Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#ifdef CONFIG_RELOCATABLE
16#define KERNEL_LINK_ADDR UL(0)
17#else
18#define KERNEL_LINK_ADDR _AC(CONFIG_PHYS_RAM_BASE, UL)
19#endif
20#define KERN_VIRT_SIZE (UL(-1))
21#else
22
23#define ADDRESS_SPACE_END (UL(-1))
24
25#ifdef CONFIG_64BIT
26/* Leave 2GB for kernel and BPF at the end of the address space */
27#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
28#else
29#define KERNEL_LINK_ADDR PAGE_OFFSET
30#endif
31
32/* Number of entries in the page global directory */
33#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
34/* Number of entries in the page table */
35#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
36
37/*
38 * Half of the kernel address space (1/4 of the entries of the page global
39 * directory) is for the direct mapping.
40 */
41#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42
43#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
44#define VMALLOC_END PAGE_OFFSET
45#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
46
47#define BPF_JIT_REGION_SIZE (SZ_128M)
48#ifdef CONFIG_64BIT
49#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50#define BPF_JIT_REGION_END (MODULES_END)
51#else
52#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53#define BPF_JIT_REGION_END (VMALLOC_END)
54#endif
55
56/* Modules always live before the kernel */
57#ifdef CONFIG_64BIT
58/* This is used to define the end of the KASAN shadow region */
59#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
60#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
62#else
63#define MODULES_VADDR VMALLOC_START
64#define MODULES_END VMALLOC_END
65#endif
66
67/*
68 * Roughly size the vmemmap space to be large enough to fit enough
69 * struct pages to map half the virtual address space. Then
70 * position vmemmap directly below the VMALLOC region.
71 */
72#define VA_BITS_SV32 32
73#ifdef CONFIG_64BIT
74#define VA_BITS_SV39 39
75#define VA_BITS_SV48 48
76#define VA_BITS_SV57 57
77
78#define VA_BITS (pgtable_l5_enabled ? \
79 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80#else
81#define VA_BITS VA_BITS_SV32
82#endif
83
84#define VMEMMAP_SHIFT \
85 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
87#define VMEMMAP_END VMALLOC_START
88#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
89
90/*
91 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93 */
94#define vmemmap ((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95
96#define PCI_IO_SIZE SZ_16M
97#define PCI_IO_END VMEMMAP_START
98#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
99
100#define FIXADDR_TOP PCI_IO_START
101#ifdef CONFIG_64BIT
102#define MAX_FDT_SIZE PMD_SIZE
103#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
104#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
105#else
106#define MAX_FDT_SIZE PGDIR_SIZE
107#define FIX_FDT_SIZE MAX_FDT_SIZE
108#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
109#endif
110#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
111
112#endif
113
114#ifndef __ASSEMBLER__
115
116#include <asm/page.h>
117#include <asm/tlbflush.h>
118#include <linux/mm_types.h>
119#include <asm/compat.h>
120#include <asm/cpufeature.h>
121
122#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123
124#ifdef CONFIG_64BIT
125#include <asm/pgtable-64.h>
126
127#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
128#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
129#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
130#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
131#else
132#include <asm/pgtable-32.h>
133#endif /* CONFIG_64BIT */
134
135#include <linux/page_table_check.h>
136
137#ifdef CONFIG_XIP_KERNEL
138#define XIP_FIXUP(addr) ({ \
139 extern char _sdata[], _start[], _end[]; \
140 uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR \
141 + (uintptr_t)&_sdata - (uintptr_t)&_start; \
142 uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR \
143 + (uintptr_t)&_end - (uintptr_t)&_start; \
144 uintptr_t __a = (uintptr_t)(addr); \
145 (__a >= __rom_start_data && __a < __rom_end_data) ? \
146 __a - __rom_start_data + CONFIG_PHYS_RAM_BASE : __a; \
147 })
148#else
149#define XIP_FIXUP(addr) (addr)
150#endif /* CONFIG_XIP_KERNEL */
151
152struct pt_alloc_ops {
153 pte_t *(*get_pte_virt)(phys_addr_t pa);
154 phys_addr_t (*alloc_pte)(uintptr_t va);
155#ifndef __PAGETABLE_PMD_FOLDED
156 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
157 phys_addr_t (*alloc_pmd)(uintptr_t va);
158 pud_t *(*get_pud_virt)(phys_addr_t pa);
159 phys_addr_t (*alloc_pud)(uintptr_t va);
160 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
161 phys_addr_t (*alloc_p4d)(uintptr_t va);
162#endif
163};
164
165extern struct pt_alloc_ops pt_ops __meminitdata;
166
167#ifdef CONFIG_MMU
168/* Number of PGD entries that a user-mode program can use */
169#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
170
171/* Page protection bits */
172#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
173
174#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
175#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
176#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
177#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
178#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
180 _PAGE_EXEC | _PAGE_WRITE)
181
182#define PAGE_COPY PAGE_READ
183#define PAGE_COPY_EXEC PAGE_READ_EXEC
184#define PAGE_SHARED PAGE_WRITE
185#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
186
187#define _PAGE_KERNEL (_PAGE_READ \
188 | _PAGE_WRITE \
189 | _PAGE_PRESENT \
190 | _PAGE_ACCESSED \
191 | _PAGE_DIRTY \
192 | _PAGE_GLOBAL)
193
194#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
195#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
196#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
197#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
198 | _PAGE_EXEC)
199
200#define PAGE_TABLE __pgprot(_PAGE_TABLE)
201
202#define _PAGE_KERNEL_NC ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_NOCACHE)
203#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
204#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
205
206extern pgd_t swapper_pg_dir[];
207extern pgd_t trampoline_pg_dir[];
208extern pgd_t early_pg_dir[];
209
210#ifdef CONFIG_TRANSPARENT_HUGEPAGE
211static inline int pmd_present(pmd_t pmd)
212{
213 /*
214 * Checking for _PAGE_LEAF is needed too because:
215 * When splitting a THP, split_huge_page() will temporarily clear
216 * the present bit, in this situation, pmd_present() and
217 * pmd_trans_huge() still needs to return true.
218 */
219 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
220}
221#else
222static inline int pmd_present(pmd_t pmd)
223{
224 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
225}
226#endif
227
228static inline int pmd_none(pmd_t pmd)
229{
230 return (pmd_val(pmd) == 0);
231}
232
233static inline int pmd_bad(pmd_t pmd)
234{
235 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
236}
237
238#define pmd_leaf pmd_leaf
239static inline bool pmd_leaf(pmd_t pmd)
240{
241 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
242}
243
244static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
245{
246 WRITE_ONCE(*pmdp, pmd);
247}
248
249static inline void pmd_clear(pmd_t *pmdp)
250{
251 set_pmd(pmdp, __pmd(0));
252}
253
254static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
255{
256 unsigned long prot_val = pgprot_val(prot);
257
258 ALT_THEAD_PMA(prot_val);
259
260 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
261}
262
263static inline unsigned long _pgd_pfn(pgd_t pgd)
264{
265 return __page_val_to_pfn(pgd_val(pgd));
266}
267
268static inline struct page *pmd_page(pmd_t pmd)
269{
270 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
271}
272
273static inline unsigned long pmd_page_vaddr(pmd_t pmd)
274{
275 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
276}
277
278static inline pte_t pmd_pte(pmd_t pmd)
279{
280 return __pte(pmd_val(pmd));
281}
282
283static inline pte_t pud_pte(pud_t pud)
284{
285 return __pte(pud_val(pud));
286}
287
288#ifdef CONFIG_RISCV_ISA_SVNAPOT
289
290static __always_inline bool has_svnapot(void)
291{
292 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
293}
294
295static inline unsigned long pte_napot(pte_t pte)
296{
297 return pte_val(pte) & _PAGE_NAPOT;
298}
299
300static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
301{
302 int pos = order - 1 + _PAGE_PFN_SHIFT;
303 unsigned long napot_bit = BIT(pos);
304 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
305
306 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
307}
308
309#else
310
311static __always_inline bool has_svnapot(void) { return false; }
312
313static inline unsigned long pte_napot(pte_t pte)
314{
315 return 0;
316}
317
318#endif /* CONFIG_RISCV_ISA_SVNAPOT */
319
320/* Yields the page frame number (PFN) of a page table entry */
321static inline unsigned long pte_pfn(pte_t pte)
322{
323 unsigned long res = __page_val_to_pfn(pte_val(pte));
324
325 if (has_svnapot() && pte_napot(pte))
326 res = res & (res - 1UL);
327
328 return res;
329}
330
331#define pte_page(x) pfn_to_page(pte_pfn(x))
332
333/* Constructs a page table entry */
334static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
335{
336 unsigned long prot_val = pgprot_val(prot);
337
338 ALT_THEAD_PMA(prot_val);
339
340 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
341}
342
343#define pte_pgprot pte_pgprot
344static inline pgprot_t pte_pgprot(pte_t pte)
345{
346 unsigned long pfn = pte_pfn(pte);
347
348 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
349}
350
351static inline int pte_present(pte_t pte)
352{
353 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
354}
355
356#define pte_accessible pte_accessible
357static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
358{
359 if (pte_val(a) & _PAGE_PRESENT)
360 return true;
361
362 if ((pte_val(a) & _PAGE_PROT_NONE) &&
363 atomic_read(&mm->tlb_flush_pending))
364 return true;
365
366 return false;
367}
368
369static inline int pte_none(pte_t pte)
370{
371 return (pte_val(pte) == 0);
372}
373
374static inline int pte_write(pte_t pte)
375{
376 return pte_val(pte) & _PAGE_WRITE;
377}
378
379static inline int pte_exec(pte_t pte)
380{
381 return pte_val(pte) & _PAGE_EXEC;
382}
383
384static inline int pte_user(pte_t pte)
385{
386 return pte_val(pte) & _PAGE_USER;
387}
388
389static inline int pte_huge(pte_t pte)
390{
391 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
392}
393
394static inline int pte_dirty(pte_t pte)
395{
396 return pte_val(pte) & _PAGE_DIRTY;
397}
398
399static inline int pte_young(pte_t pte)
400{
401 return pte_val(pte) & _PAGE_ACCESSED;
402}
403
404static inline int pte_special(pte_t pte)
405{
406 return pte_val(pte) & _PAGE_SPECIAL;
407}
408
409/* static inline pte_t pte_rdprotect(pte_t pte) */
410
411static inline pte_t pte_wrprotect(pte_t pte)
412{
413 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
414}
415
416#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
417#define pgtable_supports_uffd_wp() \
418 riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B)
419
420static inline bool pte_uffd_wp(pte_t pte)
421{
422 return !!(pte_val(pte) & _PAGE_UFFD_WP);
423}
424
425static inline pte_t pte_mkuffd_wp(pte_t pte)
426{
427 return pte_wrprotect(__pte(pte_val(pte) | _PAGE_UFFD_WP));
428}
429
430static inline pte_t pte_clear_uffd_wp(pte_t pte)
431{
432 return __pte(pte_val(pte) & ~(_PAGE_UFFD_WP));
433}
434
435static inline bool pte_swp_uffd_wp(pte_t pte)
436{
437 return !!(pte_val(pte) & _PAGE_SWP_UFFD_WP);
438}
439
440static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
441{
442 return __pte(pte_val(pte) | _PAGE_SWP_UFFD_WP);
443}
444
445static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
446{
447 return __pte(pte_val(pte) & ~(_PAGE_SWP_UFFD_WP));
448}
449#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
450
451/* static inline pte_t pte_mkread(pte_t pte) */
452
453static inline pte_t pte_mkwrite_novma(pte_t pte)
454{
455 return __pte(pte_val(pte) | _PAGE_WRITE);
456}
457
458/* static inline pte_t pte_mkexec(pte_t pte) */
459
460static inline pte_t pte_mkdirty(pte_t pte)
461{
462 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
463}
464
465static inline pte_t pte_mkclean(pte_t pte)
466{
467 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
468}
469
470static inline pte_t pte_mkyoung(pte_t pte)
471{
472 return __pte(pte_val(pte) | _PAGE_ACCESSED);
473}
474
475static inline pte_t pte_mkold(pte_t pte)
476{
477 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
478}
479
480static inline pte_t pte_mkspecial(pte_t pte)
481{
482 return __pte(pte_val(pte) | _PAGE_SPECIAL);
483}
484
485static inline pte_t pte_mkhuge(pte_t pte)
486{
487 return pte;
488}
489
490#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
491#define pgtable_supports_soft_dirty() \
492 (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && \
493 riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B))
494
495static inline bool pte_soft_dirty(pte_t pte)
496{
497 return !!(pte_val(pte) & _PAGE_SOFT_DIRTY);
498}
499
500static inline pte_t pte_mksoft_dirty(pte_t pte)
501{
502 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
503}
504
505static inline pte_t pte_clear_soft_dirty(pte_t pte)
506{
507 return __pte(pte_val(pte) & ~(_PAGE_SOFT_DIRTY));
508}
509
510static inline bool pte_swp_soft_dirty(pte_t pte)
511{
512 return !!(pte_val(pte) & _PAGE_SWP_SOFT_DIRTY);
513}
514
515static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
516{
517 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
518}
519
520static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
521{
522 return __pte(pte_val(pte) & ~(_PAGE_SWP_SOFT_DIRTY));
523}
524#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
525
526#ifdef CONFIG_RISCV_ISA_SVNAPOT
527#define pte_leaf_size(pte) (pte_napot(pte) ? \
528 napot_cont_size(napot_cont_order(pte)) :\
529 PAGE_SIZE)
530#endif
531
532#ifdef CONFIG_NUMA_BALANCING
533/*
534 * See the comment in include/asm-generic/pgtable.h
535 */
536static inline int pte_protnone(pte_t pte)
537{
538 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
539}
540
541static inline int pmd_protnone(pmd_t pmd)
542{
543 return pte_protnone(pmd_pte(pmd));
544}
545#endif
546
547/* Modify page protection bits */
548static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
549{
550 unsigned long newprot_val = pgprot_val(newprot);
551
552 ALT_THEAD_PMA(newprot_val);
553
554 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
555}
556
557#define pgd_ERROR(e) \
558 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
559
560
561/* Commit new configuration to MMU hardware */
562static inline void update_mmu_cache_range(struct vm_fault *vmf,
563 struct vm_area_struct *vma, unsigned long address,
564 pte_t *ptep, unsigned int nr)
565{
566 /*
567 * Svvptc guarantees that the new valid pte will be visible within
568 * a bounded timeframe, so when the uarch does not cache invalid
569 * entries, we don't have to do anything.
570 */
571 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SVVPTC))
572 return;
573
574 /*
575 * The kernel assumes that TLBs don't cache invalid entries, but
576 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
577 * cache flush; it is necessary even after writing invalid entries.
578 * Relying on flush_tlb_fix_spurious_fault would suffice, but
579 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
580 */
581 while (nr--)
582 local_flush_tlb_page(address + nr * PAGE_SIZE);
583
584}
585#define update_mmu_cache(vma, addr, ptep) \
586 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
587
588#define update_mmu_tlb_range(vma, addr, ptep, nr) \
589 update_mmu_cache_range(NULL, vma, addr, ptep, nr)
590
591static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
592 unsigned long address, pmd_t *pmdp)
593{
594 pte_t *ptep = (pte_t *)pmdp;
595
596 update_mmu_cache(vma, address, ptep);
597}
598
599#define __HAVE_ARCH_PTE_SAME
600static inline int pte_same(pte_t pte_a, pte_t pte_b)
601{
602 return pte_val(pte_a) == pte_val(pte_b);
603}
604
605/*
606 * Certain architectures need to do special things when PTEs within
607 * a page table are directly modified. Thus, the following hook is
608 * made available.
609 */
610static inline void set_pte(pte_t *ptep, pte_t pteval)
611{
612 WRITE_ONCE(*ptep, pteval);
613}
614
615void flush_icache_pte(struct mm_struct *mm, pte_t pte);
616
617static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
618{
619 if (pte_present(pteval) && pte_exec(pteval))
620 flush_icache_pte(mm, pteval);
621
622 set_pte(ptep, pteval);
623}
624
625#define PFN_PTE_SHIFT _PAGE_PFN_SHIFT
626
627static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
628 pte_t *ptep, pte_t pteval, unsigned int nr)
629{
630 page_table_check_ptes_set(mm, ptep, pteval, nr);
631
632 for (;;) {
633 __set_pte_at(mm, ptep, pteval);
634 if (--nr == 0)
635 break;
636 ptep++;
637 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
638 }
639}
640#define set_ptes set_ptes
641
642static inline void pte_clear(struct mm_struct *mm,
643 unsigned long addr, pte_t *ptep)
644{
645 __set_pte_at(mm, ptep, __pte(0));
646}
647
648#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */
649extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
650 pte_t *ptep, pte_t entry, int dirty);
651#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */
652extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
653 pte_t *ptep);
654
655#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
656static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
657 unsigned long address, pte_t *ptep)
658{
659#ifdef CONFIG_SMP
660 pte_t pte = __pte(xchg(&ptep->pte, 0));
661#else
662 pte_t pte = *ptep;
663
664 set_pte(ptep, __pte(0));
665#endif
666
667 page_table_check_pte_clear(mm, pte);
668
669 return pte;
670}
671
672#define __HAVE_ARCH_PTEP_SET_WRPROTECT
673static inline void ptep_set_wrprotect(struct mm_struct *mm,
674 unsigned long address, pte_t *ptep)
675{
676 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
677}
678
679#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
680static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
681 unsigned long address, pte_t *ptep)
682{
683 /*
684 * This comment is borrowed from x86, but applies equally to RISC-V:
685 *
686 * Clearing the accessed bit without a TLB flush
687 * doesn't cause data corruption. [ It could cause incorrect
688 * page aging and the (mistaken) reclaim of hot pages, but the
689 * chance of that should be relatively low. ]
690 *
691 * So as a performance optimization don't flush the TLB when
692 * clearing the accessed bit, it will eventually be flushed by
693 * a context switch or a VM operation anyway. [ In the rare
694 * event of it not getting flushed for a long time the delay
695 * shouldn't really matter because there's no real memory
696 * pressure for swapout to react to. ]
697 */
698 return ptep_test_and_clear_young(vma, address, ptep);
699}
700
701#define pgprot_nx pgprot_nx
702static inline pgprot_t pgprot_nx(pgprot_t _prot)
703{
704 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
705}
706
707#define pgprot_noncached pgprot_noncached
708static inline pgprot_t pgprot_noncached(pgprot_t _prot)
709{
710 unsigned long prot = pgprot_val(_prot);
711
712 prot &= ~_PAGE_MTMASK;
713 prot |= _PAGE_IO;
714
715 return __pgprot(prot);
716}
717
718#define pgprot_writecombine pgprot_writecombine
719static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
720{
721 unsigned long prot = pgprot_val(_prot);
722
723 prot &= ~_PAGE_MTMASK;
724 prot |= _PAGE_NOCACHE;
725
726 return __pgprot(prot);
727}
728
729#define pgprot_dmacoherent pgprot_writecombine
730
731/*
732 * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
733 * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
734 * DT.
735 */
736#define arch_has_hw_pte_young arch_has_hw_pte_young
737static inline bool arch_has_hw_pte_young(void)
738{
739 return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
740}
741
742/*
743 * THP functions
744 */
745static inline pmd_t pte_pmd(pte_t pte)
746{
747 return __pmd(pte_val(pte));
748}
749
750static inline pud_t pte_pud(pte_t pte)
751{
752 return __pud(pte_val(pte));
753}
754
755static inline pmd_t pmd_mkhuge(pmd_t pmd)
756{
757 return pmd;
758}
759
760static inline pmd_t pmd_mkinvalid(pmd_t pmd)
761{
762 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
763}
764
765#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
766
767static inline unsigned long pmd_pfn(pmd_t pmd)
768{
769 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
770}
771
772#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
773
774#define pud_pfn pud_pfn
775static inline unsigned long pud_pfn(pud_t pud)
776{
777 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
778}
779
780#define pmd_pgprot pmd_pgprot
781static inline pgprot_t pmd_pgprot(pmd_t pmd)
782{
783 return pte_pgprot(pmd_pte(pmd));
784}
785
786#define pud_pgprot pud_pgprot
787static inline pgprot_t pud_pgprot(pud_t pud)
788{
789 return pte_pgprot(pud_pte(pud));
790}
791
792static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
793{
794 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
795}
796
797#define pmd_write pmd_write
798static inline int pmd_write(pmd_t pmd)
799{
800 return pte_write(pmd_pte(pmd));
801}
802
803#define pud_write pud_write
804static inline int pud_write(pud_t pud)
805{
806 return pte_write(pud_pte(pud));
807}
808
809#define pmd_dirty pmd_dirty
810static inline int pmd_dirty(pmd_t pmd)
811{
812 return pte_dirty(pmd_pte(pmd));
813}
814
815#define pmd_young pmd_young
816static inline int pmd_young(pmd_t pmd)
817{
818 return pte_young(pmd_pte(pmd));
819}
820
821static inline int pmd_user(pmd_t pmd)
822{
823 return pte_user(pmd_pte(pmd));
824}
825
826static inline pmd_t pmd_mkold(pmd_t pmd)
827{
828 return pte_pmd(pte_mkold(pmd_pte(pmd)));
829}
830
831static inline pmd_t pmd_mkyoung(pmd_t pmd)
832{
833 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
834}
835
836static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
837{
838 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
839}
840
841static inline pmd_t pmd_wrprotect(pmd_t pmd)
842{
843 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
844}
845
846static inline pmd_t pmd_mkclean(pmd_t pmd)
847{
848 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
849}
850
851static inline pmd_t pmd_mkdirty(pmd_t pmd)
852{
853 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
854}
855
856#ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
857static inline bool pmd_special(pmd_t pmd)
858{
859 return pte_special(pmd_pte(pmd));
860}
861
862static inline pmd_t pmd_mkspecial(pmd_t pmd)
863{
864 return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
865}
866#endif
867
868#ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
869static inline bool pud_special(pud_t pud)
870{
871 return pte_special(pud_pte(pud));
872}
873
874static inline pud_t pud_mkspecial(pud_t pud)
875{
876 return pte_pud(pte_mkspecial(pud_pte(pud)));
877}
878#endif
879
880#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
881static inline bool pmd_uffd_wp(pmd_t pmd)
882{
883 return pte_uffd_wp(pmd_pte(pmd));
884}
885
886static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
887{
888 return pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)));
889}
890
891static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
892{
893 return pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)));
894}
895
896static inline bool pmd_swp_uffd_wp(pmd_t pmd)
897{
898 return pte_swp_uffd_wp(pmd_pte(pmd));
899}
900
901static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
902{
903 return pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)));
904}
905
906static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
907{
908 return pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)));
909}
910#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
911
912#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
913static inline bool pmd_soft_dirty(pmd_t pmd)
914{
915 return pte_soft_dirty(pmd_pte(pmd));
916}
917
918static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
919{
920 return pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)));
921}
922
923static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
924{
925 return pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)));
926}
927
928#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929static inline bool pmd_swp_soft_dirty(pmd_t pmd)
930{
931 return pte_swp_soft_dirty(pmd_pte(pmd));
932}
933
934static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
935{
936 return pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)));
937}
938
939static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
940{
941 return pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)));
942}
943#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
944#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
945
946static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
947 pmd_t *pmdp, pmd_t pmd)
948{
949 page_table_check_pmd_set(mm, pmdp, pmd);
950 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
951}
952
953static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
954 pud_t *pudp, pud_t pud)
955{
956 page_table_check_pud_set(mm, pudp, pud);
957 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
958}
959
960#ifdef CONFIG_PAGE_TABLE_CHECK
961static inline bool pte_user_accessible_page(pte_t pte)
962{
963 return pte_present(pte) && pte_user(pte);
964}
965
966static inline bool pmd_user_accessible_page(pmd_t pmd)
967{
968 return pmd_leaf(pmd) && pmd_user(pmd);
969}
970
971static inline bool pud_user_accessible_page(pud_t pud)
972{
973 return pud_leaf(pud) && pud_user(pud);
974}
975#endif
976
977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
978static inline int pmd_trans_huge(pmd_t pmd)
979{
980 return pmd_leaf(pmd);
981}
982
983#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
984static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
985 unsigned long address, pmd_t *pmdp,
986 pmd_t entry, int dirty)
987{
988 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
989}
990
991#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
992static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
993 unsigned long address, pmd_t *pmdp)
994{
995 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
996}
997
998#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
999static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1000 unsigned long address, pmd_t *pmdp)
1001{
1002#ifdef CONFIG_SMP
1003 pmd_t pmd = __pmd(xchg(&pmdp->pmd, 0));
1004#else
1005 pmd_t pmd = *pmdp;
1006
1007 pmd_clear(pmdp);
1008#endif
1009
1010 page_table_check_pmd_clear(mm, pmd);
1011
1012 return pmd;
1013}
1014
1015#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1016static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1017 unsigned long address, pmd_t *pmdp)
1018{
1019 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1020}
1021
1022#define pmdp_establish pmdp_establish
1023static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1024 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1025{
1026 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1027 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
1028}
1029
1030#define pmdp_collapse_flush pmdp_collapse_flush
1031extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1032 unsigned long address, pmd_t *pmdp);
1033
1034static inline pud_t pud_wrprotect(pud_t pud)
1035{
1036 return pte_pud(pte_wrprotect(pud_pte(pud)));
1037}
1038
1039static inline int pud_trans_huge(pud_t pud)
1040{
1041 return pud_leaf(pud);
1042}
1043
1044static inline int pud_dirty(pud_t pud)
1045{
1046 return pte_dirty(pud_pte(pud));
1047}
1048
1049static inline pud_t pud_mkyoung(pud_t pud)
1050{
1051 return pte_pud(pte_mkyoung(pud_pte(pud)));
1052}
1053
1054static inline pud_t pud_mkold(pud_t pud)
1055{
1056 return pte_pud(pte_mkold(pud_pte(pud)));
1057}
1058
1059static inline pud_t pud_mkdirty(pud_t pud)
1060{
1061 return pte_pud(pte_mkdirty(pud_pte(pud)));
1062}
1063
1064static inline pud_t pud_mkclean(pud_t pud)
1065{
1066 return pte_pud(pte_mkclean(pud_pte(pud)));
1067}
1068
1069static inline pud_t pud_mkwrite(pud_t pud)
1070{
1071 return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
1072}
1073
1074static inline pud_t pud_mkhuge(pud_t pud)
1075{
1076 return pud;
1077}
1078
1079static inline int pudp_set_access_flags(struct vm_area_struct *vma,
1080 unsigned long address, pud_t *pudp,
1081 pud_t entry, int dirty)
1082{
1083 return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
1084}
1085
1086static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
1087 unsigned long address, pud_t *pudp)
1088{
1089 return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
1090}
1091
1092#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1093static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1094 unsigned long address, pud_t *pudp)
1095{
1096#ifdef CONFIG_SMP
1097 pud_t pud = __pud(xchg(&pudp->pud, 0));
1098#else
1099 pud_t pud = *pudp;
1100
1101 pud_clear(pudp);
1102#endif
1103
1104 page_table_check_pud_clear(mm, pud);
1105
1106 return pud;
1107}
1108
1109static inline int pud_young(pud_t pud)
1110{
1111 return pte_young(pud_pte(pud));
1112}
1113
1114static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1115 unsigned long address, pud_t *pudp)
1116{
1117 pte_t *ptep = (pte_t *)pudp;
1118
1119 update_mmu_cache(vma, address, ptep);
1120}
1121
1122static inline pud_t pudp_establish(struct vm_area_struct *vma,
1123 unsigned long address, pud_t *pudp, pud_t pud)
1124{
1125 page_table_check_pud_set(vma->vm_mm, pudp, pud);
1126 return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
1127}
1128
1129static inline pud_t pud_mkinvalid(pud_t pud)
1130{
1131 return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
1132}
1133
1134extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1135 pud_t *pudp);
1136
1137static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
1138{
1139 return pte_pud(pte_modify(pud_pte(pud), newprot));
1140}
1141
1142#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1143
1144/*
1145 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
1146 * are !pte_none() && !pte_present().
1147 *
1148 * Format of swap PTE:
1149 * bit 0: _PAGE_PRESENT (zero)
1150 * bit 1 to 2: (zero)
1151 * bit 3: _PAGE_SWP_SOFT_DIRTY
1152 * bit 4: _PAGE_SWP_UFFD_WP
1153 * bit 5: _PAGE_PROT_NONE (zero)
1154 * bit 6: exclusive marker
1155 * bits 7 to 11: swap type
1156 * bits 12 to XLEN-1: swap offset
1157 */
1158#define __SWP_TYPE_SHIFT 7
1159#define __SWP_TYPE_BITS 5
1160#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
1161#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1162
1163#define MAX_SWAPFILES_CHECK() \
1164 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1165
1166#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1167#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
1168#define __swp_entry(type, offset) ((swp_entry_t) \
1169 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1170 ((offset) << __SWP_OFFSET_SHIFT) })
1171
1172#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1173#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1174
1175static inline bool pte_swp_exclusive(pte_t pte)
1176{
1177 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1178}
1179
1180static inline pte_t pte_swp_mkexclusive(pte_t pte)
1181{
1182 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1183}
1184
1185static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1186{
1187 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1188}
1189
1190#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1191#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1192#define __swp_entry_to_pmd(swp) __pmd((swp).val)
1193#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1194
1195/*
1196 * In the RV64 Linux scheme, we give the user half of the virtual-address space
1197 * and give the kernel the other (upper) half.
1198 */
1199#ifdef CONFIG_64BIT
1200#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
1201#else
1202#define KERN_VIRT_START FIXADDR_START
1203#endif
1204
1205/*
1206 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1207 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1208 * Task size is:
1209 * - 0x9fc00000 (~2.5GB) for RV32.
1210 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
1211 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
1212 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
1213 *
1214 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1215 * Instruction Set Manual Volume II: Privileged Architecture" states that
1216 * "load and store effective addresses, which are 64bits, must have bits
1217 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1218 * Similarly for SV57, bits 63–57 must be equal to bit 56.
1219 */
1220#ifdef CONFIG_64BIT
1221#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
1222
1223#ifdef CONFIG_COMPAT
1224#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
1225#define TASK_SIZE (is_compat_task() ? \
1226 TASK_SIZE_32 : TASK_SIZE_64)
1227#else
1228#define TASK_SIZE TASK_SIZE_64
1229#endif
1230
1231#else
1232#define TASK_SIZE FIXADDR_START
1233#endif
1234
1235#else /* CONFIG_MMU */
1236
1237#define PAGE_SHARED __pgprot(0)
1238#define PAGE_KERNEL __pgprot(0)
1239#define swapper_pg_dir NULL
1240#define TASK_SIZE _AC(-1, UL)
1241#define VMALLOC_START _AC(0, UL)
1242#define VMALLOC_END TASK_SIZE
1243
1244#endif /* !CONFIG_MMU */
1245
1246extern char _start[];
1247extern void *_dtb_early_va;
1248extern uintptr_t _dtb_early_pa;
1249#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1250#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
1251#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1252#else
1253#define dtb_early_va _dtb_early_va
1254#define dtb_early_pa _dtb_early_pa
1255#endif /* CONFIG_XIP_KERNEL */
1256extern u64 satp_mode;
1257
1258void paging_init(void);
1259void misc_mem_init(void);
1260
1261/*
1262 * ZERO_PAGE is a global shared page that is always zero,
1263 * used for zero-mapped memory areas, etc.
1264 */
1265extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1266#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1267
1268/*
1269 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1270 * TLB flush will be required as a result of the "set". For example, use
1271 * in scenarios where it is known ahead of time that the routine is
1272 * setting non-present entries, or re-setting an existing entry to the
1273 * same value. Otherwise, use the typical "set" helpers and flush the
1274 * TLB.
1275 */
1276#define set_p4d_safe(p4dp, p4d) \
1277({ \
1278 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1279 set_p4d(p4dp, p4d); \
1280})
1281
1282#define set_pgd_safe(pgdp, pgd) \
1283({ \
1284 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1285 set_pgd(pgdp, pgd); \
1286})
1287#endif /* !__ASSEMBLER__ */
1288
1289#endif /* _ASM_RISCV_PGTABLE_H */