at v6.19 974 lines 28 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2#ifndef _ASM_POWERPC_IO_H 3#define _ASM_POWERPC_IO_H 4#ifdef __KERNEL__ 5 6/* 7 */ 8 9/* Check of existence of legacy devices */ 10extern int check_legacy_ioport(unsigned long base_port); 11#define I8042_DATA_REG 0x60 12#define FDC_BASE 0x3f0 13 14#if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 15extern struct pci_dev *isa_bridge_pcidev; 16/* 17 * has legacy ISA devices ? 18 */ 19#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 20#endif 21 22#include <linux/device.h> 23#include <linux/compiler.h> 24#include <linux/mm.h> 25#include <asm/page.h> 26#include <asm/byteorder.h> 27#include <asm/synch.h> 28#include <asm/delay.h> 29#include <asm/mmiowb.h> 30#include <asm/mmu.h> 31 32#define SIO_CONFIG_RA 0x398 33#define SIO_CONFIG_RD 0x399 34 35/* 32 bits uses slightly different variables for the various IO 36 * bases. Most of this file only uses _IO_BASE though which we 37 * define properly based on the platform 38 */ 39#ifndef CONFIG_PCI 40#define _IO_BASE POISON_POINTER_DELTA 41#define _ISA_MEM_BASE 0 42#define PCI_DRAM_OFFSET 0 43#elif defined(CONFIG_PPC32) 44#define _IO_BASE isa_io_base 45#define _ISA_MEM_BASE isa_mem_base 46#define PCI_DRAM_OFFSET pci_dram_offset 47#else 48#define _IO_BASE pci_io_base 49#define _ISA_MEM_BASE isa_mem_base 50#define PCI_DRAM_OFFSET 0 51#endif 52 53extern unsigned long isa_io_base; 54extern unsigned long pci_io_base; 55extern unsigned long pci_dram_offset; 56 57extern resource_size_t isa_mem_base; 58 59/* Boolean set by platform if PIO accesses are suppored while _IO_BASE 60 * is not set or addresses cannot be translated to MMIO. This is typically 61 * set when the platform supports "special" PIO accesses via a non memory 62 * mapped mechanism, and allows things like the early udbg UART code to 63 * function. 64 */ 65extern bool isa_io_special; 66 67#ifdef CONFIG_PPC32 68#ifdef CONFIG_PPC_INDIRECT_PIO 69#error CONFIG_PPC_INDIRECT_PIO is not yet supported on 32 bits 70#endif 71#endif 72 73/* 74 * 75 * Low level MMIO accessors 76 * 77 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 78 * specific and thus shouldn't be used in generic code. The accessors 79 * provided here are: 80 * 81 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 82 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 83 * _insb, _insw, _insl, _outsb, _outsw, _outsl 84 * 85 * Those operate directly on a kernel virtual address. Note that the prototype 86 * for the out_* accessors has the arguments in opposite order from the usual 87 * linux PCI accessors. Unlike those, they take the address first and the value 88 * next. 89 */ 90 91/* -mprefixed can generate offsets beyond range, fall back hack */ 92#ifdef CONFIG_PPC_KERNEL_PREFIXED 93#define DEF_MMIO_IN_X(name, size, insn) \ 94static inline u##size name(const volatile u##size __iomem *addr) \ 95{ \ 96 u##size ret; \ 97 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 98 : "=r" (ret) : "r" (addr) : "memory"); \ 99 return ret; \ 100} 101 102#define DEF_MMIO_OUT_X(name, size, insn) \ 103static inline void name(volatile u##size __iomem *addr, u##size val) \ 104{ \ 105 __asm__ __volatile__("sync;"#insn" %1,0,%0" \ 106 : : "r" (addr), "r" (val) : "memory"); \ 107 mmiowb_set_pending(); \ 108} 109 110#define DEF_MMIO_IN_D(name, size, insn) \ 111static inline u##size name(const volatile u##size __iomem *addr) \ 112{ \ 113 u##size ret; \ 114 __asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\ 115 : "=r" (ret) : "b" (addr) : "memory"); \ 116 return ret; \ 117} 118 119#define DEF_MMIO_OUT_D(name, size, insn) \ 120static inline void name(volatile u##size __iomem *addr, u##size val) \ 121{ \ 122 __asm__ __volatile__("sync;"#insn" %1,0(%0)" \ 123 : : "b" (addr), "r" (val) : "memory"); \ 124 mmiowb_set_pending(); \ 125} 126#else 127#define DEF_MMIO_IN_X(name, size, insn) \ 128static inline u##size name(const volatile u##size __iomem *addr) \ 129{ \ 130 u##size ret; \ 131 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 132 : "=r" (ret) : "Z" (*addr) : "memory"); \ 133 return ret; \ 134} 135 136#define DEF_MMIO_OUT_X(name, size, insn) \ 137static inline void name(volatile u##size __iomem *addr, u##size val) \ 138{ \ 139 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 140 : "=Z" (*addr) : "r" (val) : "memory"); \ 141 mmiowb_set_pending(); \ 142} 143 144#define DEF_MMIO_IN_D(name, size, insn) \ 145static inline u##size name(const volatile u##size __iomem *addr) \ 146{ \ 147 u##size ret; \ 148 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 149 : "=r" (ret) : "m<>" (*addr) : "memory"); \ 150 return ret; \ 151} 152 153#define DEF_MMIO_OUT_D(name, size, insn) \ 154static inline void name(volatile u##size __iomem *addr, u##size val) \ 155{ \ 156 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 157 : "=m<>" (*addr) : "r" (val) : "memory"); \ 158 mmiowb_set_pending(); \ 159} 160#endif 161 162DEF_MMIO_IN_D(in_8, 8, lbz); 163DEF_MMIO_OUT_D(out_8, 8, stb); 164 165#ifdef __BIG_ENDIAN__ 166DEF_MMIO_IN_D(in_be16, 16, lhz); 167DEF_MMIO_IN_D(in_be32, 32, lwz); 168DEF_MMIO_IN_X(in_le16, 16, lhbrx); 169DEF_MMIO_IN_X(in_le32, 32, lwbrx); 170 171DEF_MMIO_OUT_D(out_be16, 16, sth); 172DEF_MMIO_OUT_D(out_be32, 32, stw); 173DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 174DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 175#else 176DEF_MMIO_IN_X(in_be16, 16, lhbrx); 177DEF_MMIO_IN_X(in_be32, 32, lwbrx); 178DEF_MMIO_IN_D(in_le16, 16, lhz); 179DEF_MMIO_IN_D(in_le32, 32, lwz); 180 181DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 182DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 183DEF_MMIO_OUT_D(out_le16, 16, sth); 184DEF_MMIO_OUT_D(out_le32, 32, stw); 185 186#endif /* __BIG_ENDIAN */ 187 188#ifdef __powerpc64__ 189 190#ifdef __BIG_ENDIAN__ 191DEF_MMIO_OUT_D(out_be64, 64, std); 192DEF_MMIO_IN_D(in_be64, 64, ld); 193 194/* There is no asm instructions for 64 bits reverse loads and stores */ 195static inline u64 in_le64(const volatile u64 __iomem *addr) 196{ 197 return swab64(in_be64(addr)); 198} 199 200static inline void out_le64(volatile u64 __iomem *addr, u64 val) 201{ 202 out_be64(addr, swab64(val)); 203} 204#else 205DEF_MMIO_OUT_D(out_le64, 64, std); 206DEF_MMIO_IN_D(in_le64, 64, ld); 207 208/* There is no asm instructions for 64 bits reverse loads and stores */ 209static inline u64 in_be64(const volatile u64 __iomem *addr) 210{ 211 return swab64(in_le64(addr)); 212} 213 214static inline void out_be64(volatile u64 __iomem *addr, u64 val) 215{ 216 out_le64(addr, swab64(val)); 217} 218 219#endif 220#endif /* __powerpc64__ */ 221 222/* 223 * Low level IO stream instructions are defined out of line for now 224 */ 225extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 226extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 227extern void _insw(const volatile u16 __iomem *addr, void *buf, long count); 228extern void _outsw(volatile u16 __iomem *addr, const void *buf, long count); 229extern void _insl(const volatile u32 __iomem *addr, void *buf, long count); 230extern void _outsl(volatile u32 __iomem *addr, const void *buf, long count); 231 232/* 233 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 234 */ 235 236extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 237extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 238 unsigned long n); 239extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 240 unsigned long n); 241 242/* 243 * 244 * PCI and standard ISA accessors 245 * 246 * Those are globally defined linux accessors for devices on PCI or ISA 247 * busses. They follow the Linux defined semantics. The current implementation 248 * for PowerPC is as close as possible to the x86 version of these, and thus 249 * provides fairly heavy weight barriers for the non-raw versions 250 * 251 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_PIO 252 * is set allowing the platform to provide its own implementation of some 253 * of the accessors. 254 */ 255 256/* 257 * Include the EEH definitions when EEH is enabled only so they don't get 258 * in the way when building for 32 bits 259 */ 260#ifdef CONFIG_EEH 261#include <asm/eeh.h> 262#endif 263 264#define _IO_PORT(port) ((volatile void __iomem *)(_IO_BASE + (port))) 265 266#ifdef __powerpc64__ 267/* 268 * Real mode versions of raw accessors. Those instructions are only supposed 269 * to be used in hypervisor real mode as per the architecture spec. 270 */ 271static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) 272{ 273 __asm__ __volatile__(".machine push; \ 274 .machine power6; \ 275 stbcix %0,0,%1; \ 276 .machine pop;" 277 : : "r" (val), "r" (paddr) : "memory"); 278} 279 280static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) 281{ 282 __asm__ __volatile__(".machine push; \ 283 .machine power6; \ 284 sthcix %0,0,%1; \ 285 .machine pop;" 286 : : "r" (val), "r" (paddr) : "memory"); 287} 288 289static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) 290{ 291 __asm__ __volatile__(".machine push; \ 292 .machine power6; \ 293 stwcix %0,0,%1; \ 294 .machine pop;" 295 : : "r" (val), "r" (paddr) : "memory"); 296} 297 298static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) 299{ 300 __asm__ __volatile__(".machine push; \ 301 .machine power6; \ 302 stdcix %0,0,%1; \ 303 .machine pop;" 304 : : "r" (val), "r" (paddr) : "memory"); 305} 306 307static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) 308{ 309 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); 310} 311 312static inline u8 __raw_rm_readb(volatile void __iomem *paddr) 313{ 314 u8 ret; 315 __asm__ __volatile__(".machine push; \ 316 .machine power6; \ 317 lbzcix %0,0, %1; \ 318 .machine pop;" 319 : "=r" (ret) : "r" (paddr) : "memory"); 320 return ret; 321} 322 323static inline u16 __raw_rm_readw(volatile void __iomem *paddr) 324{ 325 u16 ret; 326 __asm__ __volatile__(".machine push; \ 327 .machine power6; \ 328 lhzcix %0,0, %1; \ 329 .machine pop;" 330 : "=r" (ret) : "r" (paddr) : "memory"); 331 return ret; 332} 333 334static inline u32 __raw_rm_readl(volatile void __iomem *paddr) 335{ 336 u32 ret; 337 __asm__ __volatile__(".machine push; \ 338 .machine power6; \ 339 lwzcix %0,0, %1; \ 340 .machine pop;" 341 : "=r" (ret) : "r" (paddr) : "memory"); 342 return ret; 343} 344 345static inline u64 __raw_rm_readq(volatile void __iomem *paddr) 346{ 347 u64 ret; 348 __asm__ __volatile__(".machine push; \ 349 .machine power6; \ 350 ldcix %0,0, %1; \ 351 .machine pop;" 352 : "=r" (ret) : "r" (paddr) : "memory"); 353 return ret; 354} 355#endif /* __powerpc64__ */ 356 357/* 358 * 359 * PCI PIO and MMIO accessors. 360 * 361 * 362 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 363 * machine checks (which they occasionally do when probing non existing 364 * IO ports on some platforms, like PowerMac and 8xx). 365 * I always found it to be of dubious reliability and I am tempted to get 366 * rid of it one of these days. So if you think it's important to keep it, 367 * please voice up asap. We never had it for 64 bits and I do not intend 368 * to port it over 369 */ 370 371#ifdef CONFIG_PPC32 372 373#define __do_in_asm(name, op) \ 374static inline unsigned int name(unsigned int port) \ 375{ \ 376 unsigned int x; \ 377 __asm__ __volatile__( \ 378 "sync\n" \ 379 "0:" op " %0,0,%1\n" \ 380 "1: twi 0,%0,0\n" \ 381 "2: isync\n" \ 382 "3: nop\n" \ 383 "4:\n" \ 384 ".section .fixup,\"ax\"\n" \ 385 "5: li %0,-1\n" \ 386 " b 4b\n" \ 387 ".previous\n" \ 388 EX_TABLE(0b, 5b) \ 389 EX_TABLE(1b, 5b) \ 390 EX_TABLE(2b, 5b) \ 391 EX_TABLE(3b, 5b) \ 392 : "=&r" (x) \ 393 : "r" (port + _IO_BASE) \ 394 : "memory"); \ 395 return x; \ 396} 397 398#define __do_out_asm(name, op) \ 399static inline void name(unsigned int val, unsigned int port) \ 400{ \ 401 __asm__ __volatile__( \ 402 "sync\n" \ 403 "0:" op " %0,0,%1\n" \ 404 "1: sync\n" \ 405 "2:\n" \ 406 EX_TABLE(0b, 2b) \ 407 EX_TABLE(1b, 2b) \ 408 : : "r" (val), "r" (port + _IO_BASE) \ 409 : "memory"); \ 410} 411 412__do_in_asm(_rec_inb, "lbzx") 413__do_in_asm(_rec_inw, "lhbrx") 414__do_in_asm(_rec_inl, "lwbrx") 415__do_out_asm(_rec_outb, "stbx") 416__do_out_asm(_rec_outw, "sthbrx") 417__do_out_asm(_rec_outl, "stwbrx") 418 419#endif /* CONFIG_PPC32 */ 420 421/* The "__do_*" operations below provide the actual "base" implementation 422 * for each of the defined accessors. Some of them use the out_* functions 423 * directly, some of them still use EEH, though we might change that in the 424 * future. Those macros below provide the necessary argument swapping and 425 * handling of the IO base for PIO. 426 * 427 * They are themselves used by the macros that define the actual accessors 428 * and can be used by the hooks if any. 429 * 430 * Note that PIO operations are always defined in terms of their corresonding 431 * MMIO operations. That allows platforms like iSeries who want to modify the 432 * behaviour of both to only hook on the MMIO version and get both. It's also 433 * possible to hook directly at the toplevel PIO operation if they have to 434 * be handled differently 435 */ 436 437#ifdef CONFIG_EEH 438#define __do_readb(addr) eeh_readb(addr) 439#define __do_readw(addr) eeh_readw(addr) 440#define __do_readl(addr) eeh_readl(addr) 441#define __do_readq(addr) eeh_readq(addr) 442#define __do_readw_be(addr) eeh_readw_be(addr) 443#define __do_readl_be(addr) eeh_readl_be(addr) 444#define __do_readq_be(addr) eeh_readq_be(addr) 445#else /* CONFIG_EEH */ 446#define __do_readb(addr) in_8(addr) 447#define __do_readw(addr) in_le16(addr) 448#define __do_readl(addr) in_le32(addr) 449#define __do_readq(addr) in_le64(addr) 450#define __do_readw_be(addr) in_be16(addr) 451#define __do_readl_be(addr) in_be32(addr) 452#define __do_readq_be(addr) in_be64(addr) 453#endif /* !defined(CONFIG_EEH) */ 454 455#ifdef CONFIG_PPC32 456#define __do_outb(val, port) _rec_outb(val, port) 457#define __do_outw(val, port) _rec_outw(val, port) 458#define __do_outl(val, port) _rec_outl(val, port) 459#define __do_inb(port) _rec_inb(port) 460#define __do_inw(port) _rec_inw(port) 461#define __do_inl(port) _rec_inl(port) 462#else /* CONFIG_PPC32 */ 463#define __do_outb(val, port) writeb(val,_IO_PORT(port)); 464#define __do_outw(val, port) writew(val,_IO_PORT(port)); 465#define __do_outl(val, port) writel(val,_IO_PORT(port)); 466#define __do_inb(port) readb(_IO_PORT(port)); 467#define __do_inw(port) readw(_IO_PORT(port)); 468#define __do_inl(port) readl(_IO_PORT(port)); 469#endif /* !CONFIG_PPC32 */ 470 471#ifdef CONFIG_EEH 472#define __do_readsb(a, b, n) eeh_readsb(a, (b), (n)) 473#define __do_readsw(a, b, n) eeh_readsw(a, (b), (n)) 474#define __do_readsl(a, b, n) eeh_readsl(a, (b), (n)) 475#else /* CONFIG_EEH */ 476#define __do_readsb(a, b, n) _insb(a, (b), (n)) 477#define __do_readsw(a, b, n) _insw(a, (b), (n)) 478#define __do_readsl(a, b, n) _insl(a, (b), (n)) 479#endif /* !CONFIG_EEH */ 480#define __do_writesb(a, b, n) _outsb(a, (b), (n)) 481#define __do_writesw(a, b, n) _outsw(a, (b), (n)) 482#define __do_writesl(a, b, n) _outsl(a, (b), (n)) 483 484#define __do_insb(p, b, n) readsb(_IO_PORT(p), (b), (n)) 485#define __do_insw(p, b, n) readsw(_IO_PORT(p), (b), (n)) 486#define __do_insl(p, b, n) readsl(_IO_PORT(p), (b), (n)) 487#define __do_outsb(p, b, n) writesb(_IO_PORT(p),(b),(n)) 488#define __do_outsw(p, b, n) writesw(_IO_PORT(p),(b),(n)) 489#define __do_outsl(p, b, n) writesl(_IO_PORT(p),(b),(n)) 490 491#ifdef CONFIG_EEH 492#define __do_memcpy_fromio(dst, src, n) \ 493 eeh_memcpy_fromio(dst, src, n) 494#else /* CONFIG_EEH */ 495#define __do_memcpy_fromio(dst, src, n) \ 496 _memcpy_fromio(dst, src, n) 497#endif /* !CONFIG_EEH */ 498 499static inline u8 readb(const volatile void __iomem *addr) 500{ 501 return __do_readb(addr); 502} 503#define readb readb 504 505static inline u16 readw(const volatile void __iomem *addr) 506{ 507 return __do_readw(addr); 508} 509#define readw readw 510 511static inline u32 readl(const volatile void __iomem *addr) 512{ 513 return __do_readl(addr); 514} 515#define readl readl 516 517static inline u16 readw_be(const volatile void __iomem *addr) 518{ 519 return __do_readw_be(addr); 520} 521 522static inline u32 readl_be(const volatile void __iomem *addr) 523{ 524 return __do_readl_be(addr); 525} 526 527static inline void writeb(u8 val, volatile void __iomem *addr) 528{ 529 out_8(addr, val); 530} 531#define writeb writeb 532 533static inline void writew(u16 val, volatile void __iomem *addr) 534{ 535 out_le16(addr, val); 536} 537#define writew writew 538 539static inline void writel(u32 val, volatile void __iomem *addr) 540{ 541 out_le32(addr, val); 542} 543#define writel writel 544 545static inline void writew_be(u16 val, volatile void __iomem *addr) 546{ 547 out_be16(addr, val); 548} 549 550static inline void writel_be(u32 val, volatile void __iomem *addr) 551{ 552 out_be32(addr, val); 553} 554 555static inline void readsb(const volatile void __iomem *a, void *b, unsigned long c) 556{ 557 __do_readsb(a, b, c); 558} 559#define readsb readsb 560 561static inline void readsw(const volatile void __iomem *a, void *b, unsigned long c) 562{ 563 __do_readsw(a, b, c); 564} 565#define readsw readsw 566 567static inline void readsl(const volatile void __iomem *a, void *b, unsigned long c) 568{ 569 __do_readsl(a, b, c); 570} 571#define readsl readsl 572 573static inline void writesb(volatile void __iomem *a, const void *b, unsigned long c) 574{ 575 __do_writesb(a, b, c); 576} 577#define writesb writesb 578 579static inline void writesw(volatile void __iomem *a, const void *b, unsigned long c) 580{ 581 __do_writesw(a, b, c); 582} 583#define writesw writesw 584 585static inline void writesl(volatile void __iomem *a, const void *b, unsigned long c) 586{ 587 __do_writesl(a, b, c); 588} 589#define writesl writesl 590 591static inline void memset_io(volatile void __iomem *a, int c, unsigned long n) 592{ 593 _memset_io(a, c, n); 594} 595#define memset_io memset_io 596 597static inline void memcpy_fromio(void *d, const volatile void __iomem *s, unsigned long n) 598{ 599 __do_memcpy_fromio(d, s, n); 600} 601#define memcpy_fromio memcpy_fromio 602 603static inline void memcpy_toio(volatile void __iomem *d, const void *s, unsigned long n) 604{ 605 _memcpy_toio(d, s, n); 606} 607#define memcpy_toio memcpy_toio 608 609#ifdef __powerpc64__ 610static inline u64 readq(const volatile void __iomem *addr) 611{ 612 return __do_readq(addr); 613} 614 615static inline u64 readq_be(const volatile void __iomem *addr) 616{ 617 return __do_readq_be(addr); 618} 619 620static inline void writeq(u64 val, volatile void __iomem *addr) 621{ 622 out_le64(addr, val); 623} 624 625static inline void writeq_be(u64 val, volatile void __iomem *addr) 626{ 627 out_be64(addr, val); 628} 629#endif /* __powerpc64__ */ 630 631#ifdef CONFIG_PPC_INDIRECT_PIO 632#define DEF_PCI_HOOK(x) x 633#else 634#define DEF_PCI_HOOK(x) NULL 635#endif 636 637/* Structure containing all the hooks */ 638extern struct ppc_pci_io { 639 640#define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at; 641#define DEF_PCI_AC_NORET(name, at, al) void (*name) at; 642 643#include <asm/io-defs.h> 644 645#undef DEF_PCI_AC_RET 646#undef DEF_PCI_AC_NORET 647 648} ppc_pci_io; 649 650/* The inline wrappers */ 651#define DEF_PCI_AC_RET(name, ret, at, al) \ 652static inline ret name at \ 653{ \ 654 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 655 return ppc_pci_io.name al; \ 656 return __do_##name al; \ 657} 658 659#define DEF_PCI_AC_NORET(name, at, al) \ 660static inline void name at \ 661{ \ 662 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 663 ppc_pci_io.name al; \ 664 else \ 665 __do_##name al; \ 666} 667 668#include <asm/io-defs.h> 669 670#undef DEF_PCI_AC_RET 671#undef DEF_PCI_AC_NORET 672 673// Signal to asm-generic/io.h that we have implemented these. 674#define inb inb 675#define inw inw 676#define inl inl 677#define outb outb 678#define outw outw 679#define outl outl 680#define insb insb 681#define insw insw 682#define insl insl 683#define outsb outsb 684#define outsw outsw 685#define outsl outsl 686#ifdef __powerpc64__ 687#define readq readq 688#define writeq writeq 689#endif 690 691/* 692 * We don't do relaxed operations yet, at least not with this semantic 693 */ 694#define readb_relaxed(addr) readb(addr) 695#define readw_relaxed(addr) readw(addr) 696#define readl_relaxed(addr) readl(addr) 697#define readq_relaxed(addr) readq(addr) 698#define writeb_relaxed(v, addr) writeb(v, addr) 699#define writew_relaxed(v, addr) writew(v, addr) 700#define writel_relaxed(v, addr) writel(v, addr) 701#define writeq_relaxed(v, addr) writeq(v, addr) 702 703#ifndef CONFIG_GENERIC_IOMAP 704/* 705 * Here comes the implementation of the IOMAP interfaces. 706 */ 707static inline unsigned int ioread16be(const void __iomem *addr) 708{ 709 return readw_be(addr); 710} 711#define ioread16be ioread16be 712 713static inline unsigned int ioread32be(const void __iomem *addr) 714{ 715 return readl_be(addr); 716} 717#define ioread32be ioread32be 718 719#ifdef __powerpc64__ 720static inline u64 ioread64be(const void __iomem *addr) 721{ 722 return readq_be(addr); 723} 724#define ioread64be ioread64be 725#endif /* __powerpc64__ */ 726 727static inline void iowrite16be(u16 val, void __iomem *addr) 728{ 729 writew_be(val, addr); 730} 731#define iowrite16be iowrite16be 732 733static inline void iowrite32be(u32 val, void __iomem *addr) 734{ 735 writel_be(val, addr); 736} 737#define iowrite32be iowrite32be 738 739#ifdef __powerpc64__ 740static inline void iowrite64be(u64 val, void __iomem *addr) 741{ 742 writeq_be(val, addr); 743} 744#define iowrite64be iowrite64be 745#endif /* __powerpc64__ */ 746 747struct pci_dev; 748void pci_iounmap(struct pci_dev *dev, void __iomem *addr); 749#define pci_iounmap pci_iounmap 750void __iomem *ioport_map(unsigned long port, unsigned int len); 751#define ioport_map ioport_map 752#endif 753 754static inline void iosync(void) 755{ 756 __asm__ __volatile__ ("sync" : : : "memory"); 757} 758 759/* Enforce in-order execution of data I/O. 760 * No distinction between read/write on PPC; use eieio for all three. 761 * Those are fairly week though. They don't provide a barrier between 762 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 763 * they only provide barriers between 2 __raw MMIO operations and 764 * possibly break write combining. 765 */ 766#define iobarrier_rw() eieio() 767#define iobarrier_r() eieio() 768#define iobarrier_w() eieio() 769 770 771/* 772 * output pause versions need a delay at least for the 773 * w83c105 ide controller in a p610. 774 */ 775#define inb_p(port) inb(port) 776#define outb_p(val, port) (udelay(1), outb((val), (port))) 777#define inw_p(port) inw(port) 778#define outw_p(val, port) (udelay(1), outw((val), (port))) 779#define inl_p(port) inl(port) 780#define outl_p(val, port) (udelay(1), outl((val), (port))) 781 782 783#define IO_SPACE_LIMIT ~(0UL) 784 785/** 786 * ioremap - map bus memory into CPU space 787 * @address: bus address of the memory 788 * @size: size of the resource to map 789 * 790 * ioremap performs a platform specific sequence of operations to 791 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 792 * writew/writel functions and the other mmio helpers. The returned 793 * address is not guaranteed to be usable directly as a virtual 794 * address. 795 * 796 * We provide a few variations of it: 797 * 798 * * ioremap is the standard one and provides non-cacheable guarded mappings 799 * and can be hooked by the platform via ppc_md 800 * 801 * * ioremap_prot allows to specify the page flags as an argument and can 802 * also be hooked by the platform via ppc_md. 803 * 804 * * ioremap_wc enables write combining 805 * 806 * * ioremap_wt enables write through 807 * 808 * * ioremap_coherent maps coherent cached memory 809 * 810 * * iounmap undoes such a mapping and can be hooked 811 * 812 * * __ioremap_caller is the same as above but takes an explicit caller 813 * reference rather than using __builtin_return_address(0) 814 * 815 */ 816extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 817#define ioremap ioremap 818#define ioremap_prot ioremap_prot 819extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 820#define ioremap_wc ioremap_wc 821 822#ifdef CONFIG_PPC32 823void __iomem *ioremap_wt(phys_addr_t address, unsigned long size); 824#define ioremap_wt ioremap_wt 825#endif 826 827void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size); 828#define ioremap_cache(addr, size) \ 829 ioremap_prot((addr), (size), PAGE_KERNEL) 830 831#define iounmap iounmap 832 833void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size); 834 835int early_ioremap_range(unsigned long ea, phys_addr_t pa, 836 unsigned long size, pgprot_t prot); 837 838extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 839 pgprot_t prot, void *caller); 840 841/* 842 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 843 * which needs some additional definitions here. They basically allow PIO 844 * space overall to be 1GB. This will work as long as we never try to use 845 * iomap to map MMIO below 1GB which should be fine on ppc64 846 */ 847#define HAVE_ARCH_PIO_SIZE 1 848#define PIO_OFFSET 0x00000000UL 849#define PIO_MASK (FULL_IO_SIZE - 1) 850#define PIO_RESERVED (FULL_IO_SIZE) 851 852#define mmio_read16be(addr) readw_be(addr) 853#define mmio_read32be(addr) readl_be(addr) 854#define mmio_read64be(addr) readq_be(addr) 855#define mmio_write16be(val, addr) writew_be(val, addr) 856#define mmio_write32be(val, addr) writel_be(val, addr) 857#define mmio_write64be(val, addr) writeq_be(val, addr) 858#define mmio_insb(addr, dst, count) readsb(addr, dst, count) 859#define mmio_insw(addr, dst, count) readsw(addr, dst, count) 860#define mmio_insl(addr, dst, count) readsl(addr, dst, count) 861#define mmio_outsb(addr, src, count) writesb(addr, src, count) 862#define mmio_outsw(addr, src, count) writesw(addr, src, count) 863#define mmio_outsl(addr, src, count) writesl(addr, src, count) 864 865/** 866 * virt_to_phys - map virtual addresses to physical 867 * @address: address to remap 868 * 869 * The returned physical address is the physical (CPU) mapping for 870 * the memory address given. It is only valid to use this function on 871 * addresses directly mapped or allocated via kmalloc. 872 * 873 * This function does not give bus mappings for DMA transfers. In 874 * almost all conceivable cases a device driver should not be using 875 * this function 876 */ 877static inline unsigned long virt_to_phys(const volatile void * address) 878{ 879 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address)); 880 881 return __pa((unsigned long)address); 882} 883#define virt_to_phys virt_to_phys 884 885/** 886 * phys_to_virt - map physical address to virtual 887 * @address: address to remap 888 * 889 * The returned virtual address is a current CPU mapping for 890 * the memory address given. It is only valid to use this function on 891 * addresses that have a kernel mapping 892 * 893 * This function does not handle bus mappings for DMA transfers. In 894 * almost all conceivable cases a device driver should not be using 895 * this function 896 */ 897static inline void * phys_to_virt(unsigned long address) 898{ 899 return (void *)__va(address); 900} 901#define phys_to_virt phys_to_virt 902 903/* 904 * 32 bits still uses virt_to_bus() for its implementation of DMA 905 * mappings se we have to keep it defined here. We also have some old 906 * drivers (shame shame shame) that use bus_to_virt() and haven't been 907 * fixed yet so I need to define it here. 908 */ 909#ifdef CONFIG_PPC32 910 911static inline unsigned long virt_to_bus(volatile void * address) 912{ 913 if (address == NULL) 914 return 0; 915 return __pa(address) + PCI_DRAM_OFFSET; 916} 917#define virt_to_bus virt_to_bus 918 919static inline void * bus_to_virt(unsigned long address) 920{ 921 if (address == 0) 922 return NULL; 923 return __va(address - PCI_DRAM_OFFSET); 924} 925#define bus_to_virt bus_to_virt 926 927#endif /* CONFIG_PPC32 */ 928 929/* access ports */ 930#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 931#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 932 933#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 934#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 935 936#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 937#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 938 939/* Clear and set bits in one shot. These macros can be used to clear and 940 * set multiple bits in a register using a single read-modify-write. These 941 * macros can also be used to set a multiple-bit bit pattern using a mask, 942 * by specifying the mask in the 'clear' parameter and the new bit pattern 943 * in the 'set' parameter. 944 */ 945 946#define clrsetbits(type, addr, clear, set) \ 947 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 948 949#ifdef __powerpc64__ 950#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 951#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 952#endif 953 954#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 955#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 956 957#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 958#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 959 960#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 961 962#include <asm-generic/io.h> 963 964#ifdef __powerpc64__ 965static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) 966{ 967 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr); 968} 969#define __raw_writeq_be __raw_writeq_be 970#endif // __powerpc64__ 971 972#endif /* __KERNEL__ */ 973 974#endif /* _ASM_POWERPC_IO_H */