at v6.19 1508 lines 46 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8#include <linux/bug.h> 9#include <linux/completion.h> 10#include <linux/device.h> 11#include <linux/errno.h> 12#include <linux/firewire.h> 13#include <linux/firewire-constants.h> 14#include <linux/fs.h> 15#include <linux/init.h> 16#include <linux/jiffies.h> 17#include <linux/kernel.h> 18#include <linux/list.h> 19#include <linux/module.h> 20#include <linux/rculist.h> 21#include <linux/slab.h> 22#include <linux/spinlock.h> 23#include <linux/string.h> 24#include <linux/timer.h> 25#include <linux/types.h> 26#include <linux/workqueue.h> 27 28#include <asm/byteorder.h> 29 30#include "core.h" 31#include "packet-header-definitions.h" 32#include "phy-packet-definitions.h" 33#include <trace/events/firewire.h> 34 35#define HEADER_DESTINATION_IS_BROADCAST(header) \ 36 ((async_header_get_destination(header) & 0x3f) == 0x3f) 37 38/* returns 0 if the split timeout handler is already running */ 39static int try_cancel_split_timeout(struct fw_transaction *t) 40{ 41 if (t->is_split_transaction) 42 return timer_delete(&t->split_timeout_timer); 43 else 44 return 1; 45} 46 47// card->transactions.lock must be acquired in advance. 48static void remove_transaction_entry(struct fw_card *card, struct fw_transaction *entry) 49{ 50 list_del_init(&entry->link); 51 card->transactions.tlabel_mask &= ~(1ULL << entry->tlabel); 52} 53 54// Must be called without holding card->transactions.lock. 55void fw_cancel_pending_transactions(struct fw_card *card) 56{ 57 struct fw_transaction *t, *tmp; 58 LIST_HEAD(pending_list); 59 60 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 61 // local destination never runs in any type of IRQ context. 62 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 63 list_for_each_entry_safe(t, tmp, &card->transactions.list, link) { 64 if (try_cancel_split_timeout(t)) 65 list_move(&t->link, &pending_list); 66 } 67 } 68 69 list_for_each_entry_safe(t, tmp, &pending_list, link) { 70 list_del(&t->link); 71 72 if (!t->with_tstamp) { 73 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, 74 t->callback_data); 75 } else { 76 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 0, 77 NULL, 0, t->callback_data); 78 } 79 } 80} 81 82// card->transactions.lock must be acquired in advance. 83#define find_and_pop_transaction_entry(card, condition) \ 84({ \ 85 struct fw_transaction *iter, *t = NULL; \ 86 list_for_each_entry(iter, &card->transactions.list, link) { \ 87 if (condition) { \ 88 t = iter; \ 89 break; \ 90 } \ 91 } \ 92 if (t && try_cancel_split_timeout(t)) \ 93 remove_transaction_entry(card, t); \ 94 t; \ 95}) 96 97static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 98 u32 response_tstamp) 99{ 100 struct fw_transaction *t; 101 102 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 103 // local destination never runs in any type of IRQ context. 104 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 105 t = find_and_pop_transaction_entry(card, iter == transaction); 106 if (!t) 107 return -ENOENT; 108 } 109 110 if (!t->with_tstamp) { 111 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 112 } else { 113 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, 114 t->callback_data); 115 } 116 117 return 0; 118} 119 120/* 121 * Only valid for transactions that are potentially pending (ie have 122 * been sent). 123 */ 124int fw_cancel_transaction(struct fw_card *card, 125 struct fw_transaction *transaction) 126{ 127 u32 tstamp; 128 129 /* 130 * Cancel the packet transmission if it's still queued. That 131 * will call the packet transmission callback which cancels 132 * the transaction. 133 */ 134 135 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 136 return 0; 137 138 /* 139 * If the request packet has already been sent, we need to see 140 * if the transaction is still pending and remove it in that case. 141 */ 142 143 if (transaction->packet.ack == 0) { 144 // The timestamp is reused since it was just read now. 145 tstamp = transaction->packet.timestamp; 146 } else { 147 u32 curr_cycle_time = 0; 148 149 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 150 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 151 } 152 153 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 154} 155EXPORT_SYMBOL(fw_cancel_transaction); 156 157static void split_transaction_timeout_callback(struct timer_list *timer) 158{ 159 struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer); 160 struct fw_card *card = t->card; 161 162 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 163 if (list_empty(&t->link)) 164 return; 165 remove_transaction_entry(card, t); 166 } 167 168 if (!t->with_tstamp) { 169 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 170 } else { 171 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 172 t->split_timeout_cycle, NULL, 0, t->callback_data); 173 } 174} 175 176// card->transactions.lock should be acquired in advance for the linked list. 177static void start_split_transaction_timeout(struct fw_transaction *t, unsigned int delta) 178{ 179 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) 180 return; 181 182 t->is_split_transaction = true; 183 184 mod_timer(&t->split_timeout_timer, jiffies + delta); 185} 186 187static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 188 189static void transmit_complete_callback(struct fw_packet *packet, 190 struct fw_card *card, int status) 191{ 192 struct fw_transaction *t = 193 container_of(packet, struct fw_transaction, packet); 194 195 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, 196 packet->speed, status, packet->timestamp); 197 198 switch (status) { 199 case ACK_COMPLETE: 200 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 201 break; 202 case ACK_PENDING: 203 { 204 unsigned int delta; 205 206 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 207 // local destination never runs in any type of IRQ context. 208 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 209 t->split_timeout_cycle = 210 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 211 delta = card->split_timeout.jiffies; 212 } 213 214 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 215 // local destination never runs in any type of IRQ context. 216 scoped_guard(spinlock_irqsave, &card->transactions.lock) 217 start_split_transaction_timeout(t, delta); 218 break; 219 } 220 case ACK_BUSY_X: 221 case ACK_BUSY_A: 222 case ACK_BUSY_B: 223 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 224 break; 225 case ACK_DATA_ERROR: 226 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 227 break; 228 case ACK_TYPE_ERROR: 229 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 230 break; 231 default: 232 /* 233 * In this case the ack is really a juju specific 234 * rcode, so just forward that to the callback. 235 */ 236 close_transaction(t, card, status, packet->timestamp); 237 break; 238 } 239} 240 241static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 242 int destination_id, int source_id, int generation, int speed, 243 unsigned long long offset, void *payload, size_t length) 244{ 245 int ext_tcode; 246 247 if (tcode == TCODE_STREAM_DATA) { 248 // The value of destination_id argument should include tag, channel, and sy fields 249 // as isochronous packet header has. 250 packet->header[0] = destination_id; 251 isoc_header_set_data_length(packet->header, length); 252 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); 253 packet->header_length = 4; 254 packet->payload = payload; 255 packet->payload_length = length; 256 257 goto common; 258 } 259 260 if (tcode > 0x10) { 261 ext_tcode = tcode & ~0x10; 262 tcode = TCODE_LOCK_REQUEST; 263 } else 264 ext_tcode = 0; 265 266 async_header_set_retry(packet->header, RETRY_X); 267 async_header_set_tlabel(packet->header, tlabel); 268 async_header_set_tcode(packet->header, tcode); 269 async_header_set_destination(packet->header, destination_id); 270 async_header_set_source(packet->header, source_id); 271 async_header_set_offset(packet->header, offset); 272 273 switch (tcode) { 274 case TCODE_WRITE_QUADLET_REQUEST: 275 async_header_set_quadlet_data(packet->header, *(u32 *)payload); 276 packet->header_length = 16; 277 packet->payload_length = 0; 278 break; 279 280 case TCODE_LOCK_REQUEST: 281 case TCODE_WRITE_BLOCK_REQUEST: 282 async_header_set_data_length(packet->header, length); 283 async_header_set_extended_tcode(packet->header, ext_tcode); 284 packet->header_length = 16; 285 packet->payload = payload; 286 packet->payload_length = length; 287 break; 288 289 case TCODE_READ_QUADLET_REQUEST: 290 packet->header_length = 12; 291 packet->payload_length = 0; 292 break; 293 294 case TCODE_READ_BLOCK_REQUEST: 295 async_header_set_data_length(packet->header, length); 296 async_header_set_extended_tcode(packet->header, ext_tcode); 297 packet->header_length = 16; 298 packet->payload_length = 0; 299 break; 300 301 default: 302 WARN(1, "wrong tcode %d\n", tcode); 303 } 304 common: 305 packet->speed = speed; 306 packet->generation = generation; 307 packet->ack = 0; 308 packet->payload_mapped = false; 309} 310 311static int allocate_tlabel(struct fw_card *card) 312__must_hold(&card->transactions.lock) 313{ 314 int tlabel; 315 316 lockdep_assert_held(&card->transactions.lock); 317 318 tlabel = card->transactions.current_tlabel; 319 while (card->transactions.tlabel_mask & (1ULL << tlabel)) { 320 tlabel = (tlabel + 1) & 0x3f; 321 if (tlabel == card->transactions.current_tlabel) 322 return -EBUSY; 323 } 324 325 card->transactions.current_tlabel = (tlabel + 1) & 0x3f; 326 card->transactions.tlabel_mask |= 1ULL << tlabel; 327 328 return tlabel; 329} 330 331/** 332 * __fw_send_request() - submit a request packet for transmission to generate callback for response 333 * subaction with or without time stamp. 334 * @card: interface to send the request at 335 * @t: transaction instance to which the request belongs 336 * @tcode: transaction code 337 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 338 * @generation: bus generation in which request and response are valid 339 * @speed: transmission speed 340 * @offset: 48bit wide offset into destination's address space 341 * @payload: data payload for the request subaction 342 * @length: length of the payload, in bytes 343 * @callback: union of two functions whether to receive time stamp or not for response 344 * subaction. 345 * @with_tstamp: Whether to receive time stamp or not for response subaction. 346 * @callback_data: data to be passed to the transaction completion callback 347 * 348 * Submit a request packet into the asynchronous request transmission queue. 349 * Can be called from atomic context. If you prefer a blocking API, use 350 * fw_run_transaction() in a context that can sleep. 351 * 352 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 353 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 354 * 355 * Make sure that the value in @destination_id is not older than the one in 356 * @generation. Otherwise the request is in danger to be sent to a wrong node. 357 * 358 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 359 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 360 * It will contain tag, channel, and sy data instead of a node ID then. 361 * 362 * The payload buffer at @data is going to be DMA-mapped except in case of 363 * @length <= 8 or of local (loopback) requests. Hence make sure that the 364 * buffer complies with the restrictions of the streaming DMA mapping API. 365 * @payload must not be freed before the @callback is called. 366 * 367 * In case of request types without payload, @data is NULL and @length is 0. 368 * 369 * After the transaction is completed successfully or unsuccessfully, the 370 * @callback will be called. Among its parameters is the response code which 371 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 372 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 373 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 374 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 375 * generation, or missing ACK respectively. 376 * 377 * Note some timing corner cases: fw_send_request() may complete much earlier 378 * than when the request packet actually hits the wire. On the other hand, 379 * transaction completion and hence execution of @callback may happen even 380 * before fw_send_request() returns. 381 */ 382void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 383 int destination_id, int generation, int speed, unsigned long long offset, 384 void *payload, size_t length, union fw_transaction_callback callback, 385 bool with_tstamp, void *callback_data) 386{ 387 int tlabel; 388 389 /* 390 * Allocate tlabel from the bitmap and put the transaction on 391 * the list while holding the card spinlock. 392 */ 393 394 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 395 // local destination never runs in any type of IRQ context. 396 scoped_guard(spinlock_irqsave, &card->transactions.lock) 397 tlabel = allocate_tlabel(card); 398 if (tlabel < 0) { 399 if (!with_tstamp) { 400 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 401 } else { 402 // Timestamping on behalf of hardware. 403 u32 curr_cycle_time = 0; 404 u32 tstamp; 405 406 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 407 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 408 409 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 410 callback_data); 411 } 412 return; 413 } 414 415 t->node_id = destination_id; 416 t->tlabel = tlabel; 417 t->card = card; 418 t->is_split_transaction = false; 419 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 420 t->callback = callback; 421 t->with_tstamp = with_tstamp; 422 t->callback_data = callback_data; 423 t->packet.callback = transmit_complete_callback; 424 425 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 426 // local destination never runs in any type of IRQ context. 427 scoped_guard(spinlock_irqsave, &card->lock) { 428 // The node_id field of fw_card can be updated when handling SelfIDComplete. 429 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, 430 generation, speed, offset, payload, length); 431 } 432 433 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 434 // local destination never runs in any type of IRQ context. 435 scoped_guard(spinlock_irqsave, &card->transactions.lock) 436 list_add_tail(&t->link, &card->transactions.list); 437 438 // Safe with no lock, since the index field of fw_card is immutable once assigned. 439 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, 440 t->packet.header, payload, 441 tcode_is_read_request(tcode) ? 0 : length / 4); 442 443 card->driver->send_request(card, &t->packet); 444} 445EXPORT_SYMBOL_GPL(__fw_send_request); 446 447struct transaction_callback_data { 448 struct completion done; 449 void *payload; 450 int rcode; 451}; 452 453static void transaction_callback(struct fw_card *card, int rcode, 454 void *payload, size_t length, void *data) 455{ 456 struct transaction_callback_data *d = data; 457 458 if (rcode == RCODE_COMPLETE) 459 memcpy(d->payload, payload, length); 460 d->rcode = rcode; 461 complete(&d->done); 462} 463 464/** 465 * fw_run_transaction() - send request and sleep until transaction is completed 466 * @card: card interface for this request 467 * @tcode: transaction code 468 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 469 * @generation: bus generation in which request and response are valid 470 * @speed: transmission speed 471 * @offset: 48bit wide offset into destination's address space 472 * @payload: data payload for the request subaction 473 * @length: length of the payload, in bytes 474 * 475 * Returns the RCODE. See fw_send_request() for parameter documentation. 476 * Unlike fw_send_request(), @data points to the payload of the request or/and 477 * to the payload of the response. DMA mapping restrictions apply to outbound 478 * request payloads of >= 8 bytes but not to inbound response payloads. 479 */ 480int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 481 int generation, int speed, unsigned long long offset, 482 void *payload, size_t length) 483{ 484 struct transaction_callback_data d; 485 struct fw_transaction t; 486 487 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 488 init_completion(&d.done); 489 d.payload = payload; 490 fw_send_request(card, &t, tcode, destination_id, generation, speed, 491 offset, payload, length, transaction_callback, &d); 492 wait_for_completion(&d.done); 493 timer_destroy_on_stack(&t.split_timeout_timer); 494 495 return d.rcode; 496} 497EXPORT_SYMBOL(fw_run_transaction); 498 499static DEFINE_MUTEX(phy_config_mutex); 500static DECLARE_COMPLETION(phy_config_done); 501 502static void transmit_phy_packet_callback(struct fw_packet *packet, 503 struct fw_card *card, int status) 504{ 505 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, 506 packet->timestamp); 507 complete(&phy_config_done); 508} 509 510static struct fw_packet phy_config_packet = { 511 .header_length = 12, 512 .payload_length = 0, 513 .speed = SCODE_100, 514 .callback = transmit_phy_packet_callback, 515}; 516 517void fw_send_phy_config(struct fw_card *card, 518 int node_id, int generation, int gap_count) 519{ 520 long timeout = msecs_to_jiffies(100); 521 u32 data = 0; 522 523 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); 524 525 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { 526 phy_packet_phy_config_set_root_id(&data, node_id); 527 phy_packet_phy_config_set_force_root_node(&data, true); 528 } 529 530 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 531 gap_count = card->driver->read_phy_reg(card, 1); 532 if (gap_count < 0) 533 return; 534 535 gap_count &= 63; 536 if (gap_count == 63) 537 return; 538 } 539 phy_packet_phy_config_set_gap_count(&data, gap_count); 540 phy_packet_phy_config_set_gap_count_optimization(&data, true); 541 542 guard(mutex)(&phy_config_mutex); 543 544 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL); 545 phy_config_packet.header[1] = data; 546 phy_config_packet.header[2] = ~data; 547 phy_config_packet.generation = generation; 548 reinit_completion(&phy_config_done); 549 550 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, 551 phy_config_packet.generation, phy_config_packet.header[1], 552 phy_config_packet.header[2]); 553 554 card->driver->send_request(card, &phy_config_packet); 555 wait_for_completion_timeout(&phy_config_done, timeout); 556} 557 558static struct fw_address_handler *lookup_overlapping_address_handler( 559 struct list_head *list, unsigned long long offset, size_t length) 560{ 561 struct fw_address_handler *handler; 562 563 list_for_each_entry_rcu(handler, list, link) { 564 if (handler->offset < offset + length && 565 offset < handler->offset + handler->length) 566 return handler; 567 } 568 569 return NULL; 570} 571 572static bool is_enclosing_handler(struct fw_address_handler *handler, 573 unsigned long long offset, size_t length) 574{ 575 return handler->offset <= offset && 576 offset + length <= handler->offset + handler->length; 577} 578 579static struct fw_address_handler *lookup_enclosing_address_handler( 580 struct list_head *list, unsigned long long offset, size_t length) 581{ 582 struct fw_address_handler *handler; 583 584 list_for_each_entry_rcu(handler, list, link) { 585 if (is_enclosing_handler(handler, offset, length)) 586 return handler; 587 } 588 589 return NULL; 590} 591 592static DEFINE_SPINLOCK(address_handler_list_lock); 593static LIST_HEAD(address_handler_list); 594 595const struct fw_address_region fw_high_memory_region = 596 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 597EXPORT_SYMBOL(fw_high_memory_region); 598 599static const struct fw_address_region low_memory_region = 600 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 601 602#if 0 603const struct fw_address_region fw_private_region = 604 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 605const struct fw_address_region fw_csr_region = 606 { .start = CSR_REGISTER_BASE, 607 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 608const struct fw_address_region fw_unit_space_region = 609 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 610#endif /* 0 */ 611 612static void complete_address_handler(struct kref *kref) 613{ 614 struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref); 615 616 complete(&handler->done); 617} 618 619static void get_address_handler(struct fw_address_handler *handler) 620{ 621 kref_get(&handler->kref); 622} 623 624static int put_address_handler(struct fw_address_handler *handler) 625{ 626 return kref_put(&handler->kref, complete_address_handler); 627} 628 629/** 630 * fw_core_add_address_handler() - register for incoming requests 631 * @handler: callback 632 * @region: region in the IEEE 1212 node space address range 633 * 634 * region->start, ->end, and handler->length have to be quadlet-aligned. 635 * 636 * When a request is received that falls within the specified address range, the specified callback 637 * is invoked. The parameters passed to the callback give the details of the particular request. 638 * The callback is invoked in the workqueue context in most cases. However, if the request is 639 * initiated by the local node, the callback is invoked in the initiator's context. 640 * 641 * To be called in process context. 642 * Return value: 0 on success, non-zero otherwise. 643 * 644 * The start offset of the handler's address region is determined by 645 * fw_core_add_address_handler() and is returned in handler->offset. 646 * 647 * Address allocations are exclusive, except for the FCP registers. 648 */ 649int fw_core_add_address_handler(struct fw_address_handler *handler, 650 const struct fw_address_region *region) 651{ 652 struct fw_address_handler *other; 653 int ret = -EBUSY; 654 655 if (region->start & 0xffff000000000003ULL || 656 region->start >= region->end || 657 region->end > 0x0001000000000000ULL || 658 handler->length & 3 || 659 handler->length == 0) 660 return -EINVAL; 661 662 guard(spinlock)(&address_handler_list_lock); 663 664 handler->offset = region->start; 665 while (handler->offset + handler->length <= region->end) { 666 if (is_in_fcp_region(handler->offset, handler->length)) 667 other = NULL; 668 else 669 other = lookup_overlapping_address_handler 670 (&address_handler_list, 671 handler->offset, handler->length); 672 if (other != NULL) { 673 handler->offset += other->length; 674 } else { 675 init_completion(&handler->done); 676 kref_init(&handler->kref); 677 list_add_tail_rcu(&handler->link, &address_handler_list); 678 ret = 0; 679 break; 680 } 681 } 682 683 return ret; 684} 685EXPORT_SYMBOL(fw_core_add_address_handler); 686 687/** 688 * fw_core_remove_address_handler() - unregister an address handler 689 * @handler: callback 690 * 691 * To be called in process context. 692 * 693 * When fw_core_remove_address_handler() returns, @handler->callback() is 694 * guaranteed to not run on any CPU anymore. 695 */ 696void fw_core_remove_address_handler(struct fw_address_handler *handler) 697{ 698 scoped_guard(spinlock, &address_handler_list_lock) 699 list_del_rcu(&handler->link); 700 701 synchronize_rcu(); 702 703 if (!put_address_handler(handler)) 704 wait_for_completion(&handler->done); 705} 706EXPORT_SYMBOL(fw_core_remove_address_handler); 707 708struct fw_request { 709 struct kref kref; 710 struct fw_packet response; 711 u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; 712 int ack; 713 u32 timestamp; 714 u32 length; 715 u32 data[]; 716}; 717 718void fw_request_get(struct fw_request *request) 719{ 720 kref_get(&request->kref); 721} 722 723static void release_request(struct kref *kref) 724{ 725 struct fw_request *request = container_of(kref, struct fw_request, kref); 726 727 kfree(request); 728} 729 730void fw_request_put(struct fw_request *request) 731{ 732 kref_put(&request->kref, release_request); 733} 734 735static void free_response_callback(struct fw_packet *packet, 736 struct fw_card *card, int status) 737{ 738 struct fw_request *request = container_of(packet, struct fw_request, response); 739 740 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, 741 packet->speed, status, packet->timestamp); 742 743 // Decrease the reference count since not at in-flight. 744 fw_request_put(request); 745 746 // Decrease the reference count to release the object. 747 fw_request_put(request); 748} 749 750int fw_get_response_length(struct fw_request *r) 751{ 752 int tcode, ext_tcode, data_length; 753 754 tcode = async_header_get_tcode(r->request_header); 755 756 switch (tcode) { 757 case TCODE_WRITE_QUADLET_REQUEST: 758 case TCODE_WRITE_BLOCK_REQUEST: 759 return 0; 760 761 case TCODE_READ_QUADLET_REQUEST: 762 return 4; 763 764 case TCODE_READ_BLOCK_REQUEST: 765 data_length = async_header_get_data_length(r->request_header); 766 return data_length; 767 768 case TCODE_LOCK_REQUEST: 769 ext_tcode = async_header_get_extended_tcode(r->request_header); 770 data_length = async_header_get_data_length(r->request_header); 771 switch (ext_tcode) { 772 case EXTCODE_FETCH_ADD: 773 case EXTCODE_LITTLE_ADD: 774 return data_length; 775 default: 776 return data_length / 2; 777 } 778 779 default: 780 WARN(1, "wrong tcode %d\n", tcode); 781 return 0; 782 } 783} 784 785void fw_fill_response(struct fw_packet *response, u32 *request_header, 786 int rcode, void *payload, size_t length) 787{ 788 int tcode, tlabel, extended_tcode, source, destination; 789 790 tcode = async_header_get_tcode(request_header); 791 tlabel = async_header_get_tlabel(request_header); 792 source = async_header_get_destination(request_header); // Exchange. 793 destination = async_header_get_source(request_header); // Exchange. 794 extended_tcode = async_header_get_extended_tcode(request_header); 795 796 async_header_set_retry(response->header, RETRY_1); 797 async_header_set_tlabel(response->header, tlabel); 798 async_header_set_destination(response->header, destination); 799 async_header_set_source(response->header, source); 800 async_header_set_rcode(response->header, rcode); 801 response->header[2] = 0; // The field is reserved. 802 803 switch (tcode) { 804 case TCODE_WRITE_QUADLET_REQUEST: 805 case TCODE_WRITE_BLOCK_REQUEST: 806 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); 807 response->header_length = 12; 808 response->payload_length = 0; 809 break; 810 811 case TCODE_READ_QUADLET_REQUEST: 812 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); 813 if (payload != NULL) 814 async_header_set_quadlet_data(response->header, *(u32 *)payload); 815 else 816 async_header_set_quadlet_data(response->header, 0); 817 response->header_length = 16; 818 response->payload_length = 0; 819 break; 820 821 case TCODE_READ_BLOCK_REQUEST: 822 case TCODE_LOCK_REQUEST: 823 async_header_set_tcode(response->header, tcode + 2); 824 async_header_set_data_length(response->header, length); 825 async_header_set_extended_tcode(response->header, extended_tcode); 826 response->header_length = 16; 827 response->payload = payload; 828 response->payload_length = length; 829 break; 830 831 default: 832 WARN(1, "wrong tcode %d\n", tcode); 833 } 834 835 response->payload_mapped = false; 836} 837EXPORT_SYMBOL(fw_fill_response); 838 839static u32 compute_split_timeout_timestamp(struct fw_card *card, 840 u32 request_timestamp) 841__must_hold(&card->split_timeout.lock) 842{ 843 unsigned int cycles; 844 u32 timestamp; 845 846 lockdep_assert_held(&card->split_timeout.lock); 847 848 cycles = card->split_timeout.cycles; 849 cycles += request_timestamp & 0x1fff; 850 851 timestamp = request_timestamp & ~0x1fff; 852 timestamp += (cycles / 8000) << 13; 853 timestamp |= cycles % 8000; 854 855 return timestamp; 856} 857 858static struct fw_request *allocate_request(struct fw_card *card, 859 struct fw_packet *p) 860{ 861 struct fw_request *request; 862 u32 *data, length; 863 int request_tcode; 864 865 request_tcode = async_header_get_tcode(p->header); 866 switch (request_tcode) { 867 case TCODE_WRITE_QUADLET_REQUEST: 868 data = &p->header[3]; 869 length = 4; 870 break; 871 872 case TCODE_WRITE_BLOCK_REQUEST: 873 case TCODE_LOCK_REQUEST: 874 data = p->payload; 875 length = async_header_get_data_length(p->header); 876 break; 877 878 case TCODE_READ_QUADLET_REQUEST: 879 data = NULL; 880 length = 4; 881 break; 882 883 case TCODE_READ_BLOCK_REQUEST: 884 data = NULL; 885 length = async_header_get_data_length(p->header); 886 break; 887 888 default: 889 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 890 p->header[0], p->header[1], p->header[2]); 891 return NULL; 892 } 893 894 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 895 if (request == NULL) 896 return NULL; 897 kref_init(&request->kref); 898 899 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 900 // local destination never runs in any type of IRQ context. 901 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) 902 request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp); 903 904 request->response.speed = p->speed; 905 request->response.generation = p->generation; 906 request->response.ack = 0; 907 request->response.callback = free_response_callback; 908 request->ack = p->ack; 909 request->timestamp = p->timestamp; 910 request->length = length; 911 if (data) 912 memcpy(request->data, data, length); 913 914 memcpy(request->request_header, p->header, sizeof(p->header)); 915 916 return request; 917} 918 919/** 920 * fw_send_response: - send response packet for asynchronous transaction. 921 * @card: interface to send the response at. 922 * @request: firewire request data for the transaction. 923 * @rcode: response code to send. 924 * 925 * Submit a response packet into the asynchronous response transmission queue. The @request 926 * is going to be released when the transmission successfully finishes later. 927 */ 928void fw_send_response(struct fw_card *card, 929 struct fw_request *request, int rcode) 930{ 931 u32 *data = NULL; 932 unsigned int data_length = 0; 933 934 /* unified transaction or broadcast transaction: don't respond */ 935 if (request->ack != ACK_PENDING || 936 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { 937 fw_request_put(request); 938 return; 939 } 940 941 if (rcode == RCODE_COMPLETE) { 942 data = request->data; 943 data_length = fw_get_response_length(request); 944 } 945 946 fw_fill_response(&request->response, request->request_header, rcode, data, data_length); 947 948 // Increase the reference count so that the object is kept during in-flight. 949 fw_request_get(request); 950 951 trace_async_response_outbound_initiate((uintptr_t)request, card->index, 952 request->response.generation, request->response.speed, 953 request->response.header, data, 954 data ? data_length / 4 : 0); 955 956 card->driver->send_response(card, &request->response); 957} 958EXPORT_SYMBOL(fw_send_response); 959 960/** 961 * fw_get_request_speed() - returns speed at which the @request was received 962 * @request: firewire request data 963 */ 964int fw_get_request_speed(struct fw_request *request) 965{ 966 return request->response.speed; 967} 968EXPORT_SYMBOL(fw_get_request_speed); 969 970/** 971 * fw_request_get_timestamp: Get timestamp of the request. 972 * @request: The opaque pointer to request structure. 973 * 974 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 975 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 976 * field of isochronous cycle time register. 977 * 978 * Returns: timestamp of the request. 979 */ 980u32 fw_request_get_timestamp(const struct fw_request *request) 981{ 982 return request->timestamp; 983} 984EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 985 986static void handle_exclusive_region_request(struct fw_card *card, 987 struct fw_packet *p, 988 struct fw_request *request, 989 unsigned long long offset) 990{ 991 struct fw_address_handler *handler; 992 int tcode, destination, source; 993 994 destination = async_header_get_destination(p->header); 995 source = async_header_get_source(p->header); 996 tcode = async_header_get_tcode(p->header); 997 if (tcode == TCODE_LOCK_REQUEST) 998 tcode = 0x10 + async_header_get_extended_tcode(p->header); 999 1000 scoped_guard(rcu) { 1001 handler = lookup_enclosing_address_handler(&address_handler_list, offset, 1002 request->length); 1003 if (handler) 1004 get_address_handler(handler); 1005 } 1006 1007 if (!handler) { 1008 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1009 return; 1010 } 1011 1012 // Outside the RCU read-side critical section. Without spinlock. With reference count. 1013 handler->address_callback(card, request, tcode, destination, source, p->generation, offset, 1014 request->data, request->length, handler->callback_data); 1015 put_address_handler(handler); 1016} 1017 1018// To use kmalloc allocator efficiently, this should be power of two. 1019#define BUFFER_ON_KERNEL_STACK_SIZE 4 1020 1021static void handle_fcp_region_request(struct fw_card *card, 1022 struct fw_packet *p, 1023 struct fw_request *request, 1024 unsigned long long offset) 1025{ 1026 struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE]; 1027 struct fw_address_handler *handler, **handlers; 1028 int tcode, destination, source, i, count, buffer_size; 1029 1030 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 1031 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 1032 request->length > 0x200) { 1033 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1034 1035 return; 1036 } 1037 1038 tcode = async_header_get_tcode(p->header); 1039 destination = async_header_get_destination(p->header); 1040 source = async_header_get_source(p->header); 1041 1042 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 1043 tcode != TCODE_WRITE_BLOCK_REQUEST) { 1044 fw_send_response(card, request, RCODE_TYPE_ERROR); 1045 1046 return; 1047 } 1048 1049 count = 0; 1050 handlers = buffer_on_kernel_stack; 1051 buffer_size = ARRAY_SIZE(buffer_on_kernel_stack); 1052 scoped_guard(rcu) { 1053 list_for_each_entry_rcu(handler, &address_handler_list, link) { 1054 if (is_enclosing_handler(handler, offset, request->length)) { 1055 if (count >= buffer_size) { 1056 int next_size = buffer_size * 2; 1057 struct fw_address_handler **buffer_on_kernel_heap; 1058 1059 if (handlers == buffer_on_kernel_stack) 1060 buffer_on_kernel_heap = NULL; 1061 else 1062 buffer_on_kernel_heap = handlers; 1063 1064 buffer_on_kernel_heap = 1065 krealloc_array(buffer_on_kernel_heap, next_size, 1066 sizeof(*buffer_on_kernel_heap), GFP_ATOMIC); 1067 // FCP is used for purposes unrelated to significant system 1068 // resources (e.g. storage or networking), so allocation 1069 // failures are not considered so critical. 1070 if (!buffer_on_kernel_heap) 1071 break; 1072 1073 if (handlers == buffer_on_kernel_stack) { 1074 memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack, 1075 sizeof(buffer_on_kernel_stack)); 1076 } 1077 1078 handlers = buffer_on_kernel_heap; 1079 buffer_size = next_size; 1080 } 1081 get_address_handler(handler); 1082 handlers[count++] = handler; 1083 } 1084 } 1085 } 1086 1087 for (i = 0; i < count; ++i) { 1088 handler = handlers[i]; 1089 handler->address_callback(card, request, tcode, destination, source, 1090 p->generation, offset, request->data, 1091 request->length, handler->callback_data); 1092 put_address_handler(handler); 1093 } 1094 1095 if (handlers != buffer_on_kernel_stack) 1096 kfree(handlers); 1097 1098 fw_send_response(card, request, RCODE_COMPLETE); 1099} 1100 1101void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 1102{ 1103 struct fw_request *request; 1104 unsigned long long offset; 1105 unsigned int tcode; 1106 1107 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 1108 return; 1109 1110 tcode = async_header_get_tcode(p->header); 1111 if (tcode_is_link_internal(tcode)) { 1112 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, 1113 p->header[1], p->header[2]); 1114 fw_cdev_handle_phy_packet(card, p); 1115 return; 1116 } 1117 1118 request = allocate_request(card, p); 1119 if (request == NULL) { 1120 /* FIXME: send statically allocated busy packet. */ 1121 return; 1122 } 1123 1124 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, 1125 p->ack, p->timestamp, p->header, request->data, 1126 tcode_is_read_request(tcode) ? 0 : request->length / 4); 1127 1128 offset = async_header_get_offset(p->header); 1129 1130 if (!is_in_fcp_region(offset, request->length)) 1131 handle_exclusive_region_request(card, p, request, offset); 1132 else 1133 handle_fcp_region_request(card, p, request, offset); 1134 1135} 1136EXPORT_SYMBOL(fw_core_handle_request); 1137 1138void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1139{ 1140 struct fw_transaction *t = NULL; 1141 u32 *data; 1142 size_t data_length; 1143 int tcode, tlabel, source, rcode; 1144 1145 tcode = async_header_get_tcode(p->header); 1146 tlabel = async_header_get_tlabel(p->header); 1147 source = async_header_get_source(p->header); 1148 rcode = async_header_get_rcode(p->header); 1149 1150 // FIXME: sanity check packet, is length correct, does tcodes 1151 // and addresses match to the transaction request queried later. 1152 // 1153 // For the tracepoints event, let us decode the header here against the concern. 1154 1155 switch (tcode) { 1156 case TCODE_READ_QUADLET_RESPONSE: 1157 data = (u32 *) &p->header[3]; 1158 data_length = 4; 1159 break; 1160 1161 case TCODE_WRITE_RESPONSE: 1162 data = NULL; 1163 data_length = 0; 1164 break; 1165 1166 case TCODE_READ_BLOCK_RESPONSE: 1167 case TCODE_LOCK_RESPONSE: 1168 data = p->payload; 1169 data_length = async_header_get_data_length(p->header); 1170 break; 1171 1172 default: 1173 /* Should never happen, this is just to shut up gcc. */ 1174 data = NULL; 1175 data_length = 0; 1176 break; 1177 } 1178 1179 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 1180 // local destination never runs in any type of IRQ context. 1181 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 1182 t = find_and_pop_transaction_entry(card, 1183 iter->node_id == source && iter->tlabel == tlabel); 1184 } 1185 1186 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, 1187 p->timestamp, p->header, data, data_length / 4); 1188 1189 if (!t) { 1190 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1191 source, tlabel); 1192 return; 1193 } 1194 1195 /* 1196 * The response handler may be executed while the request handler 1197 * is still pending. Cancel the request handler. 1198 */ 1199 card->driver->cancel_packet(card, &t->packet); 1200 1201 if (!t->with_tstamp) { 1202 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1203 } else { 1204 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1205 data_length, t->callback_data); 1206 } 1207} 1208EXPORT_SYMBOL(fw_core_handle_response); 1209 1210/** 1211 * fw_rcode_string - convert a firewire result code to an error description 1212 * @rcode: the result code 1213 */ 1214const char *fw_rcode_string(int rcode) 1215{ 1216 static const char *const names[] = { 1217 [RCODE_COMPLETE] = "no error", 1218 [RCODE_CONFLICT_ERROR] = "conflict error", 1219 [RCODE_DATA_ERROR] = "data error", 1220 [RCODE_TYPE_ERROR] = "type error", 1221 [RCODE_ADDRESS_ERROR] = "address error", 1222 [RCODE_SEND_ERROR] = "send error", 1223 [RCODE_CANCELLED] = "timeout", 1224 [RCODE_BUSY] = "busy", 1225 [RCODE_GENERATION] = "bus reset", 1226 [RCODE_NO_ACK] = "no ack", 1227 }; 1228 1229 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1230 return names[rcode]; 1231 else 1232 return "unknown"; 1233} 1234EXPORT_SYMBOL(fw_rcode_string); 1235 1236static const struct fw_address_region topology_map_region = 1237 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1238 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1239 1240static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1241 int tcode, int destination, int source, int generation, 1242 unsigned long long offset, void *payload, size_t length, 1243 void *callback_data) 1244{ 1245 int start; 1246 1247 if (!tcode_is_read_request(tcode)) { 1248 fw_send_response(card, request, RCODE_TYPE_ERROR); 1249 return; 1250 } 1251 1252 if ((offset & 3) > 0 || (length & 3) > 0) { 1253 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1254 return; 1255 } 1256 1257 start = (offset - topology_map_region.start) / 4; 1258 1259 // NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local 1260 // destination never runs in any type of IRQ context. 1261 scoped_guard(spinlock_irqsave, &card->topology_map.lock) 1262 memcpy(payload, &card->topology_map.buffer[start], length); 1263 1264 fw_send_response(card, request, RCODE_COMPLETE); 1265} 1266 1267static struct fw_address_handler topology_map = { 1268 .length = 0x400, 1269 .address_callback = handle_topology_map, 1270}; 1271 1272static const struct fw_address_region registers_region = 1273 { .start = CSR_REGISTER_BASE, 1274 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1275 1276static void update_split_timeout(struct fw_card *card) 1277__must_hold(&card->split_timeout.lock) 1278{ 1279 unsigned int cycles; 1280 1281 cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19); 1282 1283 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1284 cycles = clamp(cycles, 800u, 3u * 8000u); 1285 1286 card->split_timeout.cycles = cycles; 1287 card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles); 1288} 1289 1290static void handle_registers(struct fw_card *card, struct fw_request *request, 1291 int tcode, int destination, int source, int generation, 1292 unsigned long long offset, void *payload, size_t length, 1293 void *callback_data) 1294{ 1295 int reg = offset & ~CSR_REGISTER_BASE; 1296 __be32 *data = payload; 1297 int rcode = RCODE_COMPLETE; 1298 1299 switch (reg) { 1300 case CSR_PRIORITY_BUDGET: 1301 if (!card->priority_budget_implemented) { 1302 rcode = RCODE_ADDRESS_ERROR; 1303 break; 1304 } 1305 fallthrough; 1306 1307 case CSR_NODE_IDS: 1308 /* 1309 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1310 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1311 */ 1312 fallthrough; 1313 1314 case CSR_STATE_CLEAR: 1315 case CSR_STATE_SET: 1316 case CSR_CYCLE_TIME: 1317 case CSR_BUS_TIME: 1318 case CSR_BUSY_TIMEOUT: 1319 if (tcode == TCODE_READ_QUADLET_REQUEST) 1320 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1321 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1322 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1323 else 1324 rcode = RCODE_TYPE_ERROR; 1325 break; 1326 1327 case CSR_RESET_START: 1328 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1329 card->driver->write_csr(card, CSR_STATE_CLEAR, 1330 CSR_STATE_BIT_ABDICATE); 1331 else 1332 rcode = RCODE_TYPE_ERROR; 1333 break; 1334 1335 case CSR_SPLIT_TIMEOUT_HI: 1336 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1337 *data = cpu_to_be32(card->split_timeout.hi); 1338 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1339 // NOTE: This can be without irqsave when we can guarantee that 1340 // __fw_send_request() for local destination never runs in any type of IRQ 1341 // context. 1342 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 1343 card->split_timeout.hi = be32_to_cpu(*data) & 7; 1344 update_split_timeout(card); 1345 } 1346 } else { 1347 rcode = RCODE_TYPE_ERROR; 1348 } 1349 break; 1350 1351 case CSR_SPLIT_TIMEOUT_LO: 1352 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1353 *data = cpu_to_be32(card->split_timeout.lo); 1354 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1355 // NOTE: This can be without irqsave when we can guarantee that 1356 // __fw_send_request() for local destination never runs in any type of IRQ 1357 // context. 1358 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 1359 card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000; 1360 update_split_timeout(card); 1361 } 1362 } else { 1363 rcode = RCODE_TYPE_ERROR; 1364 } 1365 break; 1366 1367 case CSR_MAINT_UTILITY: 1368 if (tcode == TCODE_READ_QUADLET_REQUEST) 1369 *data = card->maint_utility_register; 1370 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1371 card->maint_utility_register = *data; 1372 else 1373 rcode = RCODE_TYPE_ERROR; 1374 break; 1375 1376 case CSR_BROADCAST_CHANNEL: 1377 if (tcode == TCODE_READ_QUADLET_REQUEST) 1378 *data = cpu_to_be32(card->broadcast_channel); 1379 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1380 card->broadcast_channel = 1381 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1382 BROADCAST_CHANNEL_INITIAL; 1383 else 1384 rcode = RCODE_TYPE_ERROR; 1385 break; 1386 1387 case CSR_BUS_MANAGER_ID: 1388 case CSR_BANDWIDTH_AVAILABLE: 1389 case CSR_CHANNELS_AVAILABLE_HI: 1390 case CSR_CHANNELS_AVAILABLE_LO: 1391 /* 1392 * FIXME: these are handled by the OHCI hardware and 1393 * the stack never sees these request. If we add 1394 * support for a new type of controller that doesn't 1395 * handle this in hardware we need to deal with these 1396 * transactions. 1397 */ 1398 BUG(); 1399 break; 1400 1401 default: 1402 rcode = RCODE_ADDRESS_ERROR; 1403 break; 1404 } 1405 1406 fw_send_response(card, request, rcode); 1407} 1408 1409static struct fw_address_handler registers = { 1410 .length = 0x400, 1411 .address_callback = handle_registers, 1412}; 1413 1414static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1415 int tcode, int destination, int source, int generation, 1416 unsigned long long offset, void *payload, size_t length, 1417 void *callback_data) 1418{ 1419 /* 1420 * This catches requests not handled by the physical DMA unit, 1421 * i.e., wrong transaction types or unauthorized source nodes. 1422 */ 1423 fw_send_response(card, request, RCODE_TYPE_ERROR); 1424} 1425 1426static struct fw_address_handler low_memory = { 1427 .length = FW_MAX_PHYSICAL_RANGE, 1428 .address_callback = handle_low_memory, 1429}; 1430 1431MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1432MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1433MODULE_LICENSE("GPL"); 1434 1435static const u32 vendor_textual_descriptor[] = { 1436 /* textual descriptor leaf () */ 1437 0x00060000, 1438 0x00000000, 1439 0x00000000, 1440 0x4c696e75, /* L i n u */ 1441 0x78204669, /* x F i */ 1442 0x72657769, /* r e w i */ 1443 0x72650000, /* r e */ 1444}; 1445 1446static const u32 model_textual_descriptor[] = { 1447 /* model descriptor leaf () */ 1448 0x00030000, 1449 0x00000000, 1450 0x00000000, 1451 0x4a756a75, /* J u j u */ 1452}; 1453 1454static struct fw_descriptor vendor_id_descriptor = { 1455 .length = ARRAY_SIZE(vendor_textual_descriptor), 1456 .immediate = 0x03001f11, 1457 .key = 0x81000000, 1458 .data = vendor_textual_descriptor, 1459}; 1460 1461static struct fw_descriptor model_id_descriptor = { 1462 .length = ARRAY_SIZE(model_textual_descriptor), 1463 .immediate = 0x17023901, 1464 .key = 0x81000000, 1465 .data = model_textual_descriptor, 1466}; 1467 1468static int __init fw_core_init(void) 1469{ 1470 int ret; 1471 1472 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM | WQ_UNBOUND, 1473 0); 1474 if (!fw_workqueue) 1475 return -ENOMEM; 1476 1477 ret = bus_register(&fw_bus_type); 1478 if (ret < 0) { 1479 destroy_workqueue(fw_workqueue); 1480 return ret; 1481 } 1482 1483 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1484 if (fw_cdev_major < 0) { 1485 bus_unregister(&fw_bus_type); 1486 destroy_workqueue(fw_workqueue); 1487 return fw_cdev_major; 1488 } 1489 1490 fw_core_add_address_handler(&topology_map, &topology_map_region); 1491 fw_core_add_address_handler(&registers, &registers_region); 1492 fw_core_add_address_handler(&low_memory, &low_memory_region); 1493 fw_core_add_descriptor(&vendor_id_descriptor); 1494 fw_core_add_descriptor(&model_id_descriptor); 1495 1496 return 0; 1497} 1498 1499static void __exit fw_core_cleanup(void) 1500{ 1501 unregister_chrdev(fw_cdev_major, "firewire"); 1502 bus_unregister(&fw_bus_type); 1503 destroy_workqueue(fw_workqueue); 1504 xa_destroy(&fw_device_xa); 1505} 1506 1507module_init(fw_core_init); 1508module_exit(fw_core_cleanup);