at v6.19-rc8 7422 lines 189 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31/* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37#include <linux/module.h> 38#include <linux/types.h> 39#include <linux/kernel.h> 40#include <linux/mm.h> 41#include <linux/interrupt.h> 42#include <linux/in.h> 43#include <linux/inet.h> 44#include <linux/slab.h> 45#include <linux/tcp.h> 46#include <linux/udp.h> 47#include <linux/sctp.h> 48#include <linux/netdevice.h> 49#ifdef CONFIG_NET_CLS_ACT 50#include <net/pkt_sched.h> 51#endif 52#include <linux/string.h> 53#include <linux/skbuff.h> 54#include <linux/skbuff_ref.h> 55#include <linux/splice.h> 56#include <linux/cache.h> 57#include <linux/rtnetlink.h> 58#include <linux/init.h> 59#include <linux/scatterlist.h> 60#include <linux/errqueue.h> 61#include <linux/prefetch.h> 62#include <linux/bitfield.h> 63#include <linux/if_vlan.h> 64#include <linux/mpls.h> 65#include <linux/kcov.h> 66#include <linux/iov_iter.h> 67#include <linux/crc32.h> 68 69#include <net/protocol.h> 70#include <net/dst.h> 71#include <net/sock.h> 72#include <net/checksum.h> 73#include <net/gro.h> 74#include <net/gso.h> 75#include <net/hotdata.h> 76#include <net/ip6_checksum.h> 77#include <net/xfrm.h> 78#include <net/mpls.h> 79#include <net/mptcp.h> 80#include <net/mctp.h> 81#include <net/page_pool/helpers.h> 82#include <net/psp/types.h> 83#include <net/dropreason.h> 84#include <net/xdp_sock.h> 85 86#include <linux/uaccess.h> 87#include <trace/events/skb.h> 88#include <linux/highmem.h> 89#include <linux/capability.h> 90#include <linux/user_namespace.h> 91#include <linux/indirect_call_wrapper.h> 92#include <linux/textsearch.h> 93 94#include "dev.h" 95#include "devmem.h" 96#include "netmem_priv.h" 97#include "sock_destructor.h" 98 99#ifdef CONFIG_SKB_EXTENSIONS 100static struct kmem_cache *skbuff_ext_cache __ro_after_init; 101#endif 102 103#define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 104#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 105 GRO_MAX_HEAD_PAD)) 106 107/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 108 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 109 * size, and we can differentiate heads from skb_small_head_cache 110 * vs system slabs by looking at their size (skb_end_offset()). 111 */ 112#define SKB_SMALL_HEAD_CACHE_SIZE \ 113 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 114 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 115 SKB_SMALL_HEAD_SIZE) 116 117#define SKB_SMALL_HEAD_HEADROOM \ 118 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 119 120/* kcm_write_msgs() relies on casting paged frags to bio_vec to use 121 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 122 * netmem is a page. 123 */ 124static_assert(offsetof(struct bio_vec, bv_page) == 125 offsetof(skb_frag_t, netmem)); 126static_assert(sizeof_field(struct bio_vec, bv_page) == 127 sizeof_field(skb_frag_t, netmem)); 128 129static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 130static_assert(sizeof_field(struct bio_vec, bv_len) == 131 sizeof_field(skb_frag_t, len)); 132 133static_assert(offsetof(struct bio_vec, bv_offset) == 134 offsetof(skb_frag_t, offset)); 135static_assert(sizeof_field(struct bio_vec, bv_offset) == 136 sizeof_field(skb_frag_t, offset)); 137 138#undef FN 139#define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 140static const char * const drop_reasons[] = { 141 [SKB_CONSUMED] = "CONSUMED", 142 DEFINE_DROP_REASON(FN, FN) 143}; 144 145static const struct drop_reason_list drop_reasons_core = { 146 .reasons = drop_reasons, 147 .n_reasons = ARRAY_SIZE(drop_reasons), 148}; 149 150const struct drop_reason_list __rcu * 151drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 152 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 153}; 154EXPORT_SYMBOL(drop_reasons_by_subsys); 155 156/** 157 * drop_reasons_register_subsys - register another drop reason subsystem 158 * @subsys: the subsystem to register, must not be the core 159 * @list: the list of drop reasons within the subsystem, must point to 160 * a statically initialized list 161 */ 162void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 163 const struct drop_reason_list *list) 164{ 165 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 166 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 167 "invalid subsystem %d\n", subsys)) 168 return; 169 170 /* must point to statically allocated memory, so INIT is OK */ 171 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 172} 173EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 174 175/** 176 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 177 * @subsys: the subsystem to remove, must not be the core 178 * 179 * Note: This will synchronize_rcu() to ensure no users when it returns. 180 */ 181void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 182{ 183 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 184 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 185 "invalid subsystem %d\n", subsys)) 186 return; 187 188 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 189 190 synchronize_rcu(); 191} 192EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 193 194/** 195 * skb_panic - private function for out-of-line support 196 * @skb: buffer 197 * @sz: size 198 * @addr: address 199 * @msg: skb_over_panic or skb_under_panic 200 * 201 * Out-of-line support for skb_put() and skb_push(). 202 * Called via the wrapper skb_over_panic() or skb_under_panic(). 203 * Keep out of line to prevent kernel bloat. 204 * __builtin_return_address is not used because it is not always reliable. 205 */ 206static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 207 const char msg[]) 208{ 209 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 210 msg, addr, skb->len, sz, skb->head, skb->data, 211 (unsigned long)skb->tail, (unsigned long)skb->end, 212 skb->dev ? skb->dev->name : "<NULL>"); 213 BUG(); 214} 215 216static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 217{ 218 skb_panic(skb, sz, addr, __func__); 219} 220 221static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 222{ 223 skb_panic(skb, sz, addr, __func__); 224} 225 226#define NAPI_SKB_CACHE_SIZE 128 227#define NAPI_SKB_CACHE_BULK 32 228#define NAPI_SKB_CACHE_FREE 32 229 230struct napi_alloc_cache { 231 local_lock_t bh_lock; 232 struct page_frag_cache page; 233 unsigned int skb_count; 234 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 235}; 236 237static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 238static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 239 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 240}; 241 242void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 243{ 244 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 245 void *data; 246 247 fragsz = SKB_DATA_ALIGN(fragsz); 248 249 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 250 data = __page_frag_alloc_align(&nc->page, fragsz, 251 GFP_ATOMIC | __GFP_NOWARN, align_mask); 252 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 253 return data; 254 255} 256EXPORT_SYMBOL(__napi_alloc_frag_align); 257 258void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 259{ 260 void *data; 261 262 if (in_hardirq() || irqs_disabled()) { 263 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 264 265 fragsz = SKB_DATA_ALIGN(fragsz); 266 data = __page_frag_alloc_align(nc, fragsz, 267 GFP_ATOMIC | __GFP_NOWARN, 268 align_mask); 269 } else { 270 local_bh_disable(); 271 data = __napi_alloc_frag_align(fragsz, align_mask); 272 local_bh_enable(); 273 } 274 return data; 275} 276EXPORT_SYMBOL(__netdev_alloc_frag_align); 277 278/* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler 279 * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset. 280 */ 281static u32 skbuff_cache_size __read_mostly; 282 283static struct sk_buff *napi_skb_cache_get(bool alloc) 284{ 285 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 286 struct sk_buff *skb; 287 288 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 289 if (unlikely(!nc->skb_count)) { 290 if (alloc) 291 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 292 GFP_ATOMIC | __GFP_NOWARN, 293 NAPI_SKB_CACHE_BULK, 294 nc->skb_cache); 295 if (unlikely(!nc->skb_count)) { 296 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 297 return NULL; 298 } 299 } 300 301 skb = nc->skb_cache[--nc->skb_count]; 302 if (nc->skb_count) 303 prefetch(nc->skb_cache[nc->skb_count - 1]); 304 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 305 kasan_mempool_unpoison_object(skb, skbuff_cache_size); 306 307 return skb; 308} 309 310/** 311 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 312 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 313 * @n: number of entries to provide 314 * 315 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 316 * the pointers into the provided array @skbs. If there are less entries 317 * available, tries to replenish the cache and bulk-allocates the diff from 318 * the MM layer if needed. 319 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 320 * ready for {,__}build_skb_around() and don't have any data buffers attached. 321 * Must be called *only* from the BH context. 322 * 323 * Return: number of successfully allocated skbs (@n if no actual allocation 324 * needed or kmem_cache_alloc_bulk() didn't fail). 325 */ 326u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 327{ 328 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 329 u32 bulk, total = n; 330 331 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 332 333 if (nc->skb_count >= n) 334 goto get; 335 336 /* No enough cached skbs. Try refilling the cache first */ 337 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 338 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 339 GFP_ATOMIC | __GFP_NOWARN, bulk, 340 &nc->skb_cache[nc->skb_count]); 341 if (likely(nc->skb_count >= n)) 342 goto get; 343 344 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 345 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 346 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 347 n - nc->skb_count, &skbs[nc->skb_count]); 348 if (likely(nc->skb_count >= n)) 349 goto get; 350 351 /* kmem_cache didn't allocate the number we need, limit the output */ 352 total -= n - nc->skb_count; 353 n = nc->skb_count; 354 355get: 356 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 357 skbs[i] = nc->skb_cache[base + i]; 358 359 kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size); 360 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 361 } 362 363 nc->skb_count -= n; 364 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 365 366 return total; 367} 368EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 369 370static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 371 unsigned int size) 372{ 373 struct skb_shared_info *shinfo; 374 375 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 376 377 /* Assumes caller memset cleared SKB */ 378 skb->truesize = SKB_TRUESIZE(size); 379 refcount_set(&skb->users, 1); 380 skb->head = data; 381 skb->data = data; 382 skb_reset_tail_pointer(skb); 383 skb_set_end_offset(skb, size); 384 skb->mac_header = (typeof(skb->mac_header))~0U; 385 skb->transport_header = (typeof(skb->transport_header))~0U; 386 skb->alloc_cpu = raw_smp_processor_id(); 387 /* make sure we initialize shinfo sequentially */ 388 shinfo = skb_shinfo(skb); 389 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 390 atomic_set(&shinfo->dataref, 1); 391 392 skb_set_kcov_handle(skb, kcov_common_handle()); 393} 394 395static inline void *__slab_build_skb(void *data, unsigned int *size) 396{ 397 void *resized; 398 399 /* Must find the allocation size (and grow it to match). */ 400 *size = ksize(data); 401 /* krealloc() will immediately return "data" when 402 * "ksize(data)" is requested: it is the existing upper 403 * bounds. As a result, GFP_ATOMIC will be ignored. Note 404 * that this "new" pointer needs to be passed back to the 405 * caller for use so the __alloc_size hinting will be 406 * tracked correctly. 407 */ 408 resized = krealloc(data, *size, GFP_ATOMIC); 409 WARN_ON_ONCE(resized != data); 410 return resized; 411} 412 413/* build_skb() variant which can operate on slab buffers. 414 * Note that this should be used sparingly as slab buffers 415 * cannot be combined efficiently by GRO! 416 */ 417struct sk_buff *slab_build_skb(void *data) 418{ 419 struct sk_buff *skb; 420 unsigned int size; 421 422 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 423 GFP_ATOMIC | __GFP_NOWARN); 424 if (unlikely(!skb)) 425 return NULL; 426 427 memset(skb, 0, offsetof(struct sk_buff, tail)); 428 data = __slab_build_skb(data, &size); 429 __finalize_skb_around(skb, data, size); 430 431 return skb; 432} 433EXPORT_SYMBOL(slab_build_skb); 434 435/* Caller must provide SKB that is memset cleared */ 436static void __build_skb_around(struct sk_buff *skb, void *data, 437 unsigned int frag_size) 438{ 439 unsigned int size = frag_size; 440 441 /* frag_size == 0 is considered deprecated now. Callers 442 * using slab buffer should use slab_build_skb() instead. 443 */ 444 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 445 data = __slab_build_skb(data, &size); 446 447 __finalize_skb_around(skb, data, size); 448} 449 450/** 451 * __build_skb - build a network buffer 452 * @data: data buffer provided by caller 453 * @frag_size: size of data (must not be 0) 454 * 455 * Allocate a new &sk_buff. Caller provides space holding head and 456 * skb_shared_info. @data must have been allocated from the page 457 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 458 * allocation is deprecated, and callers should use slab_build_skb() 459 * instead.) 460 * The return is the new skb buffer. 461 * On a failure the return is %NULL, and @data is not freed. 462 * Notes : 463 * Before IO, driver allocates only data buffer where NIC put incoming frame 464 * Driver should add room at head (NET_SKB_PAD) and 465 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 466 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 467 * before giving packet to stack. 468 * RX rings only contains data buffers, not full skbs. 469 */ 470struct sk_buff *__build_skb(void *data, unsigned int frag_size) 471{ 472 struct sk_buff *skb; 473 474 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 475 GFP_ATOMIC | __GFP_NOWARN); 476 if (unlikely(!skb)) 477 return NULL; 478 479 memset(skb, 0, offsetof(struct sk_buff, tail)); 480 __build_skb_around(skb, data, frag_size); 481 482 return skb; 483} 484 485/* build_skb() is wrapper over __build_skb(), that specifically 486 * takes care of skb->head and skb->pfmemalloc 487 */ 488struct sk_buff *build_skb(void *data, unsigned int frag_size) 489{ 490 struct sk_buff *skb = __build_skb(data, frag_size); 491 492 if (likely(skb && frag_size)) { 493 skb->head_frag = 1; 494 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 495 } 496 return skb; 497} 498EXPORT_SYMBOL(build_skb); 499 500/** 501 * build_skb_around - build a network buffer around provided skb 502 * @skb: sk_buff provide by caller, must be memset cleared 503 * @data: data buffer provided by caller 504 * @frag_size: size of data 505 */ 506struct sk_buff *build_skb_around(struct sk_buff *skb, 507 void *data, unsigned int frag_size) 508{ 509 if (unlikely(!skb)) 510 return NULL; 511 512 __build_skb_around(skb, data, frag_size); 513 514 if (frag_size) { 515 skb->head_frag = 1; 516 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 517 } 518 return skb; 519} 520EXPORT_SYMBOL(build_skb_around); 521 522/** 523 * __napi_build_skb - build a network buffer 524 * @data: data buffer provided by caller 525 * @frag_size: size of data 526 * 527 * Version of __build_skb() that uses NAPI percpu caches to obtain 528 * skbuff_head instead of inplace allocation. 529 * 530 * Returns a new &sk_buff on success, %NULL on allocation failure. 531 */ 532static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 533{ 534 struct sk_buff *skb; 535 536 skb = napi_skb_cache_get(true); 537 if (unlikely(!skb)) 538 return NULL; 539 540 memset(skb, 0, offsetof(struct sk_buff, tail)); 541 __build_skb_around(skb, data, frag_size); 542 543 return skb; 544} 545 546/** 547 * napi_build_skb - build a network buffer 548 * @data: data buffer provided by caller 549 * @frag_size: size of data 550 * 551 * Version of __napi_build_skb() that takes care of skb->head_frag 552 * and skb->pfmemalloc when the data is a page or page fragment. 553 * 554 * Returns a new &sk_buff on success, %NULL on allocation failure. 555 */ 556struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 557{ 558 struct sk_buff *skb = __napi_build_skb(data, frag_size); 559 560 if (likely(skb) && frag_size) { 561 skb->head_frag = 1; 562 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 563 } 564 565 return skb; 566} 567EXPORT_SYMBOL(napi_build_skb); 568 569/* 570 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 571 * the caller if emergency pfmemalloc reserves are being used. If it is and 572 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 573 * may be used. Otherwise, the packet data may be discarded until enough 574 * memory is free 575 */ 576static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 577 bool *pfmemalloc) 578{ 579 bool ret_pfmemalloc = false; 580 size_t obj_size; 581 void *obj; 582 583 obj_size = SKB_HEAD_ALIGN(*size); 584 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 585 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 587 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 588 node); 589 *size = SKB_SMALL_HEAD_CACHE_SIZE; 590 if (obj || !(gfp_pfmemalloc_allowed(flags))) 591 goto out; 592 /* Try again but now we are using pfmemalloc reserves */ 593 ret_pfmemalloc = true; 594 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 595 goto out; 596 } 597 598 obj_size = kmalloc_size_roundup(obj_size); 599 /* The following cast might truncate high-order bits of obj_size, this 600 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 601 */ 602 *size = (unsigned int)obj_size; 603 604 /* 605 * Try a regular allocation, when that fails and we're not entitled 606 * to the reserves, fail. 607 */ 608 obj = kmalloc_node_track_caller(obj_size, 609 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 610 node); 611 if (obj || !(gfp_pfmemalloc_allowed(flags))) 612 goto out; 613 614 /* Try again but now we are using pfmemalloc reserves */ 615 ret_pfmemalloc = true; 616 obj = kmalloc_node_track_caller(obj_size, flags, node); 617 618out: 619 if (pfmemalloc) 620 *pfmemalloc = ret_pfmemalloc; 621 622 return obj; 623} 624 625/* Allocate a new skbuff. We do this ourselves so we can fill in a few 626 * 'private' fields and also do memory statistics to find all the 627 * [BEEP] leaks. 628 * 629 */ 630 631/** 632 * __alloc_skb - allocate a network buffer 633 * @size: size to allocate 634 * @gfp_mask: allocation mask 635 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 636 * instead of head cache and allocate a cloned (child) skb. 637 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 638 * allocations in case the data is required for writeback 639 * @node: numa node to allocate memory on 640 * 641 * Allocate a new &sk_buff. The returned buffer has no headroom and a 642 * tail room of at least size bytes. The object has a reference count 643 * of one. The return is the buffer. On a failure the return is %NULL. 644 * 645 * Buffers may only be allocated from interrupts using a @gfp_mask of 646 * %GFP_ATOMIC. 647 */ 648struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 649 int flags, int node) 650{ 651 struct sk_buff *skb = NULL; 652 struct kmem_cache *cache; 653 bool pfmemalloc; 654 u8 *data; 655 656 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 657 gfp_mask |= __GFP_MEMALLOC; 658 659 if (flags & SKB_ALLOC_FCLONE) { 660 cache = net_hotdata.skbuff_fclone_cache; 661 goto fallback; 662 } 663 cache = net_hotdata.skbuff_cache; 664 if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id())) 665 goto fallback; 666 667 if (flags & SKB_ALLOC_NAPI) { 668 skb = napi_skb_cache_get(true); 669 if (unlikely(!skb)) 670 return NULL; 671 } else if (!in_hardirq() && !irqs_disabled()) { 672 local_bh_disable(); 673 skb = napi_skb_cache_get(false); 674 local_bh_enable(); 675 } 676 677 if (!skb) { 678fallback: 679 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 680 if (unlikely(!skb)) 681 return NULL; 682 } 683 prefetchw(skb); 684 685 /* We do our best to align skb_shared_info on a separate cache 686 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 687 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 688 * Both skb->head and skb_shared_info are cache line aligned. 689 */ 690 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 691 if (unlikely(!data)) 692 goto nodata; 693 /* kmalloc_size_roundup() might give us more room than requested. 694 * Put skb_shared_info exactly at the end of allocated zone, 695 * to allow max possible filling before reallocation. 696 */ 697 prefetchw(data + SKB_WITH_OVERHEAD(size)); 698 699 /* 700 * Only clear those fields we need to clear, not those that we will 701 * actually initialise below. Hence, don't put any more fields after 702 * the tail pointer in struct sk_buff! 703 */ 704 memset(skb, 0, offsetof(struct sk_buff, tail)); 705 __build_skb_around(skb, data, size); 706 skb->pfmemalloc = pfmemalloc; 707 708 if (flags & SKB_ALLOC_FCLONE) { 709 struct sk_buff_fclones *fclones; 710 711 fclones = container_of(skb, struct sk_buff_fclones, skb1); 712 713 skb->fclone = SKB_FCLONE_ORIG; 714 refcount_set(&fclones->fclone_ref, 1); 715 } 716 717 return skb; 718 719nodata: 720 kmem_cache_free(cache, skb); 721 return NULL; 722} 723EXPORT_SYMBOL(__alloc_skb); 724 725/** 726 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 727 * @dev: network device to receive on 728 * @len: length to allocate 729 * @gfp_mask: get_free_pages mask, passed to alloc_skb 730 * 731 * Allocate a new &sk_buff and assign it a usage count of one. The 732 * buffer has NET_SKB_PAD headroom built in. Users should allocate 733 * the headroom they think they need without accounting for the 734 * built in space. The built in space is used for optimisations. 735 * 736 * %NULL is returned if there is no free memory. 737 */ 738struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 739 gfp_t gfp_mask) 740{ 741 struct page_frag_cache *nc; 742 struct sk_buff *skb; 743 bool pfmemalloc; 744 void *data; 745 746 len += NET_SKB_PAD; 747 748 /* If requested length is either too small or too big, 749 * we use kmalloc() for skb->head allocation. 750 */ 751 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 752 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 753 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 754 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 755 if (!skb) 756 goto skb_fail; 757 goto skb_success; 758 } 759 760 len = SKB_HEAD_ALIGN(len); 761 762 if (sk_memalloc_socks()) 763 gfp_mask |= __GFP_MEMALLOC; 764 765 if (in_hardirq() || irqs_disabled()) { 766 nc = this_cpu_ptr(&netdev_alloc_cache); 767 data = page_frag_alloc(nc, len, gfp_mask); 768 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 769 } else { 770 local_bh_disable(); 771 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 772 773 nc = this_cpu_ptr(&napi_alloc_cache.page); 774 data = page_frag_alloc(nc, len, gfp_mask); 775 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 776 777 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 778 local_bh_enable(); 779 } 780 781 if (unlikely(!data)) 782 return NULL; 783 784 skb = __build_skb(data, len); 785 if (unlikely(!skb)) { 786 skb_free_frag(data); 787 return NULL; 788 } 789 790 if (pfmemalloc) 791 skb->pfmemalloc = 1; 792 skb->head_frag = 1; 793 794skb_success: 795 skb_reserve(skb, NET_SKB_PAD); 796 skb->dev = dev; 797 798skb_fail: 799 return skb; 800} 801EXPORT_SYMBOL(__netdev_alloc_skb); 802 803/** 804 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 805 * @napi: napi instance this buffer was allocated for 806 * @len: length to allocate 807 * 808 * Allocate a new sk_buff for use in NAPI receive. This buffer will 809 * attempt to allocate the head from a special reserved region used 810 * only for NAPI Rx allocation. By doing this we can save several 811 * CPU cycles by avoiding having to disable and re-enable IRQs. 812 * 813 * %NULL is returned if there is no free memory. 814 */ 815struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 816{ 817 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 818 struct napi_alloc_cache *nc; 819 struct sk_buff *skb; 820 bool pfmemalloc; 821 void *data; 822 823 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 824 len += NET_SKB_PAD + NET_IP_ALIGN; 825 826 /* If requested length is either too small or too big, 827 * we use kmalloc() for skb->head allocation. 828 */ 829 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 830 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 831 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 832 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 833 NUMA_NO_NODE); 834 if (!skb) 835 goto skb_fail; 836 goto skb_success; 837 } 838 839 len = SKB_HEAD_ALIGN(len); 840 841 if (sk_memalloc_socks()) 842 gfp_mask |= __GFP_MEMALLOC; 843 844 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 845 nc = this_cpu_ptr(&napi_alloc_cache); 846 847 data = page_frag_alloc(&nc->page, len, gfp_mask); 848 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 849 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 850 851 if (unlikely(!data)) 852 return NULL; 853 854 skb = __napi_build_skb(data, len); 855 if (unlikely(!skb)) { 856 skb_free_frag(data); 857 return NULL; 858 } 859 860 if (pfmemalloc) 861 skb->pfmemalloc = 1; 862 skb->head_frag = 1; 863 864skb_success: 865 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 866 skb->dev = napi->dev; 867 868skb_fail: 869 return skb; 870} 871EXPORT_SYMBOL(napi_alloc_skb); 872 873void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 874 int off, int size, unsigned int truesize) 875{ 876 DEBUG_NET_WARN_ON_ONCE(size > truesize); 877 878 skb_fill_netmem_desc(skb, i, netmem, off, size); 879 skb->len += size; 880 skb->data_len += size; 881 skb->truesize += truesize; 882} 883EXPORT_SYMBOL(skb_add_rx_frag_netmem); 884 885void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 886 unsigned int truesize) 887{ 888 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 889 890 DEBUG_NET_WARN_ON_ONCE(size > truesize); 891 892 skb_frag_size_add(frag, size); 893 skb->len += size; 894 skb->data_len += size; 895 skb->truesize += truesize; 896} 897EXPORT_SYMBOL(skb_coalesce_rx_frag); 898 899static void skb_drop_list(struct sk_buff **listp) 900{ 901 kfree_skb_list(*listp); 902 *listp = NULL; 903} 904 905static inline void skb_drop_fraglist(struct sk_buff *skb) 906{ 907 skb_drop_list(&skb_shinfo(skb)->frag_list); 908} 909 910static void skb_clone_fraglist(struct sk_buff *skb) 911{ 912 struct sk_buff *list; 913 914 skb_walk_frags(skb, list) 915 skb_get(list); 916} 917 918int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 919 unsigned int headroom) 920{ 921#if IS_ENABLED(CONFIG_PAGE_POOL) 922 u32 size, truesize, len, max_head_size, off; 923 struct sk_buff *skb = *pskb, *nskb; 924 int err, i, head_off; 925 void *data; 926 927 /* XDP does not support fraglist so we need to linearize 928 * the skb. 929 */ 930 if (skb_has_frag_list(skb)) 931 return -EOPNOTSUPP; 932 933 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 934 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 935 return -ENOMEM; 936 937 size = min_t(u32, skb->len, max_head_size); 938 truesize = SKB_HEAD_ALIGN(size) + headroom; 939 data = page_pool_dev_alloc_va(pool, &truesize); 940 if (!data) 941 return -ENOMEM; 942 943 nskb = napi_build_skb(data, truesize); 944 if (!nskb) { 945 page_pool_free_va(pool, data, true); 946 return -ENOMEM; 947 } 948 949 skb_reserve(nskb, headroom); 950 skb_copy_header(nskb, skb); 951 skb_mark_for_recycle(nskb); 952 953 err = skb_copy_bits(skb, 0, nskb->data, size); 954 if (err) { 955 consume_skb(nskb); 956 return err; 957 } 958 skb_put(nskb, size); 959 960 head_off = skb_headroom(nskb) - skb_headroom(skb); 961 skb_headers_offset_update(nskb, head_off); 962 963 off = size; 964 len = skb->len - off; 965 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 966 struct page *page; 967 u32 page_off; 968 969 size = min_t(u32, len, PAGE_SIZE); 970 truesize = size; 971 972 page = page_pool_dev_alloc(pool, &page_off, &truesize); 973 if (!page) { 974 consume_skb(nskb); 975 return -ENOMEM; 976 } 977 978 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 979 err = skb_copy_bits(skb, off, page_address(page) + page_off, 980 size); 981 if (err) { 982 consume_skb(nskb); 983 return err; 984 } 985 986 len -= size; 987 off += size; 988 } 989 990 consume_skb(skb); 991 *pskb = nskb; 992 993 return 0; 994#else 995 return -EOPNOTSUPP; 996#endif 997} 998EXPORT_SYMBOL(skb_pp_cow_data); 999 1000int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 1001 const struct bpf_prog *prog) 1002{ 1003 if (!prog->aux->xdp_has_frags) 1004 return -EINVAL; 1005 1006 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1007} 1008EXPORT_SYMBOL(skb_cow_data_for_xdp); 1009 1010#if IS_ENABLED(CONFIG_PAGE_POOL) 1011bool napi_pp_put_page(netmem_ref netmem) 1012{ 1013 netmem = netmem_compound_head(netmem); 1014 1015 if (unlikely(!netmem_is_pp(netmem))) 1016 return false; 1017 1018 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1019 1020 return true; 1021} 1022EXPORT_SYMBOL(napi_pp_put_page); 1023#endif 1024 1025static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1026{ 1027 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1028 return false; 1029 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1030} 1031 1032/** 1033 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1034 * @skb: page pool aware skb 1035 * 1036 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1037 * intended to gain fragment references only for page pool aware skbs, 1038 * i.e. when skb->pp_recycle is true, and not for fragments in a 1039 * non-pp-recycling skb. It has a fallback to increase references on normal 1040 * pages, as page pool aware skbs may also have normal page fragments. 1041 */ 1042static int skb_pp_frag_ref(struct sk_buff *skb) 1043{ 1044 struct skb_shared_info *shinfo; 1045 netmem_ref head_netmem; 1046 int i; 1047 1048 if (!skb->pp_recycle) 1049 return -EINVAL; 1050 1051 shinfo = skb_shinfo(skb); 1052 1053 for (i = 0; i < shinfo->nr_frags; i++) { 1054 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1055 if (likely(netmem_is_pp(head_netmem))) 1056 page_pool_ref_netmem(head_netmem); 1057 else 1058 page_ref_inc(netmem_to_page(head_netmem)); 1059 } 1060 return 0; 1061} 1062 1063static void skb_kfree_head(void *head, unsigned int end_offset) 1064{ 1065 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1066 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1067 else 1068 kfree(head); 1069} 1070 1071static void skb_free_head(struct sk_buff *skb) 1072{ 1073 unsigned char *head = skb->head; 1074 1075 if (skb->head_frag) { 1076 if (skb_pp_recycle(skb, head)) 1077 return; 1078 skb_free_frag(head); 1079 } else { 1080 skb_kfree_head(head, skb_end_offset(skb)); 1081 } 1082} 1083 1084static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1085{ 1086 struct skb_shared_info *shinfo = skb_shinfo(skb); 1087 int i; 1088 1089 if (!skb_data_unref(skb, shinfo)) 1090 goto exit; 1091 1092 if (skb_zcopy(skb)) { 1093 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1094 1095 skb_zcopy_clear(skb, true); 1096 if (skip_unref) 1097 goto free_head; 1098 } 1099 1100 for (i = 0; i < shinfo->nr_frags; i++) 1101 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1102 1103free_head: 1104 if (shinfo->frag_list) 1105 kfree_skb_list_reason(shinfo->frag_list, reason); 1106 1107 skb_free_head(skb); 1108exit: 1109 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1110 * bit is only set on the head though, so in order to avoid races 1111 * while trying to recycle fragments on __skb_frag_unref() we need 1112 * to make one SKB responsible for triggering the recycle path. 1113 * So disable the recycling bit if an SKB is cloned and we have 1114 * additional references to the fragmented part of the SKB. 1115 * Eventually the last SKB will have the recycling bit set and it's 1116 * dataref set to 0, which will trigger the recycling 1117 */ 1118 skb->pp_recycle = 0; 1119} 1120 1121/* 1122 * Free an skbuff by memory without cleaning the state. 1123 */ 1124static void kfree_skbmem(struct sk_buff *skb) 1125{ 1126 struct sk_buff_fclones *fclones; 1127 1128 switch (skb->fclone) { 1129 case SKB_FCLONE_UNAVAILABLE: 1130 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1131 return; 1132 1133 case SKB_FCLONE_ORIG: 1134 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1135 1136 /* We usually free the clone (TX completion) before original skb 1137 * This test would have no chance to be true for the clone, 1138 * while here, branch prediction will be good. 1139 */ 1140 if (refcount_read(&fclones->fclone_ref) == 1) 1141 goto fastpath; 1142 break; 1143 1144 default: /* SKB_FCLONE_CLONE */ 1145 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1146 break; 1147 } 1148 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1149 return; 1150fastpath: 1151 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1152} 1153 1154void skb_release_head_state(struct sk_buff *skb) 1155{ 1156 skb_dst_drop(skb); 1157 if (skb->destructor) { 1158 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1159#ifdef CONFIG_INET 1160 INDIRECT_CALL_4(skb->destructor, 1161 tcp_wfree, __sock_wfree, sock_wfree, 1162 xsk_destruct_skb, 1163 skb); 1164#else 1165 INDIRECT_CALL_2(skb->destructor, 1166 sock_wfree, xsk_destruct_skb, 1167 skb); 1168 1169#endif 1170 skb->destructor = NULL; 1171 skb->sk = NULL; 1172 } 1173 nf_reset_ct(skb); 1174 skb_ext_reset(skb); 1175} 1176 1177/* Free everything but the sk_buff shell. */ 1178static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1179{ 1180 skb_release_head_state(skb); 1181 if (likely(skb->head)) 1182 skb_release_data(skb, reason); 1183} 1184 1185/** 1186 * __kfree_skb - private function 1187 * @skb: buffer 1188 * 1189 * Free an sk_buff. Release anything attached to the buffer. 1190 * Clean the state. This is an internal helper function. Users should 1191 * always call kfree_skb 1192 */ 1193 1194void __kfree_skb(struct sk_buff *skb) 1195{ 1196 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1197 kfree_skbmem(skb); 1198} 1199EXPORT_SYMBOL(__kfree_skb); 1200 1201static __always_inline 1202bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1203 enum skb_drop_reason reason) 1204{ 1205 if (unlikely(!skb_unref(skb))) 1206 return false; 1207 1208 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1209 u32_get_bits(reason, 1210 SKB_DROP_REASON_SUBSYS_MASK) >= 1211 SKB_DROP_REASON_SUBSYS_NUM); 1212 1213 if (reason == SKB_CONSUMED) 1214 trace_consume_skb(skb, __builtin_return_address(0)); 1215 else 1216 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1217 return true; 1218} 1219 1220/** 1221 * sk_skb_reason_drop - free an sk_buff with special reason 1222 * @sk: the socket to receive @skb, or NULL if not applicable 1223 * @skb: buffer to free 1224 * @reason: reason why this skb is dropped 1225 * 1226 * Drop a reference to the buffer and free it if the usage count has hit 1227 * zero. Meanwhile, pass the receiving socket and drop reason to 1228 * 'kfree_skb' tracepoint. 1229 */ 1230void __fix_address 1231sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1232{ 1233 if (__sk_skb_reason_drop(sk, skb, reason)) 1234 __kfree_skb(skb); 1235} 1236EXPORT_SYMBOL(sk_skb_reason_drop); 1237 1238#define KFREE_SKB_BULK_SIZE 16 1239 1240struct skb_free_array { 1241 unsigned int skb_count; 1242 void *skb_array[KFREE_SKB_BULK_SIZE]; 1243}; 1244 1245static void kfree_skb_add_bulk(struct sk_buff *skb, 1246 struct skb_free_array *sa, 1247 enum skb_drop_reason reason) 1248{ 1249 /* if SKB is a clone, don't handle this case */ 1250 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1251 __kfree_skb(skb); 1252 return; 1253 } 1254 1255 skb_release_all(skb, reason); 1256 sa->skb_array[sa->skb_count++] = skb; 1257 1258 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1259 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1260 sa->skb_array); 1261 sa->skb_count = 0; 1262 } 1263} 1264 1265void __fix_address 1266kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1267{ 1268 struct skb_free_array sa; 1269 1270 sa.skb_count = 0; 1271 1272 while (segs) { 1273 struct sk_buff *next = segs->next; 1274 1275 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1276 skb_poison_list(segs); 1277 kfree_skb_add_bulk(segs, &sa, reason); 1278 } 1279 1280 segs = next; 1281 } 1282 1283 if (sa.skb_count) 1284 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1285} 1286EXPORT_SYMBOL(kfree_skb_list_reason); 1287 1288/* Dump skb information and contents. 1289 * 1290 * Must only be called from net_ratelimit()-ed paths. 1291 * 1292 * Dumps whole packets if full_pkt, only headers otherwise. 1293 */ 1294void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1295{ 1296 struct skb_shared_info *sh = skb_shinfo(skb); 1297 struct net_device *dev = skb->dev; 1298 struct sock *sk = skb->sk; 1299 struct sk_buff *list_skb; 1300 bool has_mac, has_trans; 1301 int headroom, tailroom; 1302 int i, len, seg_len; 1303 1304 if (full_pkt) 1305 len = skb->len; 1306 else 1307 len = min_t(int, skb->len, MAX_HEADER + 128); 1308 1309 headroom = skb_headroom(skb); 1310 tailroom = skb_tailroom(skb); 1311 1312 has_mac = skb_mac_header_was_set(skb); 1313 has_trans = skb_transport_header_was_set(skb); 1314 1315 printk("%sskb len=%u data_len=%u headroom=%u headlen=%u tailroom=%u\n" 1316 "end-tail=%u mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1317 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1318 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1319 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1320 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1321 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1322 level, skb->len, skb->data_len, headroom, skb_headlen(skb), 1323 tailroom, skb->end - skb->tail, 1324 has_mac ? skb->mac_header : -1, 1325 has_mac ? skb_mac_header_len(skb) : -1, 1326 skb->mac_len, 1327 skb->network_header, 1328 has_trans ? skb_network_header_len(skb) : -1, 1329 has_trans ? skb->transport_header : -1, 1330 sh->tx_flags, sh->nr_frags, 1331 sh->gso_size, sh->gso_type, sh->gso_segs, 1332 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1333 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1334 skb->hash, skb->sw_hash, skb->l4_hash, 1335 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1336 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1337 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1338 skb->inner_network_header, skb->inner_transport_header); 1339 1340 if (dev) 1341 printk("%sdev name=%s feat=%pNF\n", 1342 level, dev->name, &dev->features); 1343 if (sk) 1344 printk("%ssk family=%hu type=%u proto=%u\n", 1345 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1346 1347 if (full_pkt && headroom) 1348 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1349 16, 1, skb->head, headroom, false); 1350 1351 seg_len = min_t(int, skb_headlen(skb), len); 1352 if (seg_len) 1353 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1354 16, 1, skb->data, seg_len, false); 1355 len -= seg_len; 1356 1357 if (full_pkt && tailroom) 1358 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1359 16, 1, skb_tail_pointer(skb), tailroom, false); 1360 1361 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1362 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1363 u32 p_off, p_len, copied; 1364 struct page *p; 1365 u8 *vaddr; 1366 1367 if (skb_frag_is_net_iov(frag)) { 1368 printk("%sskb frag %d: not readable\n", level, i); 1369 len -= skb_frag_size(frag); 1370 if (!len) 1371 break; 1372 continue; 1373 } 1374 1375 skb_frag_foreach_page(frag, skb_frag_off(frag), 1376 skb_frag_size(frag), p, p_off, p_len, 1377 copied) { 1378 seg_len = min_t(int, p_len, len); 1379 vaddr = kmap_atomic(p); 1380 print_hex_dump(level, "skb frag: ", 1381 DUMP_PREFIX_OFFSET, 1382 16, 1, vaddr + p_off, seg_len, false); 1383 kunmap_atomic(vaddr); 1384 len -= seg_len; 1385 if (!len) 1386 break; 1387 } 1388 } 1389 1390 if (full_pkt && skb_has_frag_list(skb)) { 1391 printk("skb fraglist:\n"); 1392 skb_walk_frags(skb, list_skb) 1393 skb_dump(level, list_skb, true); 1394 } 1395} 1396EXPORT_SYMBOL(skb_dump); 1397 1398/** 1399 * skb_tx_error - report an sk_buff xmit error 1400 * @skb: buffer that triggered an error 1401 * 1402 * Report xmit error if a device callback is tracking this skb. 1403 * skb must be freed afterwards. 1404 */ 1405void skb_tx_error(struct sk_buff *skb) 1406{ 1407 if (skb) { 1408 skb_zcopy_downgrade_managed(skb); 1409 skb_zcopy_clear(skb, true); 1410 } 1411} 1412EXPORT_SYMBOL(skb_tx_error); 1413 1414#ifdef CONFIG_TRACEPOINTS 1415/** 1416 * consume_skb - free an skbuff 1417 * @skb: buffer to free 1418 * 1419 * Drop a ref to the buffer and free it if the usage count has hit zero 1420 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1421 * is being dropped after a failure and notes that 1422 */ 1423void consume_skb(struct sk_buff *skb) 1424{ 1425 if (!skb_unref(skb)) 1426 return; 1427 1428 trace_consume_skb(skb, __builtin_return_address(0)); 1429 __kfree_skb(skb); 1430} 1431EXPORT_SYMBOL(consume_skb); 1432#endif 1433 1434/** 1435 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1436 * @skb: buffer to free 1437 * 1438 * Alike consume_skb(), but this variant assumes that this is the last 1439 * skb reference and all the head states have been already dropped 1440 */ 1441void __consume_stateless_skb(struct sk_buff *skb) 1442{ 1443 trace_consume_skb(skb, __builtin_return_address(0)); 1444 skb_release_data(skb, SKB_CONSUMED); 1445 kfree_skbmem(skb); 1446} 1447 1448static void napi_skb_cache_put(struct sk_buff *skb) 1449{ 1450 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1451 1452 if (!kasan_mempool_poison_object(skb)) 1453 return; 1454 1455 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1456 nc->skb_cache[nc->skb_count++] = skb; 1457 1458 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1459 u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE; 1460 1461 for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++) 1462 kasan_mempool_unpoison_object(nc->skb_cache[i], 1463 skbuff_cache_size); 1464 1465 kmem_cache_free_bulk(net_hotdata.skbuff_cache, 1466 NAPI_SKB_CACHE_FREE, 1467 nc->skb_cache + remaining); 1468 nc->skb_count = remaining; 1469 } 1470 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1471} 1472 1473void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1474{ 1475 skb_release_all(skb, reason); 1476 napi_skb_cache_put(skb); 1477} 1478 1479void napi_skb_free_stolen_head(struct sk_buff *skb) 1480{ 1481 if (unlikely(skb->slow_gro)) { 1482 nf_reset_ct(skb); 1483 skb_dst_drop(skb); 1484 skb_ext_put(skb); 1485 skb_orphan(skb); 1486 skb->slow_gro = 0; 1487 } 1488 napi_skb_cache_put(skb); 1489} 1490 1491void napi_consume_skb(struct sk_buff *skb, int budget) 1492{ 1493 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1494 if (unlikely(!budget || !skb)) { 1495 dev_consume_skb_any(skb); 1496 return; 1497 } 1498 1499 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1500 1501 if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) { 1502 skb_release_head_state(skb); 1503 return skb_attempt_defer_free(skb); 1504 } 1505 1506 if (!skb_unref(skb)) 1507 return; 1508 1509 /* if reaching here SKB is ready to free */ 1510 trace_consume_skb(skb, __builtin_return_address(0)); 1511 1512 /* if SKB is a clone, don't handle this case */ 1513 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1514 __kfree_skb(skb); 1515 return; 1516 } 1517 1518 skb_release_all(skb, SKB_CONSUMED); 1519 napi_skb_cache_put(skb); 1520} 1521EXPORT_SYMBOL(napi_consume_skb); 1522 1523/* Make sure a field is contained by headers group */ 1524#define CHECK_SKB_FIELD(field) \ 1525 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1526 offsetof(struct sk_buff, headers.field)); \ 1527 1528static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1529{ 1530 new->tstamp = old->tstamp; 1531 /* We do not copy old->sk */ 1532 new->dev = old->dev; 1533 memcpy(new->cb, old->cb, sizeof(old->cb)); 1534 skb_dst_copy(new, old); 1535 __skb_ext_copy(new, old); 1536 __nf_copy(new, old, false); 1537 1538 /* Note : this field could be in the headers group. 1539 * It is not yet because we do not want to have a 16 bit hole 1540 */ 1541 new->queue_mapping = old->queue_mapping; 1542 1543 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1544 CHECK_SKB_FIELD(protocol); 1545 CHECK_SKB_FIELD(csum); 1546 CHECK_SKB_FIELD(hash); 1547 CHECK_SKB_FIELD(priority); 1548 CHECK_SKB_FIELD(skb_iif); 1549 CHECK_SKB_FIELD(vlan_proto); 1550 CHECK_SKB_FIELD(vlan_tci); 1551 CHECK_SKB_FIELD(transport_header); 1552 CHECK_SKB_FIELD(network_header); 1553 CHECK_SKB_FIELD(mac_header); 1554 CHECK_SKB_FIELD(inner_protocol); 1555 CHECK_SKB_FIELD(inner_transport_header); 1556 CHECK_SKB_FIELD(inner_network_header); 1557 CHECK_SKB_FIELD(inner_mac_header); 1558 CHECK_SKB_FIELD(mark); 1559#ifdef CONFIG_NETWORK_SECMARK 1560 CHECK_SKB_FIELD(secmark); 1561#endif 1562#ifdef CONFIG_NET_RX_BUSY_POLL 1563 CHECK_SKB_FIELD(napi_id); 1564#endif 1565 CHECK_SKB_FIELD(alloc_cpu); 1566#ifdef CONFIG_XPS 1567 CHECK_SKB_FIELD(sender_cpu); 1568#endif 1569#ifdef CONFIG_NET_SCHED 1570 CHECK_SKB_FIELD(tc_index); 1571#endif 1572 1573} 1574 1575/* 1576 * You should not add any new code to this function. Add it to 1577 * __copy_skb_header above instead. 1578 */ 1579static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1580{ 1581#define C(x) n->x = skb->x 1582 1583 n->next = n->prev = NULL; 1584 n->sk = NULL; 1585 __copy_skb_header(n, skb); 1586 1587 C(len); 1588 C(data_len); 1589 C(mac_len); 1590 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1591 n->cloned = 1; 1592 n->nohdr = 0; 1593 n->peeked = 0; 1594 C(pfmemalloc); 1595 C(pp_recycle); 1596 n->destructor = NULL; 1597 C(tail); 1598 C(end); 1599 C(head); 1600 C(head_frag); 1601 C(data); 1602 C(truesize); 1603 refcount_set(&n->users, 1); 1604 1605 atomic_inc(&(skb_shinfo(skb)->dataref)); 1606 skb->cloned = 1; 1607 1608 return n; 1609#undef C 1610} 1611 1612/** 1613 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1614 * @first: first sk_buff of the msg 1615 */ 1616struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1617{ 1618 struct sk_buff *n; 1619 1620 n = alloc_skb(0, GFP_ATOMIC); 1621 if (!n) 1622 return NULL; 1623 1624 n->len = first->len; 1625 n->data_len = first->len; 1626 n->truesize = first->truesize; 1627 1628 skb_shinfo(n)->frag_list = first; 1629 1630 __copy_skb_header(n, first); 1631 n->destructor = NULL; 1632 1633 return n; 1634} 1635EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1636 1637/** 1638 * skb_morph - morph one skb into another 1639 * @dst: the skb to receive the contents 1640 * @src: the skb to supply the contents 1641 * 1642 * This is identical to skb_clone except that the target skb is 1643 * supplied by the user. 1644 * 1645 * The target skb is returned upon exit. 1646 */ 1647struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1648{ 1649 skb_release_all(dst, SKB_CONSUMED); 1650 return __skb_clone(dst, src); 1651} 1652EXPORT_SYMBOL_GPL(skb_morph); 1653 1654int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1655{ 1656 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1657 struct user_struct *user; 1658 1659 if (capable(CAP_IPC_LOCK) || !size) 1660 return 0; 1661 1662 rlim = rlimit(RLIMIT_MEMLOCK); 1663 if (rlim == RLIM_INFINITY) 1664 return 0; 1665 1666 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1667 max_pg = rlim >> PAGE_SHIFT; 1668 user = mmp->user ? : current_user(); 1669 1670 old_pg = atomic_long_read(&user->locked_vm); 1671 do { 1672 new_pg = old_pg + num_pg; 1673 if (new_pg > max_pg) 1674 return -ENOBUFS; 1675 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1676 1677 if (!mmp->user) { 1678 mmp->user = get_uid(user); 1679 mmp->num_pg = num_pg; 1680 } else { 1681 mmp->num_pg += num_pg; 1682 } 1683 1684 return 0; 1685} 1686EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1687 1688void mm_unaccount_pinned_pages(struct mmpin *mmp) 1689{ 1690 if (mmp->user) { 1691 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1692 free_uid(mmp->user); 1693 } 1694} 1695EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1696 1697static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1698 bool devmem) 1699{ 1700 struct ubuf_info_msgzc *uarg; 1701 struct sk_buff *skb; 1702 1703 WARN_ON_ONCE(!in_task()); 1704 1705 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1706 if (!skb) 1707 return NULL; 1708 1709 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1710 uarg = (void *)skb->cb; 1711 uarg->mmp.user = NULL; 1712 1713 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1714 kfree_skb(skb); 1715 return NULL; 1716 } 1717 1718 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1719 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1720 uarg->len = 1; 1721 uarg->bytelen = size; 1722 uarg->zerocopy = 1; 1723 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1724 refcount_set(&uarg->ubuf.refcnt, 1); 1725 sock_hold(sk); 1726 1727 return &uarg->ubuf; 1728} 1729 1730static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1731{ 1732 return container_of((void *)uarg, struct sk_buff, cb); 1733} 1734 1735struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1736 struct ubuf_info *uarg, bool devmem) 1737{ 1738 if (uarg) { 1739 struct ubuf_info_msgzc *uarg_zc; 1740 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1741 u32 bytelen, next; 1742 1743 /* there might be non MSG_ZEROCOPY users */ 1744 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1745 return NULL; 1746 1747 /* realloc only when socket is locked (TCP, UDP cork), 1748 * so uarg->len and sk_zckey access is serialized 1749 */ 1750 if (!sock_owned_by_user(sk)) { 1751 WARN_ON_ONCE(1); 1752 return NULL; 1753 } 1754 1755 uarg_zc = uarg_to_msgzc(uarg); 1756 bytelen = uarg_zc->bytelen + size; 1757 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1758 /* TCP can create new skb to attach new uarg */ 1759 if (sk->sk_type == SOCK_STREAM) 1760 goto new_alloc; 1761 return NULL; 1762 } 1763 1764 next = (u32)atomic_read(&sk->sk_zckey); 1765 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1766 if (likely(!devmem) && 1767 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1768 return NULL; 1769 uarg_zc->len++; 1770 uarg_zc->bytelen = bytelen; 1771 atomic_set(&sk->sk_zckey, ++next); 1772 1773 /* no extra ref when appending to datagram (MSG_MORE) */ 1774 if (sk->sk_type == SOCK_STREAM) 1775 net_zcopy_get(uarg); 1776 1777 return uarg; 1778 } 1779 } 1780 1781new_alloc: 1782 return msg_zerocopy_alloc(sk, size, devmem); 1783} 1784EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1785 1786static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1787{ 1788 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1789 u32 old_lo, old_hi; 1790 u64 sum_len; 1791 1792 old_lo = serr->ee.ee_info; 1793 old_hi = serr->ee.ee_data; 1794 sum_len = old_hi - old_lo + 1ULL + len; 1795 1796 if (sum_len >= (1ULL << 32)) 1797 return false; 1798 1799 if (lo != old_hi + 1) 1800 return false; 1801 1802 serr->ee.ee_data += len; 1803 return true; 1804} 1805 1806static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1807{ 1808 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1809 struct sock_exterr_skb *serr; 1810 struct sock *sk = skb->sk; 1811 struct sk_buff_head *q; 1812 unsigned long flags; 1813 bool is_zerocopy; 1814 u32 lo, hi; 1815 u16 len; 1816 1817 mm_unaccount_pinned_pages(&uarg->mmp); 1818 1819 /* if !len, there was only 1 call, and it was aborted 1820 * so do not queue a completion notification 1821 */ 1822 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1823 goto release; 1824 1825 len = uarg->len; 1826 lo = uarg->id; 1827 hi = uarg->id + len - 1; 1828 is_zerocopy = uarg->zerocopy; 1829 1830 serr = SKB_EXT_ERR(skb); 1831 memset(serr, 0, sizeof(*serr)); 1832 serr->ee.ee_errno = 0; 1833 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1834 serr->ee.ee_data = hi; 1835 serr->ee.ee_info = lo; 1836 if (!is_zerocopy) 1837 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1838 1839 q = &sk->sk_error_queue; 1840 spin_lock_irqsave(&q->lock, flags); 1841 tail = skb_peek_tail(q); 1842 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1843 !skb_zerocopy_notify_extend(tail, lo, len)) { 1844 __skb_queue_tail(q, skb); 1845 skb = NULL; 1846 } 1847 spin_unlock_irqrestore(&q->lock, flags); 1848 1849 sk_error_report(sk); 1850 1851release: 1852 consume_skb(skb); 1853 sock_put(sk); 1854} 1855 1856static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1857 bool success) 1858{ 1859 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1860 1861 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1862 1863 if (refcount_dec_and_test(&uarg->refcnt)) 1864 __msg_zerocopy_callback(uarg_zc); 1865} 1866 1867void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1868{ 1869 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1870 1871 atomic_dec(&sk->sk_zckey); 1872 uarg_to_msgzc(uarg)->len--; 1873 1874 if (have_uref) 1875 msg_zerocopy_complete(NULL, uarg, true); 1876} 1877EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1878 1879const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1880 .complete = msg_zerocopy_complete, 1881}; 1882EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1883 1884int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1885 struct msghdr *msg, int len, 1886 struct ubuf_info *uarg, 1887 struct net_devmem_dmabuf_binding *binding) 1888{ 1889 int err, orig_len = skb->len; 1890 1891 if (uarg->ops->link_skb) { 1892 err = uarg->ops->link_skb(skb, uarg); 1893 if (err) 1894 return err; 1895 } else { 1896 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1897 1898 /* An skb can only point to one uarg. This edge case happens 1899 * when TCP appends to an skb, but zerocopy_realloc triggered 1900 * a new alloc. 1901 */ 1902 if (orig_uarg && uarg != orig_uarg) 1903 return -EEXIST; 1904 } 1905 1906 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1907 binding); 1908 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1909 struct sock *save_sk = skb->sk; 1910 1911 /* Streams do not free skb on error. Reset to prev state. */ 1912 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1913 skb->sk = sk; 1914 ___pskb_trim(skb, orig_len); 1915 skb->sk = save_sk; 1916 return err; 1917 } 1918 1919 skb_zcopy_set(skb, uarg, NULL); 1920 return skb->len - orig_len; 1921} 1922EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1923 1924void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1925{ 1926 int i; 1927 1928 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1929 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1930 skb_frag_ref(skb, i); 1931} 1932EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1933 1934static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1935 gfp_t gfp_mask) 1936{ 1937 if (skb_zcopy(orig)) { 1938 if (skb_zcopy(nskb)) { 1939 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1940 if (!gfp_mask) { 1941 WARN_ON_ONCE(1); 1942 return -ENOMEM; 1943 } 1944 if (skb_uarg(nskb) == skb_uarg(orig)) 1945 return 0; 1946 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1947 return -EIO; 1948 } 1949 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1950 } 1951 return 0; 1952} 1953 1954/** 1955 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1956 * @skb: the skb to modify 1957 * @gfp_mask: allocation priority 1958 * 1959 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1960 * It will copy all frags into kernel and drop the reference 1961 * to userspace pages. 1962 * 1963 * If this function is called from an interrupt gfp_mask() must be 1964 * %GFP_ATOMIC. 1965 * 1966 * Returns 0 on success or a negative error code on failure 1967 * to allocate kernel memory to copy to. 1968 */ 1969int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1970{ 1971 int num_frags = skb_shinfo(skb)->nr_frags; 1972 struct page *page, *head = NULL; 1973 int i, order, psize, new_frags; 1974 u32 d_off; 1975 1976 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1977 return -EINVAL; 1978 1979 if (!skb_frags_readable(skb)) 1980 return -EFAULT; 1981 1982 if (!num_frags) 1983 goto release; 1984 1985 /* We might have to allocate high order pages, so compute what minimum 1986 * page order is needed. 1987 */ 1988 order = 0; 1989 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1990 order++; 1991 psize = (PAGE_SIZE << order); 1992 1993 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1994 for (i = 0; i < new_frags; i++) { 1995 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1996 if (!page) { 1997 while (head) { 1998 struct page *next = (struct page *)page_private(head); 1999 put_page(head); 2000 head = next; 2001 } 2002 return -ENOMEM; 2003 } 2004 set_page_private(page, (unsigned long)head); 2005 head = page; 2006 } 2007 2008 page = head; 2009 d_off = 0; 2010 for (i = 0; i < num_frags; i++) { 2011 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2012 u32 p_off, p_len, copied; 2013 struct page *p; 2014 u8 *vaddr; 2015 2016 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2017 p, p_off, p_len, copied) { 2018 u32 copy, done = 0; 2019 vaddr = kmap_atomic(p); 2020 2021 while (done < p_len) { 2022 if (d_off == psize) { 2023 d_off = 0; 2024 page = (struct page *)page_private(page); 2025 } 2026 copy = min_t(u32, psize - d_off, p_len - done); 2027 memcpy(page_address(page) + d_off, 2028 vaddr + p_off + done, copy); 2029 done += copy; 2030 d_off += copy; 2031 } 2032 kunmap_atomic(vaddr); 2033 } 2034 } 2035 2036 /* skb frags release userspace buffers */ 2037 for (i = 0; i < num_frags; i++) 2038 skb_frag_unref(skb, i); 2039 2040 /* skb frags point to kernel buffers */ 2041 for (i = 0; i < new_frags - 1; i++) { 2042 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2043 head = (struct page *)page_private(head); 2044 } 2045 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2046 d_off); 2047 skb_shinfo(skb)->nr_frags = new_frags; 2048 2049release: 2050 skb_zcopy_clear(skb, false); 2051 return 0; 2052} 2053EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2054 2055/** 2056 * skb_clone - duplicate an sk_buff 2057 * @skb: buffer to clone 2058 * @gfp_mask: allocation priority 2059 * 2060 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2061 * copies share the same packet data but not structure. The new 2062 * buffer has a reference count of 1. If the allocation fails the 2063 * function returns %NULL otherwise the new buffer is returned. 2064 * 2065 * If this function is called from an interrupt gfp_mask() must be 2066 * %GFP_ATOMIC. 2067 */ 2068 2069struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2070{ 2071 struct sk_buff_fclones *fclones = container_of(skb, 2072 struct sk_buff_fclones, 2073 skb1); 2074 struct sk_buff *n; 2075 2076 if (skb_orphan_frags(skb, gfp_mask)) 2077 return NULL; 2078 2079 if (skb->fclone == SKB_FCLONE_ORIG && 2080 refcount_read(&fclones->fclone_ref) == 1) { 2081 n = &fclones->skb2; 2082 refcount_set(&fclones->fclone_ref, 2); 2083 n->fclone = SKB_FCLONE_CLONE; 2084 } else { 2085 if (skb_pfmemalloc(skb)) 2086 gfp_mask |= __GFP_MEMALLOC; 2087 2088 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2089 if (!n) 2090 return NULL; 2091 2092 n->fclone = SKB_FCLONE_UNAVAILABLE; 2093 } 2094 2095 return __skb_clone(n, skb); 2096} 2097EXPORT_SYMBOL(skb_clone); 2098 2099void skb_headers_offset_update(struct sk_buff *skb, int off) 2100{ 2101 /* Only adjust this if it actually is csum_start rather than csum */ 2102 if (skb->ip_summed == CHECKSUM_PARTIAL) 2103 skb->csum_start += off; 2104 /* {transport,network,mac}_header and tail are relative to skb->head */ 2105 skb->transport_header += off; 2106 skb->network_header += off; 2107 if (skb_mac_header_was_set(skb)) 2108 skb->mac_header += off; 2109 skb->inner_transport_header += off; 2110 skb->inner_network_header += off; 2111 skb->inner_mac_header += off; 2112} 2113EXPORT_SYMBOL(skb_headers_offset_update); 2114 2115void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2116{ 2117 __copy_skb_header(new, old); 2118 2119 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2120 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2121 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2122} 2123EXPORT_SYMBOL(skb_copy_header); 2124 2125static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2126{ 2127 if (skb_pfmemalloc(skb)) 2128 return SKB_ALLOC_RX; 2129 return 0; 2130} 2131 2132/** 2133 * skb_copy - create private copy of an sk_buff 2134 * @skb: buffer to copy 2135 * @gfp_mask: allocation priority 2136 * 2137 * Make a copy of both an &sk_buff and its data. This is used when the 2138 * caller wishes to modify the data and needs a private copy of the 2139 * data to alter. Returns %NULL on failure or the pointer to the buffer 2140 * on success. The returned buffer has a reference count of 1. 2141 * 2142 * As by-product this function converts non-linear &sk_buff to linear 2143 * one, so that &sk_buff becomes completely private and caller is allowed 2144 * to modify all the data of returned buffer. This means that this 2145 * function is not recommended for use in circumstances when only 2146 * header is going to be modified. Use pskb_copy() instead. 2147 */ 2148 2149struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2150{ 2151 struct sk_buff *n; 2152 unsigned int size; 2153 int headerlen; 2154 2155 if (!skb_frags_readable(skb)) 2156 return NULL; 2157 2158 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2159 return NULL; 2160 2161 headerlen = skb_headroom(skb); 2162 size = skb_end_offset(skb) + skb->data_len; 2163 n = __alloc_skb(size, gfp_mask, 2164 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2165 if (!n) 2166 return NULL; 2167 2168 /* Set the data pointer */ 2169 skb_reserve(n, headerlen); 2170 /* Set the tail pointer and length */ 2171 skb_put(n, skb->len); 2172 2173 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2174 2175 skb_copy_header(n, skb); 2176 return n; 2177} 2178EXPORT_SYMBOL(skb_copy); 2179 2180/** 2181 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2182 * @skb: buffer to copy 2183 * @headroom: headroom of new skb 2184 * @gfp_mask: allocation priority 2185 * @fclone: if true allocate the copy of the skb from the fclone 2186 * cache instead of the head cache; it is recommended to set this 2187 * to true for the cases where the copy will likely be cloned 2188 * 2189 * Make a copy of both an &sk_buff and part of its data, located 2190 * in header. Fragmented data remain shared. This is used when 2191 * the caller wishes to modify only header of &sk_buff and needs 2192 * private copy of the header to alter. Returns %NULL on failure 2193 * or the pointer to the buffer on success. 2194 * The returned buffer has a reference count of 1. 2195 */ 2196 2197struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2198 gfp_t gfp_mask, bool fclone) 2199{ 2200 unsigned int size = skb_headlen(skb) + headroom; 2201 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2202 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2203 2204 if (!n) 2205 goto out; 2206 2207 /* Set the data pointer */ 2208 skb_reserve(n, headroom); 2209 /* Set the tail pointer and length */ 2210 skb_put(n, skb_headlen(skb)); 2211 /* Copy the bytes */ 2212 skb_copy_from_linear_data(skb, n->data, n->len); 2213 2214 n->truesize += skb->data_len; 2215 n->data_len = skb->data_len; 2216 n->len = skb->len; 2217 2218 if (skb_shinfo(skb)->nr_frags) { 2219 int i; 2220 2221 if (skb_orphan_frags(skb, gfp_mask) || 2222 skb_zerocopy_clone(n, skb, gfp_mask)) { 2223 kfree_skb(n); 2224 n = NULL; 2225 goto out; 2226 } 2227 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2228 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2229 skb_frag_ref(skb, i); 2230 } 2231 skb_shinfo(n)->nr_frags = i; 2232 } 2233 2234 if (skb_has_frag_list(skb)) { 2235 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2236 skb_clone_fraglist(n); 2237 } 2238 2239 skb_copy_header(n, skb); 2240out: 2241 return n; 2242} 2243EXPORT_SYMBOL(__pskb_copy_fclone); 2244 2245/** 2246 * pskb_expand_head - reallocate header of &sk_buff 2247 * @skb: buffer to reallocate 2248 * @nhead: room to add at head 2249 * @ntail: room to add at tail 2250 * @gfp_mask: allocation priority 2251 * 2252 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2253 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2254 * reference count of 1. Returns zero in the case of success or error, 2255 * if expansion failed. In the last case, &sk_buff is not changed. 2256 * 2257 * All the pointers pointing into skb header may change and must be 2258 * reloaded after call to this function. 2259 * 2260 * Note: If you skb_push() the start of the buffer after reallocating the 2261 * header, call skb_postpush_data_move() first to move the metadata out of 2262 * the way before writing to &sk_buff->data. 2263 */ 2264 2265int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2266 gfp_t gfp_mask) 2267{ 2268 unsigned int osize = skb_end_offset(skb); 2269 unsigned int size = osize + nhead + ntail; 2270 long off; 2271 u8 *data; 2272 int i; 2273 2274 BUG_ON(nhead < 0); 2275 2276 BUG_ON(skb_shared(skb)); 2277 2278 skb_zcopy_downgrade_managed(skb); 2279 2280 if (skb_pfmemalloc(skb)) 2281 gfp_mask |= __GFP_MEMALLOC; 2282 2283 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2284 if (!data) 2285 goto nodata; 2286 size = SKB_WITH_OVERHEAD(size); 2287 2288 /* Copy only real data... and, alas, header. This should be 2289 * optimized for the cases when header is void. 2290 */ 2291 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2292 2293 memcpy((struct skb_shared_info *)(data + size), 2294 skb_shinfo(skb), 2295 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2296 2297 /* 2298 * if shinfo is shared we must drop the old head gracefully, but if it 2299 * is not we can just drop the old head and let the existing refcount 2300 * be since all we did is relocate the values 2301 */ 2302 if (skb_cloned(skb)) { 2303 if (skb_orphan_frags(skb, gfp_mask)) 2304 goto nofrags; 2305 if (skb_zcopy(skb)) 2306 refcount_inc(&skb_uarg(skb)->refcnt); 2307 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2308 skb_frag_ref(skb, i); 2309 2310 if (skb_has_frag_list(skb)) 2311 skb_clone_fraglist(skb); 2312 2313 skb_release_data(skb, SKB_CONSUMED); 2314 } else { 2315 skb_free_head(skb); 2316 } 2317 off = (data + nhead) - skb->head; 2318 2319 skb->head = data; 2320 skb->head_frag = 0; 2321 skb->data += off; 2322 2323 skb_set_end_offset(skb, size); 2324#ifdef NET_SKBUFF_DATA_USES_OFFSET 2325 off = nhead; 2326#endif 2327 skb->tail += off; 2328 skb_headers_offset_update(skb, nhead); 2329 skb->cloned = 0; 2330 skb->hdr_len = 0; 2331 skb->nohdr = 0; 2332 atomic_set(&skb_shinfo(skb)->dataref, 1); 2333 2334 /* It is not generally safe to change skb->truesize. 2335 * For the moment, we really care of rx path, or 2336 * when skb is orphaned (not attached to a socket). 2337 */ 2338 if (!skb->sk || skb->destructor == sock_edemux) 2339 skb->truesize += size - osize; 2340 2341 return 0; 2342 2343nofrags: 2344 skb_kfree_head(data, size); 2345nodata: 2346 return -ENOMEM; 2347} 2348EXPORT_SYMBOL(pskb_expand_head); 2349 2350/* Make private copy of skb with writable head and some headroom */ 2351 2352struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2353{ 2354 struct sk_buff *skb2; 2355 int delta = headroom - skb_headroom(skb); 2356 2357 if (delta <= 0) 2358 skb2 = pskb_copy(skb, GFP_ATOMIC); 2359 else { 2360 skb2 = skb_clone(skb, GFP_ATOMIC); 2361 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2362 GFP_ATOMIC)) { 2363 kfree_skb(skb2); 2364 skb2 = NULL; 2365 } 2366 } 2367 return skb2; 2368} 2369EXPORT_SYMBOL(skb_realloc_headroom); 2370 2371/* Note: We plan to rework this in linux-6.4 */ 2372int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2373{ 2374 unsigned int saved_end_offset, saved_truesize; 2375 struct skb_shared_info *shinfo; 2376 int res; 2377 2378 saved_end_offset = skb_end_offset(skb); 2379 saved_truesize = skb->truesize; 2380 2381 res = pskb_expand_head(skb, 0, 0, pri); 2382 if (res) 2383 return res; 2384 2385 skb->truesize = saved_truesize; 2386 2387 if (likely(skb_end_offset(skb) == saved_end_offset)) 2388 return 0; 2389 2390 /* We can not change skb->end if the original or new value 2391 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2392 */ 2393 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2394 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2395 /* We think this path should not be taken. 2396 * Add a temporary trace to warn us just in case. 2397 */ 2398 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2399 saved_end_offset, skb_end_offset(skb)); 2400 WARN_ON_ONCE(1); 2401 return 0; 2402 } 2403 2404 shinfo = skb_shinfo(skb); 2405 2406 /* We are about to change back skb->end, 2407 * we need to move skb_shinfo() to its new location. 2408 */ 2409 memmove(skb->head + saved_end_offset, 2410 shinfo, 2411 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2412 2413 skb_set_end_offset(skb, saved_end_offset); 2414 2415 return 0; 2416} 2417 2418/** 2419 * skb_expand_head - reallocate header of &sk_buff 2420 * @skb: buffer to reallocate 2421 * @headroom: needed headroom 2422 * 2423 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2424 * if possible; copies skb->sk to new skb as needed 2425 * and frees original skb in case of failures. 2426 * 2427 * It expect increased headroom and generates warning otherwise. 2428 */ 2429 2430struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2431{ 2432 int delta = headroom - skb_headroom(skb); 2433 int osize = skb_end_offset(skb); 2434 struct sock *sk = skb->sk; 2435 2436 if (WARN_ONCE(delta <= 0, 2437 "%s is expecting an increase in the headroom", __func__)) 2438 return skb; 2439 2440 delta = SKB_DATA_ALIGN(delta); 2441 /* pskb_expand_head() might crash, if skb is shared. */ 2442 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2443 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2444 2445 if (unlikely(!nskb)) 2446 goto fail; 2447 2448 if (sk) 2449 skb_set_owner_w(nskb, sk); 2450 consume_skb(skb); 2451 skb = nskb; 2452 } 2453 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2454 goto fail; 2455 2456 if (sk && is_skb_wmem(skb)) { 2457 delta = skb_end_offset(skb) - osize; 2458 refcount_add(delta, &sk->sk_wmem_alloc); 2459 skb->truesize += delta; 2460 } 2461 return skb; 2462 2463fail: 2464 kfree_skb(skb); 2465 return NULL; 2466} 2467EXPORT_SYMBOL(skb_expand_head); 2468 2469/** 2470 * skb_copy_expand - copy and expand sk_buff 2471 * @skb: buffer to copy 2472 * @newheadroom: new free bytes at head 2473 * @newtailroom: new free bytes at tail 2474 * @gfp_mask: allocation priority 2475 * 2476 * Make a copy of both an &sk_buff and its data and while doing so 2477 * allocate additional space. 2478 * 2479 * This is used when the caller wishes to modify the data and needs a 2480 * private copy of the data to alter as well as more space for new fields. 2481 * Returns %NULL on failure or the pointer to the buffer 2482 * on success. The returned buffer has a reference count of 1. 2483 * 2484 * You must pass %GFP_ATOMIC as the allocation priority if this function 2485 * is called from an interrupt. 2486 */ 2487struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2488 int newheadroom, int newtailroom, 2489 gfp_t gfp_mask) 2490{ 2491 /* 2492 * Allocate the copy buffer 2493 */ 2494 int head_copy_len, head_copy_off; 2495 struct sk_buff *n; 2496 int oldheadroom; 2497 2498 if (!skb_frags_readable(skb)) 2499 return NULL; 2500 2501 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2502 return NULL; 2503 2504 oldheadroom = skb_headroom(skb); 2505 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2506 gfp_mask, skb_alloc_rx_flag(skb), 2507 NUMA_NO_NODE); 2508 if (!n) 2509 return NULL; 2510 2511 skb_reserve(n, newheadroom); 2512 2513 /* Set the tail pointer and length */ 2514 skb_put(n, skb->len); 2515 2516 head_copy_len = oldheadroom; 2517 head_copy_off = 0; 2518 if (newheadroom <= head_copy_len) 2519 head_copy_len = newheadroom; 2520 else 2521 head_copy_off = newheadroom - head_copy_len; 2522 2523 /* Copy the linear header and data. */ 2524 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2525 skb->len + head_copy_len)); 2526 2527 skb_copy_header(n, skb); 2528 2529 skb_headers_offset_update(n, newheadroom - oldheadroom); 2530 2531 return n; 2532} 2533EXPORT_SYMBOL(skb_copy_expand); 2534 2535/** 2536 * __skb_pad - zero pad the tail of an skb 2537 * @skb: buffer to pad 2538 * @pad: space to pad 2539 * @free_on_error: free buffer on error 2540 * 2541 * Ensure that a buffer is followed by a padding area that is zero 2542 * filled. Used by network drivers which may DMA or transfer data 2543 * beyond the buffer end onto the wire. 2544 * 2545 * May return error in out of memory cases. The skb is freed on error 2546 * if @free_on_error is true. 2547 */ 2548 2549int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2550{ 2551 int err; 2552 int ntail; 2553 2554 /* If the skbuff is non linear tailroom is always zero.. */ 2555 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2556 memset(skb->data+skb->len, 0, pad); 2557 return 0; 2558 } 2559 2560 ntail = skb->data_len + pad - (skb->end - skb->tail); 2561 if (likely(skb_cloned(skb) || ntail > 0)) { 2562 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2563 if (unlikely(err)) 2564 goto free_skb; 2565 } 2566 2567 /* FIXME: The use of this function with non-linear skb's really needs 2568 * to be audited. 2569 */ 2570 err = skb_linearize(skb); 2571 if (unlikely(err)) 2572 goto free_skb; 2573 2574 memset(skb->data + skb->len, 0, pad); 2575 return 0; 2576 2577free_skb: 2578 if (free_on_error) 2579 kfree_skb(skb); 2580 return err; 2581} 2582EXPORT_SYMBOL(__skb_pad); 2583 2584/** 2585 * pskb_put - add data to the tail of a potentially fragmented buffer 2586 * @skb: start of the buffer to use 2587 * @tail: tail fragment of the buffer to use 2588 * @len: amount of data to add 2589 * 2590 * This function extends the used data area of the potentially 2591 * fragmented buffer. @tail must be the last fragment of @skb -- or 2592 * @skb itself. If this would exceed the total buffer size the kernel 2593 * will panic. A pointer to the first byte of the extra data is 2594 * returned. 2595 */ 2596 2597void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2598{ 2599 if (tail != skb) { 2600 skb->data_len += len; 2601 skb->len += len; 2602 } 2603 return skb_put(tail, len); 2604} 2605EXPORT_SYMBOL_GPL(pskb_put); 2606 2607/** 2608 * skb_put - add data to a buffer 2609 * @skb: buffer to use 2610 * @len: amount of data to add 2611 * 2612 * This function extends the used data area of the buffer. If this would 2613 * exceed the total buffer size the kernel will panic. A pointer to the 2614 * first byte of the extra data is returned. 2615 */ 2616void *skb_put(struct sk_buff *skb, unsigned int len) 2617{ 2618 void *tmp = skb_tail_pointer(skb); 2619 SKB_LINEAR_ASSERT(skb); 2620 skb->tail += len; 2621 skb->len += len; 2622 if (unlikely(skb->tail > skb->end)) 2623 skb_over_panic(skb, len, __builtin_return_address(0)); 2624 return tmp; 2625} 2626EXPORT_SYMBOL(skb_put); 2627 2628/** 2629 * skb_push - add data to the start of a buffer 2630 * @skb: buffer to use 2631 * @len: amount of data to add 2632 * 2633 * This function extends the used data area of the buffer at the buffer 2634 * start. If this would exceed the total buffer headroom the kernel will 2635 * panic. A pointer to the first byte of the extra data is returned. 2636 */ 2637void *skb_push(struct sk_buff *skb, unsigned int len) 2638{ 2639 skb->data -= len; 2640 skb->len += len; 2641 if (unlikely(skb->data < skb->head)) 2642 skb_under_panic(skb, len, __builtin_return_address(0)); 2643 return skb->data; 2644} 2645EXPORT_SYMBOL(skb_push); 2646 2647/** 2648 * skb_pull - remove data from the start of a buffer 2649 * @skb: buffer to use 2650 * @len: amount of data to remove 2651 * 2652 * This function removes data from the start of a buffer, returning 2653 * the memory to the headroom. A pointer to the next data in the buffer 2654 * is returned. Once the data has been pulled future pushes will overwrite 2655 * the old data. 2656 */ 2657void *skb_pull(struct sk_buff *skb, unsigned int len) 2658{ 2659 return skb_pull_inline(skb, len); 2660} 2661EXPORT_SYMBOL(skb_pull); 2662 2663/** 2664 * skb_pull_data - remove data from the start of a buffer returning its 2665 * original position. 2666 * @skb: buffer to use 2667 * @len: amount of data to remove 2668 * 2669 * This function removes data from the start of a buffer, returning 2670 * the memory to the headroom. A pointer to the original data in the buffer 2671 * is returned after checking if there is enough data to pull. Once the 2672 * data has been pulled future pushes will overwrite the old data. 2673 */ 2674void *skb_pull_data(struct sk_buff *skb, size_t len) 2675{ 2676 void *data = skb->data; 2677 2678 if (skb->len < len) 2679 return NULL; 2680 2681 skb_pull(skb, len); 2682 2683 return data; 2684} 2685EXPORT_SYMBOL(skb_pull_data); 2686 2687/** 2688 * skb_trim - remove end from a buffer 2689 * @skb: buffer to alter 2690 * @len: new length 2691 * 2692 * Cut the length of a buffer down by removing data from the tail. If 2693 * the buffer is already under the length specified it is not modified. 2694 * The skb must be linear. 2695 */ 2696void skb_trim(struct sk_buff *skb, unsigned int len) 2697{ 2698 if (skb->len > len) 2699 __skb_trim(skb, len); 2700} 2701EXPORT_SYMBOL(skb_trim); 2702 2703/* Trims skb to length len. It can change skb pointers. 2704 */ 2705 2706int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2707{ 2708 struct sk_buff **fragp; 2709 struct sk_buff *frag; 2710 int offset = skb_headlen(skb); 2711 int nfrags = skb_shinfo(skb)->nr_frags; 2712 int i; 2713 int err; 2714 2715 if (skb_cloned(skb) && 2716 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2717 return err; 2718 2719 i = 0; 2720 if (offset >= len) 2721 goto drop_pages; 2722 2723 for (; i < nfrags; i++) { 2724 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2725 2726 if (end < len) { 2727 offset = end; 2728 continue; 2729 } 2730 2731 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2732 2733drop_pages: 2734 skb_shinfo(skb)->nr_frags = i; 2735 2736 for (; i < nfrags; i++) 2737 skb_frag_unref(skb, i); 2738 2739 if (skb_has_frag_list(skb)) 2740 skb_drop_fraglist(skb); 2741 goto done; 2742 } 2743 2744 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2745 fragp = &frag->next) { 2746 int end = offset + frag->len; 2747 2748 if (skb_shared(frag)) { 2749 struct sk_buff *nfrag; 2750 2751 nfrag = skb_clone(frag, GFP_ATOMIC); 2752 if (unlikely(!nfrag)) 2753 return -ENOMEM; 2754 2755 nfrag->next = frag->next; 2756 consume_skb(frag); 2757 frag = nfrag; 2758 *fragp = frag; 2759 } 2760 2761 if (end < len) { 2762 offset = end; 2763 continue; 2764 } 2765 2766 if (end > len && 2767 unlikely((err = pskb_trim(frag, len - offset)))) 2768 return err; 2769 2770 if (frag->next) 2771 skb_drop_list(&frag->next); 2772 break; 2773 } 2774 2775done: 2776 if (len > skb_headlen(skb)) { 2777 skb->data_len -= skb->len - len; 2778 skb->len = len; 2779 } else { 2780 skb->len = len; 2781 skb->data_len = 0; 2782 skb_set_tail_pointer(skb, len); 2783 } 2784 2785 if (!skb->sk || skb->destructor == sock_edemux) 2786 skb_condense(skb); 2787 return 0; 2788} 2789EXPORT_SYMBOL(___pskb_trim); 2790 2791/* Note : use pskb_trim_rcsum() instead of calling this directly 2792 */ 2793int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2794{ 2795 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2796 int delta = skb->len - len; 2797 2798 skb->csum = csum_block_sub(skb->csum, 2799 skb_checksum(skb, len, delta, 0), 2800 len); 2801 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2802 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2803 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2804 2805 if (offset + sizeof(__sum16) > hdlen) 2806 return -EINVAL; 2807 } 2808 return __pskb_trim(skb, len); 2809} 2810EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2811 2812/** 2813 * __pskb_pull_tail - advance tail of skb header 2814 * @skb: buffer to reallocate 2815 * @delta: number of bytes to advance tail 2816 * 2817 * The function makes a sense only on a fragmented &sk_buff, 2818 * it expands header moving its tail forward and copying necessary 2819 * data from fragmented part. 2820 * 2821 * &sk_buff MUST have reference count of 1. 2822 * 2823 * Returns %NULL (and &sk_buff does not change) if pull failed 2824 * or value of new tail of skb in the case of success. 2825 * 2826 * All the pointers pointing into skb header may change and must be 2827 * reloaded after call to this function. 2828 */ 2829 2830/* Moves tail of skb head forward, copying data from fragmented part, 2831 * when it is necessary. 2832 * 1. It may fail due to malloc failure. 2833 * 2. It may change skb pointers. 2834 * 2835 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2836 */ 2837void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2838{ 2839 /* If skb has not enough free space at tail, get new one 2840 * plus 128 bytes for future expansions. If we have enough 2841 * room at tail, reallocate without expansion only if skb is cloned. 2842 */ 2843 int i, k, eat = (skb->tail + delta) - skb->end; 2844 2845 if (!skb_frags_readable(skb)) 2846 return NULL; 2847 2848 if (eat > 0 || skb_cloned(skb)) { 2849 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2850 GFP_ATOMIC)) 2851 return NULL; 2852 } 2853 2854 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2855 skb_tail_pointer(skb), delta)); 2856 2857 /* Optimization: no fragments, no reasons to preestimate 2858 * size of pulled pages. Superb. 2859 */ 2860 if (!skb_has_frag_list(skb)) 2861 goto pull_pages; 2862 2863 /* Estimate size of pulled pages. */ 2864 eat = delta; 2865 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2866 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2867 2868 if (size >= eat) 2869 goto pull_pages; 2870 eat -= size; 2871 } 2872 2873 /* If we need update frag list, we are in troubles. 2874 * Certainly, it is possible to add an offset to skb data, 2875 * but taking into account that pulling is expected to 2876 * be very rare operation, it is worth to fight against 2877 * further bloating skb head and crucify ourselves here instead. 2878 * Pure masohism, indeed. 8)8) 2879 */ 2880 if (eat) { 2881 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2882 struct sk_buff *clone = NULL; 2883 struct sk_buff *insp = NULL; 2884 2885 do { 2886 if (list->len <= eat) { 2887 /* Eaten as whole. */ 2888 eat -= list->len; 2889 list = list->next; 2890 insp = list; 2891 } else { 2892 /* Eaten partially. */ 2893 if (skb_is_gso(skb) && !list->head_frag && 2894 skb_headlen(list)) 2895 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2896 2897 if (skb_shared(list)) { 2898 /* Sucks! We need to fork list. :-( */ 2899 clone = skb_clone(list, GFP_ATOMIC); 2900 if (!clone) 2901 return NULL; 2902 insp = list->next; 2903 list = clone; 2904 } else { 2905 /* This may be pulled without 2906 * problems. */ 2907 insp = list; 2908 } 2909 if (!pskb_pull(list, eat)) { 2910 kfree_skb(clone); 2911 return NULL; 2912 } 2913 break; 2914 } 2915 } while (eat); 2916 2917 /* Free pulled out fragments. */ 2918 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2919 skb_shinfo(skb)->frag_list = list->next; 2920 consume_skb(list); 2921 } 2922 /* And insert new clone at head. */ 2923 if (clone) { 2924 clone->next = list; 2925 skb_shinfo(skb)->frag_list = clone; 2926 } 2927 } 2928 /* Success! Now we may commit changes to skb data. */ 2929 2930pull_pages: 2931 eat = delta; 2932 k = 0; 2933 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2934 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2935 2936 if (size <= eat) { 2937 skb_frag_unref(skb, i); 2938 eat -= size; 2939 } else { 2940 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2941 2942 *frag = skb_shinfo(skb)->frags[i]; 2943 if (eat) { 2944 skb_frag_off_add(frag, eat); 2945 skb_frag_size_sub(frag, eat); 2946 if (!i) 2947 goto end; 2948 eat = 0; 2949 } 2950 k++; 2951 } 2952 } 2953 skb_shinfo(skb)->nr_frags = k; 2954 2955end: 2956 skb->tail += delta; 2957 skb->data_len -= delta; 2958 2959 if (!skb->data_len) 2960 skb_zcopy_clear(skb, false); 2961 2962 return skb_tail_pointer(skb); 2963} 2964EXPORT_SYMBOL(__pskb_pull_tail); 2965 2966/** 2967 * skb_copy_bits - copy bits from skb to kernel buffer 2968 * @skb: source skb 2969 * @offset: offset in source 2970 * @to: destination buffer 2971 * @len: number of bytes to copy 2972 * 2973 * Copy the specified number of bytes from the source skb to the 2974 * destination buffer. 2975 * 2976 * CAUTION ! : 2977 * If its prototype is ever changed, 2978 * check arch/{*}/net/{*}.S files, 2979 * since it is called from BPF assembly code. 2980 */ 2981int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2982{ 2983 int start = skb_headlen(skb); 2984 struct sk_buff *frag_iter; 2985 int i, copy; 2986 2987 if (offset > (int)skb->len - len) 2988 goto fault; 2989 2990 /* Copy header. */ 2991 if ((copy = start - offset) > 0) { 2992 if (copy > len) 2993 copy = len; 2994 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2995 if ((len -= copy) == 0) 2996 return 0; 2997 offset += copy; 2998 to += copy; 2999 } 3000 3001 if (!skb_frags_readable(skb)) 3002 goto fault; 3003 3004 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3005 int end; 3006 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 3007 3008 WARN_ON(start > offset + len); 3009 3010 end = start + skb_frag_size(f); 3011 if ((copy = end - offset) > 0) { 3012 u32 p_off, p_len, copied; 3013 struct page *p; 3014 u8 *vaddr; 3015 3016 if (copy > len) 3017 copy = len; 3018 3019 skb_frag_foreach_page(f, 3020 skb_frag_off(f) + offset - start, 3021 copy, p, p_off, p_len, copied) { 3022 vaddr = kmap_atomic(p); 3023 memcpy(to + copied, vaddr + p_off, p_len); 3024 kunmap_atomic(vaddr); 3025 } 3026 3027 if ((len -= copy) == 0) 3028 return 0; 3029 offset += copy; 3030 to += copy; 3031 } 3032 start = end; 3033 } 3034 3035 skb_walk_frags(skb, frag_iter) { 3036 int end; 3037 3038 WARN_ON(start > offset + len); 3039 3040 end = start + frag_iter->len; 3041 if ((copy = end - offset) > 0) { 3042 if (copy > len) 3043 copy = len; 3044 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3045 goto fault; 3046 if ((len -= copy) == 0) 3047 return 0; 3048 offset += copy; 3049 to += copy; 3050 } 3051 start = end; 3052 } 3053 3054 if (!len) 3055 return 0; 3056 3057fault: 3058 return -EFAULT; 3059} 3060EXPORT_SYMBOL(skb_copy_bits); 3061 3062/* 3063 * Callback from splice_to_pipe(), if we need to release some pages 3064 * at the end of the spd in case we error'ed out in filling the pipe. 3065 */ 3066static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3067{ 3068 put_page(spd->pages[i]); 3069} 3070 3071static struct page *linear_to_page(struct page *page, unsigned int *len, 3072 unsigned int *offset, 3073 struct sock *sk) 3074{ 3075 struct page_frag *pfrag = sk_page_frag(sk); 3076 3077 if (!sk_page_frag_refill(sk, pfrag)) 3078 return NULL; 3079 3080 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3081 3082 memcpy(page_address(pfrag->page) + pfrag->offset, 3083 page_address(page) + *offset, *len); 3084 *offset = pfrag->offset; 3085 pfrag->offset += *len; 3086 3087 return pfrag->page; 3088} 3089 3090static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3091 struct page *page, 3092 unsigned int offset) 3093{ 3094 return spd->nr_pages && 3095 spd->pages[spd->nr_pages - 1] == page && 3096 (spd->partial[spd->nr_pages - 1].offset + 3097 spd->partial[spd->nr_pages - 1].len == offset); 3098} 3099 3100/* 3101 * Fill page/offset/length into spd, if it can hold more pages. 3102 */ 3103static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3104 unsigned int *len, unsigned int offset, bool linear, 3105 struct sock *sk) 3106{ 3107 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3108 return true; 3109 3110 if (linear) { 3111 page = linear_to_page(page, len, &offset, sk); 3112 if (!page) 3113 return true; 3114 } 3115 if (spd_can_coalesce(spd, page, offset)) { 3116 spd->partial[spd->nr_pages - 1].len += *len; 3117 return false; 3118 } 3119 get_page(page); 3120 spd->pages[spd->nr_pages] = page; 3121 spd->partial[spd->nr_pages].len = *len; 3122 spd->partial[spd->nr_pages].offset = offset; 3123 spd->nr_pages++; 3124 3125 return false; 3126} 3127 3128static bool __splice_segment(struct page *page, unsigned int poff, 3129 unsigned int plen, unsigned int *off, 3130 unsigned int *len, 3131 struct splice_pipe_desc *spd, bool linear, 3132 struct sock *sk) 3133{ 3134 if (!*len) 3135 return true; 3136 3137 /* skip this segment if already processed */ 3138 if (*off >= plen) { 3139 *off -= plen; 3140 return false; 3141 } 3142 3143 /* ignore any bits we already processed */ 3144 poff += *off; 3145 plen -= *off; 3146 *off = 0; 3147 3148 do { 3149 unsigned int flen = min(*len, plen); 3150 3151 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3152 return true; 3153 poff += flen; 3154 plen -= flen; 3155 *len -= flen; 3156 if (!*len) 3157 return true; 3158 } while (plen); 3159 3160 return false; 3161} 3162 3163/* 3164 * Map linear and fragment data from the skb to spd. It reports true if the 3165 * pipe is full or if we already spliced the requested length. 3166 */ 3167static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3168 unsigned int *offset, unsigned int *len, 3169 struct splice_pipe_desc *spd, struct sock *sk) 3170{ 3171 struct sk_buff *iter; 3172 int seg; 3173 3174 /* map the linear part : 3175 * If skb->head_frag is set, this 'linear' part is backed by a 3176 * fragment, and if the head is not shared with any clones then 3177 * we can avoid a copy since we own the head portion of this page. 3178 */ 3179 if (__splice_segment(virt_to_page(skb->data), 3180 (unsigned long) skb->data & (PAGE_SIZE - 1), 3181 skb_headlen(skb), 3182 offset, len, spd, 3183 skb_head_is_locked(skb), 3184 sk)) 3185 return true; 3186 3187 /* 3188 * then map the fragments 3189 */ 3190 if (!skb_frags_readable(skb)) 3191 return false; 3192 3193 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3194 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3195 3196 if (WARN_ON_ONCE(!skb_frag_page(f))) 3197 return false; 3198 3199 if (__splice_segment(skb_frag_page(f), 3200 skb_frag_off(f), skb_frag_size(f), 3201 offset, len, spd, false, sk)) 3202 return true; 3203 } 3204 3205 skb_walk_frags(skb, iter) { 3206 if (*offset >= iter->len) { 3207 *offset -= iter->len; 3208 continue; 3209 } 3210 /* __skb_splice_bits() only fails if the output has no room 3211 * left, so no point in going over the frag_list for the error 3212 * case. 3213 */ 3214 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3215 return true; 3216 } 3217 3218 return false; 3219} 3220 3221/* 3222 * Map data from the skb to a pipe. Should handle both the linear part, 3223 * the fragments, and the frag list. 3224 */ 3225int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3226 struct pipe_inode_info *pipe, unsigned int tlen, 3227 unsigned int flags) 3228{ 3229 struct partial_page partial[MAX_SKB_FRAGS]; 3230 struct page *pages[MAX_SKB_FRAGS]; 3231 struct splice_pipe_desc spd = { 3232 .pages = pages, 3233 .partial = partial, 3234 .nr_pages_max = MAX_SKB_FRAGS, 3235 .ops = &nosteal_pipe_buf_ops, 3236 .spd_release = sock_spd_release, 3237 }; 3238 int ret = 0; 3239 3240 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3241 3242 if (spd.nr_pages) 3243 ret = splice_to_pipe(pipe, &spd); 3244 3245 return ret; 3246} 3247EXPORT_SYMBOL_GPL(skb_splice_bits); 3248 3249static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3250{ 3251 struct socket *sock = sk->sk_socket; 3252 size_t size = msg_data_left(msg); 3253 3254 if (!sock) 3255 return -EINVAL; 3256 3257 if (!sock->ops->sendmsg_locked) 3258 return sock_no_sendmsg_locked(sk, msg, size); 3259 3260 return sock->ops->sendmsg_locked(sk, msg, size); 3261} 3262 3263static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3264{ 3265 struct socket *sock = sk->sk_socket; 3266 3267 if (!sock) 3268 return -EINVAL; 3269 return sock_sendmsg(sock, msg); 3270} 3271 3272typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3273static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3274 int len, sendmsg_func sendmsg, int flags) 3275{ 3276 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3277 unsigned int orig_len = len; 3278 struct sk_buff *head = skb; 3279 unsigned short fragidx; 3280 int slen, ret; 3281 3282do_frag_list: 3283 3284 /* Deal with head data */ 3285 while (offset < skb_headlen(skb) && len) { 3286 struct kvec kv; 3287 struct msghdr msg; 3288 3289 slen = min_t(int, len, skb_headlen(skb) - offset); 3290 kv.iov_base = skb->data + offset; 3291 kv.iov_len = slen; 3292 memset(&msg, 0, sizeof(msg)); 3293 msg.msg_flags = MSG_DONTWAIT | flags; 3294 if (slen < len) 3295 msg.msg_flags |= more_hint; 3296 3297 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3298 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3299 sendmsg_unlocked, sk, &msg); 3300 if (ret <= 0) 3301 goto error; 3302 3303 offset += ret; 3304 len -= ret; 3305 } 3306 3307 /* All the data was skb head? */ 3308 if (!len) 3309 goto out; 3310 3311 /* Make offset relative to start of frags */ 3312 offset -= skb_headlen(skb); 3313 3314 /* Find where we are in frag list */ 3315 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3316 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3317 3318 if (offset < skb_frag_size(frag)) 3319 break; 3320 3321 offset -= skb_frag_size(frag); 3322 } 3323 3324 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3325 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3326 3327 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3328 3329 while (slen) { 3330 struct bio_vec bvec; 3331 struct msghdr msg = { 3332 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3333 flags, 3334 }; 3335 3336 if (slen < len) 3337 msg.msg_flags |= more_hint; 3338 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3339 skb_frag_off(frag) + offset); 3340 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3341 slen); 3342 3343 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3344 sendmsg_unlocked, sk, &msg); 3345 if (ret <= 0) 3346 goto error; 3347 3348 len -= ret; 3349 offset += ret; 3350 slen -= ret; 3351 } 3352 3353 offset = 0; 3354 } 3355 3356 if (len) { 3357 /* Process any frag lists */ 3358 3359 if (skb == head) { 3360 if (skb_has_frag_list(skb)) { 3361 skb = skb_shinfo(skb)->frag_list; 3362 goto do_frag_list; 3363 } 3364 } else if (skb->next) { 3365 skb = skb->next; 3366 goto do_frag_list; 3367 } 3368 } 3369 3370out: 3371 return orig_len - len; 3372 3373error: 3374 return orig_len == len ? ret : orig_len - len; 3375} 3376 3377/* Send skb data on a socket. Socket must be locked. */ 3378int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3379 int len) 3380{ 3381 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3382} 3383EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3384 3385int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3386 int offset, int len, int flags) 3387{ 3388 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3389} 3390EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3391 3392/* Send skb data on a socket. Socket must be unlocked. */ 3393int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3394{ 3395 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3396} 3397 3398/** 3399 * skb_store_bits - store bits from kernel buffer to skb 3400 * @skb: destination buffer 3401 * @offset: offset in destination 3402 * @from: source buffer 3403 * @len: number of bytes to copy 3404 * 3405 * Copy the specified number of bytes from the source buffer to the 3406 * destination skb. This function handles all the messy bits of 3407 * traversing fragment lists and such. 3408 */ 3409 3410int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3411{ 3412 int start = skb_headlen(skb); 3413 struct sk_buff *frag_iter; 3414 int i, copy; 3415 3416 if (offset > (int)skb->len - len) 3417 goto fault; 3418 3419 if ((copy = start - offset) > 0) { 3420 if (copy > len) 3421 copy = len; 3422 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3423 if ((len -= copy) == 0) 3424 return 0; 3425 offset += copy; 3426 from += copy; 3427 } 3428 3429 if (!skb_frags_readable(skb)) 3430 goto fault; 3431 3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3433 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3434 int end; 3435 3436 WARN_ON(start > offset + len); 3437 3438 end = start + skb_frag_size(frag); 3439 if ((copy = end - offset) > 0) { 3440 u32 p_off, p_len, copied; 3441 struct page *p; 3442 u8 *vaddr; 3443 3444 if (copy > len) 3445 copy = len; 3446 3447 skb_frag_foreach_page(frag, 3448 skb_frag_off(frag) + offset - start, 3449 copy, p, p_off, p_len, copied) { 3450 vaddr = kmap_atomic(p); 3451 memcpy(vaddr + p_off, from + copied, p_len); 3452 kunmap_atomic(vaddr); 3453 } 3454 3455 if ((len -= copy) == 0) 3456 return 0; 3457 offset += copy; 3458 from += copy; 3459 } 3460 start = end; 3461 } 3462 3463 skb_walk_frags(skb, frag_iter) { 3464 int end; 3465 3466 WARN_ON(start > offset + len); 3467 3468 end = start + frag_iter->len; 3469 if ((copy = end - offset) > 0) { 3470 if (copy > len) 3471 copy = len; 3472 if (skb_store_bits(frag_iter, offset - start, 3473 from, copy)) 3474 goto fault; 3475 if ((len -= copy) == 0) 3476 return 0; 3477 offset += copy; 3478 from += copy; 3479 } 3480 start = end; 3481 } 3482 if (!len) 3483 return 0; 3484 3485fault: 3486 return -EFAULT; 3487} 3488EXPORT_SYMBOL(skb_store_bits); 3489 3490/* Checksum skb data. */ 3491__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3492{ 3493 int start = skb_headlen(skb); 3494 int i, copy = start - offset; 3495 struct sk_buff *frag_iter; 3496 int pos = 0; 3497 3498 /* Checksum header. */ 3499 if (copy > 0) { 3500 if (copy > len) 3501 copy = len; 3502 csum = csum_partial(skb->data + offset, copy, csum); 3503 if ((len -= copy) == 0) 3504 return csum; 3505 offset += copy; 3506 pos = copy; 3507 } 3508 3509 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3510 return 0; 3511 3512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3513 int end; 3514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3515 3516 WARN_ON(start > offset + len); 3517 3518 end = start + skb_frag_size(frag); 3519 if ((copy = end - offset) > 0) { 3520 u32 p_off, p_len, copied; 3521 struct page *p; 3522 __wsum csum2; 3523 u8 *vaddr; 3524 3525 if (copy > len) 3526 copy = len; 3527 3528 skb_frag_foreach_page(frag, 3529 skb_frag_off(frag) + offset - start, 3530 copy, p, p_off, p_len, copied) { 3531 vaddr = kmap_atomic(p); 3532 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3533 kunmap_atomic(vaddr); 3534 csum = csum_block_add(csum, csum2, pos); 3535 pos += p_len; 3536 } 3537 3538 if (!(len -= copy)) 3539 return csum; 3540 offset += copy; 3541 } 3542 start = end; 3543 } 3544 3545 skb_walk_frags(skb, frag_iter) { 3546 int end; 3547 3548 WARN_ON(start > offset + len); 3549 3550 end = start + frag_iter->len; 3551 if ((copy = end - offset) > 0) { 3552 __wsum csum2; 3553 if (copy > len) 3554 copy = len; 3555 csum2 = skb_checksum(frag_iter, offset - start, copy, 3556 0); 3557 csum = csum_block_add(csum, csum2, pos); 3558 if ((len -= copy) == 0) 3559 return csum; 3560 offset += copy; 3561 pos += copy; 3562 } 3563 start = end; 3564 } 3565 BUG_ON(len); 3566 3567 return csum; 3568} 3569EXPORT_SYMBOL(skb_checksum); 3570 3571/* Both of above in one bottle. */ 3572 3573__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3574 u8 *to, int len) 3575{ 3576 int start = skb_headlen(skb); 3577 int i, copy = start - offset; 3578 struct sk_buff *frag_iter; 3579 int pos = 0; 3580 __wsum csum = 0; 3581 3582 /* Copy header. */ 3583 if (copy > 0) { 3584 if (copy > len) 3585 copy = len; 3586 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3587 copy); 3588 if ((len -= copy) == 0) 3589 return csum; 3590 offset += copy; 3591 to += copy; 3592 pos = copy; 3593 } 3594 3595 if (!skb_frags_readable(skb)) 3596 return 0; 3597 3598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3599 int end; 3600 3601 WARN_ON(start > offset + len); 3602 3603 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3604 if ((copy = end - offset) > 0) { 3605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3606 u32 p_off, p_len, copied; 3607 struct page *p; 3608 __wsum csum2; 3609 u8 *vaddr; 3610 3611 if (copy > len) 3612 copy = len; 3613 3614 skb_frag_foreach_page(frag, 3615 skb_frag_off(frag) + offset - start, 3616 copy, p, p_off, p_len, copied) { 3617 vaddr = kmap_atomic(p); 3618 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3619 to + copied, 3620 p_len); 3621 kunmap_atomic(vaddr); 3622 csum = csum_block_add(csum, csum2, pos); 3623 pos += p_len; 3624 } 3625 3626 if (!(len -= copy)) 3627 return csum; 3628 offset += copy; 3629 to += copy; 3630 } 3631 start = end; 3632 } 3633 3634 skb_walk_frags(skb, frag_iter) { 3635 __wsum csum2; 3636 int end; 3637 3638 WARN_ON(start > offset + len); 3639 3640 end = start + frag_iter->len; 3641 if ((copy = end - offset) > 0) { 3642 if (copy > len) 3643 copy = len; 3644 csum2 = skb_copy_and_csum_bits(frag_iter, 3645 offset - start, 3646 to, copy); 3647 csum = csum_block_add(csum, csum2, pos); 3648 if ((len -= copy) == 0) 3649 return csum; 3650 offset += copy; 3651 to += copy; 3652 pos += copy; 3653 } 3654 start = end; 3655 } 3656 BUG_ON(len); 3657 return csum; 3658} 3659EXPORT_SYMBOL(skb_copy_and_csum_bits); 3660 3661#ifdef CONFIG_NET_CRC32C 3662u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3663{ 3664 int start = skb_headlen(skb); 3665 int i, copy = start - offset; 3666 struct sk_buff *frag_iter; 3667 3668 if (copy > 0) { 3669 copy = min(copy, len); 3670 crc = crc32c(crc, skb->data + offset, copy); 3671 len -= copy; 3672 if (len == 0) 3673 return crc; 3674 offset += copy; 3675 } 3676 3677 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3678 return 0; 3679 3680 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3681 int end; 3682 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3683 3684 WARN_ON(start > offset + len); 3685 3686 end = start + skb_frag_size(frag); 3687 copy = end - offset; 3688 if (copy > 0) { 3689 u32 p_off, p_len, copied; 3690 struct page *p; 3691 u8 *vaddr; 3692 3693 copy = min(copy, len); 3694 skb_frag_foreach_page(frag, 3695 skb_frag_off(frag) + offset - start, 3696 copy, p, p_off, p_len, copied) { 3697 vaddr = kmap_atomic(p); 3698 crc = crc32c(crc, vaddr + p_off, p_len); 3699 kunmap_atomic(vaddr); 3700 } 3701 len -= copy; 3702 if (len == 0) 3703 return crc; 3704 offset += copy; 3705 } 3706 start = end; 3707 } 3708 3709 skb_walk_frags(skb, frag_iter) { 3710 int end; 3711 3712 WARN_ON(start > offset + len); 3713 3714 end = start + frag_iter->len; 3715 copy = end - offset; 3716 if (copy > 0) { 3717 copy = min(copy, len); 3718 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3719 len -= copy; 3720 if (len == 0) 3721 return crc; 3722 offset += copy; 3723 } 3724 start = end; 3725 } 3726 BUG_ON(len); 3727 3728 return crc; 3729} 3730EXPORT_SYMBOL(skb_crc32c); 3731#endif /* CONFIG_NET_CRC32C */ 3732 3733__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3734{ 3735 __sum16 sum; 3736 3737 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3738 /* See comments in __skb_checksum_complete(). */ 3739 if (likely(!sum)) { 3740 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3741 !skb->csum_complete_sw) 3742 netdev_rx_csum_fault(skb->dev, skb); 3743 } 3744 if (!skb_shared(skb)) 3745 skb->csum_valid = !sum; 3746 return sum; 3747} 3748EXPORT_SYMBOL(__skb_checksum_complete_head); 3749 3750/* This function assumes skb->csum already holds pseudo header's checksum, 3751 * which has been changed from the hardware checksum, for example, by 3752 * __skb_checksum_validate_complete(). And, the original skb->csum must 3753 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3754 * 3755 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3756 * zero. The new checksum is stored back into skb->csum unless the skb is 3757 * shared. 3758 */ 3759__sum16 __skb_checksum_complete(struct sk_buff *skb) 3760{ 3761 __wsum csum; 3762 __sum16 sum; 3763 3764 csum = skb_checksum(skb, 0, skb->len, 0); 3765 3766 sum = csum_fold(csum_add(skb->csum, csum)); 3767 /* This check is inverted, because we already knew the hardware 3768 * checksum is invalid before calling this function. So, if the 3769 * re-computed checksum is valid instead, then we have a mismatch 3770 * between the original skb->csum and skb_checksum(). This means either 3771 * the original hardware checksum is incorrect or we screw up skb->csum 3772 * when moving skb->data around. 3773 */ 3774 if (likely(!sum)) { 3775 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3776 !skb->csum_complete_sw) 3777 netdev_rx_csum_fault(skb->dev, skb); 3778 } 3779 3780 if (!skb_shared(skb)) { 3781 /* Save full packet checksum */ 3782 skb->csum = csum; 3783 skb->ip_summed = CHECKSUM_COMPLETE; 3784 skb->csum_complete_sw = 1; 3785 skb->csum_valid = !sum; 3786 } 3787 3788 return sum; 3789} 3790EXPORT_SYMBOL(__skb_checksum_complete); 3791 3792 /** 3793 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3794 * @from: source buffer 3795 * 3796 * Calculates the amount of linear headroom needed in the 'to' skb passed 3797 * into skb_zerocopy(). 3798 */ 3799unsigned int 3800skb_zerocopy_headlen(const struct sk_buff *from) 3801{ 3802 unsigned int hlen = 0; 3803 3804 if (!from->head_frag || 3805 skb_headlen(from) < L1_CACHE_BYTES || 3806 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3807 hlen = skb_headlen(from); 3808 if (!hlen) 3809 hlen = from->len; 3810 } 3811 3812 if (skb_has_frag_list(from)) 3813 hlen = from->len; 3814 3815 return hlen; 3816} 3817EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3818 3819/** 3820 * skb_zerocopy - Zero copy skb to skb 3821 * @to: destination buffer 3822 * @from: source buffer 3823 * @len: number of bytes to copy from source buffer 3824 * @hlen: size of linear headroom in destination buffer 3825 * 3826 * Copies up to `len` bytes from `from` to `to` by creating references 3827 * to the frags in the source buffer. 3828 * 3829 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3830 * headroom in the `to` buffer. 3831 * 3832 * Return value: 3833 * 0: everything is OK 3834 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3835 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3836 */ 3837int 3838skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3839{ 3840 int i, j = 0; 3841 int plen = 0; /* length of skb->head fragment */ 3842 int ret; 3843 struct page *page; 3844 unsigned int offset; 3845 3846 BUG_ON(!from->head_frag && !hlen); 3847 3848 /* dont bother with small payloads */ 3849 if (len <= skb_tailroom(to)) 3850 return skb_copy_bits(from, 0, skb_put(to, len), len); 3851 3852 if (hlen) { 3853 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3854 if (unlikely(ret)) 3855 return ret; 3856 len -= hlen; 3857 } else { 3858 plen = min_t(int, skb_headlen(from), len); 3859 if (plen) { 3860 page = virt_to_head_page(from->head); 3861 offset = from->data - (unsigned char *)page_address(page); 3862 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3863 offset, plen); 3864 get_page(page); 3865 j = 1; 3866 len -= plen; 3867 } 3868 } 3869 3870 skb_len_add(to, len + plen); 3871 3872 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3873 skb_tx_error(from); 3874 return -ENOMEM; 3875 } 3876 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3877 3878 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3879 int size; 3880 3881 if (!len) 3882 break; 3883 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3884 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3885 len); 3886 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3887 len -= size; 3888 skb_frag_ref(to, j); 3889 j++; 3890 } 3891 skb_shinfo(to)->nr_frags = j; 3892 3893 return 0; 3894} 3895EXPORT_SYMBOL_GPL(skb_zerocopy); 3896 3897void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3898{ 3899 __wsum csum; 3900 long csstart; 3901 3902 if (skb->ip_summed == CHECKSUM_PARTIAL) 3903 csstart = skb_checksum_start_offset(skb); 3904 else 3905 csstart = skb_headlen(skb); 3906 3907 BUG_ON(csstart > skb_headlen(skb)); 3908 3909 skb_copy_from_linear_data(skb, to, csstart); 3910 3911 csum = 0; 3912 if (csstart != skb->len) 3913 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3914 skb->len - csstart); 3915 3916 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3917 long csstuff = csstart + skb->csum_offset; 3918 3919 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3920 } 3921} 3922EXPORT_SYMBOL(skb_copy_and_csum_dev); 3923 3924/** 3925 * skb_dequeue - remove from the head of the queue 3926 * @list: list to dequeue from 3927 * 3928 * Remove the head of the list. The list lock is taken so the function 3929 * may be used safely with other locking list functions. The head item is 3930 * returned or %NULL if the list is empty. 3931 */ 3932 3933struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3934{ 3935 unsigned long flags; 3936 struct sk_buff *result; 3937 3938 spin_lock_irqsave(&list->lock, flags); 3939 result = __skb_dequeue(list); 3940 spin_unlock_irqrestore(&list->lock, flags); 3941 return result; 3942} 3943EXPORT_SYMBOL(skb_dequeue); 3944 3945/** 3946 * skb_dequeue_tail - remove from the tail of the queue 3947 * @list: list to dequeue from 3948 * 3949 * Remove the tail of the list. The list lock is taken so the function 3950 * may be used safely with other locking list functions. The tail item is 3951 * returned or %NULL if the list is empty. 3952 */ 3953struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3954{ 3955 unsigned long flags; 3956 struct sk_buff *result; 3957 3958 spin_lock_irqsave(&list->lock, flags); 3959 result = __skb_dequeue_tail(list); 3960 spin_unlock_irqrestore(&list->lock, flags); 3961 return result; 3962} 3963EXPORT_SYMBOL(skb_dequeue_tail); 3964 3965/** 3966 * skb_queue_purge_reason - empty a list 3967 * @list: list to empty 3968 * @reason: drop reason 3969 * 3970 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3971 * the list and one reference dropped. This function takes the list 3972 * lock and is atomic with respect to other list locking functions. 3973 */ 3974void skb_queue_purge_reason(struct sk_buff_head *list, 3975 enum skb_drop_reason reason) 3976{ 3977 struct sk_buff_head tmp; 3978 unsigned long flags; 3979 3980 if (skb_queue_empty_lockless(list)) 3981 return; 3982 3983 __skb_queue_head_init(&tmp); 3984 3985 spin_lock_irqsave(&list->lock, flags); 3986 skb_queue_splice_init(list, &tmp); 3987 spin_unlock_irqrestore(&list->lock, flags); 3988 3989 __skb_queue_purge_reason(&tmp, reason); 3990} 3991EXPORT_SYMBOL(skb_queue_purge_reason); 3992 3993/** 3994 * skb_rbtree_purge - empty a skb rbtree 3995 * @root: root of the rbtree to empty 3996 * Return value: the sum of truesizes of all purged skbs. 3997 * 3998 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3999 * the list and one reference dropped. This function does not take 4000 * any lock. Synchronization should be handled by the caller (e.g., TCP 4001 * out-of-order queue is protected by the socket lock). 4002 */ 4003unsigned int skb_rbtree_purge(struct rb_root *root) 4004{ 4005 struct rb_node *p = rb_first(root); 4006 unsigned int sum = 0; 4007 4008 while (p) { 4009 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 4010 4011 p = rb_next(p); 4012 rb_erase(&skb->rbnode, root); 4013 sum += skb->truesize; 4014 kfree_skb(skb); 4015 } 4016 return sum; 4017} 4018 4019void skb_errqueue_purge(struct sk_buff_head *list) 4020{ 4021 struct sk_buff *skb, *next; 4022 struct sk_buff_head kill; 4023 unsigned long flags; 4024 4025 __skb_queue_head_init(&kill); 4026 4027 spin_lock_irqsave(&list->lock, flags); 4028 skb_queue_walk_safe(list, skb, next) { 4029 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 4030 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 4031 continue; 4032 __skb_unlink(skb, list); 4033 __skb_queue_tail(&kill, skb); 4034 } 4035 spin_unlock_irqrestore(&list->lock, flags); 4036 __skb_queue_purge(&kill); 4037} 4038EXPORT_SYMBOL(skb_errqueue_purge); 4039 4040/** 4041 * skb_queue_head - queue a buffer at the list head 4042 * @list: list to use 4043 * @newsk: buffer to queue 4044 * 4045 * Queue a buffer at the start of the list. This function takes the 4046 * list lock and can be used safely with other locking &sk_buff functions 4047 * safely. 4048 * 4049 * A buffer cannot be placed on two lists at the same time. 4050 */ 4051void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4052{ 4053 unsigned long flags; 4054 4055 spin_lock_irqsave(&list->lock, flags); 4056 __skb_queue_head(list, newsk); 4057 spin_unlock_irqrestore(&list->lock, flags); 4058} 4059EXPORT_SYMBOL(skb_queue_head); 4060 4061/** 4062 * skb_queue_tail - queue a buffer at the list tail 4063 * @list: list to use 4064 * @newsk: buffer to queue 4065 * 4066 * Queue a buffer at the tail of the list. This function takes the 4067 * list lock and can be used safely with other locking &sk_buff functions 4068 * safely. 4069 * 4070 * A buffer cannot be placed on two lists at the same time. 4071 */ 4072void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4073{ 4074 unsigned long flags; 4075 4076 spin_lock_irqsave(&list->lock, flags); 4077 __skb_queue_tail(list, newsk); 4078 spin_unlock_irqrestore(&list->lock, flags); 4079} 4080EXPORT_SYMBOL(skb_queue_tail); 4081 4082/** 4083 * skb_unlink - remove a buffer from a list 4084 * @skb: buffer to remove 4085 * @list: list to use 4086 * 4087 * Remove a packet from a list. The list locks are taken and this 4088 * function is atomic with respect to other list locked calls 4089 * 4090 * You must know what list the SKB is on. 4091 */ 4092void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4093{ 4094 unsigned long flags; 4095 4096 spin_lock_irqsave(&list->lock, flags); 4097 __skb_unlink(skb, list); 4098 spin_unlock_irqrestore(&list->lock, flags); 4099} 4100EXPORT_SYMBOL(skb_unlink); 4101 4102/** 4103 * skb_append - append a buffer 4104 * @old: buffer to insert after 4105 * @newsk: buffer to insert 4106 * @list: list to use 4107 * 4108 * Place a packet after a given packet in a list. The list locks are taken 4109 * and this function is atomic with respect to other list locked calls. 4110 * A buffer cannot be placed on two lists at the same time. 4111 */ 4112void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4113{ 4114 unsigned long flags; 4115 4116 spin_lock_irqsave(&list->lock, flags); 4117 __skb_queue_after(list, old, newsk); 4118 spin_unlock_irqrestore(&list->lock, flags); 4119} 4120EXPORT_SYMBOL(skb_append); 4121 4122static inline void skb_split_inside_header(struct sk_buff *skb, 4123 struct sk_buff* skb1, 4124 const u32 len, const int pos) 4125{ 4126 int i; 4127 4128 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4129 pos - len); 4130 /* And move data appendix as is. */ 4131 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4132 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4133 4134 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4135 skb1->unreadable = skb->unreadable; 4136 skb_shinfo(skb)->nr_frags = 0; 4137 skb1->data_len = skb->data_len; 4138 skb1->len += skb1->data_len; 4139 skb->data_len = 0; 4140 skb->len = len; 4141 skb_set_tail_pointer(skb, len); 4142} 4143 4144static inline void skb_split_no_header(struct sk_buff *skb, 4145 struct sk_buff* skb1, 4146 const u32 len, int pos) 4147{ 4148 int i, k = 0; 4149 const int nfrags = skb_shinfo(skb)->nr_frags; 4150 4151 skb_shinfo(skb)->nr_frags = 0; 4152 skb1->len = skb1->data_len = skb->len - len; 4153 skb->len = len; 4154 skb->data_len = len - pos; 4155 4156 for (i = 0; i < nfrags; i++) { 4157 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4158 4159 if (pos + size > len) { 4160 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4161 4162 if (pos < len) { 4163 /* Split frag. 4164 * We have two variants in this case: 4165 * 1. Move all the frag to the second 4166 * part, if it is possible. F.e. 4167 * this approach is mandatory for TUX, 4168 * where splitting is expensive. 4169 * 2. Split is accurately. We make this. 4170 */ 4171 skb_frag_ref(skb, i); 4172 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4173 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4174 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4175 skb_shinfo(skb)->nr_frags++; 4176 } 4177 k++; 4178 } else 4179 skb_shinfo(skb)->nr_frags++; 4180 pos += size; 4181 } 4182 skb_shinfo(skb1)->nr_frags = k; 4183 4184 skb1->unreadable = skb->unreadable; 4185} 4186 4187/** 4188 * skb_split - Split fragmented skb to two parts at length len. 4189 * @skb: the buffer to split 4190 * @skb1: the buffer to receive the second part 4191 * @len: new length for skb 4192 */ 4193void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4194{ 4195 int pos = skb_headlen(skb); 4196 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4197 4198 skb_zcopy_downgrade_managed(skb); 4199 4200 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4201 skb_zerocopy_clone(skb1, skb, 0); 4202 if (len < pos) /* Split line is inside header. */ 4203 skb_split_inside_header(skb, skb1, len, pos); 4204 else /* Second chunk has no header, nothing to copy. */ 4205 skb_split_no_header(skb, skb1, len, pos); 4206} 4207EXPORT_SYMBOL(skb_split); 4208 4209/* Shifting from/to a cloned skb is a no-go. 4210 * 4211 * Caller cannot keep skb_shinfo related pointers past calling here! 4212 */ 4213static int skb_prepare_for_shift(struct sk_buff *skb) 4214{ 4215 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4216} 4217 4218/** 4219 * skb_shift - Shifts paged data partially from skb to another 4220 * @tgt: buffer into which tail data gets added 4221 * @skb: buffer from which the paged data comes from 4222 * @shiftlen: shift up to this many bytes 4223 * 4224 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4225 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4226 * It's up to caller to free skb if everything was shifted. 4227 * 4228 * If @tgt runs out of frags, the whole operation is aborted. 4229 * 4230 * Skb cannot include anything else but paged data while tgt is allowed 4231 * to have non-paged data as well. 4232 * 4233 * TODO: full sized shift could be optimized but that would need 4234 * specialized skb free'er to handle frags without up-to-date nr_frags. 4235 */ 4236int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4237{ 4238 int from, to, merge, todo; 4239 skb_frag_t *fragfrom, *fragto; 4240 4241 BUG_ON(shiftlen > skb->len); 4242 4243 if (skb_headlen(skb)) 4244 return 0; 4245 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4246 return 0; 4247 4248 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4249 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4250 4251 todo = shiftlen; 4252 from = 0; 4253 to = skb_shinfo(tgt)->nr_frags; 4254 fragfrom = &skb_shinfo(skb)->frags[from]; 4255 4256 /* Actual merge is delayed until the point when we know we can 4257 * commit all, so that we don't have to undo partial changes 4258 */ 4259 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4260 skb_frag_off(fragfrom))) { 4261 merge = -1; 4262 } else { 4263 merge = to - 1; 4264 4265 todo -= skb_frag_size(fragfrom); 4266 if (todo < 0) { 4267 if (skb_prepare_for_shift(skb) || 4268 skb_prepare_for_shift(tgt)) 4269 return 0; 4270 4271 /* All previous frag pointers might be stale! */ 4272 fragfrom = &skb_shinfo(skb)->frags[from]; 4273 fragto = &skb_shinfo(tgt)->frags[merge]; 4274 4275 skb_frag_size_add(fragto, shiftlen); 4276 skb_frag_size_sub(fragfrom, shiftlen); 4277 skb_frag_off_add(fragfrom, shiftlen); 4278 4279 goto onlymerged; 4280 } 4281 4282 from++; 4283 } 4284 4285 /* Skip full, not-fitting skb to avoid expensive operations */ 4286 if ((shiftlen == skb->len) && 4287 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4288 return 0; 4289 4290 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4291 return 0; 4292 4293 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4294 if (to == MAX_SKB_FRAGS) 4295 return 0; 4296 4297 fragfrom = &skb_shinfo(skb)->frags[from]; 4298 fragto = &skb_shinfo(tgt)->frags[to]; 4299 4300 if (todo >= skb_frag_size(fragfrom)) { 4301 *fragto = *fragfrom; 4302 todo -= skb_frag_size(fragfrom); 4303 from++; 4304 to++; 4305 4306 } else { 4307 __skb_frag_ref(fragfrom); 4308 skb_frag_page_copy(fragto, fragfrom); 4309 skb_frag_off_copy(fragto, fragfrom); 4310 skb_frag_size_set(fragto, todo); 4311 4312 skb_frag_off_add(fragfrom, todo); 4313 skb_frag_size_sub(fragfrom, todo); 4314 todo = 0; 4315 4316 to++; 4317 break; 4318 } 4319 } 4320 4321 /* Ready to "commit" this state change to tgt */ 4322 skb_shinfo(tgt)->nr_frags = to; 4323 4324 if (merge >= 0) { 4325 fragfrom = &skb_shinfo(skb)->frags[0]; 4326 fragto = &skb_shinfo(tgt)->frags[merge]; 4327 4328 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4329 __skb_frag_unref(fragfrom, skb->pp_recycle); 4330 } 4331 4332 /* Reposition in the original skb */ 4333 to = 0; 4334 while (from < skb_shinfo(skb)->nr_frags) 4335 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4336 skb_shinfo(skb)->nr_frags = to; 4337 4338 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4339 4340onlymerged: 4341 /* Most likely the tgt won't ever need its checksum anymore, skb on 4342 * the other hand might need it if it needs to be resent 4343 */ 4344 tgt->ip_summed = CHECKSUM_PARTIAL; 4345 skb->ip_summed = CHECKSUM_PARTIAL; 4346 4347 skb_len_add(skb, -shiftlen); 4348 skb_len_add(tgt, shiftlen); 4349 4350 return shiftlen; 4351} 4352 4353/** 4354 * skb_prepare_seq_read - Prepare a sequential read of skb data 4355 * @skb: the buffer to read 4356 * @from: lower offset of data to be read 4357 * @to: upper offset of data to be read 4358 * @st: state variable 4359 * 4360 * Initializes the specified state variable. Must be called before 4361 * invoking skb_seq_read() for the first time. 4362 */ 4363void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4364 unsigned int to, struct skb_seq_state *st) 4365{ 4366 st->lower_offset = from; 4367 st->upper_offset = to; 4368 st->root_skb = st->cur_skb = skb; 4369 st->frag_idx = st->stepped_offset = 0; 4370 st->frag_data = NULL; 4371 st->frag_off = 0; 4372} 4373EXPORT_SYMBOL(skb_prepare_seq_read); 4374 4375/** 4376 * skb_seq_read - Sequentially read skb data 4377 * @consumed: number of bytes consumed by the caller so far 4378 * @data: destination pointer for data to be returned 4379 * @st: state variable 4380 * 4381 * Reads a block of skb data at @consumed relative to the 4382 * lower offset specified to skb_prepare_seq_read(). Assigns 4383 * the head of the data block to @data and returns the length 4384 * of the block or 0 if the end of the skb data or the upper 4385 * offset has been reached. 4386 * 4387 * The caller is not required to consume all of the data 4388 * returned, i.e. @consumed is typically set to the number 4389 * of bytes already consumed and the next call to 4390 * skb_seq_read() will return the remaining part of the block. 4391 * 4392 * Note 1: The size of each block of data returned can be arbitrary, 4393 * this limitation is the cost for zerocopy sequential 4394 * reads of potentially non linear data. 4395 * 4396 * Note 2: Fragment lists within fragments are not implemented 4397 * at the moment, state->root_skb could be replaced with 4398 * a stack for this purpose. 4399 */ 4400unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4401 struct skb_seq_state *st) 4402{ 4403 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4404 skb_frag_t *frag; 4405 4406 if (unlikely(abs_offset >= st->upper_offset)) { 4407 if (st->frag_data) { 4408 kunmap_atomic(st->frag_data); 4409 st->frag_data = NULL; 4410 } 4411 return 0; 4412 } 4413 4414next_skb: 4415 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4416 4417 if (abs_offset < block_limit && !st->frag_data) { 4418 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4419 return block_limit - abs_offset; 4420 } 4421 4422 if (!skb_frags_readable(st->cur_skb)) 4423 return 0; 4424 4425 if (st->frag_idx == 0 && !st->frag_data) 4426 st->stepped_offset += skb_headlen(st->cur_skb); 4427 4428 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4429 unsigned int pg_idx, pg_off, pg_sz; 4430 4431 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4432 4433 pg_idx = 0; 4434 pg_off = skb_frag_off(frag); 4435 pg_sz = skb_frag_size(frag); 4436 4437 if (skb_frag_must_loop(skb_frag_page(frag))) { 4438 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4439 pg_off = offset_in_page(pg_off + st->frag_off); 4440 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4441 PAGE_SIZE - pg_off); 4442 } 4443 4444 block_limit = pg_sz + st->stepped_offset; 4445 if (abs_offset < block_limit) { 4446 if (!st->frag_data) 4447 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4448 4449 *data = (u8 *)st->frag_data + pg_off + 4450 (abs_offset - st->stepped_offset); 4451 4452 return block_limit - abs_offset; 4453 } 4454 4455 if (st->frag_data) { 4456 kunmap_atomic(st->frag_data); 4457 st->frag_data = NULL; 4458 } 4459 4460 st->stepped_offset += pg_sz; 4461 st->frag_off += pg_sz; 4462 if (st->frag_off == skb_frag_size(frag)) { 4463 st->frag_off = 0; 4464 st->frag_idx++; 4465 } 4466 } 4467 4468 if (st->frag_data) { 4469 kunmap_atomic(st->frag_data); 4470 st->frag_data = NULL; 4471 } 4472 4473 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4474 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4475 st->frag_idx = 0; 4476 goto next_skb; 4477 } else if (st->cur_skb->next) { 4478 st->cur_skb = st->cur_skb->next; 4479 st->frag_idx = 0; 4480 goto next_skb; 4481 } 4482 4483 return 0; 4484} 4485EXPORT_SYMBOL(skb_seq_read); 4486 4487/** 4488 * skb_abort_seq_read - Abort a sequential read of skb data 4489 * @st: state variable 4490 * 4491 * Must be called if skb_seq_read() was not called until it 4492 * returned 0. 4493 */ 4494void skb_abort_seq_read(struct skb_seq_state *st) 4495{ 4496 if (st->frag_data) 4497 kunmap_atomic(st->frag_data); 4498} 4499EXPORT_SYMBOL(skb_abort_seq_read); 4500 4501/** 4502 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4503 * @st: source skb_seq_state 4504 * @offset: offset in source 4505 * @to: destination buffer 4506 * @len: number of bytes to copy 4507 * 4508 * Copy @len bytes from @offset bytes into the source @st to the destination 4509 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4510 * call to this function. If offset needs to decrease from the previous use `st` 4511 * should be reset first. 4512 * 4513 * Return: 0 on success or -EINVAL if the copy ended early 4514 */ 4515int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4516{ 4517 const u8 *data; 4518 u32 sqlen; 4519 4520 for (;;) { 4521 sqlen = skb_seq_read(offset, &data, st); 4522 if (sqlen == 0) 4523 return -EINVAL; 4524 if (sqlen >= len) { 4525 memcpy(to, data, len); 4526 return 0; 4527 } 4528 memcpy(to, data, sqlen); 4529 to += sqlen; 4530 offset += sqlen; 4531 len -= sqlen; 4532 } 4533} 4534EXPORT_SYMBOL(skb_copy_seq_read); 4535 4536#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4537 4538static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4539 struct ts_config *conf, 4540 struct ts_state *state) 4541{ 4542 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4543} 4544 4545static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4546{ 4547 skb_abort_seq_read(TS_SKB_CB(state)); 4548} 4549 4550/** 4551 * skb_find_text - Find a text pattern in skb data 4552 * @skb: the buffer to look in 4553 * @from: search offset 4554 * @to: search limit 4555 * @config: textsearch configuration 4556 * 4557 * Finds a pattern in the skb data according to the specified 4558 * textsearch configuration. Use textsearch_next() to retrieve 4559 * subsequent occurrences of the pattern. Returns the offset 4560 * to the first occurrence or UINT_MAX if no match was found. 4561 */ 4562unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4563 unsigned int to, struct ts_config *config) 4564{ 4565 unsigned int patlen = config->ops->get_pattern_len(config); 4566 struct ts_state state; 4567 unsigned int ret; 4568 4569 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4570 4571 config->get_next_block = skb_ts_get_next_block; 4572 config->finish = skb_ts_finish; 4573 4574 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4575 4576 ret = textsearch_find(config, &state); 4577 return (ret + patlen <= to - from ? ret : UINT_MAX); 4578} 4579EXPORT_SYMBOL(skb_find_text); 4580 4581int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4582 int offset, size_t size, size_t max_frags) 4583{ 4584 int i = skb_shinfo(skb)->nr_frags; 4585 4586 if (skb_can_coalesce(skb, i, page, offset)) { 4587 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4588 } else if (i < max_frags) { 4589 skb_zcopy_downgrade_managed(skb); 4590 get_page(page); 4591 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4592 } else { 4593 return -EMSGSIZE; 4594 } 4595 4596 return 0; 4597} 4598EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4599 4600/** 4601 * skb_pull_rcsum - pull skb and update receive checksum 4602 * @skb: buffer to update 4603 * @len: length of data pulled 4604 * 4605 * This function performs an skb_pull on the packet and updates 4606 * the CHECKSUM_COMPLETE checksum. It should be used on 4607 * receive path processing instead of skb_pull unless you know 4608 * that the checksum difference is zero (e.g., a valid IP header) 4609 * or you are setting ip_summed to CHECKSUM_NONE. 4610 */ 4611void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4612{ 4613 unsigned char *data = skb->data; 4614 4615 BUG_ON(len > skb->len); 4616 __skb_pull(skb, len); 4617 skb_postpull_rcsum(skb, data, len); 4618 return skb->data; 4619} 4620EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4621 4622static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4623{ 4624 skb_frag_t head_frag; 4625 struct page *page; 4626 4627 page = virt_to_head_page(frag_skb->head); 4628 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4629 (unsigned char *)page_address(page), 4630 skb_headlen(frag_skb)); 4631 return head_frag; 4632} 4633 4634struct sk_buff *skb_segment_list(struct sk_buff *skb, 4635 netdev_features_t features, 4636 unsigned int offset) 4637{ 4638 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4639 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4640 unsigned int delta_len = 0; 4641 struct sk_buff *tail = NULL; 4642 struct sk_buff *nskb, *tmp; 4643 int len_diff, err; 4644 4645 /* Only skb_gro_receive_list generated skbs arrive here */ 4646 DEBUG_NET_WARN_ON_ONCE(!(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)); 4647 4648 skb_push(skb, -skb_network_offset(skb) + offset); 4649 4650 /* Ensure the head is writeable before touching the shared info */ 4651 err = skb_unclone(skb, GFP_ATOMIC); 4652 if (err) 4653 goto err_linearize; 4654 4655 skb_shinfo(skb)->frag_list = NULL; 4656 4657 while (list_skb) { 4658 nskb = list_skb; 4659 list_skb = list_skb->next; 4660 4661 DEBUG_NET_WARN_ON_ONCE(nskb->sk); 4662 4663 err = 0; 4664 if (skb_shared(nskb)) { 4665 tmp = skb_clone(nskb, GFP_ATOMIC); 4666 if (tmp) { 4667 consume_skb(nskb); 4668 nskb = tmp; 4669 err = skb_unclone(nskb, GFP_ATOMIC); 4670 } else { 4671 err = -ENOMEM; 4672 } 4673 } 4674 4675 if (!tail) 4676 skb->next = nskb; 4677 else 4678 tail->next = nskb; 4679 4680 if (unlikely(err)) { 4681 nskb->next = list_skb; 4682 goto err_linearize; 4683 } 4684 4685 tail = nskb; 4686 4687 delta_len += nskb->len; 4688 4689 skb_push(nskb, -skb_network_offset(nskb) + offset); 4690 4691 skb_release_head_state(nskb); 4692 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4693 __copy_skb_header(nskb, skb); 4694 4695 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4696 nskb->transport_header += len_diff; 4697 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4698 nskb->data - tnl_hlen, 4699 offset + tnl_hlen); 4700 4701 if (skb_needs_linearize(nskb, features) && 4702 __skb_linearize(nskb)) 4703 goto err_linearize; 4704 } 4705 4706 skb->data_len = skb->data_len - delta_len; 4707 skb->len = skb->len - delta_len; 4708 4709 skb_gso_reset(skb); 4710 4711 skb->prev = tail; 4712 4713 if (skb_needs_linearize(skb, features) && 4714 __skb_linearize(skb)) 4715 goto err_linearize; 4716 4717 skb_get(skb); 4718 4719 return skb; 4720 4721err_linearize: 4722 kfree_skb_list(skb->next); 4723 skb->next = NULL; 4724 return ERR_PTR(-ENOMEM); 4725} 4726EXPORT_SYMBOL_GPL(skb_segment_list); 4727 4728/** 4729 * skb_segment - Perform protocol segmentation on skb. 4730 * @head_skb: buffer to segment 4731 * @features: features for the output path (see dev->features) 4732 * 4733 * This function performs segmentation on the given skb. It returns 4734 * a pointer to the first in a list of new skbs for the segments. 4735 * In case of error it returns ERR_PTR(err). 4736 */ 4737struct sk_buff *skb_segment(struct sk_buff *head_skb, 4738 netdev_features_t features) 4739{ 4740 struct sk_buff *segs = NULL; 4741 struct sk_buff *tail = NULL; 4742 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4743 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4744 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4745 unsigned int offset = doffset; 4746 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4747 unsigned int partial_segs = 0; 4748 unsigned int headroom; 4749 unsigned int len = head_skb->len; 4750 struct sk_buff *frag_skb; 4751 skb_frag_t *frag; 4752 __be16 proto; 4753 bool csum, sg; 4754 int err = -ENOMEM; 4755 int i = 0; 4756 int nfrags, pos; 4757 4758 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4759 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4760 struct sk_buff *check_skb; 4761 4762 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4763 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4764 /* gso_size is untrusted, and we have a frag_list with 4765 * a linear non head_frag item. 4766 * 4767 * If head_skb's headlen does not fit requested gso_size, 4768 * it means that the frag_list members do NOT terminate 4769 * on exact gso_size boundaries. Hence we cannot perform 4770 * skb_frag_t page sharing. Therefore we must fallback to 4771 * copying the frag_list skbs; we do so by disabling SG. 4772 */ 4773 features &= ~NETIF_F_SG; 4774 break; 4775 } 4776 } 4777 } 4778 4779 __skb_push(head_skb, doffset); 4780 proto = skb_network_protocol(head_skb, NULL); 4781 if (unlikely(!proto)) 4782 return ERR_PTR(-EINVAL); 4783 4784 sg = !!(features & NETIF_F_SG); 4785 csum = !!can_checksum_protocol(features, proto); 4786 4787 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4788 if (!(features & NETIF_F_GSO_PARTIAL)) { 4789 struct sk_buff *iter; 4790 unsigned int frag_len; 4791 4792 if (!list_skb || 4793 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4794 goto normal; 4795 4796 /* If we get here then all the required 4797 * GSO features except frag_list are supported. 4798 * Try to split the SKB to multiple GSO SKBs 4799 * with no frag_list. 4800 * Currently we can do that only when the buffers don't 4801 * have a linear part and all the buffers except 4802 * the last are of the same length. 4803 */ 4804 frag_len = list_skb->len; 4805 skb_walk_frags(head_skb, iter) { 4806 if (frag_len != iter->len && iter->next) 4807 goto normal; 4808 if (skb_headlen(iter) && !iter->head_frag) 4809 goto normal; 4810 4811 len -= iter->len; 4812 } 4813 4814 if (len != frag_len) 4815 goto normal; 4816 } 4817 4818 /* GSO partial only requires that we trim off any excess that 4819 * doesn't fit into an MSS sized block, so take care of that 4820 * now. 4821 * Cap len to not accidentally hit GSO_BY_FRAGS. 4822 */ 4823 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4824 if (partial_segs > 1) 4825 mss *= partial_segs; 4826 else 4827 partial_segs = 0; 4828 } 4829 4830normal: 4831 headroom = skb_headroom(head_skb); 4832 pos = skb_headlen(head_skb); 4833 4834 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4835 return ERR_PTR(-ENOMEM); 4836 4837 nfrags = skb_shinfo(head_skb)->nr_frags; 4838 frag = skb_shinfo(head_skb)->frags; 4839 frag_skb = head_skb; 4840 4841 do { 4842 struct sk_buff *nskb; 4843 skb_frag_t *nskb_frag; 4844 int hsize; 4845 int size; 4846 4847 if (unlikely(mss == GSO_BY_FRAGS)) { 4848 len = list_skb->len; 4849 } else { 4850 len = head_skb->len - offset; 4851 if (len > mss) 4852 len = mss; 4853 } 4854 4855 hsize = skb_headlen(head_skb) - offset; 4856 4857 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4858 (skb_headlen(list_skb) == len || sg)) { 4859 BUG_ON(skb_headlen(list_skb) > len); 4860 4861 nskb = skb_clone(list_skb, GFP_ATOMIC); 4862 if (unlikely(!nskb)) 4863 goto err; 4864 4865 i = 0; 4866 nfrags = skb_shinfo(list_skb)->nr_frags; 4867 frag = skb_shinfo(list_skb)->frags; 4868 frag_skb = list_skb; 4869 pos += skb_headlen(list_skb); 4870 4871 while (pos < offset + len) { 4872 BUG_ON(i >= nfrags); 4873 4874 size = skb_frag_size(frag); 4875 if (pos + size > offset + len) 4876 break; 4877 4878 i++; 4879 pos += size; 4880 frag++; 4881 } 4882 4883 list_skb = list_skb->next; 4884 4885 if (unlikely(pskb_trim(nskb, len))) { 4886 kfree_skb(nskb); 4887 goto err; 4888 } 4889 4890 hsize = skb_end_offset(nskb); 4891 if (skb_cow_head(nskb, doffset + headroom)) { 4892 kfree_skb(nskb); 4893 goto err; 4894 } 4895 4896 nskb->truesize += skb_end_offset(nskb) - hsize; 4897 skb_release_head_state(nskb); 4898 __skb_push(nskb, doffset); 4899 } else { 4900 if (hsize < 0) 4901 hsize = 0; 4902 if (hsize > len || !sg) 4903 hsize = len; 4904 4905 nskb = __alloc_skb(hsize + doffset + headroom, 4906 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4907 NUMA_NO_NODE); 4908 4909 if (unlikely(!nskb)) 4910 goto err; 4911 4912 skb_reserve(nskb, headroom); 4913 __skb_put(nskb, doffset); 4914 } 4915 4916 if (segs) 4917 tail->next = nskb; 4918 else 4919 segs = nskb; 4920 tail = nskb; 4921 4922 __copy_skb_header(nskb, head_skb); 4923 4924 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4925 skb_reset_mac_len(nskb); 4926 4927 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4928 nskb->data - tnl_hlen, 4929 doffset + tnl_hlen); 4930 4931 if (nskb->len == len + doffset) 4932 goto perform_csum_check; 4933 4934 if (!sg) { 4935 if (!csum) { 4936 if (!nskb->remcsum_offload) 4937 nskb->ip_summed = CHECKSUM_NONE; 4938 SKB_GSO_CB(nskb)->csum = 4939 skb_copy_and_csum_bits(head_skb, offset, 4940 skb_put(nskb, 4941 len), 4942 len); 4943 SKB_GSO_CB(nskb)->csum_start = 4944 skb_headroom(nskb) + doffset; 4945 } else { 4946 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4947 goto err; 4948 } 4949 continue; 4950 } 4951 4952 nskb_frag = skb_shinfo(nskb)->frags; 4953 4954 skb_copy_from_linear_data_offset(head_skb, offset, 4955 skb_put(nskb, hsize), hsize); 4956 4957 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4958 SKBFL_SHARED_FRAG; 4959 4960 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4961 goto err; 4962 4963 while (pos < offset + len) { 4964 if (i >= nfrags) { 4965 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4966 skb_zerocopy_clone(nskb, list_skb, 4967 GFP_ATOMIC)) 4968 goto err; 4969 4970 i = 0; 4971 nfrags = skb_shinfo(list_skb)->nr_frags; 4972 frag = skb_shinfo(list_skb)->frags; 4973 frag_skb = list_skb; 4974 if (!skb_headlen(list_skb)) { 4975 BUG_ON(!nfrags); 4976 } else { 4977 BUG_ON(!list_skb->head_frag); 4978 4979 /* to make room for head_frag. */ 4980 i--; 4981 frag--; 4982 } 4983 4984 list_skb = list_skb->next; 4985 } 4986 4987 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4988 MAX_SKB_FRAGS)) { 4989 net_warn_ratelimited( 4990 "skb_segment: too many frags: %u %u\n", 4991 pos, mss); 4992 err = -EINVAL; 4993 goto err; 4994 } 4995 4996 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4997 __skb_frag_ref(nskb_frag); 4998 size = skb_frag_size(nskb_frag); 4999 5000 if (pos < offset) { 5001 skb_frag_off_add(nskb_frag, offset - pos); 5002 skb_frag_size_sub(nskb_frag, offset - pos); 5003 } 5004 5005 skb_shinfo(nskb)->nr_frags++; 5006 5007 if (pos + size <= offset + len) { 5008 i++; 5009 frag++; 5010 pos += size; 5011 } else { 5012 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 5013 goto skip_fraglist; 5014 } 5015 5016 nskb_frag++; 5017 } 5018 5019skip_fraglist: 5020 nskb->data_len = len - hsize; 5021 nskb->len += nskb->data_len; 5022 nskb->truesize += nskb->data_len; 5023 5024perform_csum_check: 5025 if (!csum) { 5026 if (skb_has_shared_frag(nskb) && 5027 __skb_linearize(nskb)) 5028 goto err; 5029 5030 if (!nskb->remcsum_offload) 5031 nskb->ip_summed = CHECKSUM_NONE; 5032 SKB_GSO_CB(nskb)->csum = 5033 skb_checksum(nskb, doffset, 5034 nskb->len - doffset, 0); 5035 SKB_GSO_CB(nskb)->csum_start = 5036 skb_headroom(nskb) + doffset; 5037 } 5038 } while ((offset += len) < head_skb->len); 5039 5040 /* Some callers want to get the end of the list. 5041 * Put it in segs->prev to avoid walking the list. 5042 * (see validate_xmit_skb_list() for example) 5043 */ 5044 segs->prev = tail; 5045 5046 if (partial_segs) { 5047 struct sk_buff *iter; 5048 int type = skb_shinfo(head_skb)->gso_type; 5049 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5050 5051 /* Update type to add partial and then remove dodgy if set */ 5052 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5053 type &= ~SKB_GSO_DODGY; 5054 5055 /* Update GSO info and prepare to start updating headers on 5056 * our way back down the stack of protocols. 5057 */ 5058 for (iter = segs; iter; iter = iter->next) { 5059 skb_shinfo(iter)->gso_size = gso_size; 5060 skb_shinfo(iter)->gso_segs = partial_segs; 5061 skb_shinfo(iter)->gso_type = type; 5062 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5063 } 5064 5065 if (tail->len - doffset <= gso_size) 5066 skb_shinfo(tail)->gso_size = 0; 5067 else if (tail != segs) 5068 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5069 } 5070 5071 /* Following permits correct backpressure, for protocols 5072 * using skb_set_owner_w(). 5073 * Idea is to tranfert ownership from head_skb to last segment. 5074 */ 5075 if (head_skb->destructor == sock_wfree) { 5076 swap(tail->truesize, head_skb->truesize); 5077 swap(tail->destructor, head_skb->destructor); 5078 swap(tail->sk, head_skb->sk); 5079 } 5080 return segs; 5081 5082err: 5083 kfree_skb_list(segs); 5084 return ERR_PTR(err); 5085} 5086EXPORT_SYMBOL_GPL(skb_segment); 5087 5088#ifdef CONFIG_SKB_EXTENSIONS 5089#define SKB_EXT_ALIGN_VALUE 8 5090#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5091 5092static const u8 skb_ext_type_len[] = { 5093#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5094 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5095#endif 5096#ifdef CONFIG_XFRM 5097 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5098#endif 5099#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5100 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5101#endif 5102#if IS_ENABLED(CONFIG_MPTCP) 5103 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5104#endif 5105#if IS_ENABLED(CONFIG_MCTP_FLOWS) 5106 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5107#endif 5108#if IS_ENABLED(CONFIG_INET_PSP) 5109 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext), 5110#endif 5111}; 5112 5113static __always_inline unsigned int skb_ext_total_length(void) 5114{ 5115 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5116 int i; 5117 5118 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5119 l += skb_ext_type_len[i]; 5120 5121 return l; 5122} 5123 5124static void skb_extensions_init(void) 5125{ 5126 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5127#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5128 BUILD_BUG_ON(skb_ext_total_length() > 255); 5129#endif 5130 5131 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5132 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5133 0, 5134 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5135 NULL); 5136} 5137#else 5138static void skb_extensions_init(void) {} 5139#endif 5140 5141/* The SKB kmem_cache slab is critical for network performance. Never 5142 * merge/alias the slab with similar sized objects. This avoids fragmentation 5143 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5144 */ 5145#ifndef CONFIG_SLUB_TINY 5146#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5147#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5148#define FLAG_SKB_NO_MERGE 0 5149#endif 5150 5151void __init skb_init(void) 5152{ 5153 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5154 sizeof(struct sk_buff), 5155 0, 5156 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5157 FLAG_SKB_NO_MERGE, 5158 offsetof(struct sk_buff, cb), 5159 sizeof_field(struct sk_buff, cb), 5160 NULL); 5161 skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 5162 5163 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5164 sizeof(struct sk_buff_fclones), 5165 0, 5166 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5167 NULL); 5168 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5169 * struct skb_shared_info is located at the end of skb->head, 5170 * and should not be copied to/from user. 5171 */ 5172 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5173 SKB_SMALL_HEAD_CACHE_SIZE, 5174 0, 5175 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5176 0, 5177 SKB_SMALL_HEAD_HEADROOM, 5178 NULL); 5179 skb_extensions_init(); 5180} 5181 5182static int 5183__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5184 unsigned int recursion_level) 5185{ 5186 int start = skb_headlen(skb); 5187 int i, copy = start - offset; 5188 struct sk_buff *frag_iter; 5189 int elt = 0; 5190 5191 if (unlikely(recursion_level >= 24)) 5192 return -EMSGSIZE; 5193 5194 if (copy > 0) { 5195 if (copy > len) 5196 copy = len; 5197 sg_set_buf(sg, skb->data + offset, copy); 5198 elt++; 5199 if ((len -= copy) == 0) 5200 return elt; 5201 offset += copy; 5202 } 5203 5204 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5205 int end; 5206 5207 WARN_ON(start > offset + len); 5208 5209 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5210 if ((copy = end - offset) > 0) { 5211 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5212 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5213 return -EMSGSIZE; 5214 5215 if (copy > len) 5216 copy = len; 5217 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5218 skb_frag_off(frag) + offset - start); 5219 elt++; 5220 if (!(len -= copy)) 5221 return elt; 5222 offset += copy; 5223 } 5224 start = end; 5225 } 5226 5227 skb_walk_frags(skb, frag_iter) { 5228 int end, ret; 5229 5230 WARN_ON(start > offset + len); 5231 5232 end = start + frag_iter->len; 5233 if ((copy = end - offset) > 0) { 5234 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5235 return -EMSGSIZE; 5236 5237 if (copy > len) 5238 copy = len; 5239 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5240 copy, recursion_level + 1); 5241 if (unlikely(ret < 0)) 5242 return ret; 5243 elt += ret; 5244 if ((len -= copy) == 0) 5245 return elt; 5246 offset += copy; 5247 } 5248 start = end; 5249 } 5250 BUG_ON(len); 5251 return elt; 5252} 5253 5254/** 5255 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5256 * @skb: Socket buffer containing the buffers to be mapped 5257 * @sg: The scatter-gather list to map into 5258 * @offset: The offset into the buffer's contents to start mapping 5259 * @len: Length of buffer space to be mapped 5260 * 5261 * Fill the specified scatter-gather list with mappings/pointers into a 5262 * region of the buffer space attached to a socket buffer. Returns either 5263 * the number of scatterlist items used, or -EMSGSIZE if the contents 5264 * could not fit. 5265 */ 5266int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5267{ 5268 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5269 5270 if (nsg <= 0) 5271 return nsg; 5272 5273 sg_mark_end(&sg[nsg - 1]); 5274 5275 return nsg; 5276} 5277EXPORT_SYMBOL_GPL(skb_to_sgvec); 5278 5279/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5280 * sglist without mark the sg which contain last skb data as the end. 5281 * So the caller can mannipulate sg list as will when padding new data after 5282 * the first call without calling sg_unmark_end to expend sg list. 5283 * 5284 * Scenario to use skb_to_sgvec_nomark: 5285 * 1. sg_init_table 5286 * 2. skb_to_sgvec_nomark(payload1) 5287 * 3. skb_to_sgvec_nomark(payload2) 5288 * 5289 * This is equivalent to: 5290 * 1. sg_init_table 5291 * 2. skb_to_sgvec(payload1) 5292 * 3. sg_unmark_end 5293 * 4. skb_to_sgvec(payload2) 5294 * 5295 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5296 * is more preferable. 5297 */ 5298int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5299 int offset, int len) 5300{ 5301 return __skb_to_sgvec(skb, sg, offset, len, 0); 5302} 5303EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5304 5305 5306 5307/** 5308 * skb_cow_data - Check that a socket buffer's data buffers are writable 5309 * @skb: The socket buffer to check. 5310 * @tailbits: Amount of trailing space to be added 5311 * @trailer: Returned pointer to the skb where the @tailbits space begins 5312 * 5313 * Make sure that the data buffers attached to a socket buffer are 5314 * writable. If they are not, private copies are made of the data buffers 5315 * and the socket buffer is set to use these instead. 5316 * 5317 * If @tailbits is given, make sure that there is space to write @tailbits 5318 * bytes of data beyond current end of socket buffer. @trailer will be 5319 * set to point to the skb in which this space begins. 5320 * 5321 * The number of scatterlist elements required to completely map the 5322 * COW'd and extended socket buffer will be returned. 5323 */ 5324int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5325{ 5326 int copyflag; 5327 int elt; 5328 struct sk_buff *skb1, **skb_p; 5329 5330 /* If skb is cloned or its head is paged, reallocate 5331 * head pulling out all the pages (pages are considered not writable 5332 * at the moment even if they are anonymous). 5333 */ 5334 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5335 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5336 return -ENOMEM; 5337 5338 /* Easy case. Most of packets will go this way. */ 5339 if (!skb_has_frag_list(skb)) { 5340 /* A little of trouble, not enough of space for trailer. 5341 * This should not happen, when stack is tuned to generate 5342 * good frames. OK, on miss we reallocate and reserve even more 5343 * space, 128 bytes is fair. */ 5344 5345 if (skb_tailroom(skb) < tailbits && 5346 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5347 return -ENOMEM; 5348 5349 /* Voila! */ 5350 *trailer = skb; 5351 return 1; 5352 } 5353 5354 /* Misery. We are in troubles, going to mincer fragments... */ 5355 5356 elt = 1; 5357 skb_p = &skb_shinfo(skb)->frag_list; 5358 copyflag = 0; 5359 5360 while ((skb1 = *skb_p) != NULL) { 5361 int ntail = 0; 5362 5363 /* The fragment is partially pulled by someone, 5364 * this can happen on input. Copy it and everything 5365 * after it. */ 5366 5367 if (skb_shared(skb1)) 5368 copyflag = 1; 5369 5370 /* If the skb is the last, worry about trailer. */ 5371 5372 if (skb1->next == NULL && tailbits) { 5373 if (skb_shinfo(skb1)->nr_frags || 5374 skb_has_frag_list(skb1) || 5375 skb_tailroom(skb1) < tailbits) 5376 ntail = tailbits + 128; 5377 } 5378 5379 if (copyflag || 5380 skb_cloned(skb1) || 5381 ntail || 5382 skb_shinfo(skb1)->nr_frags || 5383 skb_has_frag_list(skb1)) { 5384 struct sk_buff *skb2; 5385 5386 /* Fuck, we are miserable poor guys... */ 5387 if (ntail == 0) 5388 skb2 = skb_copy(skb1, GFP_ATOMIC); 5389 else 5390 skb2 = skb_copy_expand(skb1, 5391 skb_headroom(skb1), 5392 ntail, 5393 GFP_ATOMIC); 5394 if (unlikely(skb2 == NULL)) 5395 return -ENOMEM; 5396 5397 if (skb1->sk) 5398 skb_set_owner_w(skb2, skb1->sk); 5399 5400 /* Looking around. Are we still alive? 5401 * OK, link new skb, drop old one */ 5402 5403 skb2->next = skb1->next; 5404 *skb_p = skb2; 5405 kfree_skb(skb1); 5406 skb1 = skb2; 5407 } 5408 elt++; 5409 *trailer = skb1; 5410 skb_p = &skb1->next; 5411 } 5412 5413 return elt; 5414} 5415EXPORT_SYMBOL_GPL(skb_cow_data); 5416 5417static void sock_rmem_free(struct sk_buff *skb) 5418{ 5419 struct sock *sk = skb->sk; 5420 5421 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5422} 5423 5424static void skb_set_err_queue(struct sk_buff *skb) 5425{ 5426 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5427 * So, it is safe to (mis)use it to mark skbs on the error queue. 5428 */ 5429 skb->pkt_type = PACKET_OUTGOING; 5430 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5431} 5432 5433/* 5434 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5435 */ 5436int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5437{ 5438 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5439 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5440 return -ENOMEM; 5441 5442 skb_orphan(skb); 5443 skb->sk = sk; 5444 skb->destructor = sock_rmem_free; 5445 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5446 skb_set_err_queue(skb); 5447 5448 /* before exiting rcu section, make sure dst is refcounted */ 5449 skb_dst_force(skb); 5450 5451 skb_queue_tail(&sk->sk_error_queue, skb); 5452 if (!sock_flag(sk, SOCK_DEAD)) 5453 sk_error_report(sk); 5454 return 0; 5455} 5456EXPORT_SYMBOL(sock_queue_err_skb); 5457 5458static bool is_icmp_err_skb(const struct sk_buff *skb) 5459{ 5460 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5461 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5462} 5463 5464struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5465{ 5466 struct sk_buff_head *q = &sk->sk_error_queue; 5467 struct sk_buff *skb, *skb_next = NULL; 5468 bool icmp_next = false; 5469 unsigned long flags; 5470 5471 if (skb_queue_empty_lockless(q)) 5472 return NULL; 5473 5474 spin_lock_irqsave(&q->lock, flags); 5475 skb = __skb_dequeue(q); 5476 if (skb && (skb_next = skb_peek(q))) { 5477 icmp_next = is_icmp_err_skb(skb_next); 5478 if (icmp_next) 5479 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5480 } 5481 spin_unlock_irqrestore(&q->lock, flags); 5482 5483 if (is_icmp_err_skb(skb) && !icmp_next) 5484 sk->sk_err = 0; 5485 5486 if (skb_next) 5487 sk_error_report(sk); 5488 5489 return skb; 5490} 5491EXPORT_SYMBOL(sock_dequeue_err_skb); 5492 5493/** 5494 * skb_clone_sk - create clone of skb, and take reference to socket 5495 * @skb: the skb to clone 5496 * 5497 * This function creates a clone of a buffer that holds a reference on 5498 * sk_refcnt. Buffers created via this function are meant to be 5499 * returned using sock_queue_err_skb, or free via kfree_skb. 5500 * 5501 * When passing buffers allocated with this function to sock_queue_err_skb 5502 * it is necessary to wrap the call with sock_hold/sock_put in order to 5503 * prevent the socket from being released prior to being enqueued on 5504 * the sk_error_queue. 5505 */ 5506struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5507{ 5508 struct sock *sk = skb->sk; 5509 struct sk_buff *clone; 5510 5511 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5512 return NULL; 5513 5514 clone = skb_clone(skb, GFP_ATOMIC); 5515 if (!clone) { 5516 sock_put(sk); 5517 return NULL; 5518 } 5519 5520 clone->sk = sk; 5521 clone->destructor = sock_efree; 5522 5523 return clone; 5524} 5525EXPORT_SYMBOL(skb_clone_sk); 5526 5527static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5528 struct sock *sk, 5529 int tstype, 5530 bool opt_stats) 5531{ 5532 struct sock_exterr_skb *serr; 5533 int err; 5534 5535 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5536 5537 serr = SKB_EXT_ERR(skb); 5538 memset(serr, 0, sizeof(*serr)); 5539 serr->ee.ee_errno = ENOMSG; 5540 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5541 serr->ee.ee_info = tstype; 5542 serr->opt_stats = opt_stats; 5543 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5544 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5545 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5546 if (sk_is_tcp(sk)) 5547 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5548 } 5549 5550 err = sock_queue_err_skb(sk, skb); 5551 5552 if (err) 5553 kfree_skb(skb); 5554} 5555 5556static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5557{ 5558 bool ret; 5559 5560 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5561 return true; 5562 5563 read_lock_bh(&sk->sk_callback_lock); 5564 ret = sk->sk_socket && sk->sk_socket->file && 5565 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5566 read_unlock_bh(&sk->sk_callback_lock); 5567 return ret; 5568} 5569 5570void skb_complete_tx_timestamp(struct sk_buff *skb, 5571 struct skb_shared_hwtstamps *hwtstamps) 5572{ 5573 struct sock *sk = skb->sk; 5574 5575 if (!skb_may_tx_timestamp(sk, false)) 5576 goto err; 5577 5578 /* Take a reference to prevent skb_orphan() from freeing the socket, 5579 * but only if the socket refcount is not zero. 5580 */ 5581 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5582 *skb_hwtstamps(skb) = *hwtstamps; 5583 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5584 sock_put(sk); 5585 return; 5586 } 5587 5588err: 5589 kfree_skb(skb); 5590} 5591EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5592 5593static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5594 struct skb_shared_hwtstamps *hwtstamps, 5595 int tstype) 5596{ 5597 switch (tstype) { 5598 case SCM_TSTAMP_SCHED: 5599 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5600 case SCM_TSTAMP_SND: 5601 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5602 SKBTX_SW_TSTAMP); 5603 case SCM_TSTAMP_ACK: 5604 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5605 case SCM_TSTAMP_COMPLETION: 5606 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5607 } 5608 5609 return false; 5610} 5611 5612static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5613 struct skb_shared_hwtstamps *hwtstamps, 5614 struct sock *sk, 5615 int tstype) 5616{ 5617 int op; 5618 5619 switch (tstype) { 5620 case SCM_TSTAMP_SCHED: 5621 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5622 break; 5623 case SCM_TSTAMP_SND: 5624 if (hwtstamps) { 5625 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5626 *skb_hwtstamps(skb) = *hwtstamps; 5627 } else { 5628 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5629 } 5630 break; 5631 case SCM_TSTAMP_ACK: 5632 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5633 break; 5634 default: 5635 return; 5636 } 5637 5638 bpf_skops_tx_timestamping(sk, skb, op); 5639} 5640 5641void __skb_tstamp_tx(struct sk_buff *orig_skb, 5642 const struct sk_buff *ack_skb, 5643 struct skb_shared_hwtstamps *hwtstamps, 5644 struct sock *sk, int tstype) 5645{ 5646 struct sk_buff *skb; 5647 bool tsonly, opt_stats = false; 5648 u32 tsflags; 5649 5650 if (!sk) 5651 return; 5652 5653 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5654 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5655 sk, tstype); 5656 5657 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5658 return; 5659 5660 tsflags = READ_ONCE(sk->sk_tsflags); 5661 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5662 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5663 return; 5664 5665 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5666 if (!skb_may_tx_timestamp(sk, tsonly)) 5667 return; 5668 5669 if (tsonly) { 5670#ifdef CONFIG_INET 5671 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5672 sk_is_tcp(sk)) { 5673 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5674 ack_skb); 5675 opt_stats = true; 5676 } else 5677#endif 5678 skb = alloc_skb(0, GFP_ATOMIC); 5679 } else { 5680 skb = skb_clone(orig_skb, GFP_ATOMIC); 5681 5682 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5683 kfree_skb(skb); 5684 return; 5685 } 5686 } 5687 if (!skb) 5688 return; 5689 5690 if (tsonly) { 5691 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5692 SKBTX_ANY_TSTAMP; 5693 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5694 } 5695 5696 if (hwtstamps) 5697 *skb_hwtstamps(skb) = *hwtstamps; 5698 else 5699 __net_timestamp(skb); 5700 5701 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5702} 5703EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5704 5705void skb_tstamp_tx(struct sk_buff *orig_skb, 5706 struct skb_shared_hwtstamps *hwtstamps) 5707{ 5708 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5709 SCM_TSTAMP_SND); 5710} 5711EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5712 5713#ifdef CONFIG_WIRELESS 5714void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5715{ 5716 struct sock *sk = skb->sk; 5717 struct sock_exterr_skb *serr; 5718 int err = 1; 5719 5720 skb->wifi_acked_valid = 1; 5721 skb->wifi_acked = acked; 5722 5723 serr = SKB_EXT_ERR(skb); 5724 memset(serr, 0, sizeof(*serr)); 5725 serr->ee.ee_errno = ENOMSG; 5726 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5727 5728 /* Take a reference to prevent skb_orphan() from freeing the socket, 5729 * but only if the socket refcount is not zero. 5730 */ 5731 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5732 err = sock_queue_err_skb(sk, skb); 5733 sock_put(sk); 5734 } 5735 if (err) 5736 kfree_skb(skb); 5737} 5738EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5739#endif /* CONFIG_WIRELESS */ 5740 5741/** 5742 * skb_partial_csum_set - set up and verify partial csum values for packet 5743 * @skb: the skb to set 5744 * @start: the number of bytes after skb->data to start checksumming. 5745 * @off: the offset from start to place the checksum. 5746 * 5747 * For untrusted partially-checksummed packets, we need to make sure the values 5748 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5749 * 5750 * This function checks and sets those values and skb->ip_summed: if this 5751 * returns false you should drop the packet. 5752 */ 5753bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5754{ 5755 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5756 u32 csum_start = skb_headroom(skb) + (u32)start; 5757 5758 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5759 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5760 start, off, skb_headroom(skb), skb_headlen(skb)); 5761 return false; 5762 } 5763 skb->ip_summed = CHECKSUM_PARTIAL; 5764 skb->csum_start = csum_start; 5765 skb->csum_offset = off; 5766 skb->transport_header = csum_start; 5767 return true; 5768} 5769EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5770 5771static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5772 unsigned int max) 5773{ 5774 if (skb_headlen(skb) >= len) 5775 return 0; 5776 5777 /* If we need to pullup then pullup to the max, so we 5778 * won't need to do it again. 5779 */ 5780 if (max > skb->len) 5781 max = skb->len; 5782 5783 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5784 return -ENOMEM; 5785 5786 if (skb_headlen(skb) < len) 5787 return -EPROTO; 5788 5789 return 0; 5790} 5791 5792#define MAX_TCP_HDR_LEN (15 * 4) 5793 5794static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5795 typeof(IPPROTO_IP) proto, 5796 unsigned int off) 5797{ 5798 int err; 5799 5800 switch (proto) { 5801 case IPPROTO_TCP: 5802 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5803 off + MAX_TCP_HDR_LEN); 5804 if (!err && !skb_partial_csum_set(skb, off, 5805 offsetof(struct tcphdr, 5806 check))) 5807 err = -EPROTO; 5808 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5809 5810 case IPPROTO_UDP: 5811 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5812 off + sizeof(struct udphdr)); 5813 if (!err && !skb_partial_csum_set(skb, off, 5814 offsetof(struct udphdr, 5815 check))) 5816 err = -EPROTO; 5817 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5818 } 5819 5820 return ERR_PTR(-EPROTO); 5821} 5822 5823/* This value should be large enough to cover a tagged ethernet header plus 5824 * maximally sized IP and TCP or UDP headers. 5825 */ 5826#define MAX_IP_HDR_LEN 128 5827 5828static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5829{ 5830 unsigned int off; 5831 bool fragment; 5832 __sum16 *csum; 5833 int err; 5834 5835 fragment = false; 5836 5837 err = skb_maybe_pull_tail(skb, 5838 sizeof(struct iphdr), 5839 MAX_IP_HDR_LEN); 5840 if (err < 0) 5841 goto out; 5842 5843 if (ip_is_fragment(ip_hdr(skb))) 5844 fragment = true; 5845 5846 off = ip_hdrlen(skb); 5847 5848 err = -EPROTO; 5849 5850 if (fragment) 5851 goto out; 5852 5853 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5854 if (IS_ERR(csum)) 5855 return PTR_ERR(csum); 5856 5857 if (recalculate) 5858 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5859 ip_hdr(skb)->daddr, 5860 skb->len - off, 5861 ip_hdr(skb)->protocol, 0); 5862 err = 0; 5863 5864out: 5865 return err; 5866} 5867 5868/* This value should be large enough to cover a tagged ethernet header plus 5869 * an IPv6 header, all options, and a maximal TCP or UDP header. 5870 */ 5871#define MAX_IPV6_HDR_LEN 256 5872 5873#define OPT_HDR(type, skb, off) \ 5874 (type *)(skb_network_header(skb) + (off)) 5875 5876static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5877{ 5878 int err; 5879 u8 nexthdr; 5880 unsigned int off; 5881 unsigned int len; 5882 bool fragment; 5883 bool done; 5884 __sum16 *csum; 5885 5886 fragment = false; 5887 done = false; 5888 5889 off = sizeof(struct ipv6hdr); 5890 5891 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5892 if (err < 0) 5893 goto out; 5894 5895 nexthdr = ipv6_hdr(skb)->nexthdr; 5896 5897 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5898 while (off <= len && !done) { 5899 switch (nexthdr) { 5900 case IPPROTO_DSTOPTS: 5901 case IPPROTO_HOPOPTS: 5902 case IPPROTO_ROUTING: { 5903 struct ipv6_opt_hdr *hp; 5904 5905 err = skb_maybe_pull_tail(skb, 5906 off + 5907 sizeof(struct ipv6_opt_hdr), 5908 MAX_IPV6_HDR_LEN); 5909 if (err < 0) 5910 goto out; 5911 5912 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5913 nexthdr = hp->nexthdr; 5914 off += ipv6_optlen(hp); 5915 break; 5916 } 5917 case IPPROTO_AH: { 5918 struct ip_auth_hdr *hp; 5919 5920 err = skb_maybe_pull_tail(skb, 5921 off + 5922 sizeof(struct ip_auth_hdr), 5923 MAX_IPV6_HDR_LEN); 5924 if (err < 0) 5925 goto out; 5926 5927 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5928 nexthdr = hp->nexthdr; 5929 off += ipv6_authlen(hp); 5930 break; 5931 } 5932 case IPPROTO_FRAGMENT: { 5933 struct frag_hdr *hp; 5934 5935 err = skb_maybe_pull_tail(skb, 5936 off + 5937 sizeof(struct frag_hdr), 5938 MAX_IPV6_HDR_LEN); 5939 if (err < 0) 5940 goto out; 5941 5942 hp = OPT_HDR(struct frag_hdr, skb, off); 5943 5944 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5945 fragment = true; 5946 5947 nexthdr = hp->nexthdr; 5948 off += sizeof(struct frag_hdr); 5949 break; 5950 } 5951 default: 5952 done = true; 5953 break; 5954 } 5955 } 5956 5957 err = -EPROTO; 5958 5959 if (!done || fragment) 5960 goto out; 5961 5962 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5963 if (IS_ERR(csum)) 5964 return PTR_ERR(csum); 5965 5966 if (recalculate) 5967 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5968 &ipv6_hdr(skb)->daddr, 5969 skb->len - off, nexthdr, 0); 5970 err = 0; 5971 5972out: 5973 return err; 5974} 5975 5976/** 5977 * skb_checksum_setup - set up partial checksum offset 5978 * @skb: the skb to set up 5979 * @recalculate: if true the pseudo-header checksum will be recalculated 5980 */ 5981int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5982{ 5983 int err; 5984 5985 switch (skb->protocol) { 5986 case htons(ETH_P_IP): 5987 err = skb_checksum_setup_ipv4(skb, recalculate); 5988 break; 5989 5990 case htons(ETH_P_IPV6): 5991 err = skb_checksum_setup_ipv6(skb, recalculate); 5992 break; 5993 5994 default: 5995 err = -EPROTO; 5996 break; 5997 } 5998 5999 return err; 6000} 6001EXPORT_SYMBOL(skb_checksum_setup); 6002 6003/** 6004 * skb_checksum_maybe_trim - maybe trims the given skb 6005 * @skb: the skb to check 6006 * @transport_len: the data length beyond the network header 6007 * 6008 * Checks whether the given skb has data beyond the given transport length. 6009 * If so, returns a cloned skb trimmed to this transport length. 6010 * Otherwise returns the provided skb. Returns NULL in error cases 6011 * (e.g. transport_len exceeds skb length or out-of-memory). 6012 * 6013 * Caller needs to set the skb transport header and free any returned skb if it 6014 * differs from the provided skb. 6015 */ 6016static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 6017 unsigned int transport_len) 6018{ 6019 struct sk_buff *skb_chk; 6020 unsigned int len = skb_transport_offset(skb) + transport_len; 6021 int ret; 6022 6023 if (skb->len < len) 6024 return NULL; 6025 else if (skb->len == len) 6026 return skb; 6027 6028 skb_chk = skb_clone(skb, GFP_ATOMIC); 6029 if (!skb_chk) 6030 return NULL; 6031 6032 ret = pskb_trim_rcsum(skb_chk, len); 6033 if (ret) { 6034 kfree_skb(skb_chk); 6035 return NULL; 6036 } 6037 6038 return skb_chk; 6039} 6040 6041/** 6042 * skb_checksum_trimmed - validate checksum of an skb 6043 * @skb: the skb to check 6044 * @transport_len: the data length beyond the network header 6045 * @skb_chkf: checksum function to use 6046 * 6047 * Applies the given checksum function skb_chkf to the provided skb. 6048 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6049 * 6050 * If the skb has data beyond the given transport length, then a 6051 * trimmed & cloned skb is checked and returned. 6052 * 6053 * Caller needs to set the skb transport header and free any returned skb if it 6054 * differs from the provided skb. 6055 */ 6056struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6057 unsigned int transport_len, 6058 __sum16(*skb_chkf)(struct sk_buff *skb)) 6059{ 6060 struct sk_buff *skb_chk; 6061 unsigned int offset = skb_transport_offset(skb); 6062 __sum16 ret; 6063 6064 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6065 if (!skb_chk) 6066 goto err; 6067 6068 if (!pskb_may_pull(skb_chk, offset)) 6069 goto err; 6070 6071 skb_pull_rcsum(skb_chk, offset); 6072 ret = skb_chkf(skb_chk); 6073 skb_push_rcsum(skb_chk, offset); 6074 6075 if (ret) 6076 goto err; 6077 6078 return skb_chk; 6079 6080err: 6081 if (skb_chk && skb_chk != skb) 6082 kfree_skb(skb_chk); 6083 6084 return NULL; 6085 6086} 6087EXPORT_SYMBOL(skb_checksum_trimmed); 6088 6089void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6090{ 6091 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6092 skb->dev->name); 6093} 6094EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6095 6096void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6097{ 6098 if (head_stolen) { 6099 skb_release_head_state(skb); 6100 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6101 } else { 6102 __kfree_skb(skb); 6103 } 6104} 6105EXPORT_SYMBOL(kfree_skb_partial); 6106 6107/** 6108 * skb_try_coalesce - try to merge skb to prior one 6109 * @to: prior buffer 6110 * @from: buffer to add 6111 * @fragstolen: pointer to boolean 6112 * @delta_truesize: how much more was allocated than was requested 6113 */ 6114bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6115 bool *fragstolen, int *delta_truesize) 6116{ 6117 struct skb_shared_info *to_shinfo, *from_shinfo; 6118 int i, delta, len = from->len; 6119 6120 *fragstolen = false; 6121 6122 if (skb_cloned(to)) 6123 return false; 6124 6125 /* In general, avoid mixing page_pool and non-page_pool allocated 6126 * pages within the same SKB. In theory we could take full 6127 * references if @from is cloned and !@to->pp_recycle but its 6128 * tricky (due to potential race with the clone disappearing) and 6129 * rare, so not worth dealing with. 6130 */ 6131 if (to->pp_recycle != from->pp_recycle) 6132 return false; 6133 6134 if (skb_frags_readable(from) != skb_frags_readable(to)) 6135 return false; 6136 6137 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6138 if (len) 6139 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6140 *delta_truesize = 0; 6141 return true; 6142 } 6143 6144 to_shinfo = skb_shinfo(to); 6145 from_shinfo = skb_shinfo(from); 6146 if (to_shinfo->frag_list || from_shinfo->frag_list) 6147 return false; 6148 if (skb_zcopy(to) || skb_zcopy(from)) 6149 return false; 6150 6151 if (skb_headlen(from) != 0) { 6152 struct page *page; 6153 unsigned int offset; 6154 6155 if (to_shinfo->nr_frags + 6156 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6157 return false; 6158 6159 if (skb_head_is_locked(from)) 6160 return false; 6161 6162 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6163 6164 page = virt_to_head_page(from->head); 6165 offset = from->data - (unsigned char *)page_address(page); 6166 6167 skb_fill_page_desc(to, to_shinfo->nr_frags, 6168 page, offset, skb_headlen(from)); 6169 *fragstolen = true; 6170 } else { 6171 if (to_shinfo->nr_frags + 6172 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6173 return false; 6174 6175 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6176 } 6177 6178 WARN_ON_ONCE(delta < len); 6179 6180 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6181 from_shinfo->frags, 6182 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6183 to_shinfo->nr_frags += from_shinfo->nr_frags; 6184 6185 if (!skb_cloned(from)) 6186 from_shinfo->nr_frags = 0; 6187 6188 /* if the skb is not cloned this does nothing 6189 * since we set nr_frags to 0. 6190 */ 6191 if (skb_pp_frag_ref(from)) { 6192 for (i = 0; i < from_shinfo->nr_frags; i++) 6193 __skb_frag_ref(&from_shinfo->frags[i]); 6194 } 6195 6196 to->truesize += delta; 6197 to->len += len; 6198 to->data_len += len; 6199 6200 *delta_truesize = delta; 6201 return true; 6202} 6203EXPORT_SYMBOL(skb_try_coalesce); 6204 6205/** 6206 * skb_scrub_packet - scrub an skb 6207 * 6208 * @skb: buffer to clean 6209 * @xnet: packet is crossing netns 6210 * 6211 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6212 * into/from a tunnel. Some information have to be cleared during these 6213 * operations. 6214 * skb_scrub_packet can also be used to clean a skb before injecting it in 6215 * another namespace (@xnet == true). We have to clear all information in the 6216 * skb that could impact namespace isolation. 6217 */ 6218void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6219{ 6220 skb->pkt_type = PACKET_HOST; 6221 skb->skb_iif = 0; 6222 skb->ignore_df = 0; 6223 skb_dst_drop(skb); 6224 skb_ext_reset(skb); 6225 nf_reset_ct(skb); 6226 nf_reset_trace(skb); 6227 6228#ifdef CONFIG_NET_SWITCHDEV 6229 skb->offload_fwd_mark = 0; 6230 skb->offload_l3_fwd_mark = 0; 6231#endif 6232 ipvs_reset(skb); 6233 6234 if (!xnet) 6235 return; 6236 6237 skb->mark = 0; 6238 skb_clear_tstamp(skb); 6239} 6240EXPORT_SYMBOL_GPL(skb_scrub_packet); 6241 6242static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6243{ 6244 int mac_len, meta_len; 6245 void *meta; 6246 6247 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6248 kfree_skb(skb); 6249 return NULL; 6250 } 6251 6252 mac_len = skb->data - skb_mac_header(skb); 6253 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6254 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6255 mac_len - VLAN_HLEN - ETH_TLEN); 6256 } 6257 6258 meta_len = skb_metadata_len(skb); 6259 if (meta_len) { 6260 meta = skb_metadata_end(skb) - meta_len; 6261 memmove(meta + VLAN_HLEN, meta, meta_len); 6262 } 6263 6264 skb->mac_header += VLAN_HLEN; 6265 return skb; 6266} 6267 6268struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6269{ 6270 struct vlan_hdr *vhdr; 6271 u16 vlan_tci; 6272 6273 if (unlikely(skb_vlan_tag_present(skb))) { 6274 /* vlan_tci is already set-up so leave this for another time */ 6275 return skb; 6276 } 6277 6278 skb = skb_share_check(skb, GFP_ATOMIC); 6279 if (unlikely(!skb)) 6280 goto err_free; 6281 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6282 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6283 goto err_free; 6284 6285 vhdr = (struct vlan_hdr *)skb->data; 6286 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6287 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6288 6289 skb_pull_rcsum(skb, VLAN_HLEN); 6290 vlan_set_encap_proto(skb, vhdr); 6291 6292 skb = skb_reorder_vlan_header(skb); 6293 if (unlikely(!skb)) 6294 goto err_free; 6295 6296 skb_reset_network_header(skb); 6297 if (!skb_transport_header_was_set(skb)) 6298 skb_reset_transport_header(skb); 6299 skb_reset_mac_len(skb); 6300 6301 return skb; 6302 6303err_free: 6304 kfree_skb(skb); 6305 return NULL; 6306} 6307EXPORT_SYMBOL(skb_vlan_untag); 6308 6309int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6310{ 6311 if (!pskb_may_pull(skb, write_len)) 6312 return -ENOMEM; 6313 6314 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6315 return 0; 6316 6317 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6318} 6319EXPORT_SYMBOL(skb_ensure_writable); 6320 6321int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6322{ 6323 int needed_headroom = dev->needed_headroom; 6324 int needed_tailroom = dev->needed_tailroom; 6325 6326 /* For tail taggers, we need to pad short frames ourselves, to ensure 6327 * that the tail tag does not fail at its role of being at the end of 6328 * the packet, once the conduit interface pads the frame. Account for 6329 * that pad length here, and pad later. 6330 */ 6331 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6332 needed_tailroom += ETH_ZLEN - skb->len; 6333 /* skb_headroom() returns unsigned int... */ 6334 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6335 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6336 6337 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6338 /* No reallocation needed, yay! */ 6339 return 0; 6340 6341 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6342 GFP_ATOMIC); 6343} 6344EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6345 6346/* remove VLAN header from packet and update csum accordingly. 6347 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6348 */ 6349int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6350{ 6351 int offset = skb->data - skb_mac_header(skb); 6352 int err; 6353 6354 if (WARN_ONCE(offset, 6355 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6356 offset)) { 6357 return -EINVAL; 6358 } 6359 6360 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6361 if (unlikely(err)) 6362 return err; 6363 6364 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6365 6366 vlan_remove_tag(skb, vlan_tci); 6367 6368 skb->mac_header += VLAN_HLEN; 6369 6370 if (skb_network_offset(skb) < ETH_HLEN) 6371 skb_set_network_header(skb, ETH_HLEN); 6372 6373 skb_reset_mac_len(skb); 6374 6375 return err; 6376} 6377EXPORT_SYMBOL(__skb_vlan_pop); 6378 6379/* Pop a vlan tag either from hwaccel or from payload. 6380 * Expects skb->data at mac header. 6381 */ 6382int skb_vlan_pop(struct sk_buff *skb) 6383{ 6384 u16 vlan_tci; 6385 __be16 vlan_proto; 6386 int err; 6387 6388 if (likely(skb_vlan_tag_present(skb))) { 6389 __vlan_hwaccel_clear_tag(skb); 6390 } else { 6391 if (unlikely(!eth_type_vlan(skb->protocol))) 6392 return 0; 6393 6394 err = __skb_vlan_pop(skb, &vlan_tci); 6395 if (err) 6396 return err; 6397 } 6398 /* move next vlan tag to hw accel tag */ 6399 if (likely(!eth_type_vlan(skb->protocol))) 6400 return 0; 6401 6402 vlan_proto = skb->protocol; 6403 err = __skb_vlan_pop(skb, &vlan_tci); 6404 if (unlikely(err)) 6405 return err; 6406 6407 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6408 return 0; 6409} 6410EXPORT_SYMBOL(skb_vlan_pop); 6411 6412/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6413 * Expects skb->data at mac header. 6414 */ 6415int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6416{ 6417 if (skb_vlan_tag_present(skb)) { 6418 int offset = skb->data - skb_mac_header(skb); 6419 int err; 6420 6421 if (WARN_ONCE(offset, 6422 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6423 offset)) { 6424 return -EINVAL; 6425 } 6426 6427 err = __vlan_insert_tag(skb, skb->vlan_proto, 6428 skb_vlan_tag_get(skb)); 6429 if (err) 6430 return err; 6431 6432 skb->protocol = skb->vlan_proto; 6433 skb->network_header -= VLAN_HLEN; 6434 6435 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6436 } 6437 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6438 return 0; 6439} 6440EXPORT_SYMBOL(skb_vlan_push); 6441 6442/** 6443 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6444 * 6445 * @skb: Socket buffer to modify 6446 * 6447 * Drop the Ethernet header of @skb. 6448 * 6449 * Expects that skb->data points to the mac header and that no VLAN tags are 6450 * present. 6451 * 6452 * Returns 0 on success, -errno otherwise. 6453 */ 6454int skb_eth_pop(struct sk_buff *skb) 6455{ 6456 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6457 skb_network_offset(skb) < ETH_HLEN) 6458 return -EPROTO; 6459 6460 skb_pull_rcsum(skb, ETH_HLEN); 6461 skb_reset_mac_header(skb); 6462 skb_reset_mac_len(skb); 6463 6464 return 0; 6465} 6466EXPORT_SYMBOL(skb_eth_pop); 6467 6468/** 6469 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6470 * 6471 * @skb: Socket buffer to modify 6472 * @dst: Destination MAC address of the new header 6473 * @src: Source MAC address of the new header 6474 * 6475 * Prepend @skb with a new Ethernet header. 6476 * 6477 * Expects that skb->data points to the mac header, which must be empty. 6478 * 6479 * Returns 0 on success, -errno otherwise. 6480 */ 6481int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6482 const unsigned char *src) 6483{ 6484 struct ethhdr *eth; 6485 int err; 6486 6487 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6488 return -EPROTO; 6489 6490 err = skb_cow_head(skb, sizeof(*eth)); 6491 if (err < 0) 6492 return err; 6493 6494 skb_push(skb, sizeof(*eth)); 6495 skb_reset_mac_header(skb); 6496 skb_reset_mac_len(skb); 6497 6498 eth = eth_hdr(skb); 6499 ether_addr_copy(eth->h_dest, dst); 6500 ether_addr_copy(eth->h_source, src); 6501 eth->h_proto = skb->protocol; 6502 6503 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6504 6505 return 0; 6506} 6507EXPORT_SYMBOL(skb_eth_push); 6508 6509/* Update the ethertype of hdr and the skb csum value if required. */ 6510static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6511 __be16 ethertype) 6512{ 6513 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6514 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6515 6516 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6517 } 6518 6519 hdr->h_proto = ethertype; 6520} 6521 6522/** 6523 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6524 * the packet 6525 * 6526 * @skb: buffer 6527 * @mpls_lse: MPLS label stack entry to push 6528 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6529 * @mac_len: length of the MAC header 6530 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6531 * ethernet 6532 * 6533 * Expects skb->data at mac header. 6534 * 6535 * Returns 0 on success, -errno otherwise. 6536 */ 6537int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6538 int mac_len, bool ethernet) 6539{ 6540 struct mpls_shim_hdr *lse; 6541 int err; 6542 6543 if (unlikely(!eth_p_mpls(mpls_proto))) 6544 return -EINVAL; 6545 6546 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6547 if (skb->encapsulation) 6548 return -EINVAL; 6549 6550 err = skb_cow_head(skb, MPLS_HLEN); 6551 if (unlikely(err)) 6552 return err; 6553 6554 if (!skb->inner_protocol) { 6555 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6556 skb_set_inner_protocol(skb, skb->protocol); 6557 } 6558 6559 skb_push(skb, MPLS_HLEN); 6560 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6561 mac_len); 6562 skb_reset_mac_header(skb); 6563 skb_set_network_header(skb, mac_len); 6564 skb_reset_mac_len(skb); 6565 6566 lse = mpls_hdr(skb); 6567 lse->label_stack_entry = mpls_lse; 6568 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6569 6570 if (ethernet && mac_len >= ETH_HLEN) 6571 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6572 skb->protocol = mpls_proto; 6573 6574 return 0; 6575} 6576EXPORT_SYMBOL_GPL(skb_mpls_push); 6577 6578/** 6579 * skb_mpls_pop() - pop the outermost MPLS header 6580 * 6581 * @skb: buffer 6582 * @next_proto: ethertype of header after popped MPLS header 6583 * @mac_len: length of the MAC header 6584 * @ethernet: flag to indicate if the packet is ethernet 6585 * 6586 * Expects skb->data at mac header. 6587 * 6588 * Returns 0 on success, -errno otherwise. 6589 */ 6590int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6591 bool ethernet) 6592{ 6593 int err; 6594 6595 if (unlikely(!eth_p_mpls(skb->protocol))) 6596 return 0; 6597 6598 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6599 if (unlikely(err)) 6600 return err; 6601 6602 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6603 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6604 mac_len); 6605 6606 __skb_pull(skb, MPLS_HLEN); 6607 skb_reset_mac_header(skb); 6608 skb_set_network_header(skb, mac_len); 6609 6610 if (ethernet && mac_len >= ETH_HLEN) { 6611 struct ethhdr *hdr; 6612 6613 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6614 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6615 skb_mod_eth_type(skb, hdr, next_proto); 6616 } 6617 skb->protocol = next_proto; 6618 6619 return 0; 6620} 6621EXPORT_SYMBOL_GPL(skb_mpls_pop); 6622 6623/** 6624 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6625 * 6626 * @skb: buffer 6627 * @mpls_lse: new MPLS label stack entry to update to 6628 * 6629 * Expects skb->data at mac header. 6630 * 6631 * Returns 0 on success, -errno otherwise. 6632 */ 6633int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6634{ 6635 int err; 6636 6637 if (unlikely(!eth_p_mpls(skb->protocol))) 6638 return -EINVAL; 6639 6640 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6641 if (unlikely(err)) 6642 return err; 6643 6644 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6645 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6646 6647 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6648 } 6649 6650 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6651 6652 return 0; 6653} 6654EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6655 6656/** 6657 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6658 * 6659 * @skb: buffer 6660 * 6661 * Expects skb->data at mac header. 6662 * 6663 * Returns 0 on success, -errno otherwise. 6664 */ 6665int skb_mpls_dec_ttl(struct sk_buff *skb) 6666{ 6667 u32 lse; 6668 u8 ttl; 6669 6670 if (unlikely(!eth_p_mpls(skb->protocol))) 6671 return -EINVAL; 6672 6673 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6674 return -ENOMEM; 6675 6676 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6677 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6678 if (!--ttl) 6679 return -EINVAL; 6680 6681 lse &= ~MPLS_LS_TTL_MASK; 6682 lse |= ttl << MPLS_LS_TTL_SHIFT; 6683 6684 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6685} 6686EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6687 6688/** 6689 * alloc_skb_with_frags - allocate skb with page frags 6690 * 6691 * @header_len: size of linear part 6692 * @data_len: needed length in frags 6693 * @order: max page order desired. 6694 * @errcode: pointer to error code if any 6695 * @gfp_mask: allocation mask 6696 * 6697 * This can be used to allocate a paged skb, given a maximal order for frags. 6698 */ 6699struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6700 unsigned long data_len, 6701 int order, 6702 int *errcode, 6703 gfp_t gfp_mask) 6704{ 6705 unsigned long chunk; 6706 struct sk_buff *skb; 6707 struct page *page; 6708 int nr_frags = 0; 6709 6710 *errcode = -EMSGSIZE; 6711 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6712 return NULL; 6713 6714 *errcode = -ENOBUFS; 6715 skb = alloc_skb(header_len, gfp_mask); 6716 if (!skb) 6717 return NULL; 6718 6719 while (data_len) { 6720 if (nr_frags == MAX_SKB_FRAGS) 6721 goto failure; 6722 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6723 order--; 6724 6725 if (order) { 6726 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6727 __GFP_COMP | 6728 __GFP_NOWARN, 6729 order); 6730 if (!page) { 6731 order--; 6732 continue; 6733 } 6734 } else { 6735 page = alloc_page(gfp_mask); 6736 if (!page) 6737 goto failure; 6738 } 6739 chunk = min_t(unsigned long, data_len, 6740 PAGE_SIZE << order); 6741 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6742 nr_frags++; 6743 skb->truesize += (PAGE_SIZE << order); 6744 data_len -= chunk; 6745 } 6746 return skb; 6747 6748failure: 6749 kfree_skb(skb); 6750 return NULL; 6751} 6752EXPORT_SYMBOL(alloc_skb_with_frags); 6753 6754/* carve out the first off bytes from skb when off < headlen */ 6755static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6756 const int headlen, gfp_t gfp_mask) 6757{ 6758 int i; 6759 unsigned int size = skb_end_offset(skb); 6760 int new_hlen = headlen - off; 6761 u8 *data; 6762 6763 if (skb_pfmemalloc(skb)) 6764 gfp_mask |= __GFP_MEMALLOC; 6765 6766 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6767 if (!data) 6768 return -ENOMEM; 6769 size = SKB_WITH_OVERHEAD(size); 6770 6771 /* Copy real data, and all frags */ 6772 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6773 skb->len -= off; 6774 6775 memcpy((struct skb_shared_info *)(data + size), 6776 skb_shinfo(skb), 6777 offsetof(struct skb_shared_info, 6778 frags[skb_shinfo(skb)->nr_frags])); 6779 if (skb_cloned(skb)) { 6780 /* drop the old head gracefully */ 6781 if (skb_orphan_frags(skb, gfp_mask)) { 6782 skb_kfree_head(data, size); 6783 return -ENOMEM; 6784 } 6785 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6786 skb_frag_ref(skb, i); 6787 if (skb_has_frag_list(skb)) 6788 skb_clone_fraglist(skb); 6789 skb_release_data(skb, SKB_CONSUMED); 6790 } else { 6791 /* we can reuse existing recount- all we did was 6792 * relocate values 6793 */ 6794 skb_free_head(skb); 6795 } 6796 6797 skb->head = data; 6798 skb->data = data; 6799 skb->head_frag = 0; 6800 skb_set_end_offset(skb, size); 6801 skb_set_tail_pointer(skb, skb_headlen(skb)); 6802 skb_headers_offset_update(skb, 0); 6803 skb->cloned = 0; 6804 skb->hdr_len = 0; 6805 skb->nohdr = 0; 6806 atomic_set(&skb_shinfo(skb)->dataref, 1); 6807 6808 return 0; 6809} 6810 6811static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6812 6813/* carve out the first eat bytes from skb's frag_list. May recurse into 6814 * pskb_carve() 6815 */ 6816static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6817 gfp_t gfp_mask) 6818{ 6819 struct sk_buff *list = shinfo->frag_list; 6820 struct sk_buff *clone = NULL; 6821 struct sk_buff *insp = NULL; 6822 6823 do { 6824 if (!list) { 6825 pr_err("Not enough bytes to eat. Want %d\n", eat); 6826 return -EFAULT; 6827 } 6828 if (list->len <= eat) { 6829 /* Eaten as whole. */ 6830 eat -= list->len; 6831 list = list->next; 6832 insp = list; 6833 } else { 6834 /* Eaten partially. */ 6835 if (skb_shared(list)) { 6836 clone = skb_clone(list, gfp_mask); 6837 if (!clone) 6838 return -ENOMEM; 6839 insp = list->next; 6840 list = clone; 6841 } else { 6842 /* This may be pulled without problems. */ 6843 insp = list; 6844 } 6845 if (pskb_carve(list, eat, gfp_mask) < 0) { 6846 kfree_skb(clone); 6847 return -ENOMEM; 6848 } 6849 break; 6850 } 6851 } while (eat); 6852 6853 /* Free pulled out fragments. */ 6854 while ((list = shinfo->frag_list) != insp) { 6855 shinfo->frag_list = list->next; 6856 consume_skb(list); 6857 } 6858 /* And insert new clone at head. */ 6859 if (clone) { 6860 clone->next = list; 6861 shinfo->frag_list = clone; 6862 } 6863 return 0; 6864} 6865 6866/* carve off first len bytes from skb. Split line (off) is in the 6867 * non-linear part of skb 6868 */ 6869static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6870 int pos, gfp_t gfp_mask) 6871{ 6872 int i, k = 0; 6873 unsigned int size = skb_end_offset(skb); 6874 u8 *data; 6875 const int nfrags = skb_shinfo(skb)->nr_frags; 6876 struct skb_shared_info *shinfo; 6877 6878 if (skb_pfmemalloc(skb)) 6879 gfp_mask |= __GFP_MEMALLOC; 6880 6881 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6882 if (!data) 6883 return -ENOMEM; 6884 size = SKB_WITH_OVERHEAD(size); 6885 6886 memcpy((struct skb_shared_info *)(data + size), 6887 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6888 if (skb_orphan_frags(skb, gfp_mask)) { 6889 skb_kfree_head(data, size); 6890 return -ENOMEM; 6891 } 6892 shinfo = (struct skb_shared_info *)(data + size); 6893 for (i = 0; i < nfrags; i++) { 6894 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6895 6896 if (pos + fsize > off) { 6897 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6898 6899 if (pos < off) { 6900 /* Split frag. 6901 * We have two variants in this case: 6902 * 1. Move all the frag to the second 6903 * part, if it is possible. F.e. 6904 * this approach is mandatory for TUX, 6905 * where splitting is expensive. 6906 * 2. Split is accurately. We make this. 6907 */ 6908 skb_frag_off_add(&shinfo->frags[0], off - pos); 6909 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6910 } 6911 skb_frag_ref(skb, i); 6912 k++; 6913 } 6914 pos += fsize; 6915 } 6916 shinfo->nr_frags = k; 6917 if (skb_has_frag_list(skb)) 6918 skb_clone_fraglist(skb); 6919 6920 /* split line is in frag list */ 6921 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6922 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6923 if (skb_has_frag_list(skb)) 6924 kfree_skb_list(skb_shinfo(skb)->frag_list); 6925 skb_kfree_head(data, size); 6926 return -ENOMEM; 6927 } 6928 skb_release_data(skb, SKB_CONSUMED); 6929 6930 skb->head = data; 6931 skb->head_frag = 0; 6932 skb->data = data; 6933 skb_set_end_offset(skb, size); 6934 skb_reset_tail_pointer(skb); 6935 skb_headers_offset_update(skb, 0); 6936 skb->cloned = 0; 6937 skb->hdr_len = 0; 6938 skb->nohdr = 0; 6939 skb->len -= off; 6940 skb->data_len = skb->len; 6941 atomic_set(&skb_shinfo(skb)->dataref, 1); 6942 return 0; 6943} 6944 6945/* remove len bytes from the beginning of the skb */ 6946static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6947{ 6948 int headlen = skb_headlen(skb); 6949 6950 if (len < headlen) 6951 return pskb_carve_inside_header(skb, len, headlen, gfp); 6952 else 6953 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6954} 6955 6956/* Extract to_copy bytes starting at off from skb, and return this in 6957 * a new skb 6958 */ 6959struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6960 int to_copy, gfp_t gfp) 6961{ 6962 struct sk_buff *clone = skb_clone(skb, gfp); 6963 6964 if (!clone) 6965 return NULL; 6966 6967 if (pskb_carve(clone, off, gfp) < 0 || 6968 pskb_trim(clone, to_copy)) { 6969 kfree_skb(clone); 6970 return NULL; 6971 } 6972 return clone; 6973} 6974EXPORT_SYMBOL(pskb_extract); 6975 6976/** 6977 * skb_condense - try to get rid of fragments/frag_list if possible 6978 * @skb: buffer 6979 * 6980 * Can be used to save memory before skb is added to a busy queue. 6981 * If packet has bytes in frags and enough tail room in skb->head, 6982 * pull all of them, so that we can free the frags right now and adjust 6983 * truesize. 6984 * Notes: 6985 * We do not reallocate skb->head thus can not fail. 6986 * Caller must re-evaluate skb->truesize if needed. 6987 */ 6988void skb_condense(struct sk_buff *skb) 6989{ 6990 if (skb->data_len) { 6991 if (skb->data_len > skb->end - skb->tail || 6992 skb_cloned(skb) || !skb_frags_readable(skb)) 6993 return; 6994 6995 /* Nice, we can free page frag(s) right now */ 6996 __pskb_pull_tail(skb, skb->data_len); 6997 } 6998 /* At this point, skb->truesize might be over estimated, 6999 * because skb had a fragment, and fragments do not tell 7000 * their truesize. 7001 * When we pulled its content into skb->head, fragment 7002 * was freed, but __pskb_pull_tail() could not possibly 7003 * adjust skb->truesize, not knowing the frag truesize. 7004 */ 7005 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 7006} 7007EXPORT_SYMBOL(skb_condense); 7008 7009#ifdef CONFIG_SKB_EXTENSIONS 7010static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 7011{ 7012 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 7013} 7014 7015/** 7016 * __skb_ext_alloc - allocate a new skb extensions storage 7017 * 7018 * @flags: See kmalloc(). 7019 * 7020 * Returns the newly allocated pointer. The pointer can later attached to a 7021 * skb via __skb_ext_set(). 7022 * Note: caller must handle the skb_ext as an opaque data. 7023 */ 7024struct skb_ext *__skb_ext_alloc(gfp_t flags) 7025{ 7026 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 7027 7028 if (new) { 7029 memset(new->offset, 0, sizeof(new->offset)); 7030 refcount_set(&new->refcnt, 1); 7031 } 7032 7033 return new; 7034} 7035 7036static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 7037 unsigned int old_active) 7038{ 7039 struct skb_ext *new; 7040 7041 if (refcount_read(&old->refcnt) == 1) 7042 return old; 7043 7044 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 7045 if (!new) 7046 return NULL; 7047 7048 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7049 refcount_set(&new->refcnt, 1); 7050 7051#ifdef CONFIG_XFRM 7052 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7053 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7054 unsigned int i; 7055 7056 for (i = 0; i < sp->len; i++) 7057 xfrm_state_hold(sp->xvec[i]); 7058 } 7059#endif 7060#ifdef CONFIG_MCTP_FLOWS 7061 if (old_active & (1 << SKB_EXT_MCTP)) { 7062 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7063 7064 if (flow->key) 7065 refcount_inc(&flow->key->refs); 7066 } 7067#endif 7068 __skb_ext_put(old); 7069 return new; 7070} 7071 7072/** 7073 * __skb_ext_set - attach the specified extension storage to this skb 7074 * @skb: buffer 7075 * @id: extension id 7076 * @ext: extension storage previously allocated via __skb_ext_alloc() 7077 * 7078 * Existing extensions, if any, are cleared. 7079 * 7080 * Returns the pointer to the extension. 7081 */ 7082void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7083 struct skb_ext *ext) 7084{ 7085 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7086 7087 skb_ext_put(skb); 7088 newlen = newoff + skb_ext_type_len[id]; 7089 ext->chunks = newlen; 7090 ext->offset[id] = newoff; 7091 skb->extensions = ext; 7092 skb->active_extensions = 1 << id; 7093 return skb_ext_get_ptr(ext, id); 7094} 7095EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL"); 7096 7097/** 7098 * skb_ext_add - allocate space for given extension, COW if needed 7099 * @skb: buffer 7100 * @id: extension to allocate space for 7101 * 7102 * Allocates enough space for the given extension. 7103 * If the extension is already present, a pointer to that extension 7104 * is returned. 7105 * 7106 * If the skb was cloned, COW applies and the returned memory can be 7107 * modified without changing the extension space of clones buffers. 7108 * 7109 * Returns pointer to the extension or NULL on allocation failure. 7110 */ 7111void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7112{ 7113 struct skb_ext *new, *old = NULL; 7114 unsigned int newlen, newoff; 7115 7116 if (skb->active_extensions) { 7117 old = skb->extensions; 7118 7119 new = skb_ext_maybe_cow(old, skb->active_extensions); 7120 if (!new) 7121 return NULL; 7122 7123 if (__skb_ext_exist(new, id)) 7124 goto set_active; 7125 7126 newoff = new->chunks; 7127 } else { 7128 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7129 7130 new = __skb_ext_alloc(GFP_ATOMIC); 7131 if (!new) 7132 return NULL; 7133 } 7134 7135 newlen = newoff + skb_ext_type_len[id]; 7136 new->chunks = newlen; 7137 new->offset[id] = newoff; 7138set_active: 7139 skb->slow_gro = 1; 7140 skb->extensions = new; 7141 skb->active_extensions |= 1 << id; 7142 return skb_ext_get_ptr(new, id); 7143} 7144EXPORT_SYMBOL(skb_ext_add); 7145 7146#ifdef CONFIG_XFRM 7147static void skb_ext_put_sp(struct sec_path *sp) 7148{ 7149 unsigned int i; 7150 7151 for (i = 0; i < sp->len; i++) 7152 xfrm_state_put(sp->xvec[i]); 7153} 7154#endif 7155 7156#ifdef CONFIG_MCTP_FLOWS 7157static void skb_ext_put_mctp(struct mctp_flow *flow) 7158{ 7159 if (flow->key) 7160 mctp_key_unref(flow->key); 7161} 7162#endif 7163 7164void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7165{ 7166 struct skb_ext *ext = skb->extensions; 7167 7168 skb->active_extensions &= ~(1 << id); 7169 if (skb->active_extensions == 0) { 7170 skb->extensions = NULL; 7171 __skb_ext_put(ext); 7172#ifdef CONFIG_XFRM 7173 } else if (id == SKB_EXT_SEC_PATH && 7174 refcount_read(&ext->refcnt) == 1) { 7175 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7176 7177 skb_ext_put_sp(sp); 7178 sp->len = 0; 7179#endif 7180 } 7181} 7182EXPORT_SYMBOL(__skb_ext_del); 7183 7184void __skb_ext_put(struct skb_ext *ext) 7185{ 7186 /* If this is last clone, nothing can increment 7187 * it after check passes. Avoids one atomic op. 7188 */ 7189 if (refcount_read(&ext->refcnt) == 1) 7190 goto free_now; 7191 7192 if (!refcount_dec_and_test(&ext->refcnt)) 7193 return; 7194free_now: 7195#ifdef CONFIG_XFRM 7196 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7197 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7198#endif 7199#ifdef CONFIG_MCTP_FLOWS 7200 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7201 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7202#endif 7203 7204 kmem_cache_free(skbuff_ext_cache, ext); 7205} 7206EXPORT_SYMBOL(__skb_ext_put); 7207#endif /* CONFIG_SKB_EXTENSIONS */ 7208 7209static void kfree_skb_napi_cache(struct sk_buff *skb) 7210{ 7211 /* if SKB is a clone, don't handle this case */ 7212 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7213 __kfree_skb(skb); 7214 return; 7215 } 7216 7217 local_bh_disable(); 7218 __napi_kfree_skb(skb, SKB_CONSUMED); 7219 local_bh_enable(); 7220} 7221 7222/** 7223 * skb_attempt_defer_free - queue skb for remote freeing 7224 * @skb: buffer 7225 * 7226 * Put @skb in a per-cpu list, using the cpu which 7227 * allocated the skb/pages to reduce false sharing 7228 * and memory zone spinlock contention. 7229 */ 7230void skb_attempt_defer_free(struct sk_buff *skb) 7231{ 7232 struct skb_defer_node *sdn; 7233 unsigned long defer_count; 7234 int cpu = skb->alloc_cpu; 7235 unsigned int defer_max; 7236 bool kick; 7237 7238 if (cpu == raw_smp_processor_id() || 7239 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7240 !cpu_online(cpu)) { 7241nodefer: kfree_skb_napi_cache(skb); 7242 return; 7243 } 7244 7245 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7246 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7247 DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb)); 7248 7249 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id(); 7250 7251 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7252 defer_count = atomic_long_inc_return(&sdn->defer_count); 7253 7254 if (defer_count >= defer_max) 7255 goto nodefer; 7256 7257 llist_add(&skb->ll_node, &sdn->defer_list); 7258 7259 /* Send an IPI every time queue reaches half capacity. */ 7260 kick = (defer_count - 1) == (defer_max >> 1); 7261 7262 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7263 * if we are unlucky enough (this seems very unlikely). 7264 */ 7265 if (unlikely(kick)) 7266 kick_defer_list_purge(cpu); 7267} 7268 7269static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7270 size_t offset, size_t len) 7271{ 7272 const char *kaddr; 7273 __wsum csum; 7274 7275 kaddr = kmap_local_page(page); 7276 csum = csum_partial(kaddr + offset, len, 0); 7277 kunmap_local(kaddr); 7278 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7279} 7280 7281/** 7282 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7283 * @skb: The buffer to add pages to 7284 * @iter: Iterator representing the pages to be added 7285 * @maxsize: Maximum amount of pages to be added 7286 * 7287 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7288 * extracts pages from an iterator and adds them to the socket buffer if 7289 * possible, copying them to fragments if not possible (such as if they're slab 7290 * pages). 7291 * 7292 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7293 * insufficient space in the buffer to transfer anything. 7294 */ 7295ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7296 ssize_t maxsize) 7297{ 7298 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7299 struct page *pages[8], **ppages = pages; 7300 ssize_t spliced = 0, ret = 0; 7301 unsigned int i; 7302 7303 while (iter->count > 0) { 7304 ssize_t space, nr, len; 7305 size_t off; 7306 7307 ret = -EMSGSIZE; 7308 space = frag_limit - skb_shinfo(skb)->nr_frags; 7309 if (space < 0) 7310 break; 7311 7312 /* We might be able to coalesce without increasing nr_frags */ 7313 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7314 7315 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7316 if (len <= 0) { 7317 ret = len ?: -EIO; 7318 break; 7319 } 7320 7321 i = 0; 7322 do { 7323 struct page *page = pages[i++]; 7324 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7325 7326 ret = -EIO; 7327 if (WARN_ON_ONCE(!sendpage_ok(page))) 7328 goto out; 7329 7330 ret = skb_append_pagefrags(skb, page, off, part, 7331 frag_limit); 7332 if (ret < 0) { 7333 iov_iter_revert(iter, len); 7334 goto out; 7335 } 7336 7337 if (skb->ip_summed == CHECKSUM_NONE) 7338 skb_splice_csum_page(skb, page, off, part); 7339 7340 off = 0; 7341 spliced += part; 7342 maxsize -= part; 7343 len -= part; 7344 } while (len > 0); 7345 7346 if (maxsize <= 0) 7347 break; 7348 } 7349 7350out: 7351 skb_len_add(skb, spliced); 7352 return spliced ?: ret; 7353} 7354EXPORT_SYMBOL(skb_splice_from_iter); 7355 7356static __always_inline 7357size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7358 size_t len, void *to, void *priv2) 7359{ 7360 __wsum *csum = priv2; 7361 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7362 7363 *csum = csum_block_add(*csum, next, progress); 7364 return 0; 7365} 7366 7367static __always_inline 7368size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7369 size_t len, void *to, void *priv2) 7370{ 7371 __wsum next, *csum = priv2; 7372 7373 next = csum_and_copy_from_user(iter_from, to + progress, len); 7374 *csum = csum_block_add(*csum, next, progress); 7375 return next ? 0 : len; 7376} 7377 7378bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7379 __wsum *csum, struct iov_iter *i) 7380{ 7381 size_t copied; 7382 7383 if (WARN_ON_ONCE(!i->data_source)) 7384 return false; 7385 copied = iterate_and_advance2(i, bytes, addr, csum, 7386 copy_from_user_iter_csum, 7387 memcpy_from_iter_csum); 7388 if (likely(copied == bytes)) 7389 return true; 7390 iov_iter_revert(i, copied); 7391 return false; 7392} 7393EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7394 7395void get_netmem(netmem_ref netmem) 7396{ 7397 struct net_iov *niov; 7398 7399 if (netmem_is_net_iov(netmem)) { 7400 niov = netmem_to_net_iov(netmem); 7401 if (net_is_devmem_iov(niov)) 7402 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7403 return; 7404 } 7405 get_page(netmem_to_page(netmem)); 7406} 7407EXPORT_SYMBOL(get_netmem); 7408 7409void put_netmem(netmem_ref netmem) 7410{ 7411 struct net_iov *niov; 7412 7413 if (netmem_is_net_iov(netmem)) { 7414 niov = netmem_to_net_iov(netmem); 7415 if (net_is_devmem_iov(niov)) 7416 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7417 return; 7418 } 7419 7420 put_page(netmem_to_page(netmem)); 7421} 7422EXPORT_SYMBOL(put_netmem);