Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/string_choices.h>
29#include <linux/suspend.h>
30#include <linux/syscore_ops.h>
31#include <linux/tick.h>
32#include <linux/units.h>
33#include <trace/events/power.h>
34
35static LIST_HEAD(cpufreq_policy_list);
36
37/* Macros to iterate over CPU policies */
38#define for_each_suitable_policy(__policy, __active) \
39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 if ((__active) == !policy_is_inactive(__policy))
41
42#define for_each_active_policy(__policy) \
43 for_each_suitable_policy(__policy, true)
44#define for_each_inactive_policy(__policy) \
45 for_each_suitable_policy(__policy, false)
46
47/* Iterate over governors */
48static LIST_HEAD(cpufreq_governor_list);
49#define for_each_governor(__governor) \
50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51
52static char default_governor[CPUFREQ_NAME_LEN];
53
54/*
55 * The "cpufreq driver" - the arch- or hardware-dependent low
56 * level driver of CPUFreq support, and its spinlock. This lock
57 * also protects the cpufreq_cpu_data array.
58 */
59static struct cpufreq_driver *cpufreq_driver;
60static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61static DEFINE_RWLOCK(cpufreq_driver_lock);
62
63static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
64bool cpufreq_supports_freq_invariance(void)
65{
66 return static_branch_likely(&cpufreq_freq_invariance);
67}
68
69/* Flag to suspend/resume CPUFreq governors */
70static bool cpufreq_suspended;
71
72static inline bool has_target(void)
73{
74 return cpufreq_driver->target_index || cpufreq_driver->target;
75}
76
77bool has_target_index(void)
78{
79 return !!cpufreq_driver->target_index;
80}
81
82/* internal prototypes */
83static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84static int cpufreq_init_governor(struct cpufreq_policy *policy);
85static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 struct cpufreq_governor *new_gov,
89 unsigned int new_pol);
90static bool cpufreq_boost_supported(void);
91static int cpufreq_boost_trigger_state(int state);
92
93/*
94 * Two notifier lists: the "policy" list is involved in the
95 * validation process for a new CPU frequency policy; the
96 * "transition" list for kernel code that needs to handle
97 * changes to devices when the CPU clock speed changes.
98 * The mutex locks both lists.
99 */
100static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102
103static int off __read_mostly;
104static int cpufreq_disabled(void)
105{
106 return off;
107}
108void disable_cpufreq(void)
109{
110 off = 1;
111}
112EXPORT_SYMBOL_GPL(disable_cpufreq);
113
114static DEFINE_MUTEX(cpufreq_governor_mutex);
115
116bool have_governor_per_policy(void)
117{
118 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119}
120EXPORT_SYMBOL_GPL(have_governor_per_policy);
121
122static struct kobject *cpufreq_global_kobject;
123
124struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
125{
126 if (have_governor_per_policy())
127 return &policy->kobj;
128 else
129 return cpufreq_global_kobject;
130}
131EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
132
133static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
134{
135 struct kernel_cpustat kcpustat;
136 u64 cur_wall_time;
137 u64 idle_time;
138 u64 busy_time;
139
140 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
141
142 kcpustat_cpu_fetch(&kcpustat, cpu);
143
144 busy_time = kcpustat.cpustat[CPUTIME_USER];
145 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
146 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
147 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
148 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
149 busy_time += kcpustat.cpustat[CPUTIME_NICE];
150
151 idle_time = cur_wall_time - busy_time;
152 if (wall)
153 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
154
155 return div_u64(idle_time, NSEC_PER_USEC);
156}
157
158u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
159{
160 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
161
162 if (idle_time == -1ULL)
163 return get_cpu_idle_time_jiffy(cpu, wall);
164 else if (!io_busy)
165 idle_time += get_cpu_iowait_time_us(cpu, wall);
166
167 return idle_time;
168}
169EXPORT_SYMBOL_GPL(get_cpu_idle_time);
170
171/*
172 * This is a generic cpufreq init() routine which can be used by cpufreq
173 * drivers of SMP systems. It will do following:
174 * - validate & show freq table passed
175 * - set policies transition latency
176 * - policy->cpus with all possible CPUs
177 */
178void cpufreq_generic_init(struct cpufreq_policy *policy,
179 struct cpufreq_frequency_table *table,
180 unsigned int transition_latency)
181{
182 policy->freq_table = table;
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190}
191EXPORT_SYMBOL_GPL(cpufreq_generic_init);
192
193struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
194{
195 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
196
197 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
198}
199EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
200
201unsigned int cpufreq_generic_get(unsigned int cpu)
202{
203 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
204
205 if (!policy || IS_ERR(policy->clk)) {
206 pr_err("%s: No %s associated to cpu: %d\n",
207 __func__, policy ? "clk" : "policy", cpu);
208 return 0;
209 }
210
211 return clk_get_rate(policy->clk) / 1000;
212}
213EXPORT_SYMBOL_GPL(cpufreq_generic_get);
214
215/**
216 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
217 * @cpu: CPU to find the policy for.
218 *
219 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
220 * the kobject reference counter of that policy. Return a valid policy on
221 * success or NULL on failure.
222 *
223 * The policy returned by this function has to be released with the help of
224 * cpufreq_cpu_put() to balance its kobject reference counter properly.
225 */
226struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
227{
228 struct cpufreq_policy *policy = NULL;
229 unsigned long flags;
230
231 if (WARN_ON(cpu >= nr_cpu_ids))
232 return NULL;
233
234 /* get the cpufreq driver */
235 read_lock_irqsave(&cpufreq_driver_lock, flags);
236
237 if (cpufreq_driver) {
238 /* get the CPU */
239 policy = cpufreq_cpu_get_raw(cpu);
240 if (policy)
241 kobject_get(&policy->kobj);
242 }
243
244 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
245
246 return policy;
247}
248EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
249
250/**
251 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
252 * @policy: cpufreq policy returned by cpufreq_cpu_get().
253 */
254void cpufreq_cpu_put(struct cpufreq_policy *policy)
255{
256 kobject_put(&policy->kobj);
257}
258EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
259
260/*********************************************************************
261 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
262 *********************************************************************/
263
264/**
265 * adjust_jiffies - Adjust the system "loops_per_jiffy".
266 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
267 * @ci: Frequency change information.
268 *
269 * This function alters the system "loops_per_jiffy" for the clock
270 * speed change. Note that loops_per_jiffy cannot be updated on SMP
271 * systems as each CPU might be scaled differently. So, use the arch
272 * per-CPU loops_per_jiffy value wherever possible.
273 */
274static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
275{
276#ifndef CONFIG_SMP
277 static unsigned long l_p_j_ref;
278 static unsigned int l_p_j_ref_freq;
279
280 if (ci->flags & CPUFREQ_CONST_LOOPS)
281 return;
282
283 if (!l_p_j_ref_freq) {
284 l_p_j_ref = loops_per_jiffy;
285 l_p_j_ref_freq = ci->old;
286 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
287 l_p_j_ref, l_p_j_ref_freq);
288 }
289 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
290 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
291 ci->new);
292 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
293 loops_per_jiffy, ci->new);
294 }
295#endif
296}
297
298/**
299 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
300 * @policy: cpufreq policy to enable fast frequency switching for.
301 * @freqs: contain details of the frequency update.
302 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
303 *
304 * This function calls the transition notifiers and adjust_jiffies().
305 *
306 * It is called twice on all CPU frequency changes that have external effects.
307 */
308static void cpufreq_notify_transition(struct cpufreq_policy *policy,
309 struct cpufreq_freqs *freqs,
310 unsigned int state)
311{
312 int cpu;
313
314 BUG_ON(irqs_disabled());
315
316 if (cpufreq_disabled())
317 return;
318
319 freqs->policy = policy;
320 freqs->flags = cpufreq_driver->flags;
321 pr_debug("notification %u of frequency transition to %u kHz\n",
322 state, freqs->new);
323
324 switch (state) {
325 case CPUFREQ_PRECHANGE:
326 /*
327 * Detect if the driver reported a value as "old frequency"
328 * which is not equal to what the cpufreq core thinks is
329 * "old frequency".
330 */
331 if (policy->cur && policy->cur != freqs->old) {
332 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 freqs->old, policy->cur);
334 freqs->old = policy->cur;
335 }
336
337 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 CPUFREQ_PRECHANGE, freqs);
339
340 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
341 break;
342
343 case CPUFREQ_POSTCHANGE:
344 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
345 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
346 cpumask_pr_args(policy->cpus));
347
348 for_each_cpu(cpu, policy->cpus)
349 trace_cpu_frequency(freqs->new, cpu);
350
351 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
352 CPUFREQ_POSTCHANGE, freqs);
353
354 cpufreq_stats_record_transition(policy, freqs->new);
355 policy->cur = freqs->new;
356 }
357}
358
359/* Do post notifications when there are chances that transition has failed */
360static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
361 struct cpufreq_freqs *freqs, int transition_failed)
362{
363 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
364 if (!transition_failed)
365 return;
366
367 swap(freqs->old, freqs->new);
368 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370}
371
372void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
373 struct cpufreq_freqs *freqs)
374{
375
376 /*
377 * Catch double invocations of _begin() which lead to self-deadlock.
378 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
379 * doesn't invoke _begin() on their behalf, and hence the chances of
380 * double invocations are very low. Moreover, there are scenarios
381 * where these checks can emit false-positive warnings in these
382 * drivers; so we avoid that by skipping them altogether.
383 */
384 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
385 && current == policy->transition_task);
386
387wait:
388 wait_event(policy->transition_wait, !policy->transition_ongoing);
389
390 spin_lock(&policy->transition_lock);
391
392 if (unlikely(policy->transition_ongoing)) {
393 spin_unlock(&policy->transition_lock);
394 goto wait;
395 }
396
397 policy->transition_ongoing = true;
398 policy->transition_task = current;
399
400 spin_unlock(&policy->transition_lock);
401
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403}
404EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
405
406void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
407 struct cpufreq_freqs *freqs, int transition_failed)
408{
409 if (WARN_ON(!policy->transition_ongoing))
410 return;
411
412 cpufreq_notify_post_transition(policy, freqs, transition_failed);
413
414 arch_set_freq_scale(policy->related_cpus,
415 policy->cur,
416 arch_scale_freq_ref(policy->cpu));
417
418 spin_lock(&policy->transition_lock);
419 policy->transition_ongoing = false;
420 policy->transition_task = NULL;
421 spin_unlock(&policy->transition_lock);
422
423 wake_up(&policy->transition_wait);
424}
425EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427/*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431static int cpufreq_fast_switch_count;
432static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434static void cpufreq_list_transition_notifiers(void)
435{
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pS\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446}
447
448/**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460{
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476}
477EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479/**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484{
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492}
493EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495static unsigned int __resolve_freq(struct cpufreq_policy *policy,
496 unsigned int target_freq,
497 unsigned int min, unsigned int max,
498 unsigned int relation)
499{
500 unsigned int idx;
501
502 target_freq = clamp_val(target_freq, min, max);
503
504 if (!policy->freq_table)
505 return target_freq;
506
507 idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
508 policy->cached_resolved_idx = idx;
509 policy->cached_target_freq = target_freq;
510 return policy->freq_table[idx].frequency;
511}
512
513/**
514 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
515 * one.
516 * @policy: associated policy to interrogate
517 * @target_freq: target frequency to resolve.
518 *
519 * The target to driver frequency mapping is cached in the policy.
520 *
521 * Return: Lowest driver-supported frequency greater than or equal to the
522 * given target_freq, subject to policy (min/max) and driver limitations.
523 */
524unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
525 unsigned int target_freq)
526{
527 unsigned int min = READ_ONCE(policy->min);
528 unsigned int max = READ_ONCE(policy->max);
529
530 /*
531 * If this function runs in parallel with cpufreq_set_policy(), it may
532 * read policy->min before the update and policy->max after the update
533 * or the other way around, so there is no ordering guarantee.
534 *
535 * Resolve this by always honoring the max (in case it comes from
536 * thermal throttling or similar).
537 */
538 if (unlikely(min > max))
539 min = max;
540
541 return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
542}
543EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
544
545unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
546{
547 unsigned int latency;
548
549 if (policy->transition_delay_us)
550 return policy->transition_delay_us;
551
552 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
553 if (latency)
554 /* Give a 50% breathing room between updates */
555 return latency + (latency >> 1);
556
557 return USEC_PER_MSEC;
558}
559EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
560
561/*********************************************************************
562 * SYSFS INTERFACE *
563 *********************************************************************/
564static ssize_t show_boost(struct kobject *kobj,
565 struct kobj_attribute *attr, char *buf)
566{
567 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
568}
569
570static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
571 const char *buf, size_t count)
572{
573 bool enable;
574
575 if (kstrtobool(buf, &enable))
576 return -EINVAL;
577
578 if (cpufreq_boost_trigger_state(enable)) {
579 pr_err("%s: Cannot %s BOOST!\n",
580 __func__, str_enable_disable(enable));
581 return -EINVAL;
582 }
583
584 pr_debug("%s: cpufreq BOOST %s\n",
585 __func__, str_enabled_disabled(enable));
586
587 return count;
588}
589define_one_global_rw(boost);
590
591static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
592{
593 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
594}
595
596static int policy_set_boost(struct cpufreq_policy *policy, bool enable)
597{
598 int ret;
599
600 if (policy->boost_enabled == enable)
601 return 0;
602
603 policy->boost_enabled = enable;
604
605 ret = cpufreq_driver->set_boost(policy, enable);
606 if (ret)
607 policy->boost_enabled = !policy->boost_enabled;
608
609 return ret;
610}
611
612static ssize_t store_local_boost(struct cpufreq_policy *policy,
613 const char *buf, size_t count)
614{
615 int ret;
616 bool enable;
617
618 if (kstrtobool(buf, &enable))
619 return -EINVAL;
620
621 if (!cpufreq_driver->boost_enabled)
622 return -EINVAL;
623
624 if (!policy->boost_supported)
625 return -EINVAL;
626
627 ret = policy_set_boost(policy, enable);
628 if (!ret)
629 return count;
630
631 return ret;
632}
633
634static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
635
636static struct cpufreq_governor *find_governor(const char *str_governor)
637{
638 struct cpufreq_governor *t;
639
640 for_each_governor(t)
641 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
642 return t;
643
644 return NULL;
645}
646
647static struct cpufreq_governor *get_governor(const char *str_governor)
648{
649 struct cpufreq_governor *t;
650
651 mutex_lock(&cpufreq_governor_mutex);
652 t = find_governor(str_governor);
653 if (!t)
654 goto unlock;
655
656 if (!try_module_get(t->owner))
657 t = NULL;
658
659unlock:
660 mutex_unlock(&cpufreq_governor_mutex);
661
662 return t;
663}
664
665static unsigned int cpufreq_parse_policy(char *str_governor)
666{
667 if (!strncasecmp(str_governor, "performance", strlen("performance")))
668 return CPUFREQ_POLICY_PERFORMANCE;
669
670 if (!strncasecmp(str_governor, "powersave", strlen("powersave")))
671 return CPUFREQ_POLICY_POWERSAVE;
672
673 return CPUFREQ_POLICY_UNKNOWN;
674}
675
676/**
677 * cpufreq_parse_governor - parse a governor string only for has_target()
678 * @str_governor: Governor name.
679 */
680static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
681{
682 struct cpufreq_governor *t;
683
684 t = get_governor(str_governor);
685 if (t)
686 return t;
687
688 if (request_module("cpufreq_%s", str_governor))
689 return NULL;
690
691 return get_governor(str_governor);
692}
693
694/*
695 * cpufreq_per_cpu_attr_read() / show_##file_name() -
696 * print out cpufreq information
697 *
698 * Write out information from cpufreq_driver->policy[cpu]; object must be
699 * "unsigned int".
700 */
701
702#define show_one(file_name, object) \
703static ssize_t show_##file_name \
704(struct cpufreq_policy *policy, char *buf) \
705{ \
706 return sysfs_emit(buf, "%u\n", policy->object); \
707}
708
709show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710show_one(cpuinfo_max_freq, cpuinfo.max_freq);
711show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
712show_one(scaling_min_freq, min);
713show_one(scaling_max_freq, max);
714
715__weak int arch_freq_get_on_cpu(int cpu)
716{
717 return -EOPNOTSUPP;
718}
719
720static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
721{
722 return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
723}
724
725static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
726{
727 ssize_t ret;
728 int freq;
729
730 freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
731 ? arch_freq_get_on_cpu(policy->cpu)
732 : 0;
733
734 if (freq > 0)
735 ret = sysfs_emit(buf, "%u\n", freq);
736 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
737 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
738 else
739 ret = sysfs_emit(buf, "%u\n", policy->cur);
740 return ret;
741}
742
743/*
744 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
745 */
746#define store_one(file_name, object) \
747static ssize_t store_##file_name \
748(struct cpufreq_policy *policy, const char *buf, size_t count) \
749{ \
750 unsigned long val; \
751 int ret; \
752 \
753 ret = kstrtoul(buf, 0, &val); \
754 if (ret) \
755 return ret; \
756 \
757 ret = freq_qos_update_request(policy->object##_freq_req, val);\
758 return ret >= 0 ? count : ret; \
759}
760
761store_one(scaling_min_freq, min);
762store_one(scaling_max_freq, max);
763
764/*
765 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
766 */
767static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
768 char *buf)
769{
770 unsigned int cur_freq = __cpufreq_get(policy);
771
772 if (cur_freq)
773 return sysfs_emit(buf, "%u\n", cur_freq);
774
775 return sysfs_emit(buf, "<unknown>\n");
776}
777
778/*
779 * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
780 */
781static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
782 char *buf)
783{
784 int avg_freq = arch_freq_get_on_cpu(policy->cpu);
785
786 if (avg_freq > 0)
787 return sysfs_emit(buf, "%u\n", avg_freq);
788 return avg_freq != 0 ? avg_freq : -EINVAL;
789}
790
791/*
792 * show_scaling_governor - show the current policy for the specified CPU
793 */
794static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
795{
796 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
797 return sysfs_emit(buf, "powersave\n");
798 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
799 return sysfs_emit(buf, "performance\n");
800 else if (policy->governor)
801 return sysfs_emit(buf, "%s\n", policy->governor->name);
802 return -EINVAL;
803}
804
805/*
806 * store_scaling_governor - store policy for the specified CPU
807 */
808static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
809 const char *buf, size_t count)
810{
811 char str_governor[CPUFREQ_NAME_LEN];
812 int ret;
813
814 ret = sscanf(buf, "%15s", str_governor);
815 if (ret != 1)
816 return -EINVAL;
817
818 if (cpufreq_driver->setpolicy) {
819 unsigned int new_pol;
820
821 new_pol = cpufreq_parse_policy(str_governor);
822 if (!new_pol)
823 return -EINVAL;
824
825 ret = cpufreq_set_policy(policy, NULL, new_pol);
826 } else {
827 struct cpufreq_governor *new_gov;
828
829 new_gov = cpufreq_parse_governor(str_governor);
830 if (!new_gov)
831 return -EINVAL;
832
833 ret = cpufreq_set_policy(policy, new_gov,
834 CPUFREQ_POLICY_UNKNOWN);
835
836 module_put(new_gov->owner);
837 }
838
839 return ret ? ret : count;
840}
841
842/*
843 * show_scaling_driver - show the cpufreq driver currently loaded
844 */
845static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
846{
847 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
848}
849
850/*
851 * show_scaling_available_governors - show the available CPUfreq governors
852 */
853static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
854 char *buf)
855{
856 ssize_t i = 0;
857 struct cpufreq_governor *t;
858
859 if (!has_target()) {
860 i += sysfs_emit(buf, "performance powersave");
861 goto out;
862 }
863
864 mutex_lock(&cpufreq_governor_mutex);
865 for_each_governor(t) {
866 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
867 - (CPUFREQ_NAME_LEN + 2)))
868 break;
869 i += sysfs_emit_at(buf, i, "%s ", t->name);
870 }
871 mutex_unlock(&cpufreq_governor_mutex);
872out:
873 i += sysfs_emit_at(buf, i, "\n");
874 return i;
875}
876
877ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
878{
879 ssize_t i = 0;
880 unsigned int cpu;
881
882 for_each_cpu(cpu, mask) {
883 i += sysfs_emit_at(buf, i, "%u ", cpu);
884 if (i >= (PAGE_SIZE - 5))
885 break;
886 }
887
888 /* Remove the extra space at the end */
889 i--;
890
891 i += sysfs_emit_at(buf, i, "\n");
892 return i;
893}
894EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
895
896/*
897 * show_related_cpus - show the CPUs affected by each transition even if
898 * hw coordination is in use
899 */
900static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
901{
902 return cpufreq_show_cpus(policy->related_cpus, buf);
903}
904
905/*
906 * show_affected_cpus - show the CPUs affected by each transition
907 */
908static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
909{
910 return cpufreq_show_cpus(policy->cpus, buf);
911}
912
913static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
914 const char *buf, size_t count)
915{
916 unsigned int freq = 0;
917 int ret;
918
919 if (!policy->governor || !policy->governor->store_setspeed)
920 return -EINVAL;
921
922 ret = kstrtouint(buf, 0, &freq);
923 if (ret)
924 return ret;
925
926 policy->governor->store_setspeed(policy, freq);
927
928 return count;
929}
930
931static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
932{
933 if (!policy->governor || !policy->governor->show_setspeed)
934 return sysfs_emit(buf, "<unsupported>\n");
935
936 return policy->governor->show_setspeed(policy, buf);
937}
938
939/*
940 * show_bios_limit - show the current cpufreq HW/BIOS limitation
941 */
942static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
943{
944 unsigned int limit;
945 int ret;
946 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
947 if (!ret)
948 return sysfs_emit(buf, "%u\n", limit);
949 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
950}
951
952cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
953cpufreq_freq_attr_ro(cpuinfo_avg_freq);
954cpufreq_freq_attr_ro(cpuinfo_min_freq);
955cpufreq_freq_attr_ro(cpuinfo_max_freq);
956cpufreq_freq_attr_ro(cpuinfo_transition_latency);
957cpufreq_freq_attr_ro(scaling_available_governors);
958cpufreq_freq_attr_ro(scaling_driver);
959cpufreq_freq_attr_ro(scaling_cur_freq);
960cpufreq_freq_attr_ro(bios_limit);
961cpufreq_freq_attr_ro(related_cpus);
962cpufreq_freq_attr_ro(affected_cpus);
963cpufreq_freq_attr_rw(scaling_min_freq);
964cpufreq_freq_attr_rw(scaling_max_freq);
965cpufreq_freq_attr_rw(scaling_governor);
966cpufreq_freq_attr_rw(scaling_setspeed);
967
968static struct attribute *cpufreq_attrs[] = {
969 &cpuinfo_min_freq.attr,
970 &cpuinfo_max_freq.attr,
971 &cpuinfo_transition_latency.attr,
972 &scaling_cur_freq.attr,
973 &scaling_min_freq.attr,
974 &scaling_max_freq.attr,
975 &affected_cpus.attr,
976 &related_cpus.attr,
977 &scaling_governor.attr,
978 &scaling_driver.attr,
979 &scaling_available_governors.attr,
980 &scaling_setspeed.attr,
981 NULL
982};
983ATTRIBUTE_GROUPS(cpufreq);
984
985#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
986#define to_attr(a) container_of(a, struct freq_attr, attr)
987
988static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
989{
990 struct cpufreq_policy *policy = to_policy(kobj);
991 struct freq_attr *fattr = to_attr(attr);
992
993 if (!fattr->show)
994 return -EIO;
995
996 guard(cpufreq_policy_read)(policy);
997
998 if (likely(!policy_is_inactive(policy)))
999 return fattr->show(policy, buf);
1000
1001 return -EBUSY;
1002}
1003
1004static ssize_t store(struct kobject *kobj, struct attribute *attr,
1005 const char *buf, size_t count)
1006{
1007 struct cpufreq_policy *policy = to_policy(kobj);
1008 struct freq_attr *fattr = to_attr(attr);
1009
1010 if (!fattr->store)
1011 return -EIO;
1012
1013 guard(cpufreq_policy_write)(policy);
1014
1015 if (likely(!policy_is_inactive(policy)))
1016 return fattr->store(policy, buf, count);
1017
1018 return -EBUSY;
1019}
1020
1021static void cpufreq_sysfs_release(struct kobject *kobj)
1022{
1023 struct cpufreq_policy *policy = to_policy(kobj);
1024 pr_debug("last reference is dropped\n");
1025 complete(&policy->kobj_unregister);
1026}
1027
1028static const struct sysfs_ops sysfs_ops = {
1029 .show = show,
1030 .store = store,
1031};
1032
1033static const struct kobj_type ktype_cpufreq = {
1034 .sysfs_ops = &sysfs_ops,
1035 .default_groups = cpufreq_groups,
1036 .release = cpufreq_sysfs_release,
1037};
1038
1039static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1040 struct device *dev)
1041{
1042 if (unlikely(!dev))
1043 return;
1044
1045 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1046 return;
1047
1048 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1049 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1050 dev_err(dev, "cpufreq symlink creation failed\n");
1051}
1052
1053static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1054 struct device *dev)
1055{
1056 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1057 sysfs_remove_link(&dev->kobj, "cpufreq");
1058 cpumask_clear_cpu(cpu, policy->real_cpus);
1059}
1060
1061static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1062{
1063 struct freq_attr **drv_attr;
1064 int ret = 0;
1065
1066 /* Attributes that need freq_table */
1067 if (policy->freq_table) {
1068 ret = sysfs_create_file(&policy->kobj,
1069 &cpufreq_freq_attr_scaling_available_freqs.attr);
1070 if (ret)
1071 return ret;
1072
1073 if (cpufreq_boost_supported()) {
1074 ret = sysfs_create_file(&policy->kobj,
1075 &cpufreq_freq_attr_scaling_boost_freqs.attr);
1076 if (ret)
1077 return ret;
1078 }
1079 }
1080
1081 /* set up files for this cpu device */
1082 drv_attr = cpufreq_driver->attr;
1083 while (drv_attr && *drv_attr) {
1084 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1085 if (ret)
1086 return ret;
1087 drv_attr++;
1088 }
1089 if (cpufreq_driver->get) {
1090 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 if (cpufreq_avg_freq_supported(policy)) {
1096 ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1097 if (ret)
1098 return ret;
1099 }
1100
1101 if (cpufreq_driver->bios_limit) {
1102 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1103 if (ret)
1104 return ret;
1105 }
1106
1107 if (cpufreq_boost_supported()) {
1108 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1109 if (ret)
1110 return ret;
1111 }
1112
1113 return 0;
1114}
1115
1116static int cpufreq_init_policy(struct cpufreq_policy *policy)
1117{
1118 struct cpufreq_governor *gov = NULL;
1119 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1120 int ret;
1121
1122 if (has_target()) {
1123 /* Update policy governor to the one used before hotplug. */
1124 if (policy->last_governor[0] != '\0')
1125 gov = get_governor(policy->last_governor);
1126 if (gov) {
1127 pr_debug("Restoring governor %s for cpu %d\n",
1128 gov->name, policy->cpu);
1129 } else {
1130 gov = get_governor(default_governor);
1131 }
1132
1133 if (!gov) {
1134 gov = cpufreq_default_governor();
1135 __module_get(gov->owner);
1136 }
1137
1138 } else {
1139
1140 /* Use the default policy if there is no last_policy. */
1141 if (policy->last_policy) {
1142 pol = policy->last_policy;
1143 } else {
1144 pol = cpufreq_parse_policy(default_governor);
1145 /*
1146 * In case the default governor is neither "performance"
1147 * nor "powersave", fall back to the initial policy
1148 * value set by the driver.
1149 */
1150 if (pol == CPUFREQ_POLICY_UNKNOWN)
1151 pol = policy->policy;
1152 }
1153 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1154 pol != CPUFREQ_POLICY_POWERSAVE)
1155 return -ENODATA;
1156 }
1157
1158 ret = cpufreq_set_policy(policy, gov, pol);
1159 if (gov)
1160 module_put(gov->owner);
1161
1162 return ret;
1163}
1164
1165static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1166{
1167 int ret = 0;
1168
1169 /* Has this CPU been taken care of already? */
1170 if (cpumask_test_cpu(cpu, policy->cpus))
1171 return 0;
1172
1173 guard(cpufreq_policy_write)(policy);
1174
1175 if (has_target())
1176 cpufreq_stop_governor(policy);
1177
1178 cpumask_set_cpu(cpu, policy->cpus);
1179
1180 if (has_target()) {
1181 ret = cpufreq_start_governor(policy);
1182 if (ret)
1183 pr_err("%s: Failed to start governor\n", __func__);
1184 }
1185
1186 return ret;
1187}
1188
1189void refresh_frequency_limits(struct cpufreq_policy *policy)
1190{
1191 if (!policy_is_inactive(policy)) {
1192 pr_debug("updating policy for CPU %u\n", policy->cpu);
1193
1194 cpufreq_set_policy(policy, policy->governor, policy->policy);
1195 }
1196}
1197EXPORT_SYMBOL(refresh_frequency_limits);
1198
1199static void handle_update(struct work_struct *work)
1200{
1201 struct cpufreq_policy *policy =
1202 container_of(work, struct cpufreq_policy, update);
1203
1204 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1205
1206 guard(cpufreq_policy_write)(policy);
1207
1208 refresh_frequency_limits(policy);
1209}
1210
1211static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1212 void *data)
1213{
1214 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1215
1216 schedule_work(&policy->update);
1217 return 0;
1218}
1219
1220static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1221 void *data)
1222{
1223 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1224
1225 schedule_work(&policy->update);
1226 return 0;
1227}
1228
1229static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1230{
1231 struct kobject *kobj;
1232 struct completion *cmp;
1233
1234 scoped_guard(cpufreq_policy_write, policy) {
1235 cpufreq_stats_free_table(policy);
1236 kobj = &policy->kobj;
1237 cmp = &policy->kobj_unregister;
1238 }
1239 kobject_put(kobj);
1240
1241 /*
1242 * We need to make sure that the underlying kobj is
1243 * actually not referenced anymore by anybody before we
1244 * proceed with unloading.
1245 */
1246 pr_debug("waiting for dropping of refcount\n");
1247 wait_for_completion(cmp);
1248 pr_debug("wait complete\n");
1249}
1250
1251static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1252{
1253 struct cpufreq_policy *policy;
1254 struct device *dev = get_cpu_device(cpu);
1255 int ret;
1256
1257 if (!dev)
1258 return NULL;
1259
1260 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1261 if (!policy)
1262 return NULL;
1263
1264 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1265 goto err_free_policy;
1266
1267 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1268 goto err_free_cpumask;
1269
1270 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1271 goto err_free_rcpumask;
1272
1273 init_completion(&policy->kobj_unregister);
1274 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1275 cpufreq_global_kobject, "policy%u", cpu);
1276 if (ret) {
1277 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1278 /*
1279 * The entire policy object will be freed below, but the extra
1280 * memory allocated for the kobject name needs to be freed by
1281 * releasing the kobject.
1282 */
1283 kobject_put(&policy->kobj);
1284 goto err_free_real_cpus;
1285 }
1286
1287 init_rwsem(&policy->rwsem);
1288
1289 freq_constraints_init(&policy->constraints);
1290
1291 policy->nb_min.notifier_call = cpufreq_notifier_min;
1292 policy->nb_max.notifier_call = cpufreq_notifier_max;
1293
1294 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1295 &policy->nb_min);
1296 if (ret) {
1297 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1298 ret, cpu);
1299 goto err_kobj_remove;
1300 }
1301
1302 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1303 &policy->nb_max);
1304 if (ret) {
1305 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1306 ret, cpu);
1307 goto err_min_qos_notifier;
1308 }
1309
1310 INIT_LIST_HEAD(&policy->policy_list);
1311 spin_lock_init(&policy->transition_lock);
1312 init_waitqueue_head(&policy->transition_wait);
1313 INIT_WORK(&policy->update, handle_update);
1314
1315 return policy;
1316
1317err_min_qos_notifier:
1318 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1319 &policy->nb_min);
1320err_kobj_remove:
1321 cpufreq_policy_put_kobj(policy);
1322err_free_real_cpus:
1323 free_cpumask_var(policy->real_cpus);
1324err_free_rcpumask:
1325 free_cpumask_var(policy->related_cpus);
1326err_free_cpumask:
1327 free_cpumask_var(policy->cpus);
1328err_free_policy:
1329 kfree(policy);
1330
1331 return NULL;
1332}
1333
1334static void cpufreq_policy_free(struct cpufreq_policy *policy)
1335{
1336 unsigned long flags;
1337 int cpu;
1338
1339 /*
1340 * The callers must ensure the policy is inactive by now, to avoid any
1341 * races with show()/store() callbacks.
1342 */
1343 if (unlikely(!policy_is_inactive(policy)))
1344 pr_warn("%s: Freeing active policy\n", __func__);
1345
1346 /* Remove policy from list */
1347 write_lock_irqsave(&cpufreq_driver_lock, flags);
1348 list_del(&policy->policy_list);
1349
1350 for_each_cpu(cpu, policy->related_cpus)
1351 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1352 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1353
1354 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1355 &policy->nb_max);
1356 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1357 &policy->nb_min);
1358
1359 /* Cancel any pending policy->update work before freeing the policy. */
1360 cancel_work_sync(&policy->update);
1361
1362 if (policy->max_freq_req) {
1363 /*
1364 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1365 * notification, since CPUFREQ_CREATE_POLICY notification was
1366 * sent after adding max_freq_req earlier.
1367 */
1368 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1369 CPUFREQ_REMOVE_POLICY, policy);
1370 freq_qos_remove_request(policy->max_freq_req);
1371 }
1372
1373 freq_qos_remove_request(policy->min_freq_req);
1374 kfree(policy->min_freq_req);
1375
1376 cpufreq_policy_put_kobj(policy);
1377 free_cpumask_var(policy->real_cpus);
1378 free_cpumask_var(policy->related_cpus);
1379 free_cpumask_var(policy->cpus);
1380 kfree(policy);
1381}
1382
1383static int cpufreq_policy_online(struct cpufreq_policy *policy,
1384 unsigned int cpu, bool new_policy)
1385{
1386 unsigned long flags;
1387 unsigned int j;
1388 int ret;
1389
1390 guard(cpufreq_policy_write)(policy);
1391
1392 policy->cpu = cpu;
1393 policy->governor = NULL;
1394
1395 if (!new_policy && cpufreq_driver->online) {
1396 /* Recover policy->cpus using related_cpus */
1397 cpumask_copy(policy->cpus, policy->related_cpus);
1398
1399 ret = cpufreq_driver->online(policy);
1400 if (ret) {
1401 pr_debug("%s: %d: initialization failed\n", __func__,
1402 __LINE__);
1403 goto out_exit_policy;
1404 }
1405 } else {
1406 cpumask_copy(policy->cpus, cpumask_of(cpu));
1407
1408 /*
1409 * Call driver. From then on the cpufreq must be able
1410 * to accept all calls to ->verify and ->setpolicy for this CPU.
1411 */
1412 ret = cpufreq_driver->init(policy);
1413 if (ret) {
1414 pr_debug("%s: %d: initialization failed\n", __func__,
1415 __LINE__);
1416 goto out_clear_policy;
1417 }
1418
1419 /*
1420 * The initialization has succeeded and the policy is online.
1421 * If there is a problem with its frequency table, take it
1422 * offline and drop it.
1423 */
1424 if (policy->freq_table_sorted != CPUFREQ_TABLE_SORTED_ASCENDING &&
1425 policy->freq_table_sorted != CPUFREQ_TABLE_SORTED_DESCENDING) {
1426 ret = cpufreq_table_validate_and_sort(policy);
1427 if (ret)
1428 goto out_offline_policy;
1429 }
1430
1431 /* related_cpus should at least include policy->cpus. */
1432 cpumask_copy(policy->related_cpus, policy->cpus);
1433 }
1434
1435 /*
1436 * affected cpus must always be the one, which are online. We aren't
1437 * managing offline cpus here.
1438 */
1439 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441 if (new_policy) {
1442 for_each_cpu(j, policy->related_cpus) {
1443 per_cpu(cpufreq_cpu_data, j) = policy;
1444 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445 }
1446
1447 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448 GFP_KERNEL);
1449 if (!policy->min_freq_req) {
1450 ret = -ENOMEM;
1451 goto out_destroy_policy;
1452 }
1453
1454 ret = freq_qos_add_request(&policy->constraints,
1455 policy->min_freq_req, FREQ_QOS_MIN,
1456 FREQ_QOS_MIN_DEFAULT_VALUE);
1457 if (ret < 0) {
1458 /*
1459 * So we don't call freq_qos_remove_request() for an
1460 * uninitialized request.
1461 */
1462 kfree(policy->min_freq_req);
1463 policy->min_freq_req = NULL;
1464 goto out_destroy_policy;
1465 }
1466
1467 /*
1468 * This must be initialized right here to avoid calling
1469 * freq_qos_remove_request() on uninitialized request in case
1470 * of errors.
1471 */
1472 policy->max_freq_req = policy->min_freq_req + 1;
1473
1474 ret = freq_qos_add_request(&policy->constraints,
1475 policy->max_freq_req, FREQ_QOS_MAX,
1476 FREQ_QOS_MAX_DEFAULT_VALUE);
1477 if (ret < 0) {
1478 policy->max_freq_req = NULL;
1479 goto out_destroy_policy;
1480 }
1481
1482 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483 CPUFREQ_CREATE_POLICY, policy);
1484 } else {
1485 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1486 if (ret < 0)
1487 goto out_destroy_policy;
1488 }
1489
1490 if (cpufreq_driver->get && has_target()) {
1491 policy->cur = cpufreq_driver->get(policy->cpu);
1492 if (!policy->cur) {
1493 ret = -EIO;
1494 pr_err("%s: ->get() failed\n", __func__);
1495 goto out_destroy_policy;
1496 }
1497 }
1498
1499 /*
1500 * Sometimes boot loaders set CPU frequency to a value outside of
1501 * frequency table present with cpufreq core. In such cases CPU might be
1502 * unstable if it has to run on that frequency for long duration of time
1503 * and so its better to set it to a frequency which is specified in
1504 * freq-table. This also makes cpufreq stats inconsistent as
1505 * cpufreq-stats would fail to register because current frequency of CPU
1506 * isn't found in freq-table.
1507 *
1508 * Because we don't want this change to effect boot process badly, we go
1509 * for the next freq which is >= policy->cur ('cur' must be set by now,
1510 * otherwise we will end up setting freq to lowest of the table as 'cur'
1511 * is initialized to zero).
1512 *
1513 * We are passing target-freq as "policy->cur - 1" otherwise
1514 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1515 * equal to target-freq.
1516 */
1517 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1518 && has_target()) {
1519 unsigned int old_freq = policy->cur;
1520
1521 /* Are we running at unknown frequency ? */
1522 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1523 if (ret == -EINVAL) {
1524 ret = __cpufreq_driver_target(policy, old_freq - 1,
1525 CPUFREQ_RELATION_L);
1526
1527 /*
1528 * Reaching here after boot in a few seconds may not
1529 * mean that system will remain stable at "unknown"
1530 * frequency for longer duration. Hence, a BUG_ON().
1531 */
1532 BUG_ON(ret);
1533 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1534 __func__, policy->cpu, old_freq, policy->cur);
1535 }
1536 }
1537
1538 if (new_policy) {
1539 ret = cpufreq_add_dev_interface(policy);
1540 if (ret)
1541 goto out_destroy_policy;
1542
1543 cpufreq_stats_create_table(policy);
1544
1545 write_lock_irqsave(&cpufreq_driver_lock, flags);
1546 list_add(&policy->policy_list, &cpufreq_policy_list);
1547 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1548
1549 /*
1550 * Register with the energy model before
1551 * em_rebuild_sched_domains() is called, which will result
1552 * in rebuilding of the sched domains, which should only be done
1553 * once the energy model is properly initialized for the policy
1554 * first.
1555 *
1556 * Also, this should be called before the policy is registered
1557 * with cooling framework.
1558 */
1559 if (cpufreq_driver->register_em)
1560 cpufreq_driver->register_em(policy);
1561 }
1562
1563 ret = cpufreq_init_policy(policy);
1564 if (ret) {
1565 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1566 __func__, cpu, ret);
1567 goto out_destroy_policy;
1568 }
1569
1570 return 0;
1571
1572out_destroy_policy:
1573 for_each_cpu(j, policy->real_cpus)
1574 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1575
1576out_offline_policy:
1577 if (cpufreq_driver->offline)
1578 cpufreq_driver->offline(policy);
1579
1580out_exit_policy:
1581 if (cpufreq_driver->exit)
1582 cpufreq_driver->exit(policy);
1583
1584out_clear_policy:
1585 cpumask_clear(policy->cpus);
1586
1587 return ret;
1588}
1589
1590static int cpufreq_online(unsigned int cpu)
1591{
1592 struct cpufreq_policy *policy;
1593 bool new_policy;
1594 int ret;
1595
1596 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1597
1598 /* Check if this CPU already has a policy to manage it */
1599 policy = per_cpu(cpufreq_cpu_data, cpu);
1600 if (policy) {
1601 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1602 if (!policy_is_inactive(policy))
1603 return cpufreq_add_policy_cpu(policy, cpu);
1604
1605 /* This is the only online CPU for the policy. Start over. */
1606 new_policy = false;
1607 } else {
1608 new_policy = true;
1609 policy = cpufreq_policy_alloc(cpu);
1610 if (!policy)
1611 return -ENOMEM;
1612 }
1613
1614 ret = cpufreq_policy_online(policy, cpu, new_policy);
1615 if (ret) {
1616 cpufreq_policy_free(policy);
1617 return ret;
1618 }
1619
1620 kobject_uevent(&policy->kobj, KOBJ_ADD);
1621
1622 /* Callback for handling stuff after policy is ready */
1623 if (cpufreq_driver->ready)
1624 cpufreq_driver->ready(policy);
1625
1626 /* Register cpufreq cooling only for a new policy */
1627 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1628 policy->cdev = of_cpufreq_cooling_register(policy);
1629
1630 /*
1631 * Let the per-policy boost flag mirror the cpufreq_driver boost during
1632 * initialization for a new policy. For an existing policy, maintain the
1633 * previous boost value unless global boost is disabled.
1634 */
1635 if (cpufreq_driver->set_boost && policy->boost_supported &&
1636 (new_policy || !cpufreq_boost_enabled())) {
1637 ret = policy_set_boost(policy, cpufreq_boost_enabled());
1638 if (ret) {
1639 /* If the set_boost fails, the online operation is not affected */
1640 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1641 str_enable_disable(cpufreq_boost_enabled()));
1642 }
1643 }
1644
1645 pr_debug("initialization complete\n");
1646
1647 return 0;
1648}
1649
1650/**
1651 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1652 * @dev: CPU device.
1653 * @sif: Subsystem interface structure pointer (not used)
1654 */
1655static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1656{
1657 struct cpufreq_policy *policy;
1658 unsigned cpu = dev->id;
1659 int ret;
1660
1661 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1662
1663 if (cpu_online(cpu)) {
1664 ret = cpufreq_online(cpu);
1665 if (ret)
1666 return ret;
1667 }
1668
1669 /* Create sysfs link on CPU registration */
1670 policy = per_cpu(cpufreq_cpu_data, cpu);
1671 if (policy)
1672 add_cpu_dev_symlink(policy, cpu, dev);
1673
1674 return 0;
1675}
1676
1677static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1678{
1679 int ret;
1680
1681 if (has_target())
1682 cpufreq_stop_governor(policy);
1683
1684 cpumask_clear_cpu(cpu, policy->cpus);
1685
1686 if (!policy_is_inactive(policy)) {
1687 /* Nominate a new CPU if necessary. */
1688 if (cpu == policy->cpu)
1689 policy->cpu = cpumask_any(policy->cpus);
1690
1691 /* Start the governor again for the active policy. */
1692 if (has_target()) {
1693 ret = cpufreq_start_governor(policy);
1694 if (ret)
1695 pr_err("%s: Failed to start governor\n", __func__);
1696 }
1697
1698 return;
1699 }
1700
1701 if (has_target()) {
1702 strscpy(policy->last_governor, policy->governor->name,
1703 CPUFREQ_NAME_LEN);
1704 cpufreq_exit_governor(policy);
1705 } else {
1706 policy->last_policy = policy->policy;
1707 }
1708
1709 /*
1710 * Perform the ->offline() during light-weight tear-down, as
1711 * that allows fast recovery when the CPU comes back.
1712 */
1713 if (cpufreq_driver->offline) {
1714 cpufreq_driver->offline(policy);
1715 return;
1716 }
1717
1718 if (cpufreq_driver->exit)
1719 cpufreq_driver->exit(policy);
1720
1721 policy->freq_table = NULL;
1722}
1723
1724static int cpufreq_offline(unsigned int cpu)
1725{
1726 struct cpufreq_policy *policy;
1727
1728 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1729
1730 policy = cpufreq_cpu_get_raw(cpu);
1731 if (!policy) {
1732 pr_debug("%s: No cpu_data found\n", __func__);
1733 return 0;
1734 }
1735
1736 guard(cpufreq_policy_write)(policy);
1737
1738 __cpufreq_offline(cpu, policy);
1739
1740 return 0;
1741}
1742
1743/*
1744 * cpufreq_remove_dev - remove a CPU device
1745 *
1746 * Removes the cpufreq interface for a CPU device.
1747 */
1748static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1749{
1750 unsigned int cpu = dev->id;
1751 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1752
1753 if (!policy)
1754 return;
1755
1756 scoped_guard(cpufreq_policy_write, policy) {
1757 if (cpu_online(cpu))
1758 __cpufreq_offline(cpu, policy);
1759
1760 remove_cpu_dev_symlink(policy, cpu, dev);
1761
1762 if (!cpumask_empty(policy->real_cpus))
1763 return;
1764
1765 /*
1766 * Unregister cpufreq cooling once all the CPUs of the policy
1767 * are removed.
1768 */
1769 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1770 cpufreq_cooling_unregister(policy->cdev);
1771 policy->cdev = NULL;
1772 }
1773
1774 /* We did light-weight exit earlier, do full tear down now */
1775 if (cpufreq_driver->offline && cpufreq_driver->exit)
1776 cpufreq_driver->exit(policy);
1777 }
1778
1779 cpufreq_policy_free(policy);
1780}
1781
1782/**
1783 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1784 * @policy: Policy managing CPUs.
1785 * @new_freq: New CPU frequency.
1786 *
1787 * Adjust to the current frequency first and clean up later by either calling
1788 * cpufreq_update_policy(), or scheduling handle_update().
1789 */
1790static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1791 unsigned int new_freq)
1792{
1793 struct cpufreq_freqs freqs;
1794
1795 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1796 policy->cur, new_freq);
1797
1798 freqs.old = policy->cur;
1799 freqs.new = new_freq;
1800
1801 cpufreq_freq_transition_begin(policy, &freqs);
1802 cpufreq_freq_transition_end(policy, &freqs, 0);
1803}
1804
1805static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1806{
1807 unsigned int new_freq;
1808
1809 if (!cpufreq_driver->get)
1810 return 0;
1811
1812 new_freq = cpufreq_driver->get(policy->cpu);
1813 if (!new_freq)
1814 return 0;
1815
1816 /*
1817 * If fast frequency switching is used with the given policy, the check
1818 * against policy->cur is pointless, so skip it in that case.
1819 */
1820 if (policy->fast_switch_enabled || !has_target())
1821 return new_freq;
1822
1823 if (policy->cur != new_freq) {
1824 /*
1825 * For some platforms, the frequency returned by hardware may be
1826 * slightly different from what is provided in the frequency
1827 * table, for example hardware may return 499 MHz instead of 500
1828 * MHz. In such cases it is better to avoid getting into
1829 * unnecessary frequency updates.
1830 */
1831 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1832 return policy->cur;
1833
1834 cpufreq_out_of_sync(policy, new_freq);
1835 if (update)
1836 schedule_work(&policy->update);
1837 }
1838
1839 return new_freq;
1840}
1841
1842/**
1843 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1844 * @cpu: CPU number
1845 *
1846 * This is the last known freq, without actually getting it from the driver.
1847 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1848 */
1849unsigned int cpufreq_quick_get(unsigned int cpu)
1850{
1851 unsigned long flags;
1852
1853 read_lock_irqsave(&cpufreq_driver_lock, flags);
1854
1855 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1856 unsigned int ret_freq = cpufreq_driver->get(cpu);
1857
1858 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1859
1860 return ret_freq;
1861 }
1862
1863 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1864
1865 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1866 if (policy)
1867 return policy->cur;
1868
1869 return 0;
1870}
1871EXPORT_SYMBOL(cpufreq_quick_get);
1872
1873/**
1874 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1875 * @cpu: CPU number
1876 *
1877 * Just return the max possible frequency for a given CPU.
1878 */
1879unsigned int cpufreq_quick_get_max(unsigned int cpu)
1880{
1881 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1882 if (policy)
1883 return policy->max;
1884
1885 return 0;
1886}
1887EXPORT_SYMBOL(cpufreq_quick_get_max);
1888
1889/**
1890 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1891 * @cpu: CPU number
1892 *
1893 * The default return value is the max_freq field of cpuinfo.
1894 */
1895__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1896{
1897 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1898 if (policy)
1899 return policy->cpuinfo.max_freq;
1900
1901 return 0;
1902}
1903EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1904
1905static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1906{
1907 if (unlikely(policy_is_inactive(policy)))
1908 return 0;
1909
1910 return cpufreq_verify_current_freq(policy, true);
1911}
1912
1913/**
1914 * cpufreq_get - get the current CPU frequency (in kHz)
1915 * @cpu: CPU number
1916 *
1917 * Get the CPU current (static) CPU frequency
1918 */
1919unsigned int cpufreq_get(unsigned int cpu)
1920{
1921 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1922 if (!policy)
1923 return 0;
1924
1925 guard(cpufreq_policy_read)(policy);
1926
1927 return __cpufreq_get(policy);
1928}
1929EXPORT_SYMBOL(cpufreq_get);
1930
1931static struct subsys_interface cpufreq_interface = {
1932 .name = "cpufreq",
1933 .subsys = &cpu_subsys,
1934 .add_dev = cpufreq_add_dev,
1935 .remove_dev = cpufreq_remove_dev,
1936};
1937
1938/*
1939 * In case platform wants some specific frequency to be configured
1940 * during suspend..
1941 */
1942int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1943{
1944 int ret;
1945
1946 if (!policy->suspend_freq) {
1947 pr_debug("%s: suspend_freq not defined\n", __func__);
1948 return 0;
1949 }
1950
1951 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1952 policy->suspend_freq);
1953
1954 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1955 CPUFREQ_RELATION_H);
1956 if (ret)
1957 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1958 __func__, policy->suspend_freq, ret);
1959
1960 return ret;
1961}
1962EXPORT_SYMBOL(cpufreq_generic_suspend);
1963
1964/**
1965 * cpufreq_suspend() - Suspend CPUFreq governors.
1966 *
1967 * Called during system wide Suspend/Hibernate cycles for suspending governors
1968 * as some platforms can't change frequency after this point in suspend cycle.
1969 * Because some of the devices (like: i2c, regulators, etc) they use for
1970 * changing frequency are suspended quickly after this point.
1971 */
1972void cpufreq_suspend(void)
1973{
1974 struct cpufreq_policy *policy;
1975
1976 if (!cpufreq_driver)
1977 return;
1978
1979 if (!has_target() && !cpufreq_driver->suspend)
1980 goto suspend;
1981
1982 pr_debug("%s: Suspending Governors\n", __func__);
1983
1984 for_each_active_policy(policy) {
1985 if (has_target()) {
1986 scoped_guard(cpufreq_policy_write, policy) {
1987 cpufreq_stop_governor(policy);
1988 }
1989 }
1990
1991 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1992 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1993 cpufreq_driver->name);
1994 }
1995
1996suspend:
1997 cpufreq_suspended = true;
1998}
1999
2000/**
2001 * cpufreq_resume() - Resume CPUFreq governors.
2002 *
2003 * Called during system wide Suspend/Hibernate cycle for resuming governors that
2004 * are suspended with cpufreq_suspend().
2005 */
2006void cpufreq_resume(void)
2007{
2008 struct cpufreq_policy *policy;
2009 int ret;
2010
2011 if (!cpufreq_driver)
2012 return;
2013
2014 if (unlikely(!cpufreq_suspended))
2015 return;
2016
2017 cpufreq_suspended = false;
2018
2019 if (!has_target() && !cpufreq_driver->resume)
2020 return;
2021
2022 pr_debug("%s: Resuming Governors\n", __func__);
2023
2024 for_each_active_policy(policy) {
2025 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2026 pr_err("%s: Failed to resume driver: %s\n", __func__,
2027 cpufreq_driver->name);
2028 } else if (has_target()) {
2029 scoped_guard(cpufreq_policy_write, policy) {
2030 ret = cpufreq_start_governor(policy);
2031 }
2032
2033 if (ret)
2034 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2035 __func__, policy->cpu);
2036 }
2037 }
2038}
2039
2040/**
2041 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2042 * @flags: Flags to test against the current cpufreq driver's flags.
2043 *
2044 * Assumes that the driver is there, so callers must ensure that this is the
2045 * case.
2046 */
2047bool cpufreq_driver_test_flags(u16 flags)
2048{
2049 return !!(cpufreq_driver->flags & flags);
2050}
2051
2052/**
2053 * cpufreq_get_current_driver - Return the current driver's name.
2054 *
2055 * Return the name string of the currently registered cpufreq driver or NULL if
2056 * none.
2057 */
2058const char *cpufreq_get_current_driver(void)
2059{
2060 if (cpufreq_driver)
2061 return cpufreq_driver->name;
2062
2063 return NULL;
2064}
2065EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2066
2067/**
2068 * cpufreq_get_driver_data - Return current driver data.
2069 *
2070 * Return the private data of the currently registered cpufreq driver, or NULL
2071 * if no cpufreq driver has been registered.
2072 */
2073void *cpufreq_get_driver_data(void)
2074{
2075 if (cpufreq_driver)
2076 return cpufreq_driver->driver_data;
2077
2078 return NULL;
2079}
2080EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2081
2082/*********************************************************************
2083 * NOTIFIER LISTS INTERFACE *
2084 *********************************************************************/
2085
2086/**
2087 * cpufreq_register_notifier - Register a notifier with cpufreq.
2088 * @nb: notifier function to register.
2089 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2090 *
2091 * Add a notifier to one of two lists: either a list of notifiers that run on
2092 * clock rate changes (once before and once after every transition), or a list
2093 * of notifiers that ron on cpufreq policy changes.
2094 *
2095 * This function may sleep and it has the same return values as
2096 * blocking_notifier_chain_register().
2097 */
2098int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2099{
2100 int ret;
2101
2102 if (cpufreq_disabled())
2103 return -EINVAL;
2104
2105 switch (list) {
2106 case CPUFREQ_TRANSITION_NOTIFIER:
2107 mutex_lock(&cpufreq_fast_switch_lock);
2108
2109 if (cpufreq_fast_switch_count > 0) {
2110 mutex_unlock(&cpufreq_fast_switch_lock);
2111 return -EBUSY;
2112 }
2113 ret = srcu_notifier_chain_register(
2114 &cpufreq_transition_notifier_list, nb);
2115 if (!ret)
2116 cpufreq_fast_switch_count--;
2117
2118 mutex_unlock(&cpufreq_fast_switch_lock);
2119 break;
2120 case CPUFREQ_POLICY_NOTIFIER:
2121 ret = blocking_notifier_chain_register(
2122 &cpufreq_policy_notifier_list, nb);
2123 break;
2124 default:
2125 ret = -EINVAL;
2126 }
2127
2128 return ret;
2129}
2130EXPORT_SYMBOL(cpufreq_register_notifier);
2131
2132/**
2133 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2134 * @nb: notifier block to be unregistered.
2135 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2136 *
2137 * Remove a notifier from one of the cpufreq notifier lists.
2138 *
2139 * This function may sleep and it has the same return values as
2140 * blocking_notifier_chain_unregister().
2141 */
2142int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2143{
2144 int ret;
2145
2146 if (cpufreq_disabled())
2147 return -EINVAL;
2148
2149 switch (list) {
2150 case CPUFREQ_TRANSITION_NOTIFIER:
2151 mutex_lock(&cpufreq_fast_switch_lock);
2152
2153 ret = srcu_notifier_chain_unregister(
2154 &cpufreq_transition_notifier_list, nb);
2155 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2156 cpufreq_fast_switch_count++;
2157
2158 mutex_unlock(&cpufreq_fast_switch_lock);
2159 break;
2160 case CPUFREQ_POLICY_NOTIFIER:
2161 ret = blocking_notifier_chain_unregister(
2162 &cpufreq_policy_notifier_list, nb);
2163 break;
2164 default:
2165 ret = -EINVAL;
2166 }
2167
2168 return ret;
2169}
2170EXPORT_SYMBOL(cpufreq_unregister_notifier);
2171
2172
2173/*********************************************************************
2174 * GOVERNORS *
2175 *********************************************************************/
2176
2177/**
2178 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2179 * @policy: cpufreq policy to switch the frequency for.
2180 * @target_freq: New frequency to set (may be approximate).
2181 *
2182 * Carry out a fast frequency switch without sleeping.
2183 *
2184 * The driver's ->fast_switch() callback invoked by this function must be
2185 * suitable for being called from within RCU-sched read-side critical sections
2186 * and it is expected to select the minimum available frequency greater than or
2187 * equal to @target_freq (CPUFREQ_RELATION_L).
2188 *
2189 * This function must not be called if policy->fast_switch_enabled is unset.
2190 *
2191 * Governors calling this function must guarantee that it will never be invoked
2192 * twice in parallel for the same policy and that it will never be called in
2193 * parallel with either ->target() or ->target_index() for the same policy.
2194 *
2195 * Returns the actual frequency set for the CPU.
2196 *
2197 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2198 * error condition, the hardware configuration must be preserved.
2199 */
2200unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2201 unsigned int target_freq)
2202{
2203 unsigned int freq;
2204 int cpu;
2205
2206 target_freq = clamp_val(target_freq, policy->min, policy->max);
2207 freq = cpufreq_driver->fast_switch(policy, target_freq);
2208
2209 if (!freq)
2210 return 0;
2211
2212 policy->cur = freq;
2213 arch_set_freq_scale(policy->related_cpus, freq,
2214 arch_scale_freq_ref(policy->cpu));
2215 cpufreq_stats_record_transition(policy, freq);
2216
2217 if (trace_cpu_frequency_enabled()) {
2218 for_each_cpu(cpu, policy->cpus)
2219 trace_cpu_frequency(freq, cpu);
2220 }
2221
2222 return freq;
2223}
2224EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2225
2226/**
2227 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2228 * @cpu: Target CPU.
2229 * @min_perf: Minimum (required) performance level (units of @capacity).
2230 * @target_perf: Target (desired) performance level (units of @capacity).
2231 * @capacity: Capacity of the target CPU.
2232 *
2233 * Carry out a fast performance level switch of @cpu without sleeping.
2234 *
2235 * The driver's ->adjust_perf() callback invoked by this function must be
2236 * suitable for being called from within RCU-sched read-side critical sections
2237 * and it is expected to select a suitable performance level equal to or above
2238 * @min_perf and preferably equal to or below @target_perf.
2239 *
2240 * This function must not be called if policy->fast_switch_enabled is unset.
2241 *
2242 * Governors calling this function must guarantee that it will never be invoked
2243 * twice in parallel for the same CPU and that it will never be called in
2244 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2245 * the same CPU.
2246 */
2247void cpufreq_driver_adjust_perf(unsigned int cpu,
2248 unsigned long min_perf,
2249 unsigned long target_perf,
2250 unsigned long capacity)
2251{
2252 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2253}
2254
2255/**
2256 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2257 *
2258 * Return 'true' if the ->adjust_perf callback is present for the
2259 * current driver or 'false' otherwise.
2260 */
2261bool cpufreq_driver_has_adjust_perf(void)
2262{
2263 return !!cpufreq_driver->adjust_perf;
2264}
2265
2266/* Must set freqs->new to intermediate frequency */
2267static int __target_intermediate(struct cpufreq_policy *policy,
2268 struct cpufreq_freqs *freqs, int index)
2269{
2270 int ret;
2271
2272 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2273
2274 /* We don't need to switch to intermediate freq */
2275 if (!freqs->new)
2276 return 0;
2277
2278 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2279 __func__, policy->cpu, freqs->old, freqs->new);
2280
2281 cpufreq_freq_transition_begin(policy, freqs);
2282 ret = cpufreq_driver->target_intermediate(policy, index);
2283 cpufreq_freq_transition_end(policy, freqs, ret);
2284
2285 if (ret)
2286 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2287 __func__, ret);
2288
2289 return ret;
2290}
2291
2292static int __target_index(struct cpufreq_policy *policy, int index)
2293{
2294 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2295 unsigned int restore_freq, intermediate_freq = 0;
2296 unsigned int newfreq = policy->freq_table[index].frequency;
2297 int retval = -EINVAL;
2298 bool notify;
2299
2300 if (newfreq == policy->cur)
2301 return 0;
2302
2303 /* Save last value to restore later on errors */
2304 restore_freq = policy->cur;
2305
2306 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2307 if (notify) {
2308 /* Handle switching to intermediate frequency */
2309 if (cpufreq_driver->get_intermediate) {
2310 retval = __target_intermediate(policy, &freqs, index);
2311 if (retval)
2312 return retval;
2313
2314 intermediate_freq = freqs.new;
2315 /* Set old freq to intermediate */
2316 if (intermediate_freq)
2317 freqs.old = freqs.new;
2318 }
2319
2320 freqs.new = newfreq;
2321 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2322 __func__, policy->cpu, freqs.old, freqs.new);
2323
2324 cpufreq_freq_transition_begin(policy, &freqs);
2325 }
2326
2327 retval = cpufreq_driver->target_index(policy, index);
2328 if (retval)
2329 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2330 retval);
2331
2332 if (notify) {
2333 cpufreq_freq_transition_end(policy, &freqs, retval);
2334
2335 /*
2336 * Failed after setting to intermediate freq? Driver should have
2337 * reverted back to initial frequency and so should we. Check
2338 * here for intermediate_freq instead of get_intermediate, in
2339 * case we haven't switched to intermediate freq at all.
2340 */
2341 if (unlikely(retval && intermediate_freq)) {
2342 freqs.old = intermediate_freq;
2343 freqs.new = restore_freq;
2344 cpufreq_freq_transition_begin(policy, &freqs);
2345 cpufreq_freq_transition_end(policy, &freqs, 0);
2346 }
2347 }
2348
2349 return retval;
2350}
2351
2352int __cpufreq_driver_target(struct cpufreq_policy *policy,
2353 unsigned int target_freq,
2354 unsigned int relation)
2355{
2356 unsigned int old_target_freq = target_freq;
2357
2358 if (cpufreq_disabled())
2359 return -ENODEV;
2360
2361 target_freq = __resolve_freq(policy, target_freq, policy->min,
2362 policy->max, relation);
2363
2364 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2365 policy->cpu, target_freq, relation, old_target_freq);
2366
2367 /*
2368 * This might look like a redundant call as we are checking it again
2369 * after finding index. But it is left intentionally for cases where
2370 * exactly same freq is called again and so we can save on few function
2371 * calls.
2372 */
2373 if (target_freq == policy->cur &&
2374 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2375 return 0;
2376
2377 if (cpufreq_driver->target) {
2378 /*
2379 * If the driver hasn't setup a single inefficient frequency,
2380 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2381 */
2382 if (!policy->efficiencies_available)
2383 relation &= ~CPUFREQ_RELATION_E;
2384
2385 return cpufreq_driver->target(policy, target_freq, relation);
2386 }
2387
2388 if (!cpufreq_driver->target_index)
2389 return -EINVAL;
2390
2391 return __target_index(policy, policy->cached_resolved_idx);
2392}
2393EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2394
2395int cpufreq_driver_target(struct cpufreq_policy *policy,
2396 unsigned int target_freq,
2397 unsigned int relation)
2398{
2399 guard(cpufreq_policy_write)(policy);
2400
2401 return __cpufreq_driver_target(policy, target_freq, relation);
2402}
2403EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2404
2405__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2406{
2407 return NULL;
2408}
2409
2410static int cpufreq_init_governor(struct cpufreq_policy *policy)
2411{
2412 int ret;
2413
2414 /* Don't start any governor operations if we are entering suspend */
2415 if (cpufreq_suspended)
2416 return 0;
2417 /*
2418 * Governor might not be initiated here if ACPI _PPC changed
2419 * notification happened, so check it.
2420 */
2421 if (!policy->governor)
2422 return -EINVAL;
2423
2424 /* Platform doesn't want dynamic frequency switching ? */
2425 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2426 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2427 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2428
2429 if (gov) {
2430 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2431 policy->governor->name, gov->name);
2432 policy->governor = gov;
2433 } else {
2434 return -EINVAL;
2435 }
2436 }
2437
2438 if (!try_module_get(policy->governor->owner))
2439 return -EINVAL;
2440
2441 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2442
2443 if (policy->governor->init) {
2444 ret = policy->governor->init(policy);
2445 if (ret) {
2446 module_put(policy->governor->owner);
2447 return ret;
2448 }
2449 }
2450
2451 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2452
2453 return 0;
2454}
2455
2456static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2457{
2458 if (cpufreq_suspended || !policy->governor)
2459 return;
2460
2461 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2462
2463 if (policy->governor->exit)
2464 policy->governor->exit(policy);
2465
2466 module_put(policy->governor->owner);
2467}
2468
2469int cpufreq_start_governor(struct cpufreq_policy *policy)
2470{
2471 int ret;
2472
2473 if (cpufreq_suspended)
2474 return 0;
2475
2476 if (!policy->governor)
2477 return -EINVAL;
2478
2479 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2480
2481 cpufreq_verify_current_freq(policy, false);
2482
2483 if (policy->governor->start) {
2484 ret = policy->governor->start(policy);
2485 if (ret)
2486 return ret;
2487 }
2488
2489 if (policy->governor->limits)
2490 policy->governor->limits(policy);
2491
2492 return 0;
2493}
2494
2495void cpufreq_stop_governor(struct cpufreq_policy *policy)
2496{
2497 if (cpufreq_suspended || !policy->governor)
2498 return;
2499
2500 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2501
2502 if (policy->governor->stop)
2503 policy->governor->stop(policy);
2504}
2505
2506static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2507{
2508 if (cpufreq_suspended || !policy->governor)
2509 return;
2510
2511 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2512
2513 if (policy->governor->limits)
2514 policy->governor->limits(policy);
2515}
2516
2517int cpufreq_register_governor(struct cpufreq_governor *governor)
2518{
2519 int err;
2520
2521 if (!governor)
2522 return -EINVAL;
2523
2524 if (cpufreq_disabled())
2525 return -ENODEV;
2526
2527 mutex_lock(&cpufreq_governor_mutex);
2528
2529 err = -EBUSY;
2530 if (!find_governor(governor->name)) {
2531 err = 0;
2532 list_add(&governor->governor_list, &cpufreq_governor_list);
2533 }
2534
2535 mutex_unlock(&cpufreq_governor_mutex);
2536 return err;
2537}
2538EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2539
2540void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2541{
2542 struct cpufreq_policy *policy;
2543 unsigned long flags;
2544
2545 if (!governor)
2546 return;
2547
2548 if (cpufreq_disabled())
2549 return;
2550
2551 /* clear last_governor for all inactive policies */
2552 read_lock_irqsave(&cpufreq_driver_lock, flags);
2553 for_each_inactive_policy(policy) {
2554 if (!strcmp(policy->last_governor, governor->name)) {
2555 policy->governor = NULL;
2556 policy->last_governor[0] = '\0';
2557 }
2558 }
2559 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2560
2561 mutex_lock(&cpufreq_governor_mutex);
2562 list_del(&governor->governor_list);
2563 mutex_unlock(&cpufreq_governor_mutex);
2564}
2565EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2566
2567
2568/*********************************************************************
2569 * POLICY INTERFACE *
2570 *********************************************************************/
2571
2572DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2573
2574/**
2575 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2576 * @policy: cpufreq policy of the CPUs.
2577 *
2578 * Update the value of cpufreq pressure for all @cpus in the policy.
2579 */
2580static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2581{
2582 unsigned long max_capacity, capped_freq, pressure;
2583 u32 max_freq;
2584 int cpu;
2585
2586 cpu = cpumask_first(policy->related_cpus);
2587 max_freq = arch_scale_freq_ref(cpu);
2588 capped_freq = policy->max;
2589
2590 /*
2591 * Handle properly the boost frequencies, which should simply clean
2592 * the cpufreq pressure value.
2593 */
2594 if (max_freq <= capped_freq) {
2595 pressure = 0;
2596 } else {
2597 max_capacity = arch_scale_cpu_capacity(cpu);
2598 pressure = max_capacity -
2599 mult_frac(max_capacity, capped_freq, max_freq);
2600 }
2601
2602 for_each_cpu(cpu, policy->related_cpus)
2603 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2604}
2605
2606/**
2607 * cpufreq_set_policy - Modify cpufreq policy parameters.
2608 * @policy: Policy object to modify.
2609 * @new_gov: Policy governor pointer.
2610 * @new_pol: Policy value (for drivers with built-in governors).
2611 *
2612 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2613 * limits to be set for the policy, update @policy with the verified limits
2614 * values and either invoke the driver's ->setpolicy() callback (if present) or
2615 * carry out a governor update for @policy. That is, run the current governor's
2616 * ->limits() callback (if @new_gov points to the same object as the one in
2617 * @policy) or replace the governor for @policy with @new_gov.
2618 *
2619 * The cpuinfo part of @policy is not updated by this function.
2620 */
2621static int cpufreq_set_policy(struct cpufreq_policy *policy,
2622 struct cpufreq_governor *new_gov,
2623 unsigned int new_pol)
2624{
2625 struct cpufreq_policy_data new_data;
2626 struct cpufreq_governor *old_gov;
2627 int ret;
2628
2629 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2630 new_data.freq_table = policy->freq_table;
2631 new_data.cpu = policy->cpu;
2632 /*
2633 * PM QoS framework collects all the requests from users and provide us
2634 * the final aggregated value here.
2635 */
2636 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2637 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2638
2639 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2640 new_data.cpu, new_data.min, new_data.max);
2641
2642 /*
2643 * Verify that the CPU speed can be set within these limits and make sure
2644 * that min <= max.
2645 */
2646 ret = cpufreq_driver->verify(&new_data);
2647 if (ret)
2648 return ret;
2649
2650 /*
2651 * Resolve policy min/max to available frequencies. It ensures
2652 * no frequency resolution will neither overshoot the requested maximum
2653 * nor undershoot the requested minimum.
2654 *
2655 * Avoid storing intermediate values in policy->max or policy->min and
2656 * compiler optimizations around them because they may be accessed
2657 * concurrently by cpufreq_driver_resolve_freq() during the update.
2658 */
2659 WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2660 new_data.min, new_data.max,
2661 CPUFREQ_RELATION_H));
2662 new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2663 new_data.max, CPUFREQ_RELATION_L);
2664 WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2665
2666 trace_cpu_frequency_limits(policy);
2667
2668 cpufreq_update_pressure(policy);
2669
2670 policy->cached_target_freq = UINT_MAX;
2671
2672 pr_debug("new min and max freqs are %u - %u kHz\n",
2673 policy->min, policy->max);
2674
2675 if (cpufreq_driver->setpolicy) {
2676 policy->policy = new_pol;
2677 pr_debug("setting range\n");
2678 return cpufreq_driver->setpolicy(policy);
2679 }
2680
2681 if (new_gov == policy->governor) {
2682 pr_debug("governor limits update\n");
2683 cpufreq_governor_limits(policy);
2684 return 0;
2685 }
2686
2687 pr_debug("governor switch\n");
2688
2689 /* save old, working values */
2690 old_gov = policy->governor;
2691 /* end old governor */
2692 if (old_gov) {
2693 cpufreq_stop_governor(policy);
2694 cpufreq_exit_governor(policy);
2695 }
2696
2697 /* start new governor */
2698 policy->governor = new_gov;
2699 ret = cpufreq_init_governor(policy);
2700 if (!ret) {
2701 ret = cpufreq_start_governor(policy);
2702 if (!ret) {
2703 pr_debug("governor change\n");
2704 return 0;
2705 }
2706 cpufreq_exit_governor(policy);
2707 }
2708
2709 /* new governor failed, so re-start old one */
2710 pr_debug("starting governor %s failed\n", policy->governor->name);
2711 if (old_gov) {
2712 policy->governor = old_gov;
2713 if (cpufreq_init_governor(policy)) {
2714 policy->governor = NULL;
2715 } else if (cpufreq_start_governor(policy)) {
2716 cpufreq_exit_governor(policy);
2717 policy->governor = NULL;
2718 }
2719 }
2720
2721 return ret;
2722}
2723
2724static void cpufreq_policy_refresh(struct cpufreq_policy *policy)
2725{
2726 guard(cpufreq_policy_write)(policy);
2727
2728 /*
2729 * BIOS might change freq behind our back
2730 * -> ask driver for current freq and notify governors about a change
2731 */
2732 if (cpufreq_driver->get && has_target() &&
2733 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2734 return;
2735
2736 refresh_frequency_limits(policy);
2737}
2738
2739/**
2740 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2741 * @cpu: CPU to re-evaluate the policy for.
2742 *
2743 * Update the current frequency for the cpufreq policy of @cpu and use
2744 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2745 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2746 * for the policy in question, among other things.
2747 */
2748void cpufreq_update_policy(unsigned int cpu)
2749{
2750 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2751 if (!policy)
2752 return;
2753
2754 cpufreq_policy_refresh(policy);
2755}
2756EXPORT_SYMBOL(cpufreq_update_policy);
2757
2758/**
2759 * cpufreq_update_limits - Update policy limits for a given CPU.
2760 * @cpu: CPU to update the policy limits for.
2761 *
2762 * Invoke the driver's ->update_limits callback if present or call
2763 * cpufreq_policy_refresh() for @cpu.
2764 */
2765void cpufreq_update_limits(unsigned int cpu)
2766{
2767 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2768 if (!policy)
2769 return;
2770
2771 if (cpufreq_driver->update_limits)
2772 cpufreq_driver->update_limits(policy);
2773 else
2774 cpufreq_policy_refresh(policy);
2775}
2776EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2777
2778/*********************************************************************
2779 * BOOST *
2780 *********************************************************************/
2781int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2782{
2783 int ret;
2784
2785 if (!policy->freq_table)
2786 return -ENXIO;
2787
2788 ret = cpufreq_frequency_table_cpuinfo(policy);
2789 if (ret) {
2790 pr_err("%s: Policy frequency update failed\n", __func__);
2791 return ret;
2792 }
2793
2794 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2795 if (ret < 0)
2796 return ret;
2797
2798 return 0;
2799}
2800EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2801
2802static int cpufreq_boost_trigger_state(int state)
2803{
2804 struct cpufreq_policy *policy;
2805 unsigned long flags;
2806 int ret = 0;
2807
2808 /*
2809 * Don't compare 'cpufreq_driver->boost_enabled' with 'state' here to
2810 * make sure all policies are in sync with global boost flag.
2811 */
2812
2813 write_lock_irqsave(&cpufreq_driver_lock, flags);
2814 cpufreq_driver->boost_enabled = state;
2815 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2816
2817 cpus_read_lock();
2818 for_each_active_policy(policy) {
2819 if (!policy->boost_supported)
2820 continue;
2821
2822 ret = policy_set_boost(policy, state);
2823 if (ret)
2824 goto err_reset_state;
2825 }
2826 cpus_read_unlock();
2827
2828 return 0;
2829
2830err_reset_state:
2831 cpus_read_unlock();
2832
2833 write_lock_irqsave(&cpufreq_driver_lock, flags);
2834 cpufreq_driver->boost_enabled = !state;
2835 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2836
2837 pr_err("%s: Cannot %s BOOST\n",
2838 __func__, str_enable_disable(state));
2839
2840 return ret;
2841}
2842
2843static bool cpufreq_boost_supported(void)
2844{
2845 return cpufreq_driver->set_boost;
2846}
2847
2848static int create_boost_sysfs_file(void)
2849{
2850 int ret;
2851
2852 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2853 if (ret)
2854 pr_err("%s: cannot register global BOOST sysfs file\n",
2855 __func__);
2856
2857 return ret;
2858}
2859
2860static void remove_boost_sysfs_file(void)
2861{
2862 if (cpufreq_boost_supported())
2863 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2864}
2865
2866bool cpufreq_boost_enabled(void)
2867{
2868 return cpufreq_driver->boost_enabled;
2869}
2870EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2871
2872/*********************************************************************
2873 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2874 *********************************************************************/
2875static enum cpuhp_state hp_online;
2876
2877static int cpuhp_cpufreq_online(unsigned int cpu)
2878{
2879 cpufreq_online(cpu);
2880
2881 return 0;
2882}
2883
2884static int cpuhp_cpufreq_offline(unsigned int cpu)
2885{
2886 cpufreq_offline(cpu);
2887
2888 return 0;
2889}
2890
2891/**
2892 * cpufreq_register_driver - register a CPU Frequency driver
2893 * @driver_data: A struct cpufreq_driver containing the values#
2894 * submitted by the CPU Frequency driver.
2895 *
2896 * Registers a CPU Frequency driver to this core code. This code
2897 * returns zero on success, -EEXIST when another driver got here first
2898 * (and isn't unregistered in the meantime).
2899 *
2900 */
2901int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2902{
2903 unsigned long flags;
2904 int ret;
2905
2906 if (cpufreq_disabled())
2907 return -ENODEV;
2908
2909 /*
2910 * The cpufreq core depends heavily on the availability of device
2911 * structure, make sure they are available before proceeding further.
2912 */
2913 if (!get_cpu_device(0))
2914 return -EPROBE_DEFER;
2915
2916 if (!driver_data || !driver_data->verify || !driver_data->init ||
2917 (driver_data->target_index && driver_data->target) ||
2918 (!!driver_data->setpolicy == (driver_data->target_index || driver_data->target)) ||
2919 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2920 (!driver_data->online != !driver_data->offline) ||
2921 (driver_data->adjust_perf && !driver_data->fast_switch))
2922 return -EINVAL;
2923
2924 pr_debug("trying to register driver %s\n", driver_data->name);
2925
2926 /* Protect against concurrent CPU online/offline. */
2927 cpus_read_lock();
2928
2929 write_lock_irqsave(&cpufreq_driver_lock, flags);
2930 if (cpufreq_driver) {
2931 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2932 ret = -EEXIST;
2933 goto out;
2934 }
2935 cpufreq_driver = driver_data;
2936 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2937
2938 if (driver_data->setpolicy)
2939 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2940
2941 if (cpufreq_boost_supported()) {
2942 ret = create_boost_sysfs_file();
2943 if (ret)
2944 goto err_null_driver;
2945 }
2946
2947 /*
2948 * Mark support for the scheduler's frequency invariance engine for
2949 * drivers that implement target(), target_index() or fast_switch().
2950 */
2951 if (!cpufreq_driver->setpolicy) {
2952 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2953 pr_debug("cpufreq: supports frequency invariance\n");
2954 }
2955
2956 ret = subsys_interface_register(&cpufreq_interface);
2957 if (ret)
2958 goto err_boost_unreg;
2959
2960 if (unlikely(list_empty(&cpufreq_policy_list))) {
2961 /* if all ->init() calls failed, unregister */
2962 ret = -ENODEV;
2963 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2964 driver_data->name);
2965 goto err_if_unreg;
2966 }
2967
2968 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2969 "cpufreq:online",
2970 cpuhp_cpufreq_online,
2971 cpuhp_cpufreq_offline);
2972 if (ret < 0)
2973 goto err_if_unreg;
2974 hp_online = ret;
2975 ret = 0;
2976
2977 pr_debug("driver %s up and running\n", driver_data->name);
2978 goto out;
2979
2980err_if_unreg:
2981 subsys_interface_unregister(&cpufreq_interface);
2982err_boost_unreg:
2983 if (!cpufreq_driver->setpolicy)
2984 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2985 remove_boost_sysfs_file();
2986err_null_driver:
2987 write_lock_irqsave(&cpufreq_driver_lock, flags);
2988 cpufreq_driver = NULL;
2989 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2990out:
2991 cpus_read_unlock();
2992 return ret;
2993}
2994EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2995
2996/*
2997 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2998 *
2999 * Unregister the current CPUFreq driver. Only call this if you have
3000 * the right to do so, i.e. if you have succeeded in initialising before!
3001 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3002 * currently not initialised.
3003 */
3004void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3005{
3006 unsigned long flags;
3007
3008 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3009 return;
3010
3011 pr_debug("unregistering driver %s\n", driver->name);
3012
3013 /* Protect against concurrent cpu hotplug */
3014 cpus_read_lock();
3015 subsys_interface_unregister(&cpufreq_interface);
3016 remove_boost_sysfs_file();
3017 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3018 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3019
3020 write_lock_irqsave(&cpufreq_driver_lock, flags);
3021
3022 cpufreq_driver = NULL;
3023
3024 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3025 cpus_read_unlock();
3026}
3027EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3028
3029static int __init cpufreq_core_init(void)
3030{
3031 struct cpufreq_governor *gov = cpufreq_default_governor();
3032 struct device *dev_root;
3033
3034 if (cpufreq_disabled())
3035 return -ENODEV;
3036
3037 dev_root = bus_get_dev_root(&cpu_subsys);
3038 if (dev_root) {
3039 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3040 put_device(dev_root);
3041 }
3042 BUG_ON(!cpufreq_global_kobject);
3043
3044 if (!strlen(default_governor))
3045 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3046
3047 return 0;
3048}
3049
3050static bool cpufreq_policy_is_good_for_eas(unsigned int cpu)
3051{
3052 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
3053 if (!policy) {
3054 pr_debug("cpufreq policy not set for CPU: %d\n", cpu);
3055 return false;
3056 }
3057
3058 return sugov_is_governor(policy);
3059}
3060
3061bool cpufreq_ready_for_eas(const struct cpumask *cpu_mask)
3062{
3063 unsigned int cpu;
3064
3065 /* Do not attempt EAS if schedutil is not being used. */
3066 for_each_cpu(cpu, cpu_mask) {
3067 if (!cpufreq_policy_is_good_for_eas(cpu)) {
3068 pr_debug("rd %*pbl: schedutil is mandatory for EAS\n",
3069 cpumask_pr_args(cpu_mask));
3070 return false;
3071 }
3072 }
3073
3074 return true;
3075}
3076
3077module_param(off, int, 0444);
3078module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3079core_initcall(cpufreq_core_init);