;
1497
1498 if (dev->kfd->noretry)
1499 return false;
1500 }
1501
1502 return true;
1503}
1504
1505void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1506 bool enabled)
1507{
1508 if (qpd->cwsr_kaddr) {
1509 uint64_t *tma =
1510 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1511 tma[2] = enabled;
1512 }
1513}
1514
1515/*
1516 * On return the kfd_process is fully operational and will be freed when the
1517 * mm is released
1518 */
1519static struct kfd_process *create_process(const struct task_struct *thread)
1520{
1521 struct kfd_process *process;
1522 struct mmu_notifier *mn;
1523 int err = -ENOMEM;
1524
1525 process = kzalloc(sizeof(*process), GFP_KERNEL);
1526 if (!process)
1527 goto err_alloc_process;
1528
1529 kref_init(&process->ref);
1530 mutex_init(&process->mutex);
1531 process->mm = thread->mm;
1532 process->lead_thread = thread->group_leader;
1533 process->n_pdds = 0;
1534 process->queues_paused = false;
1535 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1536 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1537 process->last_restore_timestamp = get_jiffies_64();
1538 err = kfd_event_init_process(process);
1539 if (err)
1540 goto err_event_init;
1541 process->is_32bit_user_mode = in_compat_syscall();
1542 process->debug_trap_enabled = false;
1543 process->debugger_process = NULL;
1544 process->exception_enable_mask = 0;
1545 atomic_set(&process->debugged_process_count, 0);
1546 sema_init(&process->runtime_enable_sema, 0);
1547
1548 err = pqm_init(&process->pqm, process);
1549 if (err != 0)
1550 goto err_process_pqm_init;
1551
1552 /* init process apertures*/
1553 err = kfd_init_apertures(process);
1554 if (err != 0)
1555 goto err_init_apertures;
1556
1557 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1558 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1559
1560 err = svm_range_list_init(process);
1561 if (err)
1562 goto err_init_svm_range_list;
1563
1564 /* alloc_notifier needs to find the process in the hash table */
1565 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1566 (uintptr_t)process->mm);
1567
1568 /* Avoid free_notifier to start kfd_process_wq_release if
1569 * mmu_notifier_get failed because of pending signal.
1570 */
1571 kref_get(&process->ref);
1572
1573 /* MMU notifier registration must be the last call that can fail
1574 * because after this point we cannot unwind the process creation.
1575 * After this point, mmu_notifier_put will trigger the cleanup by
1576 * dropping the last process reference in the free_notifier.
1577 */
1578 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1579 if (IS_ERR(mn)) {
1580 err = PTR_ERR(mn);
1581 goto err_register_notifier;
1582 }
1583 BUG_ON(mn != &process->mmu_notifier);
1584
1585 kfd_unref_process(process);
1586 get_task_struct(process->lead_thread);
1587
1588 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1589
1590 return process;
1591
1592err_register_notifier:
1593 hash_del_rcu(&process->kfd_processes);
1594 svm_range_list_fini(process);
1595err_init_svm_range_list:
1596 kfd_process_free_outstanding_kfd_bos(process);
1597 kfd_process_destroy_pdds(process);
1598err_init_apertures:
1599 pqm_uninit(&process->pqm);
1600err_process_pqm_init:
1601 kfd_event_free_process(process);
1602err_event_init:
1603 mutex_destroy(&process->mutex);
1604 kfree(process);
1605err_alloc_process:
1606 return ERR_PTR(err);
1607}
1608
1609struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1610 struct kfd_process *p)
1611{
1612 int i;
1613
1614 for (i = 0; i < p->n_pdds; i++)
1615 if (p->pdds[i]->dev == dev)
1616 return p->pdds[i];
1617
1618 return NULL;
1619}
1620
1621struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1622 struct kfd_process *p)
1623{
1624 struct kfd_process_device *pdd = NULL;
1625
1626 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1627 return NULL;
1628 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1629 if (!pdd)
1630 return NULL;
1631
1632 pdd->dev = dev;
1633 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1634 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1635 pdd->qpd.dqm = dev->dqm;
1636 pdd->qpd.pqm = &p->pqm;
1637 pdd->qpd.evicted = 0;
1638 pdd->qpd.mapped_gws_queue = false;
1639 pdd->process = p;
1640 pdd->bound = PDD_UNBOUND;
1641 pdd->already_dequeued = false;
1642 pdd->runtime_inuse = false;
1643 atomic64_set(&pdd->vram_usage, 0);
1644 pdd->sdma_past_activity_counter = 0;
1645 pdd->user_gpu_id = dev->id;
1646 atomic64_set(&pdd->evict_duration_counter, 0);
1647
1648 p->pdds[p->n_pdds++] = pdd;
1649 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1650 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1651 pdd->dev->adev,
1652 false,
1653 0);
1654
1655 /* Init idr used for memory handle translation */
1656 idr_init(&pdd->alloc_idr);
1657
1658 atomic_inc(&dev->kfd->kfd_processes_count);
1659
1660 return pdd;
1661}
1662
1663/**
1664 * kfd_process_device_init_vm - Initialize a VM for a process-device
1665 *
1666 * @pdd: The process-device
1667 * @drm_file: Optional pointer to a DRM file descriptor
1668 *
1669 * If @drm_file is specified, it will be used to acquire the VM from
1670 * that file descriptor. If successful, the @pdd takes ownership of
1671 * the file descriptor.
1672 *
1673 * If @drm_file is NULL, a new VM is created.
1674 *
1675 * Returns 0 on success, -errno on failure.
1676 */
1677int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1678 struct file *drm_file)
1679{
1680 struct amdgpu_fpriv *drv_priv;
1681 struct amdgpu_vm *avm;
1682 struct kfd_process *p;
1683 struct dma_fence *ef;
1684 struct kfd_node *dev;
1685 int ret;
1686
1687 if (!drm_file)
1688 return -EINVAL;
1689
1690 if (pdd->drm_priv)
1691 return -EBUSY;
1692
1693 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1694 if (ret)
1695 return ret;
1696 avm = &drv_priv->vm;
1697
1698 p = pdd->process;
1699 dev = pdd->dev;
1700
1701 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1702 &p->kgd_process_info,
1703 p->ef ? NULL : &ef);
1704 if (ret) {
1705 dev_err(dev->adev->dev, "Failed to create process VM object\n");
1706 return ret;
1707 }
1708
1709 if (!p->ef)
1710 RCU_INIT_POINTER(p->ef, ef);
1711
1712 pdd->drm_priv = drm_file->private_data;
1713
1714 ret = kfd_process_device_reserve_ib_mem(pdd);
1715 if (ret)
1716 goto err_reserve_ib_mem;
1717 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1718 if (ret)
1719 goto err_init_cwsr;
1720
1721 if (unlikely(!avm->pasid)) {
1722 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1723 avm);
1724 ret = -EINVAL;
1725 goto err_get_pasid;
1726 }
1727
1728 pdd->pasid = avm->pasid;
1729 pdd->drm_file = drm_file;
1730
1731 kfd_smi_event_process(pdd, true);
1732
1733 return 0;
1734
1735err_get_pasid:
1736 kfd_process_device_destroy_cwsr_dgpu(pdd);
1737err_init_cwsr:
1738 kfd_process_device_destroy_ib_mem(pdd);
1739err_reserve_ib_mem:
1740 pdd->drm_priv = NULL;
1741 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1742
1743 return ret;
1744}
1745
1746/*
1747 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1748 * to the device.
1749 * Unbinding occurs when the process dies or the device is removed.
1750 *
1751 * Assumes that the process lock is held.
1752 */
1753struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1754 struct kfd_process *p)
1755{
1756 struct kfd_process_device *pdd;
1757 int err;
1758
1759 pdd = kfd_get_process_device_data(dev, p);
1760 if (!pdd) {
1761 dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1762 return ERR_PTR(-ENOMEM);
1763 }
1764
1765 if (!pdd->drm_priv)
1766 return ERR_PTR(-ENODEV);
1767
1768 /*
1769 * signal runtime-pm system to auto resume and prevent
1770 * further runtime suspend once device pdd is created until
1771 * pdd is destroyed.
1772 */
1773 if (!pdd->runtime_inuse) {
1774 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1775 if (err < 0) {
1776 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1777 return ERR_PTR(err);
1778 }
1779 }
1780
1781 /*
1782 * make sure that runtime_usage counter is incremented just once
1783 * per pdd
1784 */
1785 pdd->runtime_inuse = true;
1786
1787 return pdd;
1788}
1789
1790/* Create specific handle mapped to mem from process local memory idr
1791 * Assumes that the process lock is held.
1792 */
1793int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1794 void *mem)
1795{
1796 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1797}
1798
1799/* Translate specific handle from process local memory idr
1800 * Assumes that the process lock is held.
1801 */
1802void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1803 int handle)
1804{
1805 if (handle < 0)
1806 return NULL;
1807
1808 return idr_find(&pdd->alloc_idr, handle);
1809}
1810
1811/* Remove specific handle from process local memory idr
1812 * Assumes that the process lock is held.
1813 */
1814void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1815 int handle)
1816{
1817 if (handle >= 0)
1818 idr_remove(&pdd->alloc_idr, handle);
1819}
1820
1821static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1822{
1823 struct kfd_process_device *ret_p = NULL;
1824 struct kfd_process *p;
1825 unsigned int temp;
1826 int i;
1827
1828 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829 for (i = 0; i < p->n_pdds; i++) {
1830 if (p->pdds[i]->pasid == pasid) {
1831 ret_p = p->pdds[i];
1832 break;
1833 }
1834 }
1835 if (ret_p)
1836 break;
1837 }
1838 return ret_p;
1839}
1840
1841/* This increments the process->ref counter. */
1842struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1843 struct kfd_process_device **pdd)
1844{
1845 struct kfd_process_device *ret_p;
1846
1847 int idx = srcu_read_lock(&kfd_processes_srcu);
1848
1849 ret_p = kfd_lookup_process_device_by_pasid(pasid);
1850 if (ret_p) {
1851 if (pdd)
1852 *pdd = ret_p;
1853 kref_get(&ret_p->process->ref);
1854
1855 srcu_read_unlock(&kfd_processes_srcu, idx);
1856 return ret_p->process;
1857 }
1858
1859 srcu_read_unlock(&kfd_processes_srcu, idx);
1860
1861 if (pdd)
1862 *pdd = NULL;
1863
1864 return NULL;
1865}
1866
1867/* This increments the process->ref counter. */
1868struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1869{
1870 struct kfd_process *p;
1871
1872 int idx = srcu_read_lock(&kfd_processes_srcu);
1873
1874 p = find_process_by_mm(mm);
1875 if (p)
1876 kref_get(&p->ref);
1877
1878 srcu_read_unlock(&kfd_processes_srcu, idx);
1879
1880 return p;
1881}
1882
1883/* kfd_process_evict_queues - Evict all user queues of a process
1884 *
1885 * Eviction is reference-counted per process-device. This means multiple
1886 * evictions from different sources can be nested safely.
1887 */
1888int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1889{
1890 int r = 0;
1891 int i;
1892 unsigned int n_evicted = 0;
1893
1894 for (i = 0; i < p->n_pdds; i++) {
1895 struct kfd_process_device *pdd = p->pdds[i];
1896 struct device *dev = pdd->dev->adev->dev;
1897
1898 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1899 trigger);
1900
1901 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1902 &pdd->qpd);
1903 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1904 * we would like to set all the queues to be in evicted state to prevent
1905 * them been add back since they actually not be saved right now.
1906 */
1907 if (r && r != -EIO) {
1908 dev_err(dev, "Failed to evict process queues\n");
1909 goto fail;
1910 }
1911 n_evicted++;
1912
1913 pdd->dev->dqm->is_hws_hang = false;
1914 }
1915
1916 return r;
1917
1918fail:
1919 /* To keep state consistent, roll back partial eviction by
1920 * restoring queues
1921 */
1922 for (i = 0; i < p->n_pdds; i++) {
1923 struct kfd_process_device *pdd = p->pdds[i];
1924
1925 if (n_evicted == 0)
1926 break;
1927
1928 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1929
1930 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1931 &pdd->qpd))
1932 dev_err(pdd->dev->adev->dev,
1933 "Failed to restore queues\n");
1934
1935 n_evicted--;
1936 }
1937
1938 return r;
1939}
1940
1941/* kfd_process_restore_queues - Restore all user queues of a process */
1942int kfd_process_restore_queues(struct kfd_process *p)
1943{
1944 int r, ret = 0;
1945 int i;
1946
1947 for (i = 0; i < p->n_pdds; i++) {
1948 struct kfd_process_device *pdd = p->pdds[i];
1949 struct device *dev = pdd->dev->adev->dev;
1950
1951 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1952
1953 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1954 &pdd->qpd);
1955 if (r) {
1956 dev_err(dev, "Failed to restore process queues\n");
1957 if (!ret)
1958 ret = r;
1959 }
1960 }
1961
1962 return ret;
1963}
1964
1965int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1966{
1967 int i;
1968
1969 for (i = 0; i < p->n_pdds; i++)
1970 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1971 return i;
1972 return -EINVAL;
1973}
1974
1975int
1976kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1977 uint32_t *gpuid, uint32_t *gpuidx)
1978{
1979 int i;
1980
1981 for (i = 0; i < p->n_pdds; i++)
1982 if (p->pdds[i] && p->pdds[i]->dev == node) {
1983 *gpuid = p->pdds[i]->user_gpu_id;
1984 *gpuidx = i;
1985 return 0;
1986 }
1987 return -EINVAL;
1988}
1989
1990static int signal_eviction_fence(struct kfd_process *p)
1991{
1992 struct dma_fence *ef;
1993 int ret;
1994
1995 rcu_read_lock();
1996 ef = dma_fence_get_rcu_safe(&p->ef);
1997 rcu_read_unlock();
1998 if (!ef)
1999 return -EINVAL;
2000
2001 ret = dma_fence_signal(ef);
2002 dma_fence_put(ef);
2003
2004 return ret;
2005}
2006
2007static void evict_process_worker(struct work_struct *work)
2008{
2009 int ret;
2010 struct kfd_process *p;
2011 struct delayed_work *dwork;
2012
2013 dwork = to_delayed_work(work);
2014
2015 /* Process termination destroys this worker thread. So during the
2016 * lifetime of this thread, kfd_process p will be valid
2017 */
2018 p = container_of(dwork, struct kfd_process, eviction_work);
2019
2020 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2021 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2022 if (!ret) {
2023 /* If another thread already signaled the eviction fence,
2024 * they are responsible stopping the queues and scheduling
2025 * the restore work.
2026 */
2027 if (signal_eviction_fence(p) ||
2028 mod_delayed_work(kfd_restore_wq, &p->restore_work,
2029 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2030 kfd_process_restore_queues(p);
2031
2032 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2033 } else
2034 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2035}
2036
2037static int restore_process_helper(struct kfd_process *p)
2038{
2039 int ret = 0;
2040
2041 /* VMs may not have been acquired yet during debugging. */
2042 if (p->kgd_process_info) {
2043 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2044 p->kgd_process_info, &p->ef);
2045 if (ret)
2046 return ret;
2047 }
2048
2049 ret = kfd_process_restore_queues(p);
2050 if (!ret)
2051 pr_debug("Finished restoring process pid %d\n",
2052 p->lead_thread->pid);
2053 else
2054 pr_err("Failed to restore queues of process pid %d\n",
2055 p->lead_thread->pid);
2056
2057 return ret;
2058}
2059
2060static void restore_process_worker(struct work_struct *work)
2061{
2062 struct delayed_work *dwork;
2063 struct kfd_process *p;
2064 int ret = 0;
2065
2066 dwork = to_delayed_work(work);
2067
2068 /* Process termination destroys this worker thread. So during the
2069 * lifetime of this thread, kfd_process p will be valid
2070 */
2071 p = container_of(dwork, struct kfd_process, restore_work);
2072 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2073
2074 /* Setting last_restore_timestamp before successful restoration.
2075 * Otherwise this would have to be set by KGD (restore_process_bos)
2076 * before KFD BOs are unreserved. If not, the process can be evicted
2077 * again before the timestamp is set.
2078 * If restore fails, the timestamp will be set again in the next
2079 * attempt. This would mean that the minimum GPU quanta would be
2080 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2081 * functions)
2082 */
2083
2084 p->last_restore_timestamp = get_jiffies_64();
2085
2086 ret = restore_process_helper(p);
2087 if (ret) {
2088 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2089 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2090 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2091 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2092 kfd_process_restore_queues(p);
2093 }
2094}
2095
2096void kfd_suspend_all_processes(void)
2097{
2098 struct kfd_process *p;
2099 unsigned int temp;
2100 int idx = srcu_read_lock(&kfd_processes_srcu);
2101
2102 WARN(debug_evictions, "Evicting all processes");
2103 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2104 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2105 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2106 signal_eviction_fence(p);
2107 }
2108 srcu_read_unlock(&kfd_processes_srcu, idx);
2109}
2110
2111int kfd_resume_all_processes(void)
2112{
2113 struct kfd_process *p;
2114 unsigned int temp;
2115 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2116
2117 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2118 if (restore_process_helper(p)) {
2119 pr_err("Restore process pid %d failed during resume\n",
2120 p->lead_thread->pid);
2121 ret = -EFAULT;
2122 }
2123 }
2124 srcu_read_unlock(&kfd_processes_srcu, idx);
2125 return ret;
2126}
2127
2128int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2129 struct vm_area_struct *vma)
2130{
2131 struct kfd_process_device *pdd;
2132 struct qcm_process_device *qpd;
2133
2134 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2135 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2136 return -EINVAL;
2137 }
2138
2139 pdd = kfd_get_process_device_data(dev, process);
2140 if (!pdd)
2141 return -EINVAL;
2142 qpd = &pdd->qpd;
2143
2144 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2145 get_order(KFD_CWSR_TBA_TMA_SIZE));
2146 if (!qpd->cwsr_kaddr) {
2147 dev_err(dev->adev->dev,
2148 "Error allocating per process CWSR buffer.\n");
2149 return -ENOMEM;
2150 }
2151
2152 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2153 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2154 /* Mapping pages to user process */
2155 return remap_pfn_range(vma, vma->vm_start,
2156 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2157 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2158}
2159
2160/* assumes caller holds process lock. */
2161int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2162{
2163 uint32_t irq_drain_fence[8];
2164 uint8_t node_id = 0;
2165 int r = 0;
2166
2167 if (!KFD_IS_SOC15(pdd->dev))
2168 return 0;
2169
2170 pdd->process->irq_drain_is_open = true;
2171
2172 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2173 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2174 KFD_IRQ_FENCE_CLIENTID;
2175 irq_drain_fence[3] = pdd->pasid;
2176
2177 /*
2178 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2179 */
2180 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2181 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2182 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) {
2183 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2184 irq_drain_fence[3] |= node_id << 16;
2185 }
2186
2187 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2188 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2189 irq_drain_fence)) {
2190 pdd->process->irq_drain_is_open = false;
2191 return 0;
2192 }
2193
2194 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2195 !READ_ONCE(pdd->process->irq_drain_is_open));
2196 if (r)
2197 pdd->process->irq_drain_is_open = false;
2198
2199 return r;
2200}
2201
2202void kfd_process_close_interrupt_drain(unsigned int pasid)
2203{
2204 struct kfd_process *p;
2205
2206 p = kfd_lookup_process_by_pasid(pasid, NULL);
2207
2208 if (!p)
2209 return;
2210
2211 WRITE_ONCE(p->irq_drain_is_open, false);
2212 wake_up_all(&p->wait_irq_drain);
2213 kfd_unref_process(p);
2214}
2215
2216struct send_exception_work_handler_workarea {
2217 struct work_struct work;
2218 struct kfd_process *p;
2219 unsigned int queue_id;
2220 uint64_t error_reason;
2221};
2222
2223static void send_exception_work_handler(struct work_struct *work)
2224{
2225 struct send_exception_work_handler_workarea *workarea;
2226 struct kfd_process *p;
2227 struct queue *q;
2228 struct mm_struct *mm;
2229 struct kfd_context_save_area_header __user *csa_header;
2230 uint64_t __user *err_payload_ptr;
2231 uint64_t cur_err;
2232 uint32_t ev_id;
2233
2234 workarea = container_of(work,
2235 struct send_exception_work_handler_workarea,
2236 work);
2237 p = workarea->p;
2238
2239 mm = get_task_mm(p->lead_thread);
2240
2241 if (!mm)
2242 return;
2243
2244 kthread_use_mm(mm);
2245
2246 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2247
2248 if (!q)
2249 goto out;
2250
2251 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2252
2253 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2254 get_user(cur_err, err_payload_ptr);
2255 cur_err |= workarea->error_reason;
2256 put_user(cur_err, err_payload_ptr);
2257 get_user(ev_id, &csa_header->err_event_id);
2258
2259 kfd_set_event(p, ev_id);
2260
2261out:
2262 kthread_unuse_mm(mm);
2263 mmput(mm);
2264}
2265
2266int kfd_send_exception_to_runtime(struct kfd_process *p,
2267 unsigned int queue_id,
2268 uint64_t error_reason)
2269{
2270 struct send_exception_work_handler_workarea worker;
2271
2272 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2273
2274 worker.p = p;
2275 worker.queue_id = queue_id;
2276 worker.error_reason = error_reason;
2277
2278 schedule_work(&worker.work);
2279 flush_work(&worker.work);
2280 destroy_work_on_stack(&worker.work);
2281
2282 return 0;
2283}
2284
2285struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2286{
2287 int i;
2288
2289 if (gpu_id) {
2290 for (i = 0; i < p->n_pdds; i++) {
2291 struct kfd_process_device *pdd = p->pdds[i];
2292
2293 if (pdd->user_gpu_id == gpu_id)
2294 return pdd;
2295 }
2296 }
2297 return NULL;
2298}
2299
2300int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2301{
2302 int i;
2303
2304 if (!actual_gpu_id)
2305 return 0;
2306
2307 for (i = 0; i < p->n_pdds; i++) {
2308 struct kfd_process_device *pdd = p->pdds[i];
2309
2310 if (pdd->dev->id == actual_gpu_id)
2311 return pdd->user_gpu_id;
2312 }
2313 return -EINVAL;
2314}
2315
2316#if defined(CONFIG_DEBUG_FS)
2317
2318int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2319{
2320 struct kfd_process *p;
2321 unsigned int temp;
2322 int r = 0;
2323
2324 int idx = srcu_read_lock(&kfd_processes_srcu);
2325
2326 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2327 seq_printf(m, "Process %d PASID %d:\n",
2328 p->lead_thread->tgid, p->lead_thread->pid);
2329
2330 mutex_lock(&p->mutex);
2331 r = pqm_debugfs_mqds(m, &p->pqm);
2332 mutex_unlock(&p->mutex);
2333
2334 if (r)
2335 break;
2336 }
2337
2338 srcu_read_unlock(&kfd_processes_srcu, idx);
2339
2340 return r;
2341}
2342
2343#endif