Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/dma-fence-unwrap.h>
19#include <linux/anon_inodes.h>
20#include <linux/export.h>
21#include <linux/debugfs.h>
22#include <linux/list.h>
23#include <linux/module.h>
24#include <linux/mutex.h>
25#include <linux/seq_file.h>
26#include <linux/sync_file.h>
27#include <linux/poll.h>
28#include <linux/dma-resv.h>
29#include <linux/mm.h>
30#include <linux/mount.h>
31#include <linux/pseudo_fs.h>
32
33#include <uapi/linux/dma-buf.h>
34#include <uapi/linux/magic.h>
35
36#include "dma-buf-sysfs-stats.h"
37
38static inline int is_dma_buf_file(struct file *);
39
40static DEFINE_MUTEX(dmabuf_list_mutex);
41static LIST_HEAD(dmabuf_list);
42
43static void __dma_buf_list_add(struct dma_buf *dmabuf)
44{
45 mutex_lock(&dmabuf_list_mutex);
46 list_add(&dmabuf->list_node, &dmabuf_list);
47 mutex_unlock(&dmabuf_list_mutex);
48}
49
50static void __dma_buf_list_del(struct dma_buf *dmabuf)
51{
52 if (!dmabuf)
53 return;
54
55 mutex_lock(&dmabuf_list_mutex);
56 list_del(&dmabuf->list_node);
57 mutex_unlock(&dmabuf_list_mutex);
58}
59
60/**
61 * dma_buf_iter_begin - begin iteration through global list of all DMA buffers
62 *
63 * Returns the first buffer in the global list of DMA-bufs that's not in the
64 * process of being destroyed. Increments that buffer's reference count to
65 * prevent buffer destruction. Callers must release the reference, either by
66 * continuing iteration with dma_buf_iter_next(), or with dma_buf_put().
67 *
68 * Return:
69 * * First buffer from global list, with refcount elevated
70 * * NULL if no active buffers are present
71 */
72struct dma_buf *dma_buf_iter_begin(void)
73{
74 struct dma_buf *ret = NULL, *dmabuf;
75
76 /*
77 * The list mutex does not protect a dmabuf's refcount, so it can be
78 * zeroed while we are iterating. We cannot call get_dma_buf() since the
79 * caller may not already own a reference to the buffer.
80 */
81 mutex_lock(&dmabuf_list_mutex);
82 list_for_each_entry(dmabuf, &dmabuf_list, list_node) {
83 if (file_ref_get(&dmabuf->file->f_ref)) {
84 ret = dmabuf;
85 break;
86 }
87 }
88 mutex_unlock(&dmabuf_list_mutex);
89 return ret;
90}
91
92/**
93 * dma_buf_iter_next - continue iteration through global list of all DMA buffers
94 * @dmabuf: [in] pointer to dma_buf
95 *
96 * Decrements the reference count on the provided buffer. Returns the next
97 * buffer from the remainder of the global list of DMA-bufs with its reference
98 * count incremented. Callers must release the reference, either by continuing
99 * iteration with dma_buf_iter_next(), or with dma_buf_put().
100 *
101 * Return:
102 * * Next buffer from global list, with refcount elevated
103 * * NULL if no additional active buffers are present
104 */
105struct dma_buf *dma_buf_iter_next(struct dma_buf *dmabuf)
106{
107 struct dma_buf *ret = NULL;
108
109 /*
110 * The list mutex does not protect a dmabuf's refcount, so it can be
111 * zeroed while we are iterating. We cannot call get_dma_buf() since the
112 * caller may not already own a reference to the buffer.
113 */
114 mutex_lock(&dmabuf_list_mutex);
115 dma_buf_put(dmabuf);
116 list_for_each_entry_continue(dmabuf, &dmabuf_list, list_node) {
117 if (file_ref_get(&dmabuf->file->f_ref)) {
118 ret = dmabuf;
119 break;
120 }
121 }
122 mutex_unlock(&dmabuf_list_mutex);
123 return ret;
124}
125
126static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
127{
128 struct dma_buf *dmabuf;
129 char name[DMA_BUF_NAME_LEN];
130 ssize_t ret = 0;
131
132 dmabuf = dentry->d_fsdata;
133 spin_lock(&dmabuf->name_lock);
134 if (dmabuf->name)
135 ret = strscpy(name, dmabuf->name, sizeof(name));
136 spin_unlock(&dmabuf->name_lock);
137
138 return dynamic_dname(buffer, buflen, "/%s:%s",
139 dentry->d_name.name, ret > 0 ? name : "");
140}
141
142static void dma_buf_release(struct dentry *dentry)
143{
144 struct dma_buf *dmabuf;
145
146 dmabuf = dentry->d_fsdata;
147 if (unlikely(!dmabuf))
148 return;
149
150 BUG_ON(dmabuf->vmapping_counter);
151
152 /*
153 * If you hit this BUG() it could mean:
154 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
155 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
156 */
157 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
158
159 dma_buf_stats_teardown(dmabuf);
160 dmabuf->ops->release(dmabuf);
161
162 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
163 dma_resv_fini(dmabuf->resv);
164
165 WARN_ON(!list_empty(&dmabuf->attachments));
166 module_put(dmabuf->owner);
167 kfree(dmabuf->name);
168 kfree(dmabuf);
169}
170
171static int dma_buf_file_release(struct inode *inode, struct file *file)
172{
173 if (!is_dma_buf_file(file))
174 return -EINVAL;
175
176 __dma_buf_list_del(file->private_data);
177
178 return 0;
179}
180
181static const struct dentry_operations dma_buf_dentry_ops = {
182 .d_dname = dmabuffs_dname,
183 .d_release = dma_buf_release,
184};
185
186static struct vfsmount *dma_buf_mnt;
187
188static int dma_buf_fs_init_context(struct fs_context *fc)
189{
190 struct pseudo_fs_context *ctx;
191
192 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
193 if (!ctx)
194 return -ENOMEM;
195 ctx->dops = &dma_buf_dentry_ops;
196 return 0;
197}
198
199static struct file_system_type dma_buf_fs_type = {
200 .name = "dmabuf",
201 .init_fs_context = dma_buf_fs_init_context,
202 .kill_sb = kill_anon_super,
203};
204
205static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
206{
207 struct dma_buf *dmabuf;
208
209 if (!is_dma_buf_file(file))
210 return -EINVAL;
211
212 dmabuf = file->private_data;
213
214 /* check if buffer supports mmap */
215 if (!dmabuf->ops->mmap)
216 return -EINVAL;
217
218 /* check for overflowing the buffer's size */
219 if (vma->vm_pgoff + vma_pages(vma) >
220 dmabuf->size >> PAGE_SHIFT)
221 return -EINVAL;
222
223 return dmabuf->ops->mmap(dmabuf, vma);
224}
225
226static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
227{
228 struct dma_buf *dmabuf;
229 loff_t base;
230
231 if (!is_dma_buf_file(file))
232 return -EBADF;
233
234 dmabuf = file->private_data;
235
236 /* only support discovering the end of the buffer,
237 * but also allow SEEK_SET to maintain the idiomatic
238 * SEEK_END(0), SEEK_CUR(0) pattern.
239 */
240 if (whence == SEEK_END)
241 base = dmabuf->size;
242 else if (whence == SEEK_SET)
243 base = 0;
244 else
245 return -EINVAL;
246
247 if (offset != 0)
248 return -EINVAL;
249
250 return base + offset;
251}
252
253/**
254 * DOC: implicit fence polling
255 *
256 * To support cross-device and cross-driver synchronization of buffer access
257 * implicit fences (represented internally in the kernel with &struct dma_fence)
258 * can be attached to a &dma_buf. The glue for that and a few related things are
259 * provided in the &dma_resv structure.
260 *
261 * Userspace can query the state of these implicitly tracked fences using poll()
262 * and related system calls:
263 *
264 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
265 * most recent write or exclusive fence.
266 *
267 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
268 * all attached fences, shared and exclusive ones.
269 *
270 * Note that this only signals the completion of the respective fences, i.e. the
271 * DMA transfers are complete. Cache flushing and any other necessary
272 * preparations before CPU access can begin still need to happen.
273 *
274 * As an alternative to poll(), the set of fences on DMA buffer can be
275 * exported as a &sync_file using &dma_buf_sync_file_export.
276 */
277
278static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
279{
280 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
281 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
282 unsigned long flags;
283
284 spin_lock_irqsave(&dcb->poll->lock, flags);
285 wake_up_locked_poll(dcb->poll, dcb->active);
286 dcb->active = 0;
287 spin_unlock_irqrestore(&dcb->poll->lock, flags);
288 dma_fence_put(fence);
289 /* Paired with get_file in dma_buf_poll */
290 fput(dmabuf->file);
291}
292
293static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
294 struct dma_buf_poll_cb_t *dcb)
295{
296 struct dma_resv_iter cursor;
297 struct dma_fence *fence;
298 int r;
299
300 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
301 fence) {
302 dma_fence_get(fence);
303 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
304 if (!r)
305 return true;
306 dma_fence_put(fence);
307 }
308
309 return false;
310}
311
312static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
313{
314 struct dma_buf *dmabuf;
315 struct dma_resv *resv;
316 __poll_t events;
317
318 dmabuf = file->private_data;
319 if (!dmabuf || !dmabuf->resv)
320 return EPOLLERR;
321
322 resv = dmabuf->resv;
323
324 poll_wait(file, &dmabuf->poll, poll);
325
326 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
327 if (!events)
328 return 0;
329
330 dma_resv_lock(resv, NULL);
331
332 if (events & EPOLLOUT) {
333 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
334
335 /* Check that callback isn't busy */
336 spin_lock_irq(&dmabuf->poll.lock);
337 if (dcb->active)
338 events &= ~EPOLLOUT;
339 else
340 dcb->active = EPOLLOUT;
341 spin_unlock_irq(&dmabuf->poll.lock);
342
343 if (events & EPOLLOUT) {
344 /* Paired with fput in dma_buf_poll_cb */
345 get_file(dmabuf->file);
346
347 if (!dma_buf_poll_add_cb(resv, true, dcb))
348 /* No callback queued, wake up any other waiters */
349 dma_buf_poll_cb(NULL, &dcb->cb);
350 else
351 events &= ~EPOLLOUT;
352 }
353 }
354
355 if (events & EPOLLIN) {
356 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
357
358 /* Check that callback isn't busy */
359 spin_lock_irq(&dmabuf->poll.lock);
360 if (dcb->active)
361 events &= ~EPOLLIN;
362 else
363 dcb->active = EPOLLIN;
364 spin_unlock_irq(&dmabuf->poll.lock);
365
366 if (events & EPOLLIN) {
367 /* Paired with fput in dma_buf_poll_cb */
368 get_file(dmabuf->file);
369
370 if (!dma_buf_poll_add_cb(resv, false, dcb))
371 /* No callback queued, wake up any other waiters */
372 dma_buf_poll_cb(NULL, &dcb->cb);
373 else
374 events &= ~EPOLLIN;
375 }
376 }
377
378 dma_resv_unlock(resv);
379 return events;
380}
381
382/**
383 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
384 * It could support changing the name of the dma-buf if the same
385 * piece of memory is used for multiple purpose between different devices.
386 *
387 * @dmabuf: [in] dmabuf buffer that will be renamed.
388 * @buf: [in] A piece of userspace memory that contains the name of
389 * the dma-buf.
390 *
391 * Returns 0 on success. If the dma-buf buffer is already attached to
392 * devices, return -EBUSY.
393 *
394 */
395static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
396{
397 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
398
399 if (IS_ERR(name))
400 return PTR_ERR(name);
401
402 spin_lock(&dmabuf->name_lock);
403 kfree(dmabuf->name);
404 dmabuf->name = name;
405 spin_unlock(&dmabuf->name_lock);
406
407 return 0;
408}
409
410#if IS_ENABLED(CONFIG_SYNC_FILE)
411static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
412 void __user *user_data)
413{
414 struct dma_buf_export_sync_file arg;
415 enum dma_resv_usage usage;
416 struct dma_fence *fence = NULL;
417 struct sync_file *sync_file;
418 int fd, ret;
419
420 if (copy_from_user(&arg, user_data, sizeof(arg)))
421 return -EFAULT;
422
423 if (arg.flags & ~DMA_BUF_SYNC_RW)
424 return -EINVAL;
425
426 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
427 return -EINVAL;
428
429 fd = get_unused_fd_flags(O_CLOEXEC);
430 if (fd < 0)
431 return fd;
432
433 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
434 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
435 if (ret)
436 goto err_put_fd;
437
438 if (!fence)
439 fence = dma_fence_get_stub();
440
441 sync_file = sync_file_create(fence);
442
443 dma_fence_put(fence);
444
445 if (!sync_file) {
446 ret = -ENOMEM;
447 goto err_put_fd;
448 }
449
450 arg.fd = fd;
451 if (copy_to_user(user_data, &arg, sizeof(arg))) {
452 ret = -EFAULT;
453 goto err_put_file;
454 }
455
456 fd_install(fd, sync_file->file);
457
458 return 0;
459
460err_put_file:
461 fput(sync_file->file);
462err_put_fd:
463 put_unused_fd(fd);
464 return ret;
465}
466
467static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
468 const void __user *user_data)
469{
470 struct dma_buf_import_sync_file arg;
471 struct dma_fence *fence, *f;
472 enum dma_resv_usage usage;
473 struct dma_fence_unwrap iter;
474 unsigned int num_fences;
475 int ret = 0;
476
477 if (copy_from_user(&arg, user_data, sizeof(arg)))
478 return -EFAULT;
479
480 if (arg.flags & ~DMA_BUF_SYNC_RW)
481 return -EINVAL;
482
483 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
484 return -EINVAL;
485
486 fence = sync_file_get_fence(arg.fd);
487 if (!fence)
488 return -EINVAL;
489
490 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
491 DMA_RESV_USAGE_READ;
492
493 num_fences = 0;
494 dma_fence_unwrap_for_each(f, &iter, fence)
495 ++num_fences;
496
497 if (num_fences > 0) {
498 dma_resv_lock(dmabuf->resv, NULL);
499
500 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
501 if (!ret) {
502 dma_fence_unwrap_for_each(f, &iter, fence)
503 dma_resv_add_fence(dmabuf->resv, f, usage);
504 }
505
506 dma_resv_unlock(dmabuf->resv);
507 }
508
509 dma_fence_put(fence);
510
511 return ret;
512}
513#endif
514
515static long dma_buf_ioctl(struct file *file,
516 unsigned int cmd, unsigned long arg)
517{
518 struct dma_buf *dmabuf;
519 struct dma_buf_sync sync;
520 enum dma_data_direction direction;
521 int ret;
522
523 dmabuf = file->private_data;
524
525 switch (cmd) {
526 case DMA_BUF_IOCTL_SYNC:
527 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
528 return -EFAULT;
529
530 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
531 return -EINVAL;
532
533 switch (sync.flags & DMA_BUF_SYNC_RW) {
534 case DMA_BUF_SYNC_READ:
535 direction = DMA_FROM_DEVICE;
536 break;
537 case DMA_BUF_SYNC_WRITE:
538 direction = DMA_TO_DEVICE;
539 break;
540 case DMA_BUF_SYNC_RW:
541 direction = DMA_BIDIRECTIONAL;
542 break;
543 default:
544 return -EINVAL;
545 }
546
547 if (sync.flags & DMA_BUF_SYNC_END)
548 ret = dma_buf_end_cpu_access(dmabuf, direction);
549 else
550 ret = dma_buf_begin_cpu_access(dmabuf, direction);
551
552 return ret;
553
554 case DMA_BUF_SET_NAME_A:
555 case DMA_BUF_SET_NAME_B:
556 return dma_buf_set_name(dmabuf, (const char __user *)arg);
557
558#if IS_ENABLED(CONFIG_SYNC_FILE)
559 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
560 return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
561 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
562 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
563#endif
564
565 default:
566 return -ENOTTY;
567 }
568}
569
570static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
571{
572 struct dma_buf *dmabuf = file->private_data;
573
574 seq_printf(m, "size:\t%zu\n", dmabuf->size);
575 /* Don't count the temporary reference taken inside procfs seq_show */
576 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
577 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
578 spin_lock(&dmabuf->name_lock);
579 if (dmabuf->name)
580 seq_printf(m, "name:\t%s\n", dmabuf->name);
581 spin_unlock(&dmabuf->name_lock);
582}
583
584static const struct file_operations dma_buf_fops = {
585 .release = dma_buf_file_release,
586 .mmap = dma_buf_mmap_internal,
587 .llseek = dma_buf_llseek,
588 .poll = dma_buf_poll,
589 .unlocked_ioctl = dma_buf_ioctl,
590 .compat_ioctl = compat_ptr_ioctl,
591 .show_fdinfo = dma_buf_show_fdinfo,
592};
593
594/*
595 * is_dma_buf_file - Check if struct file* is associated with dma_buf
596 */
597static inline int is_dma_buf_file(struct file *file)
598{
599 return file->f_op == &dma_buf_fops;
600}
601
602static struct file *dma_buf_getfile(size_t size, int flags)
603{
604 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
605 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
606 struct file *file;
607
608 if (IS_ERR(inode))
609 return ERR_CAST(inode);
610
611 inode->i_size = size;
612 inode_set_bytes(inode, size);
613
614 /*
615 * The ->i_ino acquired from get_next_ino() is not unique thus
616 * not suitable for using it as dentry name by dmabuf stats.
617 * Override ->i_ino with the unique and dmabuffs specific
618 * value.
619 */
620 inode->i_ino = atomic64_inc_return(&dmabuf_inode);
621 flags &= O_ACCMODE | O_NONBLOCK;
622 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
623 flags, &dma_buf_fops);
624 if (IS_ERR(file))
625 goto err_alloc_file;
626
627 return file;
628
629err_alloc_file:
630 iput(inode);
631 return file;
632}
633
634/**
635 * DOC: dma buf device access
636 *
637 * For device DMA access to a shared DMA buffer the usual sequence of operations
638 * is fairly simple:
639 *
640 * 1. The exporter defines his exporter instance using
641 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
642 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
643 * as a file descriptor by calling dma_buf_fd().
644 *
645 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
646 * to share with: First the file descriptor is converted to a &dma_buf using
647 * dma_buf_get(). Then the buffer is attached to the device using
648 * dma_buf_attach().
649 *
650 * Up to this stage the exporter is still free to migrate or reallocate the
651 * backing storage.
652 *
653 * 3. Once the buffer is attached to all devices userspace can initiate DMA
654 * access to the shared buffer. In the kernel this is done by calling
655 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
656 *
657 * 4. Once a driver is done with a shared buffer it needs to call
658 * dma_buf_detach() (after cleaning up any mappings) and then release the
659 * reference acquired with dma_buf_get() by calling dma_buf_put().
660 *
661 * For the detailed semantics exporters are expected to implement see
662 * &dma_buf_ops.
663 */
664
665/**
666 * dma_buf_export - Creates a new dma_buf, and associates an anon file
667 * with this buffer, so it can be exported.
668 * Also connect the allocator specific data and ops to the buffer.
669 * Additionally, provide a name string for exporter; useful in debugging.
670 *
671 * @exp_info: [in] holds all the export related information provided
672 * by the exporter. see &struct dma_buf_export_info
673 * for further details.
674 *
675 * Returns, on success, a newly created struct dma_buf object, which wraps the
676 * supplied private data and operations for struct dma_buf_ops. On either
677 * missing ops, or error in allocating struct dma_buf, will return negative
678 * error.
679 *
680 * For most cases the easiest way to create @exp_info is through the
681 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
682 */
683struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
684{
685 struct dma_buf *dmabuf;
686 struct dma_resv *resv = exp_info->resv;
687 struct file *file;
688 size_t alloc_size = sizeof(struct dma_buf);
689 int ret;
690
691 if (WARN_ON(!exp_info->priv || !exp_info->ops
692 || !exp_info->ops->map_dma_buf
693 || !exp_info->ops->unmap_dma_buf
694 || !exp_info->ops->release))
695 return ERR_PTR(-EINVAL);
696
697 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
698 return ERR_PTR(-EINVAL);
699
700 if (!try_module_get(exp_info->owner))
701 return ERR_PTR(-ENOENT);
702
703 file = dma_buf_getfile(exp_info->size, exp_info->flags);
704 if (IS_ERR(file)) {
705 ret = PTR_ERR(file);
706 goto err_module;
707 }
708
709 if (!exp_info->resv)
710 alloc_size += sizeof(struct dma_resv);
711 else
712 /* prevent &dma_buf[1] == dma_buf->resv */
713 alloc_size += 1;
714 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
715 if (!dmabuf) {
716 ret = -ENOMEM;
717 goto err_file;
718 }
719
720 dmabuf->priv = exp_info->priv;
721 dmabuf->ops = exp_info->ops;
722 dmabuf->size = exp_info->size;
723 dmabuf->exp_name = exp_info->exp_name;
724 dmabuf->owner = exp_info->owner;
725 spin_lock_init(&dmabuf->name_lock);
726 init_waitqueue_head(&dmabuf->poll);
727 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
728 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
729 INIT_LIST_HEAD(&dmabuf->attachments);
730
731 if (!resv) {
732 dmabuf->resv = (struct dma_resv *)&dmabuf[1];
733 dma_resv_init(dmabuf->resv);
734 } else {
735 dmabuf->resv = resv;
736 }
737
738 ret = dma_buf_stats_setup(dmabuf, file);
739 if (ret)
740 goto err_dmabuf;
741
742 file->private_data = dmabuf;
743 file->f_path.dentry->d_fsdata = dmabuf;
744 dmabuf->file = file;
745
746 __dma_buf_list_add(dmabuf);
747
748 return dmabuf;
749
750err_dmabuf:
751 if (!resv)
752 dma_resv_fini(dmabuf->resv);
753 kfree(dmabuf);
754err_file:
755 fput(file);
756err_module:
757 module_put(exp_info->owner);
758 return ERR_PTR(ret);
759}
760EXPORT_SYMBOL_NS_GPL(dma_buf_export, "DMA_BUF");
761
762/**
763 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
764 * @dmabuf: [in] pointer to dma_buf for which fd is required.
765 * @flags: [in] flags to give to fd
766 *
767 * On success, returns an associated 'fd'. Else, returns error.
768 */
769int dma_buf_fd(struct dma_buf *dmabuf, int flags)
770{
771 if (!dmabuf || !dmabuf->file)
772 return -EINVAL;
773
774 return FD_ADD(flags, dmabuf->file);
775}
776EXPORT_SYMBOL_NS_GPL(dma_buf_fd, "DMA_BUF");
777
778/**
779 * dma_buf_get - returns the struct dma_buf related to an fd
780 * @fd: [in] fd associated with the struct dma_buf to be returned
781 *
782 * On success, returns the struct dma_buf associated with an fd; uses
783 * file's refcounting done by fget to increase refcount. returns ERR_PTR
784 * otherwise.
785 */
786struct dma_buf *dma_buf_get(int fd)
787{
788 struct file *file;
789
790 file = fget(fd);
791
792 if (!file)
793 return ERR_PTR(-EBADF);
794
795 if (!is_dma_buf_file(file)) {
796 fput(file);
797 return ERR_PTR(-EINVAL);
798 }
799
800 return file->private_data;
801}
802EXPORT_SYMBOL_NS_GPL(dma_buf_get, "DMA_BUF");
803
804/**
805 * dma_buf_put - decreases refcount of the buffer
806 * @dmabuf: [in] buffer to reduce refcount of
807 *
808 * Uses file's refcounting done implicitly by fput().
809 *
810 * If, as a result of this call, the refcount becomes 0, the 'release' file
811 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
812 * in turn, and frees the memory allocated for dmabuf when exported.
813 */
814void dma_buf_put(struct dma_buf *dmabuf)
815{
816 if (WARN_ON(!dmabuf || !dmabuf->file))
817 return;
818
819 fput(dmabuf->file);
820}
821EXPORT_SYMBOL_NS_GPL(dma_buf_put, "DMA_BUF");
822
823static void mangle_sg_table(struct sg_table *sg_table)
824{
825#ifdef CONFIG_DMABUF_DEBUG
826 int i;
827 struct scatterlist *sg;
828
829 /* To catch abuse of the underlying struct page by importers mix
830 * up the bits, but take care to preserve the low SG_ bits to
831 * not corrupt the sgt. The mixing is undone on unmap
832 * before passing the sgt back to the exporter.
833 */
834 for_each_sgtable_sg(sg_table, sg, i)
835 sg->page_link ^= ~0xffUL;
836#endif
837
838}
839
840static inline bool
841dma_buf_attachment_is_dynamic(struct dma_buf_attachment *attach)
842{
843 return !!attach->importer_ops;
844}
845
846static bool
847dma_buf_pin_on_map(struct dma_buf_attachment *attach)
848{
849 return attach->dmabuf->ops->pin &&
850 (!dma_buf_attachment_is_dynamic(attach) ||
851 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY));
852}
853
854/**
855 * DOC: locking convention
856 *
857 * In order to avoid deadlock situations between dma-buf exports and importers,
858 * all dma-buf API users must follow the common dma-buf locking convention.
859 *
860 * Convention for importers
861 *
862 * 1. Importers must hold the dma-buf reservation lock when calling these
863 * functions:
864 *
865 * - dma_buf_pin()
866 * - dma_buf_unpin()
867 * - dma_buf_map_attachment()
868 * - dma_buf_unmap_attachment()
869 * - dma_buf_vmap()
870 * - dma_buf_vunmap()
871 *
872 * 2. Importers must not hold the dma-buf reservation lock when calling these
873 * functions:
874 *
875 * - dma_buf_attach()
876 * - dma_buf_dynamic_attach()
877 * - dma_buf_detach()
878 * - dma_buf_export()
879 * - dma_buf_fd()
880 * - dma_buf_get()
881 * - dma_buf_put()
882 * - dma_buf_mmap()
883 * - dma_buf_begin_cpu_access()
884 * - dma_buf_end_cpu_access()
885 * - dma_buf_map_attachment_unlocked()
886 * - dma_buf_unmap_attachment_unlocked()
887 * - dma_buf_vmap_unlocked()
888 * - dma_buf_vunmap_unlocked()
889 *
890 * Convention for exporters
891 *
892 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
893 * reservation and exporter can take the lock:
894 *
895 * - &dma_buf_ops.attach()
896 * - &dma_buf_ops.detach()
897 * - &dma_buf_ops.release()
898 * - &dma_buf_ops.begin_cpu_access()
899 * - &dma_buf_ops.end_cpu_access()
900 * - &dma_buf_ops.mmap()
901 *
902 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
903 * reservation and exporter can't take the lock:
904 *
905 * - &dma_buf_ops.pin()
906 * - &dma_buf_ops.unpin()
907 * - &dma_buf_ops.map_dma_buf()
908 * - &dma_buf_ops.unmap_dma_buf()
909 * - &dma_buf_ops.vmap()
910 * - &dma_buf_ops.vunmap()
911 *
912 * 3. Exporters must hold the dma-buf reservation lock when calling these
913 * functions:
914 *
915 * - dma_buf_move_notify()
916 */
917
918/**
919 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
920 * @dmabuf: [in] buffer to attach device to.
921 * @dev: [in] device to be attached.
922 * @importer_ops: [in] importer operations for the attachment
923 * @importer_priv: [in] importer private pointer for the attachment
924 *
925 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
926 * must be cleaned up by calling dma_buf_detach().
927 *
928 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
929 * functionality.
930 *
931 * Returns:
932 *
933 * A pointer to newly created &dma_buf_attachment on success, or a negative
934 * error code wrapped into a pointer on failure.
935 *
936 * Note that this can fail if the backing storage of @dmabuf is in a place not
937 * accessible to @dev, and cannot be moved to a more suitable place. This is
938 * indicated with the error code -EBUSY.
939 */
940struct dma_buf_attachment *
941dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
942 const struct dma_buf_attach_ops *importer_ops,
943 void *importer_priv)
944{
945 struct dma_buf_attachment *attach;
946 int ret;
947
948 if (WARN_ON(!dmabuf || !dev))
949 return ERR_PTR(-EINVAL);
950
951 if (WARN_ON(importer_ops && !importer_ops->move_notify))
952 return ERR_PTR(-EINVAL);
953
954 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
955 if (!attach)
956 return ERR_PTR(-ENOMEM);
957
958 attach->dev = dev;
959 attach->dmabuf = dmabuf;
960 if (importer_ops)
961 attach->peer2peer = importer_ops->allow_peer2peer;
962 attach->importer_ops = importer_ops;
963 attach->importer_priv = importer_priv;
964
965 if (dmabuf->ops->attach) {
966 ret = dmabuf->ops->attach(dmabuf, attach);
967 if (ret)
968 goto err_attach;
969 }
970 dma_resv_lock(dmabuf->resv, NULL);
971 list_add(&attach->node, &dmabuf->attachments);
972 dma_resv_unlock(dmabuf->resv);
973
974 return attach;
975
976err_attach:
977 kfree(attach);
978 return ERR_PTR(ret);
979}
980EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, "DMA_BUF");
981
982/**
983 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
984 * @dmabuf: [in] buffer to attach device to.
985 * @dev: [in] device to be attached.
986 *
987 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
988 * mapping.
989 */
990struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
991 struct device *dev)
992{
993 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
994}
995EXPORT_SYMBOL_NS_GPL(dma_buf_attach, "DMA_BUF");
996
997/**
998 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
999 * @dmabuf: [in] buffer to detach from.
1000 * @attach: [in] attachment to be detached; is free'd after this call.
1001 *
1002 * Clean up a device attachment obtained by calling dma_buf_attach().
1003 *
1004 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1005 */
1006void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1007{
1008 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1009 return;
1010
1011 dma_resv_lock(dmabuf->resv, NULL);
1012 list_del(&attach->node);
1013 dma_resv_unlock(dmabuf->resv);
1014
1015 if (dmabuf->ops->detach)
1016 dmabuf->ops->detach(dmabuf, attach);
1017
1018 kfree(attach);
1019}
1020EXPORT_SYMBOL_NS_GPL(dma_buf_detach, "DMA_BUF");
1021
1022/**
1023 * dma_buf_pin - Lock down the DMA-buf
1024 * @attach: [in] attachment which should be pinned
1025 *
1026 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1027 * call this, and only for limited use cases like scanout and not for temporary
1028 * pin operations. It is not permitted to allow userspace to pin arbitrary
1029 * amounts of buffers through this interface.
1030 *
1031 * Buffers must be unpinned by calling dma_buf_unpin().
1032 *
1033 * Returns:
1034 * 0 on success, negative error code on failure.
1035 */
1036int dma_buf_pin(struct dma_buf_attachment *attach)
1037{
1038 struct dma_buf *dmabuf = attach->dmabuf;
1039 int ret = 0;
1040
1041 WARN_ON(!attach->importer_ops);
1042
1043 dma_resv_assert_held(dmabuf->resv);
1044
1045 if (dmabuf->ops->pin)
1046 ret = dmabuf->ops->pin(attach);
1047
1048 return ret;
1049}
1050EXPORT_SYMBOL_NS_GPL(dma_buf_pin, "DMA_BUF");
1051
1052/**
1053 * dma_buf_unpin - Unpin a DMA-buf
1054 * @attach: [in] attachment which should be unpinned
1055 *
1056 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1057 * any mapping of @attach again and inform the importer through
1058 * &dma_buf_attach_ops.move_notify.
1059 */
1060void dma_buf_unpin(struct dma_buf_attachment *attach)
1061{
1062 struct dma_buf *dmabuf = attach->dmabuf;
1063
1064 WARN_ON(!attach->importer_ops);
1065
1066 dma_resv_assert_held(dmabuf->resv);
1067
1068 if (dmabuf->ops->unpin)
1069 dmabuf->ops->unpin(attach);
1070}
1071EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, "DMA_BUF");
1072
1073/**
1074 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1075 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1076 * dma_buf_ops.
1077 * @attach: [in] attachment whose scatterlist is to be returned
1078 * @direction: [in] direction of DMA transfer
1079 *
1080 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1081 * on error. May return -EINTR if it is interrupted by a signal.
1082 *
1083 * On success, the DMA addresses and lengths in the returned scatterlist are
1084 * PAGE_SIZE aligned.
1085 *
1086 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1087 * the underlying backing storage is pinned for as long as a mapping exists,
1088 * therefore users/importers should not hold onto a mapping for undue amounts of
1089 * time.
1090 *
1091 * Important: Dynamic importers must wait for the exclusive fence of the struct
1092 * dma_resv attached to the DMA-BUF first.
1093 */
1094struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1095 enum dma_data_direction direction)
1096{
1097 struct sg_table *sg_table;
1098 signed long ret;
1099
1100 might_sleep();
1101
1102 if (WARN_ON(!attach || !attach->dmabuf))
1103 return ERR_PTR(-EINVAL);
1104
1105 dma_resv_assert_held(attach->dmabuf->resv);
1106
1107 if (dma_buf_pin_on_map(attach)) {
1108 ret = attach->dmabuf->ops->pin(attach);
1109 /*
1110 * Catch exporters making buffers inaccessible even when
1111 * attachments preventing that exist.
1112 */
1113 WARN_ON_ONCE(ret == -EBUSY);
1114 if (ret)
1115 return ERR_PTR(ret);
1116 }
1117
1118 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
1119 if (!sg_table)
1120 sg_table = ERR_PTR(-ENOMEM);
1121 if (IS_ERR(sg_table))
1122 goto error_unpin;
1123
1124 /*
1125 * Importers with static attachments don't wait for fences.
1126 */
1127 if (!dma_buf_attachment_is_dynamic(attach)) {
1128 ret = dma_resv_wait_timeout(attach->dmabuf->resv,
1129 DMA_RESV_USAGE_KERNEL, true,
1130 MAX_SCHEDULE_TIMEOUT);
1131 if (ret < 0)
1132 goto error_unmap;
1133 }
1134 mangle_sg_table(sg_table);
1135
1136#ifdef CONFIG_DMA_API_DEBUG
1137 {
1138 struct scatterlist *sg;
1139 u64 addr;
1140 int len;
1141 int i;
1142
1143 for_each_sgtable_dma_sg(sg_table, sg, i) {
1144 addr = sg_dma_address(sg);
1145 len = sg_dma_len(sg);
1146 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1147 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1148 __func__, addr, len);
1149 }
1150 }
1151 }
1152#endif /* CONFIG_DMA_API_DEBUG */
1153 return sg_table;
1154
1155error_unmap:
1156 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1157 sg_table = ERR_PTR(ret);
1158
1159error_unpin:
1160 if (dma_buf_pin_on_map(attach))
1161 attach->dmabuf->ops->unpin(attach);
1162
1163 return sg_table;
1164}
1165EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, "DMA_BUF");
1166
1167/**
1168 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1169 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1170 * dma_buf_ops.
1171 * @attach: [in] attachment whose scatterlist is to be returned
1172 * @direction: [in] direction of DMA transfer
1173 *
1174 * Unlocked variant of dma_buf_map_attachment().
1175 */
1176struct sg_table *
1177dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1178 enum dma_data_direction direction)
1179{
1180 struct sg_table *sg_table;
1181
1182 might_sleep();
1183
1184 if (WARN_ON(!attach || !attach->dmabuf))
1185 return ERR_PTR(-EINVAL);
1186
1187 dma_resv_lock(attach->dmabuf->resv, NULL);
1188 sg_table = dma_buf_map_attachment(attach, direction);
1189 dma_resv_unlock(attach->dmabuf->resv);
1190
1191 return sg_table;
1192}
1193EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, "DMA_BUF");
1194
1195/**
1196 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1197 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1198 * dma_buf_ops.
1199 * @attach: [in] attachment to unmap buffer from
1200 * @sg_table: [in] scatterlist info of the buffer to unmap
1201 * @direction: [in] direction of DMA transfer
1202 *
1203 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1204 */
1205void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1206 struct sg_table *sg_table,
1207 enum dma_data_direction direction)
1208{
1209 might_sleep();
1210
1211 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1212 return;
1213
1214 dma_resv_assert_held(attach->dmabuf->resv);
1215
1216 mangle_sg_table(sg_table);
1217 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1218
1219 if (dma_buf_pin_on_map(attach))
1220 attach->dmabuf->ops->unpin(attach);
1221}
1222EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, "DMA_BUF");
1223
1224/**
1225 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1226 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1227 * dma_buf_ops.
1228 * @attach: [in] attachment to unmap buffer from
1229 * @sg_table: [in] scatterlist info of the buffer to unmap
1230 * @direction: [in] direction of DMA transfer
1231 *
1232 * Unlocked variant of dma_buf_unmap_attachment().
1233 */
1234void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1235 struct sg_table *sg_table,
1236 enum dma_data_direction direction)
1237{
1238 might_sleep();
1239
1240 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1241 return;
1242
1243 dma_resv_lock(attach->dmabuf->resv, NULL);
1244 dma_buf_unmap_attachment(attach, sg_table, direction);
1245 dma_resv_unlock(attach->dmabuf->resv);
1246}
1247EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, "DMA_BUF");
1248
1249/**
1250 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1251 *
1252 * @dmabuf: [in] buffer which is moving
1253 *
1254 * Informs all attachments that they need to destroy and recreate all their
1255 * mappings.
1256 */
1257void dma_buf_move_notify(struct dma_buf *dmabuf)
1258{
1259 struct dma_buf_attachment *attach;
1260
1261 dma_resv_assert_held(dmabuf->resv);
1262
1263 list_for_each_entry(attach, &dmabuf->attachments, node)
1264 if (attach->importer_ops)
1265 attach->importer_ops->move_notify(attach);
1266}
1267EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, "DMA_BUF");
1268
1269/**
1270 * DOC: cpu access
1271 *
1272 * There are multiple reasons for supporting CPU access to a dma buffer object:
1273 *
1274 * - Fallback operations in the kernel, for example when a device is connected
1275 * over USB and the kernel needs to shuffle the data around first before
1276 * sending it away. Cache coherency is handled by bracketing any transactions
1277 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1278 * access.
1279 *
1280 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1281 * vmap interface is introduced. Note that on very old 32-bit architectures
1282 * vmalloc space might be limited and result in vmap calls failing.
1283 *
1284 * Interfaces:
1285 *
1286 * .. code-block:: c
1287 *
1288 * void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1289 * void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1290 *
1291 * The vmap call can fail if there is no vmap support in the exporter, or if
1292 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1293 * count for all vmap access and calls down into the exporter's vmap function
1294 * only when no vmapping exists, and only unmaps it once. Protection against
1295 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1296 *
1297 * - For full compatibility on the importer side with existing userspace
1298 * interfaces, which might already support mmap'ing buffers. This is needed in
1299 * many processing pipelines (e.g. feeding a software rendered image into a
1300 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1301 * framework already supported this and for DMA buffer file descriptors to
1302 * replace ION buffers mmap support was needed.
1303 *
1304 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1305 * fd. But like for CPU access there's a need to bracket the actual access,
1306 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1307 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1308 * be restarted.
1309 *
1310 * Some systems might need some sort of cache coherency management e.g. when
1311 * CPU and GPU domains are being accessed through dma-buf at the same time.
1312 * To circumvent this problem there are begin/end coherency markers, that
1313 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1314 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1315 * sequence would be used like following:
1316 *
1317 * - mmap dma-buf fd
1318 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1319 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1320 * want (with the new data being consumed by say the GPU or the scanout
1321 * device)
1322 * - munmap once you don't need the buffer any more
1323 *
1324 * For correctness and optimal performance, it is always required to use
1325 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1326 * mapped address. Userspace cannot rely on coherent access, even when there
1327 * are systems where it just works without calling these ioctls.
1328 *
1329 * - And as a CPU fallback in userspace processing pipelines.
1330 *
1331 * Similar to the motivation for kernel cpu access it is again important that
1332 * the userspace code of a given importing subsystem can use the same
1333 * interfaces with a imported dma-buf buffer object as with a native buffer
1334 * object. This is especially important for drm where the userspace part of
1335 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1336 * use a different way to mmap a buffer rather invasive.
1337 *
1338 * The assumption in the current dma-buf interfaces is that redirecting the
1339 * initial mmap is all that's needed. A survey of some of the existing
1340 * subsystems shows that no driver seems to do any nefarious thing like
1341 * syncing up with outstanding asynchronous processing on the device or
1342 * allocating special resources at fault time. So hopefully this is good
1343 * enough, since adding interfaces to intercept pagefaults and allow pte
1344 * shootdowns would increase the complexity quite a bit.
1345 *
1346 * Interface:
1347 *
1348 * .. code-block:: c
1349 *
1350 * int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);
1351 *
1352 * If the importing subsystem simply provides a special-purpose mmap call to
1353 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1354 * equally achieve that for a dma-buf object.
1355 */
1356
1357static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1358 enum dma_data_direction direction)
1359{
1360 bool write = (direction == DMA_BIDIRECTIONAL ||
1361 direction == DMA_TO_DEVICE);
1362 struct dma_resv *resv = dmabuf->resv;
1363 long ret;
1364
1365 /* Wait on any implicit rendering fences */
1366 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1367 true, MAX_SCHEDULE_TIMEOUT);
1368 if (ret < 0)
1369 return ret;
1370
1371 return 0;
1372}
1373
1374/**
1375 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1376 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1377 * preparations. Coherency is only guaranteed in the specified range for the
1378 * specified access direction.
1379 * @dmabuf: [in] buffer to prepare cpu access for.
1380 * @direction: [in] direction of access.
1381 *
1382 * After the cpu access is complete the caller should call
1383 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1384 * it guaranteed to be coherent with other DMA access.
1385 *
1386 * This function will also wait for any DMA transactions tracked through
1387 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1388 * synchronization this function will only ensure cache coherency, callers must
1389 * ensure synchronization with such DMA transactions on their own.
1390 *
1391 * Can return negative error values, returns 0 on success.
1392 */
1393int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1394 enum dma_data_direction direction)
1395{
1396 int ret = 0;
1397
1398 if (WARN_ON(!dmabuf))
1399 return -EINVAL;
1400
1401 might_lock(&dmabuf->resv->lock.base);
1402
1403 if (dmabuf->ops->begin_cpu_access)
1404 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1405
1406 /* Ensure that all fences are waited upon - but we first allow
1407 * the native handler the chance to do so more efficiently if it
1408 * chooses. A double invocation here will be reasonably cheap no-op.
1409 */
1410 if (ret == 0)
1411 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1412
1413 return ret;
1414}
1415EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, "DMA_BUF");
1416
1417/**
1418 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1419 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1420 * actions. Coherency is only guaranteed in the specified range for the
1421 * specified access direction.
1422 * @dmabuf: [in] buffer to complete cpu access for.
1423 * @direction: [in] direction of access.
1424 *
1425 * This terminates CPU access started with dma_buf_begin_cpu_access().
1426 *
1427 * Can return negative error values, returns 0 on success.
1428 */
1429int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1430 enum dma_data_direction direction)
1431{
1432 int ret = 0;
1433
1434 WARN_ON(!dmabuf);
1435
1436 might_lock(&dmabuf->resv->lock.base);
1437
1438 if (dmabuf->ops->end_cpu_access)
1439 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1440
1441 return ret;
1442}
1443EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, "DMA_BUF");
1444
1445
1446/**
1447 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1448 * @dmabuf: [in] buffer that should back the vma
1449 * @vma: [in] vma for the mmap
1450 * @pgoff: [in] offset in pages where this mmap should start within the
1451 * dma-buf buffer.
1452 *
1453 * This function adjusts the passed in vma so that it points at the file of the
1454 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1455 * checking on the size of the vma. Then it calls the exporters mmap function to
1456 * set up the mapping.
1457 *
1458 * Can return negative error values, returns 0 on success.
1459 */
1460int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1461 unsigned long pgoff)
1462{
1463 if (WARN_ON(!dmabuf || !vma))
1464 return -EINVAL;
1465
1466 /* check if buffer supports mmap */
1467 if (!dmabuf->ops->mmap)
1468 return -EINVAL;
1469
1470 /* check for offset overflow */
1471 if (pgoff + vma_pages(vma) < pgoff)
1472 return -EOVERFLOW;
1473
1474 /* check for overflowing the buffer's size */
1475 if (pgoff + vma_pages(vma) >
1476 dmabuf->size >> PAGE_SHIFT)
1477 return -EINVAL;
1478
1479 /* readjust the vma */
1480 vma_set_file(vma, dmabuf->file);
1481 vma->vm_pgoff = pgoff;
1482
1483 return dmabuf->ops->mmap(dmabuf, vma);
1484}
1485EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, "DMA_BUF");
1486
1487/**
1488 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1489 * address space. Same restrictions as for vmap and friends apply.
1490 * @dmabuf: [in] buffer to vmap
1491 * @map: [out] returns the vmap pointer
1492 *
1493 * This call may fail due to lack of virtual mapping address space.
1494 * These calls are optional in drivers. The intended use for them
1495 * is for mapping objects linear in kernel space for high use objects.
1496 *
1497 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1498 * dma_buf_end_cpu_access() around any cpu access performed through this
1499 * mapping.
1500 *
1501 * Returns 0 on success, or a negative errno code otherwise.
1502 */
1503int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1504{
1505 struct iosys_map ptr;
1506 int ret;
1507
1508 iosys_map_clear(map);
1509
1510 if (WARN_ON(!dmabuf))
1511 return -EINVAL;
1512
1513 dma_resv_assert_held(dmabuf->resv);
1514
1515 if (!dmabuf->ops->vmap)
1516 return -EINVAL;
1517
1518 if (dmabuf->vmapping_counter) {
1519 dmabuf->vmapping_counter++;
1520 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1521 *map = dmabuf->vmap_ptr;
1522 return 0;
1523 }
1524
1525 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1526
1527 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1528 if (WARN_ON_ONCE(ret))
1529 return ret;
1530
1531 dmabuf->vmap_ptr = ptr;
1532 dmabuf->vmapping_counter = 1;
1533
1534 *map = dmabuf->vmap_ptr;
1535
1536 return 0;
1537}
1538EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, "DMA_BUF");
1539
1540/**
1541 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1542 * address space. Same restrictions as for vmap and friends apply.
1543 * @dmabuf: [in] buffer to vmap
1544 * @map: [out] returns the vmap pointer
1545 *
1546 * Unlocked version of dma_buf_vmap()
1547 *
1548 * Returns 0 on success, or a negative errno code otherwise.
1549 */
1550int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1551{
1552 int ret;
1553
1554 iosys_map_clear(map);
1555
1556 if (WARN_ON(!dmabuf))
1557 return -EINVAL;
1558
1559 dma_resv_lock(dmabuf->resv, NULL);
1560 ret = dma_buf_vmap(dmabuf, map);
1561 dma_resv_unlock(dmabuf->resv);
1562
1563 return ret;
1564}
1565EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, "DMA_BUF");
1566
1567/**
1568 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1569 * @dmabuf: [in] buffer to vunmap
1570 * @map: [in] vmap pointer to vunmap
1571 */
1572void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1573{
1574 if (WARN_ON(!dmabuf))
1575 return;
1576
1577 dma_resv_assert_held(dmabuf->resv);
1578
1579 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1580 BUG_ON(dmabuf->vmapping_counter == 0);
1581 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1582
1583 if (--dmabuf->vmapping_counter == 0) {
1584 if (dmabuf->ops->vunmap)
1585 dmabuf->ops->vunmap(dmabuf, map);
1586 iosys_map_clear(&dmabuf->vmap_ptr);
1587 }
1588}
1589EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, "DMA_BUF");
1590
1591/**
1592 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1593 * @dmabuf: [in] buffer to vunmap
1594 * @map: [in] vmap pointer to vunmap
1595 */
1596void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1597{
1598 if (WARN_ON(!dmabuf))
1599 return;
1600
1601 dma_resv_lock(dmabuf->resv, NULL);
1602 dma_buf_vunmap(dmabuf, map);
1603 dma_resv_unlock(dmabuf->resv);
1604}
1605EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, "DMA_BUF");
1606
1607#ifdef CONFIG_DEBUG_FS
1608static int dma_buf_debug_show(struct seq_file *s, void *unused)
1609{
1610 struct dma_buf *buf_obj;
1611 struct dma_buf_attachment *attach_obj;
1612 int count = 0, attach_count;
1613 size_t size = 0;
1614 int ret;
1615
1616 ret = mutex_lock_interruptible(&dmabuf_list_mutex);
1617
1618 if (ret)
1619 return ret;
1620
1621 seq_puts(s, "\nDma-buf Objects:\n");
1622 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1623 "size", "flags", "mode", "count", "ino");
1624
1625 list_for_each_entry(buf_obj, &dmabuf_list, list_node) {
1626
1627 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1628 if (ret)
1629 goto error_unlock;
1630
1631
1632 spin_lock(&buf_obj->name_lock);
1633 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1634 buf_obj->size,
1635 buf_obj->file->f_flags, buf_obj->file->f_mode,
1636 file_count(buf_obj->file),
1637 buf_obj->exp_name,
1638 file_inode(buf_obj->file)->i_ino,
1639 buf_obj->name ?: "<none>");
1640 spin_unlock(&buf_obj->name_lock);
1641
1642 dma_resv_describe(buf_obj->resv, s);
1643
1644 seq_puts(s, "\tAttached Devices:\n");
1645 attach_count = 0;
1646
1647 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1648 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1649 attach_count++;
1650 }
1651 dma_resv_unlock(buf_obj->resv);
1652
1653 seq_printf(s, "Total %d devices attached\n\n",
1654 attach_count);
1655
1656 count++;
1657 size += buf_obj->size;
1658 }
1659
1660 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1661
1662 mutex_unlock(&dmabuf_list_mutex);
1663 return 0;
1664
1665error_unlock:
1666 mutex_unlock(&dmabuf_list_mutex);
1667 return ret;
1668}
1669
1670DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1671
1672static struct dentry *dma_buf_debugfs_dir;
1673
1674static int dma_buf_init_debugfs(void)
1675{
1676 struct dentry *d;
1677 int err = 0;
1678
1679 d = debugfs_create_dir("dma_buf", NULL);
1680 if (IS_ERR(d))
1681 return PTR_ERR(d);
1682
1683 dma_buf_debugfs_dir = d;
1684
1685 d = debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir,
1686 NULL, &dma_buf_debug_fops);
1687 if (IS_ERR(d)) {
1688 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1689 debugfs_remove_recursive(dma_buf_debugfs_dir);
1690 dma_buf_debugfs_dir = NULL;
1691 err = PTR_ERR(d);
1692 }
1693
1694 return err;
1695}
1696
1697static void dma_buf_uninit_debugfs(void)
1698{
1699 debugfs_remove_recursive(dma_buf_debugfs_dir);
1700}
1701#else
1702static inline int dma_buf_init_debugfs(void)
1703{
1704 return 0;
1705}
1706static inline void dma_buf_uninit_debugfs(void)
1707{
1708}
1709#endif
1710
1711static int __init dma_buf_init(void)
1712{
1713 int ret;
1714
1715 ret = dma_buf_init_sysfs_statistics();
1716 if (ret)
1717 return ret;
1718
1719 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1720 if (IS_ERR(dma_buf_mnt))
1721 return PTR_ERR(dma_buf_mnt);
1722
1723 dma_buf_init_debugfs();
1724 return 0;
1725}
1726subsys_initcall(dma_buf_init);
1727
1728static void __exit dma_buf_deinit(void)
1729{
1730 dma_buf_uninit_debugfs();
1731 kern_unmount(dma_buf_mnt);
1732 dma_buf_uninit_sysfs_statistics();
1733}
1734__exitcall(dma_buf_deinit);