at v6.19-rc8 7404 lines 211 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8/* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13/* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24/* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32/* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42#include <linux/kernel_stat.h> 43#include <linux/mm.h> 44#include <linux/mm_inline.h> 45#include <linux/sched/mm.h> 46#include <linux/sched/numa_balancing.h> 47#include <linux/sched/task.h> 48#include <linux/hugetlb.h> 49#include <linux/mman.h> 50#include <linux/swap.h> 51#include <linux/highmem.h> 52#include <linux/pagemap.h> 53#include <linux/memremap.h> 54#include <linux/kmsan.h> 55#include <linux/ksm.h> 56#include <linux/rmap.h> 57#include <linux/export.h> 58#include <linux/delayacct.h> 59#include <linux/init.h> 60#include <linux/writeback.h> 61#include <linux/memcontrol.h> 62#include <linux/mmu_notifier.h> 63#include <linux/leafops.h> 64#include <linux/elf.h> 65#include <linux/gfp.h> 66#include <linux/migrate.h> 67#include <linux/string.h> 68#include <linux/shmem_fs.h> 69#include <linux/memory-tiers.h> 70#include <linux/debugfs.h> 71#include <linux/userfaultfd_k.h> 72#include <linux/dax.h> 73#include <linux/oom.h> 74#include <linux/numa.h> 75#include <linux/perf_event.h> 76#include <linux/ptrace.h> 77#include <linux/vmalloc.h> 78#include <linux/sched/sysctl.h> 79#include <linux/pgalloc.h> 80#include <linux/uaccess.h> 81 82#include <trace/events/kmem.h> 83 84#include <asm/io.h> 85#include <asm/mmu_context.h> 86#include <asm/tlb.h> 87#include <asm/tlbflush.h> 88 89#include "pgalloc-track.h" 90#include "internal.h" 91#include "swap.h" 92 93#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95#endif 96 97static vm_fault_t do_fault(struct vm_fault *vmf); 98static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99static bool vmf_pte_changed(struct vm_fault *vmf); 100 101/* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106{ 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_is_uffd_wp_marker(vmf->orig_pte); 113} 114 115/* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121int randomize_va_space __read_mostly = 122#ifdef CONFIG_COMPAT_BRK 123 1; 124#else 125 2; 126#endif 127 128static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136}; 137 138static int __init init_mm_sysctl(void) 139{ 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142} 143 144subsys_initcall(init_mm_sysctl); 145 146#ifndef arch_wants_old_prefaulted_pte 147static inline bool arch_wants_old_prefaulted_pte(void) 148{ 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155} 156#endif 157 158static int __init disable_randmaps(char *s) 159{ 160 randomize_va_space = 0; 161 return 1; 162} 163__setup("norandmaps", disable_randmaps); 164 165unsigned long zero_pfn __read_mostly; 166EXPORT_SYMBOL(zero_pfn); 167 168unsigned long highest_memmap_pfn __read_mostly; 169 170/* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173static int __init init_zero_pfn(void) 174{ 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177} 178early_initcall(init_zero_pfn); 179 180void mm_trace_rss_stat(struct mm_struct *mm, int member) 181{ 182 trace_rss_stat(mm, member); 183} 184 185/* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191{ 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196} 197 198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201{ 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230} 231 232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235{ 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264} 265 266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269{ 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297} 298 299/** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314{ 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371} 372 373void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376{ 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 unlink_file_vma_batch_init(&vb); 402 unlink_file_vma_batch_add(&vb, vma); 403 404 /* 405 * Optimization: gather nearby vmas into one call down 406 */ 407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 408 vma = next; 409 next = mas_find(mas, ceiling - 1); 410 if (unlikely(xa_is_zero(next))) 411 next = NULL; 412 if (mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 unlink_file_vma_batch_add(&vb, vma); 416 } 417 unlink_file_vma_batch_final(&vb); 418 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 vma = next; 422 } while (vma); 423} 424 425void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 426{ 427 spinlock_t *ptl = pmd_lock(mm, pmd); 428 429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 430 mm_inc_nr_ptes(mm); 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 pmd_populate(mm, pmd, *pte); 446 *pte = NULL; 447 } 448 spin_unlock(ptl); 449} 450 451int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 452{ 453 pgtable_t new = pte_alloc_one(mm); 454 if (!new) 455 return -ENOMEM; 456 457 pmd_install(mm, pmd, &new); 458 if (new) 459 pte_free(mm, new); 460 return 0; 461} 462 463int __pte_alloc_kernel(pmd_t *pmd) 464{ 465 pte_t *new = pte_alloc_one_kernel(&init_mm); 466 if (!new) 467 return -ENOMEM; 468 469 spin_lock(&init_mm.page_table_lock); 470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 471 smp_wmb(); /* See comment in pmd_install() */ 472 pmd_populate_kernel(&init_mm, pmd, new); 473 new = NULL; 474 } 475 spin_unlock(&init_mm.page_table_lock); 476 if (new) 477 pte_free_kernel(&init_mm, new); 478 return 0; 479} 480 481static inline void init_rss_vec(int *rss) 482{ 483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 484} 485 486static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 487{ 488 int i; 489 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493} 494 495static bool is_bad_page_map_ratelimited(void) 496{ 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return true; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 return false; 520} 521 522static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 523{ 524 unsigned long long pgdv, p4dv, pudv, pmdv; 525 p4d_t p4d, *p4dp; 526 pud_t pud, *pudp; 527 pmd_t pmd, *pmdp; 528 pgd_t *pgdp; 529 530 /* 531 * Although this looks like a fully lockless pgtable walk, it is not: 532 * see locking requirements for print_bad_page_map(). 533 */ 534 pgdp = pgd_offset(mm, addr); 535 pgdv = pgd_val(*pgdp); 536 537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 538 pr_alert("pgd:%08llx\n", pgdv); 539 return; 540 } 541 542 p4dp = p4d_offset(pgdp, addr); 543 p4d = p4dp_get(p4dp); 544 p4dv = p4d_val(p4d); 545 546 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 548 return; 549 } 550 551 pudp = pud_offset(p4dp, addr); 552 pud = pudp_get(pudp); 553 pudv = pud_val(pud); 554 555 if (!pud_present(pud) || pud_leaf(pud)) { 556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 557 return; 558 } 559 560 pmdp = pmd_offset(pudp, addr); 561 pmd = pmdp_get(pmdp); 562 pmdv = pmd_val(pmd); 563 564 /* 565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 566 * because the table should already be mapped by the caller and 567 * doing another map would be bad. print_bad_page_map() should 568 * already take care of printing the PTE. 569 */ 570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 571 p4dv, pudv, pmdv); 572} 573 574/* 575 * This function is called to print an error when a bad page table entry (e.g., 576 * corrupted page table entry) is found. For example, we might have a 577 * PFN-mapped pte in a region that doesn't allow it. 578 * 579 * The calling function must still handle the error. 580 * 581 * This function must be called during a proper page table walk, as it will 582 * re-walk the page table to dump information: the caller MUST prevent page 583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 584 * page table lock. 585 */ 586static void print_bad_page_map(struct vm_area_struct *vma, 587 unsigned long addr, unsigned long long entry, struct page *page, 588 enum pgtable_level level) 589{ 590 struct address_space *mapping; 591 pgoff_t index; 592 593 if (is_bad_page_map_ratelimited()) 594 return; 595 596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 597 index = linear_page_index(vma, addr); 598 599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 600 pgtable_level_to_str(level), entry); 601 __print_bad_page_map_pgtable(vma->vm_mm, addr); 602 if (page) 603 dump_page(page, "bad page map"); 604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 607 vma->vm_file, 608 vma->vm_ops ? vma->vm_ops->fault : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 611 mapping ? mapping->a_ops->read_folio : NULL); 612 dump_stack(); 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614} 615#define print_bad_pte(vma, addr, pte, page) \ 616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 617 618/** 619 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 620 * @vma: The VMA mapping the page table entry. 621 * @addr: The address where the page table entry is mapped. 622 * @pfn: The PFN stored in the page table entry. 623 * @special: Whether the page table entry is marked "special". 624 * @level: The page table level for error reporting purposes only. 625 * @entry: The page table entry value for error reporting purposes only. 626 * 627 * "Special" mappings do not wish to be associated with a "struct page" (either 628 * it doesn't exist, or it exists but they don't want to touch it). In this 629 * case, NULL is returned here. "Normal" mappings do have a struct page and 630 * are ordinarily refcounted. 631 * 632 * Page mappings of the shared zero folios are always considered "special", as 633 * they are not ordinarily refcounted: neither the refcount nor the mapcount 634 * of these folios is adjusted when mapping them into user page tables. 635 * Selected page table walkers (such as GUP) can still identify mappings of the 636 * shared zero folios and work with the underlying "struct page". 637 * 638 * There are 2 broad cases. Firstly, an architecture may define a "special" 639 * page table entry bit, such as pte_special(), in which case this function is 640 * trivial. Secondly, an architecture may not have a spare page table 641 * entry bit, which requires a more complicated scheme, described below. 642 * 643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 644 * page table entries that actually map "normal" pages: however, that page 645 * cannot be looked up through the PFN stored in the page table entry, but 646 * instead will be looked up through vm_ops->find_normal_page(). So far, this 647 * only applies to PTEs. 648 * 649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 650 * special mapping (even if there are underlying and valid "struct pages"). 651 * COWed pages of a VM_PFNMAP are always normal. 652 * 653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 656 * mapping will always honor the rule 657 * 658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 659 * 660 * And for normal mappings this is false. 661 * 662 * This restricts such mappings to be a linear translation from virtual address 663 * to pfn. To get around this restriction, we allow arbitrary mappings so long 664 * as the vma is not a COW mapping; in that case, we know that all ptes are 665 * special (because none can have been COWed). 666 * 667 * 668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 669 * 670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 671 * page" backing, however the difference is that _all_ pages with a struct 672 * page (that is, those where pfn_valid is true, except the shared zero 673 * folios) are refcounted and considered normal pages by the VM. 674 * 675 * The disadvantage is that pages are refcounted (which can be slower and 676 * simply not an option for some PFNMAP users). The advantage is that we 677 * don't have to follow the strict linearity rule of PFNMAP mappings in 678 * order to support COWable mappings. 679 * 680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 681 * NULL if this is a "special" mapping. 682 */ 683static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 684 unsigned long addr, unsigned long pfn, bool special, 685 unsigned long long entry, enum pgtable_level level) 686{ 687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 688 if (unlikely(special)) { 689#ifdef CONFIG_FIND_NORMAL_PAGE 690 if (vma->vm_ops && vma->vm_ops->find_normal_page) 691 return vma->vm_ops->find_normal_page(vma, addr); 692#endif /* CONFIG_FIND_NORMAL_PAGE */ 693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 694 return NULL; 695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 696 return NULL; 697 698 print_bad_page_map(vma, addr, entry, NULL, level); 699 return NULL; 700 } 701 /* 702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 703 * mappings (incl. shared zero folios) are marked accordingly. 704 */ 705 } else { 706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 707 if (vma->vm_flags & VM_MIXEDMAP) { 708 /* If it has a "struct page", it's "normal". */ 709 if (!pfn_valid(pfn)) 710 return NULL; 711 } else { 712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 713 714 /* Only CoW'ed anon folios are "normal". */ 715 if (pfn == vma->vm_pgoff + off) 716 return NULL; 717 if (!is_cow_mapping(vma->vm_flags)) 718 return NULL; 719 } 720 } 721 722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 723 return NULL; 724 } 725 726 if (unlikely(pfn > highest_memmap_pfn)) { 727 /* Corrupted page table entry. */ 728 print_bad_page_map(vma, addr, entry, NULL, level); 729 return NULL; 730 } 731 /* 732 * NOTE! We still have PageReserved() pages in the page tables. 733 * For example, VDSO mappings can cause them to exist. 734 */ 735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 736 return pfn_to_page(pfn); 737} 738 739/** 740 * vm_normal_page() - Get the "struct page" associated with a PTE 741 * @vma: The VMA mapping the @pte. 742 * @addr: The address where the @pte is mapped. 743 * @pte: The PTE. 744 * 745 * Get the "struct page" associated with a PTE. See __vm_normal_page() 746 * for details on "normal" and "special" mappings. 747 * 748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 749 * NULL if this is a "special" mapping. 750 */ 751struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 752 pte_t pte) 753{ 754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 755 pte_val(pte), PGTABLE_LEVEL_PTE); 756} 757 758/** 759 * vm_normal_folio() - Get the "struct folio" associated with a PTE 760 * @vma: The VMA mapping the @pte. 761 * @addr: The address where the @pte is mapped. 762 * @pte: The PTE. 763 * 764 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 765 * for details on "normal" and "special" mappings. 766 * 767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 768 * NULL if this is a "special" mapping. 769 */ 770struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772{ 773 struct page *page = vm_normal_page(vma, addr, pte); 774 775 if (page) 776 return page_folio(page); 777 return NULL; 778} 779 780#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 781/** 782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 783 * @vma: The VMA mapping the @pmd. 784 * @addr: The address where the @pmd is mapped. 785 * @pmd: The PMD. 786 * 787 * Get the "struct page" associated with a PTE. See __vm_normal_page() 788 * for details on "normal" and "special" mappings. 789 * 790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 791 * NULL if this is a "special" mapping. 792 */ 793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795{ 796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 797 pmd_val(pmd), PGTABLE_LEVEL_PMD); 798} 799 800/** 801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 802 * @vma: The VMA mapping the @pmd. 803 * @addr: The address where the @pmd is mapped. 804 * @pmd: The PMD. 805 * 806 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 807 * for details on "normal" and "special" mappings. 808 * 809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 810 * NULL if this is a "special" mapping. 811 */ 812struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 813 unsigned long addr, pmd_t pmd) 814{ 815 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 816 817 if (page) 818 return page_folio(page); 819 return NULL; 820} 821 822/** 823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 824 * @vma: The VMA mapping the @pud. 825 * @addr: The address where the @pud is mapped. 826 * @pud: The PUD. 827 * 828 * Get the "struct page" associated with a PUD. See __vm_normal_page() 829 * for details on "normal" and "special" mappings. 830 * 831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 832 * NULL if this is a "special" mapping. 833 */ 834struct page *vm_normal_page_pud(struct vm_area_struct *vma, 835 unsigned long addr, pud_t pud) 836{ 837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 838 pud_val(pud), PGTABLE_LEVEL_PUD); 839} 840#endif 841 842/** 843 * restore_exclusive_pte - Restore a device-exclusive entry 844 * @vma: VMA covering @address 845 * @folio: the mapped folio 846 * @page: the mapped folio page 847 * @address: the virtual address 848 * @ptep: pte pointer into the locked page table mapping the folio page 849 * @orig_pte: pte value at @ptep 850 * 851 * Restore a device-exclusive non-swap entry to an ordinary present pte. 852 * 853 * The folio and the page table must be locked, and MMU notifiers must have 854 * been called to invalidate any (exclusive) device mappings. 855 * 856 * Locking the folio makes sure that anybody who just converted the pte to 857 * a device-exclusive entry can map it into the device to make forward 858 * progress without others converting it back until the folio was unlocked. 859 * 860 * If the folio lock ever becomes an issue, we can stop relying on the folio 861 * lock; it might make some scenarios with heavy thrashing less likely to 862 * make forward progress, but these scenarios might not be valid use cases. 863 * 864 * Note that the folio lock does not protect against all cases of concurrent 865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 866 * must use MMU notifiers to sync against any concurrent changes. 867 */ 868static void restore_exclusive_pte(struct vm_area_struct *vma, 869 struct folio *folio, struct page *page, unsigned long address, 870 pte_t *ptep, pte_t orig_pte) 871{ 872 pte_t pte; 873 874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 875 876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 877 if (pte_swp_soft_dirty(orig_pte)) 878 pte = pte_mksoft_dirty(pte); 879 880 if (pte_swp_uffd_wp(orig_pte)) 881 pte = pte_mkuffd_wp(pte); 882 883 if ((vma->vm_flags & VM_WRITE) && 884 can_change_pte_writable(vma, address, pte)) { 885 if (folio_test_dirty(folio)) 886 pte = pte_mkdirty(pte); 887 pte = pte_mkwrite(pte, vma); 888 } 889 set_pte_at(vma->vm_mm, address, ptep, pte); 890 891 /* 892 * No need to invalidate - it was non-present before. However 893 * secondary CPUs may have mappings that need invalidating. 894 */ 895 update_mmu_cache(vma, address, ptep); 896} 897 898/* 899 * Tries to restore an exclusive pte if the page lock can be acquired without 900 * sleeping. 901 */ 902static int try_restore_exclusive_pte(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep, pte_t orig_pte) 904{ 905 const softleaf_t entry = softleaf_from_pte(orig_pte); 906 struct page *page = softleaf_to_page(entry); 907 struct folio *folio = page_folio(page); 908 909 if (folio_trylock(folio)) { 910 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 911 folio_unlock(folio); 912 return 0; 913 } 914 915 return -EBUSY; 916} 917 918/* 919 * copy one vm_area from one task to the other. Assumes the page tables 920 * already present in the new task to be cleared in the whole range 921 * covered by this vma. 922 */ 923 924static unsigned long 925copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 926 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 927 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 928{ 929 vm_flags_t vm_flags = dst_vma->vm_flags; 930 pte_t orig_pte = ptep_get(src_pte); 931 softleaf_t entry = softleaf_from_pte(orig_pte); 932 pte_t pte = orig_pte; 933 struct folio *folio; 934 struct page *page; 935 936 if (likely(softleaf_is_swap(entry))) { 937 if (swap_duplicate(entry) < 0) 938 return -EIO; 939 940 /* make sure dst_mm is on swapoff's mmlist. */ 941 if (unlikely(list_empty(&dst_mm->mmlist))) { 942 spin_lock(&mmlist_lock); 943 if (list_empty(&dst_mm->mmlist)) 944 list_add(&dst_mm->mmlist, 945 &src_mm->mmlist); 946 spin_unlock(&mmlist_lock); 947 } 948 /* Mark the swap entry as shared. */ 949 if (pte_swp_exclusive(orig_pte)) { 950 pte = pte_swp_clear_exclusive(orig_pte); 951 set_pte_at(src_mm, addr, src_pte, pte); 952 } 953 rss[MM_SWAPENTS]++; 954 } else if (softleaf_is_migration(entry)) { 955 folio = softleaf_to_folio(entry); 956 957 rss[mm_counter(folio)]++; 958 959 if (!softleaf_is_migration_read(entry) && 960 is_cow_mapping(vm_flags)) { 961 /* 962 * COW mappings require pages in both parent and child 963 * to be set to read. A previously exclusive entry is 964 * now shared. 965 */ 966 entry = make_readable_migration_entry( 967 swp_offset(entry)); 968 pte = softleaf_to_pte(entry); 969 if (pte_swp_soft_dirty(orig_pte)) 970 pte = pte_swp_mksoft_dirty(pte); 971 if (pte_swp_uffd_wp(orig_pte)) 972 pte = pte_swp_mkuffd_wp(pte); 973 set_pte_at(src_mm, addr, src_pte, pte); 974 } 975 } else if (softleaf_is_device_private(entry)) { 976 page = softleaf_to_page(entry); 977 folio = page_folio(page); 978 979 /* 980 * Update rss count even for unaddressable pages, as 981 * they should treated just like normal pages in this 982 * respect. 983 * 984 * We will likely want to have some new rss counters 985 * for unaddressable pages, at some point. But for now 986 * keep things as they are. 987 */ 988 folio_get(folio); 989 rss[mm_counter(folio)]++; 990 /* Cannot fail as these pages cannot get pinned. */ 991 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 992 993 /* 994 * We do not preserve soft-dirty information, because so 995 * far, checkpoint/restore is the only feature that 996 * requires that. And checkpoint/restore does not work 997 * when a device driver is involved (you cannot easily 998 * save and restore device driver state). 999 */ 1000 if (softleaf_is_device_private_write(entry) && 1001 is_cow_mapping(vm_flags)) { 1002 entry = make_readable_device_private_entry( 1003 swp_offset(entry)); 1004 pte = swp_entry_to_pte(entry); 1005 if (pte_swp_uffd_wp(orig_pte)) 1006 pte = pte_swp_mkuffd_wp(pte); 1007 set_pte_at(src_mm, addr, src_pte, pte); 1008 } 1009 } else if (softleaf_is_device_exclusive(entry)) { 1010 /* 1011 * Make device exclusive entries present by restoring the 1012 * original entry then copying as for a present pte. Device 1013 * exclusive entries currently only support private writable 1014 * (ie. COW) mappings. 1015 */ 1016 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1017 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1018 return -EBUSY; 1019 return -ENOENT; 1020 } else if (softleaf_is_marker(entry)) { 1021 pte_marker marker = copy_pte_marker(entry, dst_vma); 1022 1023 if (marker) 1024 set_pte_at(dst_mm, addr, dst_pte, 1025 make_pte_marker(marker)); 1026 return 0; 1027 } 1028 if (!userfaultfd_wp(dst_vma)) 1029 pte = pte_swp_clear_uffd_wp(pte); 1030 set_pte_at(dst_mm, addr, dst_pte, pte); 1031 return 0; 1032} 1033 1034/* 1035 * Copy a present and normal page. 1036 * 1037 * NOTE! The usual case is that this isn't required; 1038 * instead, the caller can just increase the page refcount 1039 * and re-use the pte the traditional way. 1040 * 1041 * And if we need a pre-allocated page but don't yet have 1042 * one, return a negative error to let the preallocation 1043 * code know so that it can do so outside the page table 1044 * lock. 1045 */ 1046static inline int 1047copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1048 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1049 struct folio **prealloc, struct page *page) 1050{ 1051 struct folio *new_folio; 1052 pte_t pte; 1053 1054 new_folio = *prealloc; 1055 if (!new_folio) 1056 return -EAGAIN; 1057 1058 /* 1059 * We have a prealloc page, all good! Take it 1060 * over and copy the page & arm it. 1061 */ 1062 1063 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1064 return -EHWPOISON; 1065 1066 *prealloc = NULL; 1067 __folio_mark_uptodate(new_folio); 1068 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1069 folio_add_lru_vma(new_folio, dst_vma); 1070 rss[MM_ANONPAGES]++; 1071 1072 /* All done, just insert the new page copy in the child */ 1073 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1074 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1075 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1076 /* Uffd-wp needs to be delivered to dest pte as well */ 1077 pte = pte_mkuffd_wp(pte); 1078 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1079 return 0; 1080} 1081 1082static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1083 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1084 pte_t pte, unsigned long addr, int nr) 1085{ 1086 struct mm_struct *src_mm = src_vma->vm_mm; 1087 1088 /* If it's a COW mapping, write protect it both processes. */ 1089 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1090 wrprotect_ptes(src_mm, addr, src_pte, nr); 1091 pte = pte_wrprotect(pte); 1092 } 1093 1094 /* If it's a shared mapping, mark it clean in the child. */ 1095 if (src_vma->vm_flags & VM_SHARED) 1096 pte = pte_mkclean(pte); 1097 pte = pte_mkold(pte); 1098 1099 if (!userfaultfd_wp(dst_vma)) 1100 pte = pte_clear_uffd_wp(pte); 1101 1102 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1103} 1104 1105/* 1106 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1107 * consecutive pages of the same folio by copying them as well. 1108 * 1109 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1110 * Otherwise, returns the number of copied PTEs (at least 1). 1111 */ 1112static inline int 1113copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1114 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1115 int max_nr, int *rss, struct folio **prealloc) 1116{ 1117 fpb_t flags = FPB_MERGE_WRITE; 1118 struct page *page; 1119 struct folio *folio; 1120 int err, nr; 1121 1122 page = vm_normal_page(src_vma, addr, pte); 1123 if (unlikely(!page)) 1124 goto copy_pte; 1125 1126 folio = page_folio(page); 1127 1128 /* 1129 * If we likely have to copy, just don't bother with batching. Make 1130 * sure that the common "small folio" case is as fast as possible 1131 * by keeping the batching logic separate. 1132 */ 1133 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1134 if (!(src_vma->vm_flags & VM_SHARED)) 1135 flags |= FPB_RESPECT_DIRTY; 1136 if (vma_soft_dirty_enabled(src_vma)) 1137 flags |= FPB_RESPECT_SOFT_DIRTY; 1138 1139 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1140 folio_ref_add(folio, nr); 1141 if (folio_test_anon(folio)) { 1142 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1143 nr, dst_vma, src_vma))) { 1144 folio_ref_sub(folio, nr); 1145 return -EAGAIN; 1146 } 1147 rss[MM_ANONPAGES] += nr; 1148 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1149 } else { 1150 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1151 rss[mm_counter_file(folio)] += nr; 1152 } 1153 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1154 addr, nr); 1155 return nr; 1156 } 1157 1158 folio_get(folio); 1159 if (folio_test_anon(folio)) { 1160 /* 1161 * If this page may have been pinned by the parent process, 1162 * copy the page immediately for the child so that we'll always 1163 * guarantee the pinned page won't be randomly replaced in the 1164 * future. 1165 */ 1166 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1167 /* Page may be pinned, we have to copy. */ 1168 folio_put(folio); 1169 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1170 addr, rss, prealloc, page); 1171 return err ? err : 1; 1172 } 1173 rss[MM_ANONPAGES]++; 1174 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1175 } else { 1176 folio_dup_file_rmap_pte(folio, page, dst_vma); 1177 rss[mm_counter_file(folio)]++; 1178 } 1179 1180copy_pte: 1181 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1182 return 1; 1183} 1184 1185static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1186 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1187{ 1188 struct folio *new_folio; 1189 1190 if (need_zero) 1191 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1192 else 1193 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1194 1195 if (!new_folio) 1196 return NULL; 1197 1198 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1199 folio_put(new_folio); 1200 return NULL; 1201 } 1202 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1203 1204 return new_folio; 1205} 1206 1207static int 1208copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1209 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1210 unsigned long end) 1211{ 1212 struct mm_struct *dst_mm = dst_vma->vm_mm; 1213 struct mm_struct *src_mm = src_vma->vm_mm; 1214 pte_t *orig_src_pte, *orig_dst_pte; 1215 pte_t *src_pte, *dst_pte; 1216 pmd_t dummy_pmdval; 1217 pte_t ptent; 1218 spinlock_t *src_ptl, *dst_ptl; 1219 int progress, max_nr, ret = 0; 1220 int rss[NR_MM_COUNTERS]; 1221 softleaf_t entry = softleaf_mk_none(); 1222 struct folio *prealloc = NULL; 1223 int nr; 1224 1225again: 1226 progress = 0; 1227 init_rss_vec(rss); 1228 1229 /* 1230 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1231 * error handling here, assume that exclusive mmap_lock on dst and src 1232 * protects anon from unexpected THP transitions; with shmem and file 1233 * protected by mmap_lock-less collapse skipping areas with anon_vma 1234 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1235 * can remove such assumptions later, but this is good enough for now. 1236 */ 1237 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1238 if (!dst_pte) { 1239 ret = -ENOMEM; 1240 goto out; 1241 } 1242 1243 /* 1244 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1245 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1246 * the PTE page is stable, and there is no need to get pmdval and do 1247 * pmd_same() check. 1248 */ 1249 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1250 &src_ptl); 1251 if (!src_pte) { 1252 pte_unmap_unlock(dst_pte, dst_ptl); 1253 /* ret == 0 */ 1254 goto out; 1255 } 1256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1257 orig_src_pte = src_pte; 1258 orig_dst_pte = dst_pte; 1259 arch_enter_lazy_mmu_mode(); 1260 1261 do { 1262 nr = 1; 1263 1264 /* 1265 * We are holding two locks at this point - either of them 1266 * could generate latencies in another task on another CPU. 1267 */ 1268 if (progress >= 32) { 1269 progress = 0; 1270 if (need_resched() || 1271 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1272 break; 1273 } 1274 ptent = ptep_get(src_pte); 1275 if (pte_none(ptent)) { 1276 progress++; 1277 continue; 1278 } 1279 if (unlikely(!pte_present(ptent))) { 1280 ret = copy_nonpresent_pte(dst_mm, src_mm, 1281 dst_pte, src_pte, 1282 dst_vma, src_vma, 1283 addr, rss); 1284 if (ret == -EIO) { 1285 entry = softleaf_from_pte(ptep_get(src_pte)); 1286 break; 1287 } else if (ret == -EBUSY) { 1288 break; 1289 } else if (!ret) { 1290 progress += 8; 1291 continue; 1292 } 1293 ptent = ptep_get(src_pte); 1294 VM_WARN_ON_ONCE(!pte_present(ptent)); 1295 1296 /* 1297 * Device exclusive entry restored, continue by copying 1298 * the now present pte. 1299 */ 1300 WARN_ON_ONCE(ret != -ENOENT); 1301 } 1302 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1303 max_nr = (end - addr) / PAGE_SIZE; 1304 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1305 ptent, addr, max_nr, rss, &prealloc); 1306 /* 1307 * If we need a pre-allocated page for this pte, drop the 1308 * locks, allocate, and try again. 1309 * If copy failed due to hwpoison in source page, break out. 1310 */ 1311 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1312 break; 1313 if (unlikely(prealloc)) { 1314 /* 1315 * pre-alloc page cannot be reused by next time so as 1316 * to strictly follow mempolicy (e.g., alloc_page_vma() 1317 * will allocate page according to address). This 1318 * could only happen if one pinned pte changed. 1319 */ 1320 folio_put(prealloc); 1321 prealloc = NULL; 1322 } 1323 nr = ret; 1324 progress += 8 * nr; 1325 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1326 addr != end); 1327 1328 arch_leave_lazy_mmu_mode(); 1329 pte_unmap_unlock(orig_src_pte, src_ptl); 1330 add_mm_rss_vec(dst_mm, rss); 1331 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1332 cond_resched(); 1333 1334 if (ret == -EIO) { 1335 VM_WARN_ON_ONCE(!entry.val); 1336 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1337 ret = -ENOMEM; 1338 goto out; 1339 } 1340 entry.val = 0; 1341 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1342 goto out; 1343 } else if (ret == -EAGAIN) { 1344 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1345 if (!prealloc) 1346 return -ENOMEM; 1347 } else if (ret < 0) { 1348 VM_WARN_ON_ONCE(1); 1349 } 1350 1351 /* We've captured and resolved the error. Reset, try again. */ 1352 ret = 0; 1353 1354 if (addr != end) 1355 goto again; 1356out: 1357 if (unlikely(prealloc)) 1358 folio_put(prealloc); 1359 return ret; 1360} 1361 1362static inline int 1363copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1364 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1365 unsigned long end) 1366{ 1367 struct mm_struct *dst_mm = dst_vma->vm_mm; 1368 struct mm_struct *src_mm = src_vma->vm_mm; 1369 pmd_t *src_pmd, *dst_pmd; 1370 unsigned long next; 1371 1372 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1373 if (!dst_pmd) 1374 return -ENOMEM; 1375 src_pmd = pmd_offset(src_pud, addr); 1376 do { 1377 next = pmd_addr_end(addr, end); 1378 if (pmd_is_huge(*src_pmd)) { 1379 int err; 1380 1381 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1382 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1383 addr, dst_vma, src_vma); 1384 if (err == -ENOMEM) 1385 return -ENOMEM; 1386 if (!err) 1387 continue; 1388 /* fall through */ 1389 } 1390 if (pmd_none_or_clear_bad(src_pmd)) 1391 continue; 1392 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1393 addr, next)) 1394 return -ENOMEM; 1395 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1396 return 0; 1397} 1398 1399static inline int 1400copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1401 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1402 unsigned long end) 1403{ 1404 struct mm_struct *dst_mm = dst_vma->vm_mm; 1405 struct mm_struct *src_mm = src_vma->vm_mm; 1406 pud_t *src_pud, *dst_pud; 1407 unsigned long next; 1408 1409 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1410 if (!dst_pud) 1411 return -ENOMEM; 1412 src_pud = pud_offset(src_p4d, addr); 1413 do { 1414 next = pud_addr_end(addr, end); 1415 if (pud_trans_huge(*src_pud)) { 1416 int err; 1417 1418 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1419 err = copy_huge_pud(dst_mm, src_mm, 1420 dst_pud, src_pud, addr, src_vma); 1421 if (err == -ENOMEM) 1422 return -ENOMEM; 1423 if (!err) 1424 continue; 1425 /* fall through */ 1426 } 1427 if (pud_none_or_clear_bad(src_pud)) 1428 continue; 1429 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1430 addr, next)) 1431 return -ENOMEM; 1432 } while (dst_pud++, src_pud++, addr = next, addr != end); 1433 return 0; 1434} 1435 1436static inline int 1437copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1438 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1439 unsigned long end) 1440{ 1441 struct mm_struct *dst_mm = dst_vma->vm_mm; 1442 p4d_t *src_p4d, *dst_p4d; 1443 unsigned long next; 1444 1445 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1446 if (!dst_p4d) 1447 return -ENOMEM; 1448 src_p4d = p4d_offset(src_pgd, addr); 1449 do { 1450 next = p4d_addr_end(addr, end); 1451 if (p4d_none_or_clear_bad(src_p4d)) 1452 continue; 1453 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1454 addr, next)) 1455 return -ENOMEM; 1456 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1457 return 0; 1458} 1459 1460/* 1461 * Return true if the vma needs to copy the pgtable during this fork(). Return 1462 * false when we can speed up fork() by allowing lazy page faults later until 1463 * when the child accesses the memory range. 1464 */ 1465static bool 1466vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1467{ 1468 /* 1469 * We check against dst_vma as while sane VMA flags will have been 1470 * copied, VM_UFFD_WP may be set only on dst_vma. 1471 */ 1472 if (dst_vma->vm_flags & VM_COPY_ON_FORK) 1473 return true; 1474 /* 1475 * The presence of an anon_vma indicates an anonymous VMA has page 1476 * tables which naturally cannot be reconstituted on page fault. 1477 */ 1478 if (src_vma->anon_vma) 1479 return true; 1480 1481 /* 1482 * Don't copy ptes where a page fault will fill them correctly. Fork 1483 * becomes much lighter when there are big shared or private readonly 1484 * mappings. The tradeoff is that copy_page_range is more efficient 1485 * than faulting. 1486 */ 1487 return false; 1488} 1489 1490int 1491copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1492{ 1493 pgd_t *src_pgd, *dst_pgd; 1494 unsigned long addr = src_vma->vm_start; 1495 unsigned long end = src_vma->vm_end; 1496 struct mm_struct *dst_mm = dst_vma->vm_mm; 1497 struct mm_struct *src_mm = src_vma->vm_mm; 1498 struct mmu_notifier_range range; 1499 unsigned long next; 1500 bool is_cow; 1501 int ret; 1502 1503 if (!vma_needs_copy(dst_vma, src_vma)) 1504 return 0; 1505 1506 if (is_vm_hugetlb_page(src_vma)) 1507 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1508 1509 /* 1510 * We need to invalidate the secondary MMU mappings only when 1511 * there could be a permission downgrade on the ptes of the 1512 * parent mm. And a permission downgrade will only happen if 1513 * is_cow_mapping() returns true. 1514 */ 1515 is_cow = is_cow_mapping(src_vma->vm_flags); 1516 1517 if (is_cow) { 1518 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1519 0, src_mm, addr, end); 1520 mmu_notifier_invalidate_range_start(&range); 1521 /* 1522 * Disabling preemption is not needed for the write side, as 1523 * the read side doesn't spin, but goes to the mmap_lock. 1524 * 1525 * Use the raw variant of the seqcount_t write API to avoid 1526 * lockdep complaining about preemptibility. 1527 */ 1528 vma_assert_write_locked(src_vma); 1529 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1530 } 1531 1532 ret = 0; 1533 dst_pgd = pgd_offset(dst_mm, addr); 1534 src_pgd = pgd_offset(src_mm, addr); 1535 do { 1536 next = pgd_addr_end(addr, end); 1537 if (pgd_none_or_clear_bad(src_pgd)) 1538 continue; 1539 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1540 addr, next))) { 1541 ret = -ENOMEM; 1542 break; 1543 } 1544 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1545 1546 if (is_cow) { 1547 raw_write_seqcount_end(&src_mm->write_protect_seq); 1548 mmu_notifier_invalidate_range_end(&range); 1549 } 1550 return ret; 1551} 1552 1553/* Whether we should zap all COWed (private) pages too */ 1554static inline bool should_zap_cows(struct zap_details *details) 1555{ 1556 /* By default, zap all pages */ 1557 if (!details || details->reclaim_pt) 1558 return true; 1559 1560 /* Or, we zap COWed pages only if the caller wants to */ 1561 return details->even_cows; 1562} 1563 1564/* Decides whether we should zap this folio with the folio pointer specified */ 1565static inline bool should_zap_folio(struct zap_details *details, 1566 struct folio *folio) 1567{ 1568 /* If we can make a decision without *folio.. */ 1569 if (should_zap_cows(details)) 1570 return true; 1571 1572 /* Otherwise we should only zap non-anon folios */ 1573 return !folio_test_anon(folio); 1574} 1575 1576static inline bool zap_drop_markers(struct zap_details *details) 1577{ 1578 if (!details) 1579 return false; 1580 1581 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1582} 1583 1584/* 1585 * This function makes sure that we'll replace the none pte with an uffd-wp 1586 * swap special pte marker when necessary. Must be with the pgtable lock held. 1587 * 1588 * Returns true if uffd-wp ptes was installed, false otherwise. 1589 */ 1590static inline bool 1591zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1592 unsigned long addr, pte_t *pte, int nr, 1593 struct zap_details *details, pte_t pteval) 1594{ 1595 bool was_installed = false; 1596 1597 if (!uffd_supports_wp_marker()) 1598 return false; 1599 1600 /* Zap on anonymous always means dropping everything */ 1601 if (vma_is_anonymous(vma)) 1602 return false; 1603 1604 if (zap_drop_markers(details)) 1605 return false; 1606 1607 for (;;) { 1608 /* the PFN in the PTE is irrelevant. */ 1609 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1610 was_installed = true; 1611 if (--nr == 0) 1612 break; 1613 pte++; 1614 addr += PAGE_SIZE; 1615 } 1616 1617 return was_installed; 1618} 1619 1620static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1621 struct vm_area_struct *vma, struct folio *folio, 1622 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1623 unsigned long addr, struct zap_details *details, int *rss, 1624 bool *force_flush, bool *force_break, bool *any_skipped) 1625{ 1626 struct mm_struct *mm = tlb->mm; 1627 bool delay_rmap = false; 1628 1629 if (!folio_test_anon(folio)) { 1630 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1631 if (pte_dirty(ptent)) { 1632 folio_mark_dirty(folio); 1633 if (tlb_delay_rmap(tlb)) { 1634 delay_rmap = true; 1635 *force_flush = true; 1636 } 1637 } 1638 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1639 folio_mark_accessed(folio); 1640 rss[mm_counter(folio)] -= nr; 1641 } else { 1642 /* We don't need up-to-date accessed/dirty bits. */ 1643 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1644 rss[MM_ANONPAGES] -= nr; 1645 } 1646 /* Checking a single PTE in a batch is sufficient. */ 1647 arch_check_zapped_pte(vma, ptent); 1648 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1649 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1650 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1651 nr, details, ptent); 1652 1653 if (!delay_rmap) { 1654 folio_remove_rmap_ptes(folio, page, nr, vma); 1655 1656 if (unlikely(folio_mapcount(folio) < 0)) 1657 print_bad_pte(vma, addr, ptent, page); 1658 } 1659 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1660 *force_flush = true; 1661 *force_break = true; 1662 } 1663} 1664 1665/* 1666 * Zap or skip at least one present PTE, trying to batch-process subsequent 1667 * PTEs that map consecutive pages of the same folio. 1668 * 1669 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1670 */ 1671static inline int zap_present_ptes(struct mmu_gather *tlb, 1672 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1673 unsigned int max_nr, unsigned long addr, 1674 struct zap_details *details, int *rss, bool *force_flush, 1675 bool *force_break, bool *any_skipped) 1676{ 1677 struct mm_struct *mm = tlb->mm; 1678 struct folio *folio; 1679 struct page *page; 1680 int nr; 1681 1682 page = vm_normal_page(vma, addr, ptent); 1683 if (!page) { 1684 /* We don't need up-to-date accessed/dirty bits. */ 1685 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1686 arch_check_zapped_pte(vma, ptent); 1687 tlb_remove_tlb_entry(tlb, pte, addr); 1688 if (userfaultfd_pte_wp(vma, ptent)) 1689 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1690 pte, 1, details, ptent); 1691 ksm_might_unmap_zero_page(mm, ptent); 1692 return 1; 1693 } 1694 1695 folio = page_folio(page); 1696 if (unlikely(!should_zap_folio(details, folio))) { 1697 *any_skipped = true; 1698 return 1; 1699 } 1700 1701 /* 1702 * Make sure that the common "small folio" case is as fast as possible 1703 * by keeping the batching logic separate. 1704 */ 1705 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1706 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1707 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1708 addr, details, rss, force_flush, 1709 force_break, any_skipped); 1710 return nr; 1711 } 1712 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1713 details, rss, force_flush, force_break, any_skipped); 1714 return 1; 1715} 1716 1717static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1718 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1719 unsigned int max_nr, unsigned long addr, 1720 struct zap_details *details, int *rss, bool *any_skipped) 1721{ 1722 softleaf_t entry; 1723 int nr = 1; 1724 1725 *any_skipped = true; 1726 entry = softleaf_from_pte(ptent); 1727 if (softleaf_is_device_private(entry) || 1728 softleaf_is_device_exclusive(entry)) { 1729 struct page *page = softleaf_to_page(entry); 1730 struct folio *folio = page_folio(page); 1731 1732 if (unlikely(!should_zap_folio(details, folio))) 1733 return 1; 1734 /* 1735 * Both device private/exclusive mappings should only 1736 * work with anonymous page so far, so we don't need to 1737 * consider uffd-wp bit when zap. For more information, 1738 * see zap_install_uffd_wp_if_needed(). 1739 */ 1740 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1741 rss[mm_counter(folio)]--; 1742 folio_remove_rmap_pte(folio, page, vma); 1743 folio_put(folio); 1744 } else if (softleaf_is_swap(entry)) { 1745 /* Genuine swap entries, hence a private anon pages */ 1746 if (!should_zap_cows(details)) 1747 return 1; 1748 1749 nr = swap_pte_batch(pte, max_nr, ptent); 1750 rss[MM_SWAPENTS] -= nr; 1751 free_swap_and_cache_nr(entry, nr); 1752 } else if (softleaf_is_migration(entry)) { 1753 struct folio *folio = softleaf_to_folio(entry); 1754 1755 if (!should_zap_folio(details, folio)) 1756 return 1; 1757 rss[mm_counter(folio)]--; 1758 } else if (softleaf_is_uffd_wp_marker(entry)) { 1759 /* 1760 * For anon: always drop the marker; for file: only 1761 * drop the marker if explicitly requested. 1762 */ 1763 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1764 return 1; 1765 } else if (softleaf_is_guard_marker(entry)) { 1766 /* 1767 * Ordinary zapping should not remove guard PTE 1768 * markers. Only do so if we should remove PTE markers 1769 * in general. 1770 */ 1771 if (!zap_drop_markers(details)) 1772 return 1; 1773 } else if (softleaf_is_hwpoison(entry) || 1774 softleaf_is_poison_marker(entry)) { 1775 if (!should_zap_cows(details)) 1776 return 1; 1777 } else { 1778 /* We should have covered all the swap entry types */ 1779 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1780 WARN_ON_ONCE(1); 1781 } 1782 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1783 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1784 1785 return nr; 1786} 1787 1788static inline int do_zap_pte_range(struct mmu_gather *tlb, 1789 struct vm_area_struct *vma, pte_t *pte, 1790 unsigned long addr, unsigned long end, 1791 struct zap_details *details, int *rss, 1792 bool *force_flush, bool *force_break, 1793 bool *any_skipped) 1794{ 1795 pte_t ptent = ptep_get(pte); 1796 int max_nr = (end - addr) / PAGE_SIZE; 1797 int nr = 0; 1798 1799 /* Skip all consecutive none ptes */ 1800 if (pte_none(ptent)) { 1801 for (nr = 1; nr < max_nr; nr++) { 1802 ptent = ptep_get(pte + nr); 1803 if (!pte_none(ptent)) 1804 break; 1805 } 1806 max_nr -= nr; 1807 if (!max_nr) 1808 return nr; 1809 pte += nr; 1810 addr += nr * PAGE_SIZE; 1811 } 1812 1813 if (pte_present(ptent)) 1814 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1815 details, rss, force_flush, force_break, 1816 any_skipped); 1817 else 1818 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1819 details, rss, any_skipped); 1820 1821 return nr; 1822} 1823 1824static unsigned long zap_pte_range(struct mmu_gather *tlb, 1825 struct vm_area_struct *vma, pmd_t *pmd, 1826 unsigned long addr, unsigned long end, 1827 struct zap_details *details) 1828{ 1829 bool force_flush = false, force_break = false; 1830 struct mm_struct *mm = tlb->mm; 1831 int rss[NR_MM_COUNTERS]; 1832 spinlock_t *ptl; 1833 pte_t *start_pte; 1834 pte_t *pte; 1835 pmd_t pmdval; 1836 unsigned long start = addr; 1837 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1838 bool direct_reclaim = true; 1839 int nr; 1840 1841retry: 1842 tlb_change_page_size(tlb, PAGE_SIZE); 1843 init_rss_vec(rss); 1844 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1845 if (!pte) 1846 return addr; 1847 1848 flush_tlb_batched_pending(mm); 1849 arch_enter_lazy_mmu_mode(); 1850 do { 1851 bool any_skipped = false; 1852 1853 if (need_resched()) { 1854 direct_reclaim = false; 1855 break; 1856 } 1857 1858 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1859 &force_flush, &force_break, &any_skipped); 1860 if (any_skipped) 1861 can_reclaim_pt = false; 1862 if (unlikely(force_break)) { 1863 addr += nr * PAGE_SIZE; 1864 direct_reclaim = false; 1865 break; 1866 } 1867 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1868 1869 /* 1870 * Fast path: try to hold the pmd lock and unmap the PTE page. 1871 * 1872 * If the pte lock was released midway (retry case), or if the attempt 1873 * to hold the pmd lock failed, then we need to recheck all pte entries 1874 * to ensure they are still none, thereby preventing the pte entries 1875 * from being repopulated by another thread. 1876 */ 1877 if (can_reclaim_pt && direct_reclaim && addr == end) 1878 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1879 1880 add_mm_rss_vec(mm, rss); 1881 arch_leave_lazy_mmu_mode(); 1882 1883 /* Do the actual TLB flush before dropping ptl */ 1884 if (force_flush) { 1885 tlb_flush_mmu_tlbonly(tlb); 1886 tlb_flush_rmaps(tlb, vma); 1887 } 1888 pte_unmap_unlock(start_pte, ptl); 1889 1890 /* 1891 * If we forced a TLB flush (either due to running out of 1892 * batch buffers or because we needed to flush dirty TLB 1893 * entries before releasing the ptl), free the batched 1894 * memory too. Come back again if we didn't do everything. 1895 */ 1896 if (force_flush) 1897 tlb_flush_mmu(tlb); 1898 1899 if (addr != end) { 1900 cond_resched(); 1901 force_flush = false; 1902 force_break = false; 1903 goto retry; 1904 } 1905 1906 if (can_reclaim_pt) { 1907 if (direct_reclaim) 1908 free_pte(mm, start, tlb, pmdval); 1909 else 1910 try_to_free_pte(mm, pmd, start, tlb); 1911 } 1912 1913 return addr; 1914} 1915 1916static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1917 struct vm_area_struct *vma, pud_t *pud, 1918 unsigned long addr, unsigned long end, 1919 struct zap_details *details) 1920{ 1921 pmd_t *pmd; 1922 unsigned long next; 1923 1924 pmd = pmd_offset(pud, addr); 1925 do { 1926 next = pmd_addr_end(addr, end); 1927 if (pmd_is_huge(*pmd)) { 1928 if (next - addr != HPAGE_PMD_SIZE) 1929 __split_huge_pmd(vma, pmd, addr, false); 1930 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1931 addr = next; 1932 continue; 1933 } 1934 /* fall through */ 1935 } else if (details && details->single_folio && 1936 folio_test_pmd_mappable(details->single_folio) && 1937 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1938 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1939 /* 1940 * Take and drop THP pmd lock so that we cannot return 1941 * prematurely, while zap_huge_pmd() has cleared *pmd, 1942 * but not yet decremented compound_mapcount(). 1943 */ 1944 spin_unlock(ptl); 1945 } 1946 if (pmd_none(*pmd)) { 1947 addr = next; 1948 continue; 1949 } 1950 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1951 if (addr != next) 1952 pmd--; 1953 } while (pmd++, cond_resched(), addr != end); 1954 1955 return addr; 1956} 1957 1958static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1959 struct vm_area_struct *vma, p4d_t *p4d, 1960 unsigned long addr, unsigned long end, 1961 struct zap_details *details) 1962{ 1963 pud_t *pud; 1964 unsigned long next; 1965 1966 pud = pud_offset(p4d, addr); 1967 do { 1968 next = pud_addr_end(addr, end); 1969 if (pud_trans_huge(*pud)) { 1970 if (next - addr != HPAGE_PUD_SIZE) 1971 split_huge_pud(vma, pud, addr); 1972 else if (zap_huge_pud(tlb, vma, pud, addr)) 1973 goto next; 1974 /* fall through */ 1975 } 1976 if (pud_none_or_clear_bad(pud)) 1977 continue; 1978 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1979next: 1980 cond_resched(); 1981 } while (pud++, addr = next, addr != end); 1982 1983 return addr; 1984} 1985 1986static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1987 struct vm_area_struct *vma, pgd_t *pgd, 1988 unsigned long addr, unsigned long end, 1989 struct zap_details *details) 1990{ 1991 p4d_t *p4d; 1992 unsigned long next; 1993 1994 p4d = p4d_offset(pgd, addr); 1995 do { 1996 next = p4d_addr_end(addr, end); 1997 if (p4d_none_or_clear_bad(p4d)) 1998 continue; 1999 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 2000 } while (p4d++, addr = next, addr != end); 2001 2002 return addr; 2003} 2004 2005void unmap_page_range(struct mmu_gather *tlb, 2006 struct vm_area_struct *vma, 2007 unsigned long addr, unsigned long end, 2008 struct zap_details *details) 2009{ 2010 pgd_t *pgd; 2011 unsigned long next; 2012 2013 BUG_ON(addr >= end); 2014 tlb_start_vma(tlb, vma); 2015 pgd = pgd_offset(vma->vm_mm, addr); 2016 do { 2017 next = pgd_addr_end(addr, end); 2018 if (pgd_none_or_clear_bad(pgd)) 2019 continue; 2020 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2021 } while (pgd++, addr = next, addr != end); 2022 tlb_end_vma(tlb, vma); 2023} 2024 2025 2026static void unmap_single_vma(struct mmu_gather *tlb, 2027 struct vm_area_struct *vma, unsigned long start_addr, 2028 unsigned long end_addr, struct zap_details *details) 2029{ 2030 unsigned long start = max(vma->vm_start, start_addr); 2031 unsigned long end; 2032 2033 if (start >= vma->vm_end) 2034 return; 2035 end = min(vma->vm_end, end_addr); 2036 if (end <= vma->vm_start) 2037 return; 2038 2039 if (vma->vm_file) 2040 uprobe_munmap(vma, start, end); 2041 2042 if (start != end) { 2043 if (unlikely(is_vm_hugetlb_page(vma))) { 2044 /* 2045 * It is undesirable to test vma->vm_file as it 2046 * should be non-null for valid hugetlb area. 2047 * However, vm_file will be NULL in the error 2048 * cleanup path of mmap_region. When 2049 * hugetlbfs ->mmap method fails, 2050 * mmap_region() nullifies vma->vm_file 2051 * before calling this function to clean up. 2052 * Since no pte has actually been setup, it is 2053 * safe to do nothing in this case. 2054 */ 2055 if (vma->vm_file) { 2056 zap_flags_t zap_flags = details ? 2057 details->zap_flags : 0; 2058 __unmap_hugepage_range(tlb, vma, start, end, 2059 NULL, zap_flags); 2060 } 2061 } else 2062 unmap_page_range(tlb, vma, start, end, details); 2063 } 2064} 2065 2066/** 2067 * unmap_vmas - unmap a range of memory covered by a list of vma's 2068 * @tlb: address of the caller's struct mmu_gather 2069 * @mas: the maple state 2070 * @vma: the starting vma 2071 * @start_addr: virtual address at which to start unmapping 2072 * @end_addr: virtual address at which to end unmapping 2073 * @tree_end: The maximum index to check 2074 * 2075 * Unmap all pages in the vma list. 2076 * 2077 * Only addresses between `start' and `end' will be unmapped. 2078 * 2079 * The VMA list must be sorted in ascending virtual address order. 2080 * 2081 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2082 * range after unmap_vmas() returns. So the only responsibility here is to 2083 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2084 * drops the lock and schedules. 2085 */ 2086void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2087 struct vm_area_struct *vma, unsigned long start_addr, 2088 unsigned long end_addr, unsigned long tree_end) 2089{ 2090 struct mmu_notifier_range range; 2091 struct zap_details details = { 2092 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2093 /* Careful - we need to zap private pages too! */ 2094 .even_cows = true, 2095 }; 2096 2097 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2098 start_addr, end_addr); 2099 mmu_notifier_invalidate_range_start(&range); 2100 do { 2101 unsigned long start = start_addr; 2102 unsigned long end = end_addr; 2103 hugetlb_zap_begin(vma, &start, &end); 2104 unmap_single_vma(tlb, vma, start, end, &details); 2105 hugetlb_zap_end(vma, &details); 2106 vma = mas_find(mas, tree_end - 1); 2107 } while (vma && likely(!xa_is_zero(vma))); 2108 mmu_notifier_invalidate_range_end(&range); 2109} 2110 2111/** 2112 * zap_page_range_single_batched - remove user pages in a given range 2113 * @tlb: pointer to the caller's struct mmu_gather 2114 * @vma: vm_area_struct holding the applicable pages 2115 * @address: starting address of pages to remove 2116 * @size: number of bytes to remove 2117 * @details: details of shared cache invalidation 2118 * 2119 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2120 * hugetlb, @tlb is flushed and re-initialized by this function. 2121 */ 2122void zap_page_range_single_batched(struct mmu_gather *tlb, 2123 struct vm_area_struct *vma, unsigned long address, 2124 unsigned long size, struct zap_details *details) 2125{ 2126 const unsigned long end = address + size; 2127 struct mmu_notifier_range range; 2128 2129 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2130 2131 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2132 address, end); 2133 hugetlb_zap_begin(vma, &range.start, &range.end); 2134 update_hiwater_rss(vma->vm_mm); 2135 mmu_notifier_invalidate_range_start(&range); 2136 /* 2137 * unmap 'address-end' not 'range.start-range.end' as range 2138 * could have been expanded for hugetlb pmd sharing. 2139 */ 2140 unmap_single_vma(tlb, vma, address, end, details); 2141 mmu_notifier_invalidate_range_end(&range); 2142 if (is_vm_hugetlb_page(vma)) { 2143 /* 2144 * flush tlb and free resources before hugetlb_zap_end(), to 2145 * avoid concurrent page faults' allocation failure. 2146 */ 2147 tlb_finish_mmu(tlb); 2148 hugetlb_zap_end(vma, details); 2149 tlb_gather_mmu(tlb, vma->vm_mm); 2150 } 2151} 2152 2153/** 2154 * zap_page_range_single - remove user pages in a given range 2155 * @vma: vm_area_struct holding the applicable pages 2156 * @address: starting address of pages to zap 2157 * @size: number of bytes to zap 2158 * @details: details of shared cache invalidation 2159 * 2160 * The range must fit into one VMA. 2161 */ 2162void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2163 unsigned long size, struct zap_details *details) 2164{ 2165 struct mmu_gather tlb; 2166 2167 tlb_gather_mmu(&tlb, vma->vm_mm); 2168 zap_page_range_single_batched(&tlb, vma, address, size, details); 2169 tlb_finish_mmu(&tlb); 2170} 2171 2172/** 2173 * zap_vma_ptes - remove ptes mapping the vma 2174 * @vma: vm_area_struct holding ptes to be zapped 2175 * @address: starting address of pages to zap 2176 * @size: number of bytes to zap 2177 * 2178 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2179 * 2180 * The entire address range must be fully contained within the vma. 2181 * 2182 */ 2183void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2184 unsigned long size) 2185{ 2186 if (!range_in_vma(vma, address, address + size) || 2187 !(vma->vm_flags & VM_PFNMAP)) 2188 return; 2189 2190 zap_page_range_single(vma, address, size, NULL); 2191} 2192EXPORT_SYMBOL_GPL(zap_vma_ptes); 2193 2194static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2195{ 2196 pgd_t *pgd; 2197 p4d_t *p4d; 2198 pud_t *pud; 2199 pmd_t *pmd; 2200 2201 pgd = pgd_offset(mm, addr); 2202 p4d = p4d_alloc(mm, pgd, addr); 2203 if (!p4d) 2204 return NULL; 2205 pud = pud_alloc(mm, p4d, addr); 2206 if (!pud) 2207 return NULL; 2208 pmd = pmd_alloc(mm, pud, addr); 2209 if (!pmd) 2210 return NULL; 2211 2212 VM_BUG_ON(pmd_trans_huge(*pmd)); 2213 return pmd; 2214} 2215 2216pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2217 spinlock_t **ptl) 2218{ 2219 pmd_t *pmd = walk_to_pmd(mm, addr); 2220 2221 if (!pmd) 2222 return NULL; 2223 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2224} 2225 2226static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2227{ 2228 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2229 /* 2230 * Whoever wants to forbid the zeropage after some zeropages 2231 * might already have been mapped has to scan the page tables and 2232 * bail out on any zeropages. Zeropages in COW mappings can 2233 * be unshared using FAULT_FLAG_UNSHARE faults. 2234 */ 2235 if (mm_forbids_zeropage(vma->vm_mm)) 2236 return false; 2237 /* zeropages in COW mappings are common and unproblematic. */ 2238 if (is_cow_mapping(vma->vm_flags)) 2239 return true; 2240 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2241 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2242 return true; 2243 /* 2244 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2245 * find the shared zeropage and longterm-pin it, which would 2246 * be problematic as soon as the zeropage gets replaced by a different 2247 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2248 * now differ to what GUP looked up. FSDAX is incompatible to 2249 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2250 * check_vma_flags). 2251 */ 2252 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2253 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2254} 2255 2256static int validate_page_before_insert(struct vm_area_struct *vma, 2257 struct page *page) 2258{ 2259 struct folio *folio = page_folio(page); 2260 2261 if (!folio_ref_count(folio)) 2262 return -EINVAL; 2263 if (unlikely(is_zero_folio(folio))) { 2264 if (!vm_mixed_zeropage_allowed(vma)) 2265 return -EINVAL; 2266 return 0; 2267 } 2268 if (folio_test_anon(folio) || page_has_type(page)) 2269 return -EINVAL; 2270 flush_dcache_folio(folio); 2271 return 0; 2272} 2273 2274static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2275 unsigned long addr, struct page *page, 2276 pgprot_t prot, bool mkwrite) 2277{ 2278 struct folio *folio = page_folio(page); 2279 pte_t pteval = ptep_get(pte); 2280 2281 if (!pte_none(pteval)) { 2282 if (!mkwrite) 2283 return -EBUSY; 2284 2285 /* see insert_pfn(). */ 2286 if (pte_pfn(pteval) != page_to_pfn(page)) { 2287 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2288 return -EFAULT; 2289 } 2290 pteval = maybe_mkwrite(pteval, vma); 2291 pteval = pte_mkyoung(pteval); 2292 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2293 update_mmu_cache(vma, addr, pte); 2294 return 0; 2295 } 2296 2297 /* Ok, finally just insert the thing.. */ 2298 pteval = mk_pte(page, prot); 2299 if (unlikely(is_zero_folio(folio))) { 2300 pteval = pte_mkspecial(pteval); 2301 } else { 2302 folio_get(folio); 2303 pteval = mk_pte(page, prot); 2304 if (mkwrite) { 2305 pteval = pte_mkyoung(pteval); 2306 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2307 } 2308 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2309 folio_add_file_rmap_pte(folio, page, vma); 2310 } 2311 set_pte_at(vma->vm_mm, addr, pte, pteval); 2312 return 0; 2313} 2314 2315static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2316 struct page *page, pgprot_t prot, bool mkwrite) 2317{ 2318 int retval; 2319 pte_t *pte; 2320 spinlock_t *ptl; 2321 2322 retval = validate_page_before_insert(vma, page); 2323 if (retval) 2324 goto out; 2325 retval = -ENOMEM; 2326 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2327 if (!pte) 2328 goto out; 2329 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2330 mkwrite); 2331 pte_unmap_unlock(pte, ptl); 2332out: 2333 return retval; 2334} 2335 2336static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2337 unsigned long addr, struct page *page, pgprot_t prot) 2338{ 2339 int err; 2340 2341 err = validate_page_before_insert(vma, page); 2342 if (err) 2343 return err; 2344 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2345} 2346 2347/* insert_pages() amortizes the cost of spinlock operations 2348 * when inserting pages in a loop. 2349 */ 2350static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2351 struct page **pages, unsigned long *num, pgprot_t prot) 2352{ 2353 pmd_t *pmd = NULL; 2354 pte_t *start_pte, *pte; 2355 spinlock_t *pte_lock; 2356 struct mm_struct *const mm = vma->vm_mm; 2357 unsigned long curr_page_idx = 0; 2358 unsigned long remaining_pages_total = *num; 2359 unsigned long pages_to_write_in_pmd; 2360 int ret; 2361more: 2362 ret = -EFAULT; 2363 pmd = walk_to_pmd(mm, addr); 2364 if (!pmd) 2365 goto out; 2366 2367 pages_to_write_in_pmd = min_t(unsigned long, 2368 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2369 2370 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2371 ret = -ENOMEM; 2372 if (pte_alloc(mm, pmd)) 2373 goto out; 2374 2375 while (pages_to_write_in_pmd) { 2376 int pte_idx = 0; 2377 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2378 2379 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2380 if (!start_pte) { 2381 ret = -EFAULT; 2382 goto out; 2383 } 2384 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2385 int err = insert_page_in_batch_locked(vma, pte, 2386 addr, pages[curr_page_idx], prot); 2387 if (unlikely(err)) { 2388 pte_unmap_unlock(start_pte, pte_lock); 2389 ret = err; 2390 remaining_pages_total -= pte_idx; 2391 goto out; 2392 } 2393 addr += PAGE_SIZE; 2394 ++curr_page_idx; 2395 } 2396 pte_unmap_unlock(start_pte, pte_lock); 2397 pages_to_write_in_pmd -= batch_size; 2398 remaining_pages_total -= batch_size; 2399 } 2400 if (remaining_pages_total) 2401 goto more; 2402 ret = 0; 2403out: 2404 *num = remaining_pages_total; 2405 return ret; 2406} 2407 2408/** 2409 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2410 * @vma: user vma to map to 2411 * @addr: target start user address of these pages 2412 * @pages: source kernel pages 2413 * @num: in: number of pages to map. out: number of pages that were *not* 2414 * mapped. (0 means all pages were successfully mapped). 2415 * 2416 * Preferred over vm_insert_page() when inserting multiple pages. 2417 * 2418 * In case of error, we may have mapped a subset of the provided 2419 * pages. It is the caller's responsibility to account for this case. 2420 * 2421 * The same restrictions apply as in vm_insert_page(). 2422 */ 2423int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2424 struct page **pages, unsigned long *num) 2425{ 2426 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2427 2428 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2429 return -EFAULT; 2430 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2431 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2432 BUG_ON(vma->vm_flags & VM_PFNMAP); 2433 vm_flags_set(vma, VM_MIXEDMAP); 2434 } 2435 /* Defer page refcount checking till we're about to map that page. */ 2436 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2437} 2438EXPORT_SYMBOL(vm_insert_pages); 2439 2440/** 2441 * vm_insert_page - insert single page into user vma 2442 * @vma: user vma to map to 2443 * @addr: target user address of this page 2444 * @page: source kernel page 2445 * 2446 * This allows drivers to insert individual pages they've allocated 2447 * into a user vma. The zeropage is supported in some VMAs, 2448 * see vm_mixed_zeropage_allowed(). 2449 * 2450 * The page has to be a nice clean _individual_ kernel allocation. 2451 * If you allocate a compound page, you need to have marked it as 2452 * such (__GFP_COMP), or manually just split the page up yourself 2453 * (see split_page()). 2454 * 2455 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2456 * took an arbitrary page protection parameter. This doesn't allow 2457 * that. Your vma protection will have to be set up correctly, which 2458 * means that if you want a shared writable mapping, you'd better 2459 * ask for a shared writable mapping! 2460 * 2461 * The page does not need to be reserved. 2462 * 2463 * Usually this function is called from f_op->mmap() handler 2464 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2465 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2466 * function from other places, for example from page-fault handler. 2467 * 2468 * Return: %0 on success, negative error code otherwise. 2469 */ 2470int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2471 struct page *page) 2472{ 2473 if (addr < vma->vm_start || addr >= vma->vm_end) 2474 return -EFAULT; 2475 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2476 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2477 BUG_ON(vma->vm_flags & VM_PFNMAP); 2478 vm_flags_set(vma, VM_MIXEDMAP); 2479 } 2480 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2481} 2482EXPORT_SYMBOL(vm_insert_page); 2483 2484/* 2485 * __vm_map_pages - maps range of kernel pages into user vma 2486 * @vma: user vma to map to 2487 * @pages: pointer to array of source kernel pages 2488 * @num: number of pages in page array 2489 * @offset: user's requested vm_pgoff 2490 * 2491 * This allows drivers to map range of kernel pages into a user vma. 2492 * The zeropage is supported in some VMAs, see 2493 * vm_mixed_zeropage_allowed(). 2494 * 2495 * Return: 0 on success and error code otherwise. 2496 */ 2497static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2498 unsigned long num, unsigned long offset) 2499{ 2500 unsigned long count = vma_pages(vma); 2501 unsigned long uaddr = vma->vm_start; 2502 int ret, i; 2503 2504 /* Fail if the user requested offset is beyond the end of the object */ 2505 if (offset >= num) 2506 return -ENXIO; 2507 2508 /* Fail if the user requested size exceeds available object size */ 2509 if (count > num - offset) 2510 return -ENXIO; 2511 2512 for (i = 0; i < count; i++) { 2513 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2514 if (ret < 0) 2515 return ret; 2516 uaddr += PAGE_SIZE; 2517 } 2518 2519 return 0; 2520} 2521 2522/** 2523 * vm_map_pages - maps range of kernel pages starts with non zero offset 2524 * @vma: user vma to map to 2525 * @pages: pointer to array of source kernel pages 2526 * @num: number of pages in page array 2527 * 2528 * Maps an object consisting of @num pages, catering for the user's 2529 * requested vm_pgoff 2530 * 2531 * If we fail to insert any page into the vma, the function will return 2532 * immediately leaving any previously inserted pages present. Callers 2533 * from the mmap handler may immediately return the error as their caller 2534 * will destroy the vma, removing any successfully inserted pages. Other 2535 * callers should make their own arrangements for calling unmap_region(). 2536 * 2537 * Context: Process context. Called by mmap handlers. 2538 * Return: 0 on success and error code otherwise. 2539 */ 2540int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2541 unsigned long num) 2542{ 2543 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2544} 2545EXPORT_SYMBOL(vm_map_pages); 2546 2547/** 2548 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2549 * @vma: user vma to map to 2550 * @pages: pointer to array of source kernel pages 2551 * @num: number of pages in page array 2552 * 2553 * Similar to vm_map_pages(), except that it explicitly sets the offset 2554 * to 0. This function is intended for the drivers that did not consider 2555 * vm_pgoff. 2556 * 2557 * Context: Process context. Called by mmap handlers. 2558 * Return: 0 on success and error code otherwise. 2559 */ 2560int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2561 unsigned long num) 2562{ 2563 return __vm_map_pages(vma, pages, num, 0); 2564} 2565EXPORT_SYMBOL(vm_map_pages_zero); 2566 2567static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2568 unsigned long pfn, pgprot_t prot, bool mkwrite) 2569{ 2570 struct mm_struct *mm = vma->vm_mm; 2571 pte_t *pte, entry; 2572 spinlock_t *ptl; 2573 2574 pte = get_locked_pte(mm, addr, &ptl); 2575 if (!pte) 2576 return VM_FAULT_OOM; 2577 entry = ptep_get(pte); 2578 if (!pte_none(entry)) { 2579 if (mkwrite) { 2580 /* 2581 * For read faults on private mappings the PFN passed 2582 * in may not match the PFN we have mapped if the 2583 * mapped PFN is a writeable COW page. In the mkwrite 2584 * case we are creating a writable PTE for a shared 2585 * mapping and we expect the PFNs to match. If they 2586 * don't match, we are likely racing with block 2587 * allocation and mapping invalidation so just skip the 2588 * update. 2589 */ 2590 if (pte_pfn(entry) != pfn) { 2591 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2592 goto out_unlock; 2593 } 2594 entry = pte_mkyoung(entry); 2595 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2596 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2597 update_mmu_cache(vma, addr, pte); 2598 } 2599 goto out_unlock; 2600 } 2601 2602 /* Ok, finally just insert the thing.. */ 2603 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2604 2605 if (mkwrite) { 2606 entry = pte_mkyoung(entry); 2607 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2608 } 2609 2610 set_pte_at(mm, addr, pte, entry); 2611 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2612 2613out_unlock: 2614 pte_unmap_unlock(pte, ptl); 2615 return VM_FAULT_NOPAGE; 2616} 2617 2618/** 2619 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2620 * @vma: user vma to map to 2621 * @addr: target user address of this page 2622 * @pfn: source kernel pfn 2623 * @pgprot: pgprot flags for the inserted page 2624 * 2625 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2626 * to override pgprot on a per-page basis. 2627 * 2628 * This only makes sense for IO mappings, and it makes no sense for 2629 * COW mappings. In general, using multiple vmas is preferable; 2630 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2631 * impractical. 2632 * 2633 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2634 * caching- and encryption bits different than those of @vma->vm_page_prot, 2635 * because the caching- or encryption mode may not be known at mmap() time. 2636 * 2637 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2638 * to set caching and encryption bits for those vmas (except for COW pages). 2639 * This is ensured by core vm only modifying these page table entries using 2640 * functions that don't touch caching- or encryption bits, using pte_modify() 2641 * if needed. (See for example mprotect()). 2642 * 2643 * Also when new page-table entries are created, this is only done using the 2644 * fault() callback, and never using the value of vma->vm_page_prot, 2645 * except for page-table entries that point to anonymous pages as the result 2646 * of COW. 2647 * 2648 * Context: Process context. May allocate using %GFP_KERNEL. 2649 * Return: vm_fault_t value. 2650 */ 2651vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2652 unsigned long pfn, pgprot_t pgprot) 2653{ 2654 /* 2655 * Technically, architectures with pte_special can avoid all these 2656 * restrictions (same for remap_pfn_range). However we would like 2657 * consistency in testing and feature parity among all, so we should 2658 * try to keep these invariants in place for everybody. 2659 */ 2660 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2661 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2662 (VM_PFNMAP|VM_MIXEDMAP)); 2663 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2664 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2665 2666 if (addr < vma->vm_start || addr >= vma->vm_end) 2667 return VM_FAULT_SIGBUS; 2668 2669 if (!pfn_modify_allowed(pfn, pgprot)) 2670 return VM_FAULT_SIGBUS; 2671 2672 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2673 2674 return insert_pfn(vma, addr, pfn, pgprot, false); 2675} 2676EXPORT_SYMBOL(vmf_insert_pfn_prot); 2677 2678/** 2679 * vmf_insert_pfn - insert single pfn into user vma 2680 * @vma: user vma to map to 2681 * @addr: target user address of this page 2682 * @pfn: source kernel pfn 2683 * 2684 * Similar to vm_insert_page, this allows drivers to insert individual pages 2685 * they've allocated into a user vma. Same comments apply. 2686 * 2687 * This function should only be called from a vm_ops->fault handler, and 2688 * in that case the handler should return the result of this function. 2689 * 2690 * vma cannot be a COW mapping. 2691 * 2692 * As this is called only for pages that do not currently exist, we 2693 * do not need to flush old virtual caches or the TLB. 2694 * 2695 * Context: Process context. May allocate using %GFP_KERNEL. 2696 * Return: vm_fault_t value. 2697 */ 2698vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2699 unsigned long pfn) 2700{ 2701 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2702} 2703EXPORT_SYMBOL(vmf_insert_pfn); 2704 2705static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2706 bool mkwrite) 2707{ 2708 if (unlikely(is_zero_pfn(pfn)) && 2709 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2710 return false; 2711 /* these checks mirror the abort conditions in vm_normal_page */ 2712 if (vma->vm_flags & VM_MIXEDMAP) 2713 return true; 2714 if (is_zero_pfn(pfn)) 2715 return true; 2716 return false; 2717} 2718 2719static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2720 unsigned long addr, unsigned long pfn, bool mkwrite) 2721{ 2722 pgprot_t pgprot = vma->vm_page_prot; 2723 int err; 2724 2725 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2726 return VM_FAULT_SIGBUS; 2727 2728 if (addr < vma->vm_start || addr >= vma->vm_end) 2729 return VM_FAULT_SIGBUS; 2730 2731 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2732 2733 if (!pfn_modify_allowed(pfn, pgprot)) 2734 return VM_FAULT_SIGBUS; 2735 2736 /* 2737 * If we don't have pte special, then we have to use the pfn_valid() 2738 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2739 * refcount the page if pfn_valid is true (hence insert_page rather 2740 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2741 * without pte special, it would there be refcounted as a normal page. 2742 */ 2743 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2744 struct page *page; 2745 2746 /* 2747 * At this point we are committed to insert_page() 2748 * regardless of whether the caller specified flags that 2749 * result in pfn_t_has_page() == false. 2750 */ 2751 page = pfn_to_page(pfn); 2752 err = insert_page(vma, addr, page, pgprot, mkwrite); 2753 } else { 2754 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2755 } 2756 2757 if (err == -ENOMEM) 2758 return VM_FAULT_OOM; 2759 if (err < 0 && err != -EBUSY) 2760 return VM_FAULT_SIGBUS; 2761 2762 return VM_FAULT_NOPAGE; 2763} 2764 2765vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2766 bool write) 2767{ 2768 pgprot_t pgprot = vmf->vma->vm_page_prot; 2769 unsigned long addr = vmf->address; 2770 int err; 2771 2772 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2773 return VM_FAULT_SIGBUS; 2774 2775 err = insert_page(vmf->vma, addr, page, pgprot, write); 2776 if (err == -ENOMEM) 2777 return VM_FAULT_OOM; 2778 if (err < 0 && err != -EBUSY) 2779 return VM_FAULT_SIGBUS; 2780 2781 return VM_FAULT_NOPAGE; 2782} 2783EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2784 2785vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2786 unsigned long pfn) 2787{ 2788 return __vm_insert_mixed(vma, addr, pfn, false); 2789} 2790EXPORT_SYMBOL(vmf_insert_mixed); 2791 2792/* 2793 * If the insertion of PTE failed because someone else already added a 2794 * different entry in the mean time, we treat that as success as we assume 2795 * the same entry was actually inserted. 2796 */ 2797vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2798 unsigned long addr, unsigned long pfn) 2799{ 2800 return __vm_insert_mixed(vma, addr, pfn, true); 2801} 2802 2803/* 2804 * maps a range of physical memory into the requested pages. the old 2805 * mappings are removed. any references to nonexistent pages results 2806 * in null mappings (currently treated as "copy-on-access") 2807 */ 2808static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2809 unsigned long addr, unsigned long end, 2810 unsigned long pfn, pgprot_t prot) 2811{ 2812 pte_t *pte, *mapped_pte; 2813 spinlock_t *ptl; 2814 int err = 0; 2815 2816 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2817 if (!pte) 2818 return -ENOMEM; 2819 arch_enter_lazy_mmu_mode(); 2820 do { 2821 BUG_ON(!pte_none(ptep_get(pte))); 2822 if (!pfn_modify_allowed(pfn, prot)) { 2823 err = -EACCES; 2824 break; 2825 } 2826 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2827 pfn++; 2828 } while (pte++, addr += PAGE_SIZE, addr != end); 2829 arch_leave_lazy_mmu_mode(); 2830 pte_unmap_unlock(mapped_pte, ptl); 2831 return err; 2832} 2833 2834static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2835 unsigned long addr, unsigned long end, 2836 unsigned long pfn, pgprot_t prot) 2837{ 2838 pmd_t *pmd; 2839 unsigned long next; 2840 int err; 2841 2842 pfn -= addr >> PAGE_SHIFT; 2843 pmd = pmd_alloc(mm, pud, addr); 2844 if (!pmd) 2845 return -ENOMEM; 2846 VM_BUG_ON(pmd_trans_huge(*pmd)); 2847 do { 2848 next = pmd_addr_end(addr, end); 2849 err = remap_pte_range(mm, pmd, addr, next, 2850 pfn + (addr >> PAGE_SHIFT), prot); 2851 if (err) 2852 return err; 2853 } while (pmd++, addr = next, addr != end); 2854 return 0; 2855} 2856 2857static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2858 unsigned long addr, unsigned long end, 2859 unsigned long pfn, pgprot_t prot) 2860{ 2861 pud_t *pud; 2862 unsigned long next; 2863 int err; 2864 2865 pfn -= addr >> PAGE_SHIFT; 2866 pud = pud_alloc(mm, p4d, addr); 2867 if (!pud) 2868 return -ENOMEM; 2869 do { 2870 next = pud_addr_end(addr, end); 2871 err = remap_pmd_range(mm, pud, addr, next, 2872 pfn + (addr >> PAGE_SHIFT), prot); 2873 if (err) 2874 return err; 2875 } while (pud++, addr = next, addr != end); 2876 return 0; 2877} 2878 2879static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2880 unsigned long addr, unsigned long end, 2881 unsigned long pfn, pgprot_t prot) 2882{ 2883 p4d_t *p4d; 2884 unsigned long next; 2885 int err; 2886 2887 pfn -= addr >> PAGE_SHIFT; 2888 p4d = p4d_alloc(mm, pgd, addr); 2889 if (!p4d) 2890 return -ENOMEM; 2891 do { 2892 next = p4d_addr_end(addr, end); 2893 err = remap_pud_range(mm, p4d, addr, next, 2894 pfn + (addr >> PAGE_SHIFT), prot); 2895 if (err) 2896 return err; 2897 } while (p4d++, addr = next, addr != end); 2898 return 0; 2899} 2900 2901static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr, 2902 unsigned long end, unsigned long vm_start, unsigned long vm_end, 2903 unsigned long pfn, pgoff_t *vm_pgoff_p) 2904{ 2905 /* 2906 * There's a horrible special case to handle copy-on-write 2907 * behaviour that some programs depend on. We mark the "original" 2908 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2909 * See vm_normal_page() for details. 2910 */ 2911 if (is_cow_mapping(vm_flags)) { 2912 if (addr != vm_start || end != vm_end) 2913 return -EINVAL; 2914 *vm_pgoff_p = pfn; 2915 } 2916 2917 return 0; 2918} 2919 2920static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2921 unsigned long pfn, unsigned long size, pgprot_t prot) 2922{ 2923 pgd_t *pgd; 2924 unsigned long next; 2925 unsigned long end = addr + PAGE_ALIGN(size); 2926 struct mm_struct *mm = vma->vm_mm; 2927 int err; 2928 2929 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2930 return -EINVAL; 2931 2932 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS); 2933 2934 BUG_ON(addr >= end); 2935 pfn -= addr >> PAGE_SHIFT; 2936 pgd = pgd_offset(mm, addr); 2937 flush_cache_range(vma, addr, end); 2938 do { 2939 next = pgd_addr_end(addr, end); 2940 err = remap_p4d_range(mm, pgd, addr, next, 2941 pfn + (addr >> PAGE_SHIFT), prot); 2942 if (err) 2943 return err; 2944 } while (pgd++, addr = next, addr != end); 2945 2946 return 0; 2947} 2948 2949/* 2950 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2951 * must have pre-validated the caching bits of the pgprot_t. 2952 */ 2953static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2954 unsigned long pfn, unsigned long size, pgprot_t prot) 2955{ 2956 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2957 2958 if (!error) 2959 return 0; 2960 2961 /* 2962 * A partial pfn range mapping is dangerous: it does not 2963 * maintain page reference counts, and callers may free 2964 * pages due to the error. So zap it early. 2965 */ 2966 zap_page_range_single(vma, addr, size, NULL); 2967 return error; 2968} 2969 2970#ifdef __HAVE_PFNMAP_TRACKING 2971static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2972 unsigned long size, pgprot_t *prot) 2973{ 2974 struct pfnmap_track_ctx *ctx; 2975 2976 if (pfnmap_track(pfn, size, prot)) 2977 return ERR_PTR(-EINVAL); 2978 2979 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2980 if (unlikely(!ctx)) { 2981 pfnmap_untrack(pfn, size); 2982 return ERR_PTR(-ENOMEM); 2983 } 2984 2985 ctx->pfn = pfn; 2986 ctx->size = size; 2987 kref_init(&ctx->kref); 2988 return ctx; 2989} 2990 2991void pfnmap_track_ctx_release(struct kref *ref) 2992{ 2993 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2994 2995 pfnmap_untrack(ctx->pfn, ctx->size); 2996 kfree(ctx); 2997} 2998 2999static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr, 3000 unsigned long pfn, unsigned long size, pgprot_t prot) 3001{ 3002 struct pfnmap_track_ctx *ctx = NULL; 3003 int err; 3004 3005 size = PAGE_ALIGN(size); 3006 3007 /* 3008 * If we cover the full VMA, we'll perform actual tracking, and 3009 * remember to untrack when the last reference to our tracking 3010 * context from a VMA goes away. We'll keep tracking the whole pfn 3011 * range even during VMA splits and partial unmapping. 3012 * 3013 * If we only cover parts of the VMA, we'll only setup the cachemode 3014 * in the pgprot for the pfn range. 3015 */ 3016 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3017 if (vma->pfnmap_track_ctx) 3018 return -EINVAL; 3019 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3020 if (IS_ERR(ctx)) 3021 return PTR_ERR(ctx); 3022 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3023 return -EINVAL; 3024 } 3025 3026 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3027 if (ctx) { 3028 if (err) 3029 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3030 else 3031 vma->pfnmap_track_ctx = ctx; 3032 } 3033 return err; 3034} 3035 3036static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3037 unsigned long pfn, unsigned long size, pgprot_t prot) 3038{ 3039 return remap_pfn_range_track(vma, addr, pfn, size, prot); 3040} 3041#else 3042static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3043 unsigned long pfn, unsigned long size, pgprot_t prot) 3044{ 3045 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3046} 3047#endif 3048 3049void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 3050{ 3051 /* 3052 * We set addr=VMA start, end=VMA end here, so this won't fail, but we 3053 * check it again on complete and will fail there if specified addr is 3054 * invalid. 3055 */ 3056 get_remap_pgoff(desc->vm_flags, desc->start, desc->end, 3057 desc->start, desc->end, pfn, &desc->pgoff); 3058 desc->vm_flags |= VM_REMAP_FLAGS; 3059} 3060 3061static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr, 3062 unsigned long pfn, unsigned long size) 3063{ 3064 unsigned long end = addr + PAGE_ALIGN(size); 3065 int err; 3066 3067 err = get_remap_pgoff(vma->vm_flags, addr, end, 3068 vma->vm_start, vma->vm_end, 3069 pfn, &vma->vm_pgoff); 3070 if (err) 3071 return err; 3072 3073 vm_flags_set(vma, VM_REMAP_FLAGS); 3074 return 0; 3075} 3076 3077/** 3078 * remap_pfn_range - remap kernel memory to userspace 3079 * @vma: user vma to map to 3080 * @addr: target page aligned user address to start at 3081 * @pfn: page frame number of kernel physical memory address 3082 * @size: size of mapping area 3083 * @prot: page protection flags for this mapping 3084 * 3085 * Note: this is only safe if the mm semaphore is held when called. 3086 * 3087 * Return: %0 on success, negative error code otherwise. 3088 */ 3089int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3090 unsigned long pfn, unsigned long size, pgprot_t prot) 3091{ 3092 int err; 3093 3094 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size); 3095 if (err) 3096 return err; 3097 3098 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3099} 3100EXPORT_SYMBOL(remap_pfn_range); 3101 3102int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 3103 unsigned long pfn, unsigned long size, pgprot_t prot) 3104{ 3105 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3106} 3107 3108/** 3109 * vm_iomap_memory - remap memory to userspace 3110 * @vma: user vma to map to 3111 * @start: start of the physical memory to be mapped 3112 * @len: size of area 3113 * 3114 * This is a simplified io_remap_pfn_range() for common driver use. The 3115 * driver just needs to give us the physical memory range to be mapped, 3116 * we'll figure out the rest from the vma information. 3117 * 3118 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3119 * whatever write-combining details or similar. 3120 * 3121 * Return: %0 on success, negative error code otherwise. 3122 */ 3123int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3124{ 3125 unsigned long vm_len, pfn, pages; 3126 3127 /* Check that the physical memory area passed in looks valid */ 3128 if (start + len < start) 3129 return -EINVAL; 3130 /* 3131 * You *really* shouldn't map things that aren't page-aligned, 3132 * but we've historically allowed it because IO memory might 3133 * just have smaller alignment. 3134 */ 3135 len += start & ~PAGE_MASK; 3136 pfn = start >> PAGE_SHIFT; 3137 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3138 if (pfn + pages < pfn) 3139 return -EINVAL; 3140 3141 /* We start the mapping 'vm_pgoff' pages into the area */ 3142 if (vma->vm_pgoff > pages) 3143 return -EINVAL; 3144 pfn += vma->vm_pgoff; 3145 pages -= vma->vm_pgoff; 3146 3147 /* Can we fit all of the mapping? */ 3148 vm_len = vma->vm_end - vma->vm_start; 3149 if (vm_len >> PAGE_SHIFT > pages) 3150 return -EINVAL; 3151 3152 /* Ok, let it rip */ 3153 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3154} 3155EXPORT_SYMBOL(vm_iomap_memory); 3156 3157static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3158 unsigned long addr, unsigned long end, 3159 pte_fn_t fn, void *data, bool create, 3160 pgtbl_mod_mask *mask) 3161{ 3162 pte_t *pte, *mapped_pte; 3163 int err = 0; 3164 spinlock_t *ptl; 3165 3166 if (create) { 3167 mapped_pte = pte = (mm == &init_mm) ? 3168 pte_alloc_kernel_track(pmd, addr, mask) : 3169 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3170 if (!pte) 3171 return -ENOMEM; 3172 } else { 3173 mapped_pte = pte = (mm == &init_mm) ? 3174 pte_offset_kernel(pmd, addr) : 3175 pte_offset_map_lock(mm, pmd, addr, &ptl); 3176 if (!pte) 3177 return -EINVAL; 3178 } 3179 3180 arch_enter_lazy_mmu_mode(); 3181 3182 if (fn) { 3183 do { 3184 if (create || !pte_none(ptep_get(pte))) { 3185 err = fn(pte, addr, data); 3186 if (err) 3187 break; 3188 } 3189 } while (pte++, addr += PAGE_SIZE, addr != end); 3190 } 3191 *mask |= PGTBL_PTE_MODIFIED; 3192 3193 arch_leave_lazy_mmu_mode(); 3194 3195 if (mm != &init_mm) 3196 pte_unmap_unlock(mapped_pte, ptl); 3197 return err; 3198} 3199 3200static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3201 unsigned long addr, unsigned long end, 3202 pte_fn_t fn, void *data, bool create, 3203 pgtbl_mod_mask *mask) 3204{ 3205 pmd_t *pmd; 3206 unsigned long next; 3207 int err = 0; 3208 3209 BUG_ON(pud_leaf(*pud)); 3210 3211 if (create) { 3212 pmd = pmd_alloc_track(mm, pud, addr, mask); 3213 if (!pmd) 3214 return -ENOMEM; 3215 } else { 3216 pmd = pmd_offset(pud, addr); 3217 } 3218 do { 3219 next = pmd_addr_end(addr, end); 3220 if (pmd_none(*pmd) && !create) 3221 continue; 3222 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3223 return -EINVAL; 3224 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3225 if (!create) 3226 continue; 3227 pmd_clear_bad(pmd); 3228 } 3229 err = apply_to_pte_range(mm, pmd, addr, next, 3230 fn, data, create, mask); 3231 if (err) 3232 break; 3233 } while (pmd++, addr = next, addr != end); 3234 3235 return err; 3236} 3237 3238static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3239 unsigned long addr, unsigned long end, 3240 pte_fn_t fn, void *data, bool create, 3241 pgtbl_mod_mask *mask) 3242{ 3243 pud_t *pud; 3244 unsigned long next; 3245 int err = 0; 3246 3247 if (create) { 3248 pud = pud_alloc_track(mm, p4d, addr, mask); 3249 if (!pud) 3250 return -ENOMEM; 3251 } else { 3252 pud = pud_offset(p4d, addr); 3253 } 3254 do { 3255 next = pud_addr_end(addr, end); 3256 if (pud_none(*pud) && !create) 3257 continue; 3258 if (WARN_ON_ONCE(pud_leaf(*pud))) 3259 return -EINVAL; 3260 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3261 if (!create) 3262 continue; 3263 pud_clear_bad(pud); 3264 } 3265 err = apply_to_pmd_range(mm, pud, addr, next, 3266 fn, data, create, mask); 3267 if (err) 3268 break; 3269 } while (pud++, addr = next, addr != end); 3270 3271 return err; 3272} 3273 3274static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3275 unsigned long addr, unsigned long end, 3276 pte_fn_t fn, void *data, bool create, 3277 pgtbl_mod_mask *mask) 3278{ 3279 p4d_t *p4d; 3280 unsigned long next; 3281 int err = 0; 3282 3283 if (create) { 3284 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3285 if (!p4d) 3286 return -ENOMEM; 3287 } else { 3288 p4d = p4d_offset(pgd, addr); 3289 } 3290 do { 3291 next = p4d_addr_end(addr, end); 3292 if (p4d_none(*p4d) && !create) 3293 continue; 3294 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3295 return -EINVAL; 3296 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3297 if (!create) 3298 continue; 3299 p4d_clear_bad(p4d); 3300 } 3301 err = apply_to_pud_range(mm, p4d, addr, next, 3302 fn, data, create, mask); 3303 if (err) 3304 break; 3305 } while (p4d++, addr = next, addr != end); 3306 3307 return err; 3308} 3309 3310static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3311 unsigned long size, pte_fn_t fn, 3312 void *data, bool create) 3313{ 3314 pgd_t *pgd; 3315 unsigned long start = addr, next; 3316 unsigned long end = addr + size; 3317 pgtbl_mod_mask mask = 0; 3318 int err = 0; 3319 3320 if (WARN_ON(addr >= end)) 3321 return -EINVAL; 3322 3323 pgd = pgd_offset(mm, addr); 3324 do { 3325 next = pgd_addr_end(addr, end); 3326 if (pgd_none(*pgd) && !create) 3327 continue; 3328 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3329 err = -EINVAL; 3330 break; 3331 } 3332 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3333 if (!create) 3334 continue; 3335 pgd_clear_bad(pgd); 3336 } 3337 err = apply_to_p4d_range(mm, pgd, addr, next, 3338 fn, data, create, &mask); 3339 if (err) 3340 break; 3341 } while (pgd++, addr = next, addr != end); 3342 3343 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3344 arch_sync_kernel_mappings(start, start + size); 3345 3346 return err; 3347} 3348 3349/* 3350 * Scan a region of virtual memory, filling in page tables as necessary 3351 * and calling a provided function on each leaf page table. 3352 */ 3353int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3354 unsigned long size, pte_fn_t fn, void *data) 3355{ 3356 return __apply_to_page_range(mm, addr, size, fn, data, true); 3357} 3358EXPORT_SYMBOL_GPL(apply_to_page_range); 3359 3360/* 3361 * Scan a region of virtual memory, calling a provided function on 3362 * each leaf page table where it exists. 3363 * 3364 * Unlike apply_to_page_range, this does _not_ fill in page tables 3365 * where they are absent. 3366 */ 3367int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3368 unsigned long size, pte_fn_t fn, void *data) 3369{ 3370 return __apply_to_page_range(mm, addr, size, fn, data, false); 3371} 3372 3373/* 3374 * handle_pte_fault chooses page fault handler according to an entry which was 3375 * read non-atomically. Before making any commitment, on those architectures 3376 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3377 * parts, do_swap_page must check under lock before unmapping the pte and 3378 * proceeding (but do_wp_page is only called after already making such a check; 3379 * and do_anonymous_page can safely check later on). 3380 */ 3381static inline int pte_unmap_same(struct vm_fault *vmf) 3382{ 3383 int same = 1; 3384#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3385 if (sizeof(pte_t) > sizeof(unsigned long)) { 3386 spin_lock(vmf->ptl); 3387 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3388 spin_unlock(vmf->ptl); 3389 } 3390#endif 3391 pte_unmap(vmf->pte); 3392 vmf->pte = NULL; 3393 return same; 3394} 3395 3396/* 3397 * Return: 3398 * 0: copied succeeded 3399 * -EHWPOISON: copy failed due to hwpoison in source page 3400 * -EAGAIN: copied failed (some other reason) 3401 */ 3402static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3403 struct vm_fault *vmf) 3404{ 3405 int ret; 3406 void *kaddr; 3407 void __user *uaddr; 3408 struct vm_area_struct *vma = vmf->vma; 3409 struct mm_struct *mm = vma->vm_mm; 3410 unsigned long addr = vmf->address; 3411 3412 if (likely(src)) { 3413 if (copy_mc_user_highpage(dst, src, addr, vma)) 3414 return -EHWPOISON; 3415 return 0; 3416 } 3417 3418 /* 3419 * If the source page was a PFN mapping, we don't have 3420 * a "struct page" for it. We do a best-effort copy by 3421 * just copying from the original user address. If that 3422 * fails, we just zero-fill it. Live with it. 3423 */ 3424 kaddr = kmap_local_page(dst); 3425 pagefault_disable(); 3426 uaddr = (void __user *)(addr & PAGE_MASK); 3427 3428 /* 3429 * On architectures with software "accessed" bits, we would 3430 * take a double page fault, so mark it accessed here. 3431 */ 3432 vmf->pte = NULL; 3433 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3434 pte_t entry; 3435 3436 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3437 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3438 /* 3439 * Other thread has already handled the fault 3440 * and update local tlb only 3441 */ 3442 if (vmf->pte) 3443 update_mmu_tlb(vma, addr, vmf->pte); 3444 ret = -EAGAIN; 3445 goto pte_unlock; 3446 } 3447 3448 entry = pte_mkyoung(vmf->orig_pte); 3449 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3450 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3451 } 3452 3453 /* 3454 * This really shouldn't fail, because the page is there 3455 * in the page tables. But it might just be unreadable, 3456 * in which case we just give up and fill the result with 3457 * zeroes. 3458 */ 3459 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3460 if (vmf->pte) 3461 goto warn; 3462 3463 /* Re-validate under PTL if the page is still mapped */ 3464 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3465 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3466 /* The PTE changed under us, update local tlb */ 3467 if (vmf->pte) 3468 update_mmu_tlb(vma, addr, vmf->pte); 3469 ret = -EAGAIN; 3470 goto pte_unlock; 3471 } 3472 3473 /* 3474 * The same page can be mapped back since last copy attempt. 3475 * Try to copy again under PTL. 3476 */ 3477 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3478 /* 3479 * Give a warn in case there can be some obscure 3480 * use-case 3481 */ 3482warn: 3483 WARN_ON_ONCE(1); 3484 clear_page(kaddr); 3485 } 3486 } 3487 3488 ret = 0; 3489 3490pte_unlock: 3491 if (vmf->pte) 3492 pte_unmap_unlock(vmf->pte, vmf->ptl); 3493 pagefault_enable(); 3494 kunmap_local(kaddr); 3495 flush_dcache_page(dst); 3496 3497 return ret; 3498} 3499 3500static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3501{ 3502 struct file *vm_file = vma->vm_file; 3503 3504 if (vm_file) 3505 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3506 3507 /* 3508 * Special mappings (e.g. VDSO) do not have any file so fake 3509 * a default GFP_KERNEL for them. 3510 */ 3511 return GFP_KERNEL; 3512} 3513 3514/* 3515 * Notify the address space that the page is about to become writable so that 3516 * it can prohibit this or wait for the page to get into an appropriate state. 3517 * 3518 * We do this without the lock held, so that it can sleep if it needs to. 3519 */ 3520static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3521{ 3522 vm_fault_t ret; 3523 unsigned int old_flags = vmf->flags; 3524 3525 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3526 3527 if (vmf->vma->vm_file && 3528 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3529 return VM_FAULT_SIGBUS; 3530 3531 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3532 /* Restore original flags so that caller is not surprised */ 3533 vmf->flags = old_flags; 3534 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3535 return ret; 3536 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3537 folio_lock(folio); 3538 if (!folio->mapping) { 3539 folio_unlock(folio); 3540 return 0; /* retry */ 3541 } 3542 ret |= VM_FAULT_LOCKED; 3543 } else 3544 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3545 return ret; 3546} 3547 3548/* 3549 * Handle dirtying of a page in shared file mapping on a write fault. 3550 * 3551 * The function expects the page to be locked and unlocks it. 3552 */ 3553static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3554{ 3555 struct vm_area_struct *vma = vmf->vma; 3556 struct address_space *mapping; 3557 struct folio *folio = page_folio(vmf->page); 3558 bool dirtied; 3559 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3560 3561 dirtied = folio_mark_dirty(folio); 3562 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3563 /* 3564 * Take a local copy of the address_space - folio.mapping may be zeroed 3565 * by truncate after folio_unlock(). The address_space itself remains 3566 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3567 * release semantics to prevent the compiler from undoing this copying. 3568 */ 3569 mapping = folio_raw_mapping(folio); 3570 folio_unlock(folio); 3571 3572 if (!page_mkwrite) 3573 file_update_time(vma->vm_file); 3574 3575 /* 3576 * Throttle page dirtying rate down to writeback speed. 3577 * 3578 * mapping may be NULL here because some device drivers do not 3579 * set page.mapping but still dirty their pages 3580 * 3581 * Drop the mmap_lock before waiting on IO, if we can. The file 3582 * is pinning the mapping, as per above. 3583 */ 3584 if ((dirtied || page_mkwrite) && mapping) { 3585 struct file *fpin; 3586 3587 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3588 balance_dirty_pages_ratelimited(mapping); 3589 if (fpin) { 3590 fput(fpin); 3591 return VM_FAULT_COMPLETED; 3592 } 3593 } 3594 3595 return 0; 3596} 3597 3598/* 3599 * Handle write page faults for pages that can be reused in the current vma 3600 * 3601 * This can happen either due to the mapping being with the VM_SHARED flag, 3602 * or due to us being the last reference standing to the page. In either 3603 * case, all we need to do here is to mark the page as writable and update 3604 * any related book-keeping. 3605 */ 3606static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3607 __releases(vmf->ptl) 3608{ 3609 struct vm_area_struct *vma = vmf->vma; 3610 pte_t entry; 3611 3612 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3613 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3614 3615 if (folio) { 3616 VM_BUG_ON(folio_test_anon(folio) && 3617 !PageAnonExclusive(vmf->page)); 3618 /* 3619 * Clear the folio's cpupid information as the existing 3620 * information potentially belongs to a now completely 3621 * unrelated process. 3622 */ 3623 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3624 } 3625 3626 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3627 entry = pte_mkyoung(vmf->orig_pte); 3628 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3629 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3630 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3631 pte_unmap_unlock(vmf->pte, vmf->ptl); 3632 count_vm_event(PGREUSE); 3633} 3634 3635/* 3636 * We could add a bitflag somewhere, but for now, we know that all 3637 * vm_ops that have a ->map_pages have been audited and don't need 3638 * the mmap_lock to be held. 3639 */ 3640static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3641{ 3642 struct vm_area_struct *vma = vmf->vma; 3643 3644 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3645 return 0; 3646 vma_end_read(vma); 3647 return VM_FAULT_RETRY; 3648} 3649 3650/** 3651 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3652 * @vmf: The vm_fault descriptor passed from the fault handler. 3653 * 3654 * When preparing to insert an anonymous page into a VMA from a 3655 * fault handler, call this function rather than anon_vma_prepare(). 3656 * If this vma does not already have an associated anon_vma and we are 3657 * only protected by the per-VMA lock, the caller must retry with the 3658 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3659 * determine if this VMA can share its anon_vma, and that's not safe to 3660 * do with only the per-VMA lock held for this VMA. 3661 * 3662 * Return: 0 if fault handling can proceed. Any other value should be 3663 * returned to the caller. 3664 */ 3665vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3666{ 3667 struct vm_area_struct *vma = vmf->vma; 3668 vm_fault_t ret = 0; 3669 3670 if (likely(vma->anon_vma)) 3671 return 0; 3672 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3673 if (!mmap_read_trylock(vma->vm_mm)) 3674 return VM_FAULT_RETRY; 3675 } 3676 if (__anon_vma_prepare(vma)) 3677 ret = VM_FAULT_OOM; 3678 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3679 mmap_read_unlock(vma->vm_mm); 3680 return ret; 3681} 3682 3683/* 3684 * Handle the case of a page which we actually need to copy to a new page, 3685 * either due to COW or unsharing. 3686 * 3687 * Called with mmap_lock locked and the old page referenced, but 3688 * without the ptl held. 3689 * 3690 * High level logic flow: 3691 * 3692 * - Allocate a page, copy the content of the old page to the new one. 3693 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3694 * - Take the PTL. If the pte changed, bail out and release the allocated page 3695 * - If the pte is still the way we remember it, update the page table and all 3696 * relevant references. This includes dropping the reference the page-table 3697 * held to the old page, as well as updating the rmap. 3698 * - In any case, unlock the PTL and drop the reference we took to the old page. 3699 */ 3700static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3701{ 3702 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3703 struct vm_area_struct *vma = vmf->vma; 3704 struct mm_struct *mm = vma->vm_mm; 3705 struct folio *old_folio = NULL; 3706 struct folio *new_folio = NULL; 3707 pte_t entry; 3708 int page_copied = 0; 3709 struct mmu_notifier_range range; 3710 vm_fault_t ret; 3711 bool pfn_is_zero; 3712 3713 delayacct_wpcopy_start(); 3714 3715 if (vmf->page) 3716 old_folio = page_folio(vmf->page); 3717 ret = vmf_anon_prepare(vmf); 3718 if (unlikely(ret)) 3719 goto out; 3720 3721 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3722 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3723 if (!new_folio) 3724 goto oom; 3725 3726 if (!pfn_is_zero) { 3727 int err; 3728 3729 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3730 if (err) { 3731 /* 3732 * COW failed, if the fault was solved by other, 3733 * it's fine. If not, userspace would re-fault on 3734 * the same address and we will handle the fault 3735 * from the second attempt. 3736 * The -EHWPOISON case will not be retried. 3737 */ 3738 folio_put(new_folio); 3739 if (old_folio) 3740 folio_put(old_folio); 3741 3742 delayacct_wpcopy_end(); 3743 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3744 } 3745 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3746 } 3747 3748 __folio_mark_uptodate(new_folio); 3749 3750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3751 vmf->address & PAGE_MASK, 3752 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3753 mmu_notifier_invalidate_range_start(&range); 3754 3755 /* 3756 * Re-check the pte - we dropped the lock 3757 */ 3758 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3759 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3760 if (old_folio) { 3761 if (!folio_test_anon(old_folio)) { 3762 dec_mm_counter(mm, mm_counter_file(old_folio)); 3763 inc_mm_counter(mm, MM_ANONPAGES); 3764 } 3765 } else { 3766 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3767 inc_mm_counter(mm, MM_ANONPAGES); 3768 } 3769 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3770 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3771 entry = pte_sw_mkyoung(entry); 3772 if (unlikely(unshare)) { 3773 if (pte_soft_dirty(vmf->orig_pte)) 3774 entry = pte_mksoft_dirty(entry); 3775 if (pte_uffd_wp(vmf->orig_pte)) 3776 entry = pte_mkuffd_wp(entry); 3777 } else { 3778 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3779 } 3780 3781 /* 3782 * Clear the pte entry and flush it first, before updating the 3783 * pte with the new entry, to keep TLBs on different CPUs in 3784 * sync. This code used to set the new PTE then flush TLBs, but 3785 * that left a window where the new PTE could be loaded into 3786 * some TLBs while the old PTE remains in others. 3787 */ 3788 ptep_clear_flush(vma, vmf->address, vmf->pte); 3789 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3790 folio_add_lru_vma(new_folio, vma); 3791 BUG_ON(unshare && pte_write(entry)); 3792 set_pte_at(mm, vmf->address, vmf->pte, entry); 3793 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3794 if (old_folio) { 3795 /* 3796 * Only after switching the pte to the new page may 3797 * we remove the mapcount here. Otherwise another 3798 * process may come and find the rmap count decremented 3799 * before the pte is switched to the new page, and 3800 * "reuse" the old page writing into it while our pte 3801 * here still points into it and can be read by other 3802 * threads. 3803 * 3804 * The critical issue is to order this 3805 * folio_remove_rmap_pte() with the ptp_clear_flush 3806 * above. Those stores are ordered by (if nothing else,) 3807 * the barrier present in the atomic_add_negative 3808 * in folio_remove_rmap_pte(); 3809 * 3810 * Then the TLB flush in ptep_clear_flush ensures that 3811 * no process can access the old page before the 3812 * decremented mapcount is visible. And the old page 3813 * cannot be reused until after the decremented 3814 * mapcount is visible. So transitively, TLBs to 3815 * old page will be flushed before it can be reused. 3816 */ 3817 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3818 } 3819 3820 /* Free the old page.. */ 3821 new_folio = old_folio; 3822 page_copied = 1; 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 } else if (vmf->pte) { 3825 update_mmu_tlb(vma, vmf->address, vmf->pte); 3826 pte_unmap_unlock(vmf->pte, vmf->ptl); 3827 } 3828 3829 mmu_notifier_invalidate_range_end(&range); 3830 3831 if (new_folio) 3832 folio_put(new_folio); 3833 if (old_folio) { 3834 if (page_copied) 3835 free_swap_cache(old_folio); 3836 folio_put(old_folio); 3837 } 3838 3839 delayacct_wpcopy_end(); 3840 return 0; 3841oom: 3842 ret = VM_FAULT_OOM; 3843out: 3844 if (old_folio) 3845 folio_put(old_folio); 3846 3847 delayacct_wpcopy_end(); 3848 return ret; 3849} 3850 3851/** 3852 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3853 * writeable once the page is prepared 3854 * 3855 * @vmf: structure describing the fault 3856 * @folio: the folio of vmf->page 3857 * 3858 * This function handles all that is needed to finish a write page fault in a 3859 * shared mapping due to PTE being read-only once the mapped page is prepared. 3860 * It handles locking of PTE and modifying it. 3861 * 3862 * The function expects the page to be locked or other protection against 3863 * concurrent faults / writeback (such as DAX radix tree locks). 3864 * 3865 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3866 * we acquired PTE lock. 3867 */ 3868static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3869{ 3870 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3871 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3872 &vmf->ptl); 3873 if (!vmf->pte) 3874 return VM_FAULT_NOPAGE; 3875 /* 3876 * We might have raced with another page fault while we released the 3877 * pte_offset_map_lock. 3878 */ 3879 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3880 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3881 pte_unmap_unlock(vmf->pte, vmf->ptl); 3882 return VM_FAULT_NOPAGE; 3883 } 3884 wp_page_reuse(vmf, folio); 3885 return 0; 3886} 3887 3888/* 3889 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3890 * mapping 3891 */ 3892static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3893{ 3894 struct vm_area_struct *vma = vmf->vma; 3895 3896 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3897 vm_fault_t ret; 3898 3899 pte_unmap_unlock(vmf->pte, vmf->ptl); 3900 ret = vmf_can_call_fault(vmf); 3901 if (ret) 3902 return ret; 3903 3904 vmf->flags |= FAULT_FLAG_MKWRITE; 3905 ret = vma->vm_ops->pfn_mkwrite(vmf); 3906 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3907 return ret; 3908 return finish_mkwrite_fault(vmf, NULL); 3909 } 3910 wp_page_reuse(vmf, NULL); 3911 return 0; 3912} 3913 3914static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3915 __releases(vmf->ptl) 3916{ 3917 struct vm_area_struct *vma = vmf->vma; 3918 vm_fault_t ret = 0; 3919 3920 folio_get(folio); 3921 3922 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3923 vm_fault_t tmp; 3924 3925 pte_unmap_unlock(vmf->pte, vmf->ptl); 3926 tmp = vmf_can_call_fault(vmf); 3927 if (tmp) { 3928 folio_put(folio); 3929 return tmp; 3930 } 3931 3932 tmp = do_page_mkwrite(vmf, folio); 3933 if (unlikely(!tmp || (tmp & 3934 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3935 folio_put(folio); 3936 return tmp; 3937 } 3938 tmp = finish_mkwrite_fault(vmf, folio); 3939 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3940 folio_unlock(folio); 3941 folio_put(folio); 3942 return tmp; 3943 } 3944 } else { 3945 wp_page_reuse(vmf, folio); 3946 folio_lock(folio); 3947 } 3948 ret |= fault_dirty_shared_page(vmf); 3949 folio_put(folio); 3950 3951 return ret; 3952} 3953 3954#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3955static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3956 struct vm_area_struct *vma) 3957{ 3958 bool exclusive = false; 3959 3960 /* Let's just free up a large folio if only a single page is mapped. */ 3961 if (folio_large_mapcount(folio) <= 1) 3962 return false; 3963 3964 /* 3965 * The assumption for anonymous folios is that each page can only get 3966 * mapped once into each MM. The only exception are KSM folios, which 3967 * are always small. 3968 * 3969 * Each taken mapcount must be paired with exactly one taken reference, 3970 * whereby the refcount must be incremented before the mapcount when 3971 * mapping a page, and the refcount must be decremented after the 3972 * mapcount when unmapping a page. 3973 * 3974 * If all folio references are from mappings, and all mappings are in 3975 * the page tables of this MM, then this folio is exclusive to this MM. 3976 */ 3977 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3978 return false; 3979 3980 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3981 3982 if (unlikely(folio_test_swapcache(folio))) { 3983 /* 3984 * Note: freeing up the swapcache will fail if some PTEs are 3985 * still swap entries. 3986 */ 3987 if (!folio_trylock(folio)) 3988 return false; 3989 folio_free_swap(folio); 3990 folio_unlock(folio); 3991 } 3992 3993 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3994 return false; 3995 3996 /* Stabilize the mapcount vs. refcount and recheck. */ 3997 folio_lock_large_mapcount(folio); 3998 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3999 4000 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 4001 goto unlock; 4002 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4003 goto unlock; 4004 4005 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 4006 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 4007 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 4008 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 4009 4010 /* 4011 * Do we need the folio lock? Likely not. If there would have been 4012 * references from page migration/swapout, we would have detected 4013 * an additional folio reference and never ended up here. 4014 */ 4015 exclusive = true; 4016unlock: 4017 folio_unlock_large_mapcount(folio); 4018 return exclusive; 4019} 4020#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4021static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4022 struct vm_area_struct *vma) 4023{ 4024 BUILD_BUG(); 4025} 4026#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4027 4028static bool wp_can_reuse_anon_folio(struct folio *folio, 4029 struct vm_area_struct *vma) 4030{ 4031 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 4032 return __wp_can_reuse_large_anon_folio(folio, vma); 4033 4034 /* 4035 * We have to verify under folio lock: these early checks are 4036 * just an optimization to avoid locking the folio and freeing 4037 * the swapcache if there is little hope that we can reuse. 4038 * 4039 * KSM doesn't necessarily raise the folio refcount. 4040 */ 4041 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4042 return false; 4043 if (!folio_test_lru(folio)) 4044 /* 4045 * We cannot easily detect+handle references from 4046 * remote LRU caches or references to LRU folios. 4047 */ 4048 lru_add_drain(); 4049 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4050 return false; 4051 if (!folio_trylock(folio)) 4052 return false; 4053 if (folio_test_swapcache(folio)) 4054 folio_free_swap(folio); 4055 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4056 folio_unlock(folio); 4057 return false; 4058 } 4059 /* 4060 * Ok, we've got the only folio reference from our mapping 4061 * and the folio is locked, it's dark out, and we're wearing 4062 * sunglasses. Hit it. 4063 */ 4064 folio_move_anon_rmap(folio, vma); 4065 folio_unlock(folio); 4066 return true; 4067} 4068 4069/* 4070 * This routine handles present pages, when 4071 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4072 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4073 * (FAULT_FLAG_UNSHARE) 4074 * 4075 * It is done by copying the page to a new address and decrementing the 4076 * shared-page counter for the old page. 4077 * 4078 * Note that this routine assumes that the protection checks have been 4079 * done by the caller (the low-level page fault routine in most cases). 4080 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4081 * done any necessary COW. 4082 * 4083 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4084 * though the page will change only once the write actually happens. This 4085 * avoids a few races, and potentially makes it more efficient. 4086 * 4087 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4088 * but allow concurrent faults), with pte both mapped and locked. 4089 * We return with mmap_lock still held, but pte unmapped and unlocked. 4090 */ 4091static vm_fault_t do_wp_page(struct vm_fault *vmf) 4092 __releases(vmf->ptl) 4093{ 4094 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4095 struct vm_area_struct *vma = vmf->vma; 4096 struct folio *folio = NULL; 4097 pte_t pte; 4098 4099 if (likely(!unshare)) { 4100 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4101 if (!userfaultfd_wp_async(vma)) { 4102 pte_unmap_unlock(vmf->pte, vmf->ptl); 4103 return handle_userfault(vmf, VM_UFFD_WP); 4104 } 4105 4106 /* 4107 * Nothing needed (cache flush, TLB invalidations, 4108 * etc.) because we're only removing the uffd-wp bit, 4109 * which is completely invisible to the user. 4110 */ 4111 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4112 4113 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4114 /* 4115 * Update this to be prepared for following up CoW 4116 * handling 4117 */ 4118 vmf->orig_pte = pte; 4119 } 4120 4121 /* 4122 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4123 * is flushed in this case before copying. 4124 */ 4125 if (unlikely(userfaultfd_wp(vmf->vma) && 4126 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4127 flush_tlb_page(vmf->vma, vmf->address); 4128 } 4129 4130 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4131 4132 if (vmf->page) 4133 folio = page_folio(vmf->page); 4134 4135 /* 4136 * Shared mapping: we are guaranteed to have VM_WRITE and 4137 * FAULT_FLAG_WRITE set at this point. 4138 */ 4139 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4140 /* 4141 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4142 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4143 * 4144 * We should not cow pages in a shared writeable mapping. 4145 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4146 */ 4147 if (!vmf->page || is_fsdax_page(vmf->page)) { 4148 vmf->page = NULL; 4149 return wp_pfn_shared(vmf); 4150 } 4151 return wp_page_shared(vmf, folio); 4152 } 4153 4154 /* 4155 * Private mapping: create an exclusive anonymous page copy if reuse 4156 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4157 * 4158 * If we encounter a page that is marked exclusive, we must reuse 4159 * the page without further checks. 4160 */ 4161 if (folio && folio_test_anon(folio) && 4162 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4163 if (!PageAnonExclusive(vmf->page)) 4164 SetPageAnonExclusive(vmf->page); 4165 if (unlikely(unshare)) { 4166 pte_unmap_unlock(vmf->pte, vmf->ptl); 4167 return 0; 4168 } 4169 wp_page_reuse(vmf, folio); 4170 return 0; 4171 } 4172 /* 4173 * Ok, we need to copy. Oh, well.. 4174 */ 4175 if (folio) 4176 folio_get(folio); 4177 4178 pte_unmap_unlock(vmf->pte, vmf->ptl); 4179#ifdef CONFIG_KSM 4180 if (folio && folio_test_ksm(folio)) 4181 count_vm_event(COW_KSM); 4182#endif 4183 return wp_page_copy(vmf); 4184} 4185 4186static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4187 unsigned long start_addr, unsigned long end_addr, 4188 struct zap_details *details) 4189{ 4190 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4191} 4192 4193static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4194 pgoff_t first_index, 4195 pgoff_t last_index, 4196 struct zap_details *details) 4197{ 4198 struct vm_area_struct *vma; 4199 pgoff_t vba, vea, zba, zea; 4200 4201 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4202 vba = vma->vm_pgoff; 4203 vea = vba + vma_pages(vma) - 1; 4204 zba = max(first_index, vba); 4205 zea = min(last_index, vea); 4206 4207 unmap_mapping_range_vma(vma, 4208 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4209 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4210 details); 4211 } 4212} 4213 4214/** 4215 * unmap_mapping_folio() - Unmap single folio from processes. 4216 * @folio: The locked folio to be unmapped. 4217 * 4218 * Unmap this folio from any userspace process which still has it mmaped. 4219 * Typically, for efficiency, the range of nearby pages has already been 4220 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4221 * truncation or invalidation holds the lock on a folio, it may find that 4222 * the page has been remapped again: and then uses unmap_mapping_folio() 4223 * to unmap it finally. 4224 */ 4225void unmap_mapping_folio(struct folio *folio) 4226{ 4227 struct address_space *mapping = folio->mapping; 4228 struct zap_details details = { }; 4229 pgoff_t first_index; 4230 pgoff_t last_index; 4231 4232 VM_BUG_ON(!folio_test_locked(folio)); 4233 4234 first_index = folio->index; 4235 last_index = folio_next_index(folio) - 1; 4236 4237 details.even_cows = false; 4238 details.single_folio = folio; 4239 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4240 4241 i_mmap_lock_read(mapping); 4242 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4243 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4244 last_index, &details); 4245 i_mmap_unlock_read(mapping); 4246} 4247 4248/** 4249 * unmap_mapping_pages() - Unmap pages from processes. 4250 * @mapping: The address space containing pages to be unmapped. 4251 * @start: Index of first page to be unmapped. 4252 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4253 * @even_cows: Whether to unmap even private COWed pages. 4254 * 4255 * Unmap the pages in this address space from any userspace process which 4256 * has them mmaped. Generally, you want to remove COWed pages as well when 4257 * a file is being truncated, but not when invalidating pages from the page 4258 * cache. 4259 */ 4260void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4261 pgoff_t nr, bool even_cows) 4262{ 4263 struct zap_details details = { }; 4264 pgoff_t first_index = start; 4265 pgoff_t last_index = start + nr - 1; 4266 4267 details.even_cows = even_cows; 4268 if (last_index < first_index) 4269 last_index = ULONG_MAX; 4270 4271 i_mmap_lock_read(mapping); 4272 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4273 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4274 last_index, &details); 4275 i_mmap_unlock_read(mapping); 4276} 4277EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4278 4279/** 4280 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4281 * address_space corresponding to the specified byte range in the underlying 4282 * file. 4283 * 4284 * @mapping: the address space containing mmaps to be unmapped. 4285 * @holebegin: byte in first page to unmap, relative to the start of 4286 * the underlying file. This will be rounded down to a PAGE_SIZE 4287 * boundary. Note that this is different from truncate_pagecache(), which 4288 * must keep the partial page. In contrast, we must get rid of 4289 * partial pages. 4290 * @holelen: size of prospective hole in bytes. This will be rounded 4291 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4292 * end of the file. 4293 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4294 * but 0 when invalidating pagecache, don't throw away private data. 4295 */ 4296void unmap_mapping_range(struct address_space *mapping, 4297 loff_t const holebegin, loff_t const holelen, int even_cows) 4298{ 4299 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4300 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4301 4302 /* Check for overflow. */ 4303 if (sizeof(holelen) > sizeof(hlen)) { 4304 long long holeend = 4305 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4306 if (holeend & ~(long long)ULONG_MAX) 4307 hlen = ULONG_MAX - hba + 1; 4308 } 4309 4310 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4311} 4312EXPORT_SYMBOL(unmap_mapping_range); 4313 4314/* 4315 * Restore a potential device exclusive pte to a working pte entry 4316 */ 4317static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4318{ 4319 struct folio *folio = page_folio(vmf->page); 4320 struct vm_area_struct *vma = vmf->vma; 4321 struct mmu_notifier_range range; 4322 vm_fault_t ret; 4323 4324 /* 4325 * We need a reference to lock the folio because we don't hold 4326 * the PTL so a racing thread can remove the device-exclusive 4327 * entry and unmap it. If the folio is free the entry must 4328 * have been removed already. If it happens to have already 4329 * been re-allocated after being freed all we do is lock and 4330 * unlock it. 4331 */ 4332 if (!folio_try_get(folio)) 4333 return 0; 4334 4335 ret = folio_lock_or_retry(folio, vmf); 4336 if (ret) { 4337 folio_put(folio); 4338 return ret; 4339 } 4340 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4341 vma->vm_mm, vmf->address & PAGE_MASK, 4342 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4343 mmu_notifier_invalidate_range_start(&range); 4344 4345 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4346 &vmf->ptl); 4347 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4348 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4349 vmf->pte, vmf->orig_pte); 4350 4351 if (vmf->pte) 4352 pte_unmap_unlock(vmf->pte, vmf->ptl); 4353 folio_unlock(folio); 4354 folio_put(folio); 4355 4356 mmu_notifier_invalidate_range_end(&range); 4357 return 0; 4358} 4359 4360static inline bool should_try_to_free_swap(struct folio *folio, 4361 struct vm_area_struct *vma, 4362 unsigned int fault_flags) 4363{ 4364 if (!folio_test_swapcache(folio)) 4365 return false; 4366 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4367 folio_test_mlocked(folio)) 4368 return true; 4369 /* 4370 * If we want to map a page that's in the swapcache writable, we 4371 * have to detect via the refcount if we're really the exclusive 4372 * user. Try freeing the swapcache to get rid of the swapcache 4373 * reference only in case it's likely that we'll be the exclusive user. 4374 */ 4375 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4376 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4377} 4378 4379static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4380{ 4381 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4382 vmf->address, &vmf->ptl); 4383 if (!vmf->pte) 4384 return 0; 4385 /* 4386 * Be careful so that we will only recover a special uffd-wp pte into a 4387 * none pte. Otherwise it means the pte could have changed, so retry. 4388 * 4389 * This should also cover the case where e.g. the pte changed 4390 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4391 * So pte_is_marker() check is not enough to safely drop the pte. 4392 */ 4393 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4394 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4395 pte_unmap_unlock(vmf->pte, vmf->ptl); 4396 return 0; 4397} 4398 4399static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4400{ 4401 if (vma_is_anonymous(vmf->vma)) 4402 return do_anonymous_page(vmf); 4403 else 4404 return do_fault(vmf); 4405} 4406 4407/* 4408 * This is actually a page-missing access, but with uffd-wp special pte 4409 * installed. It means this pte was wr-protected before being unmapped. 4410 */ 4411static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4412{ 4413 /* 4414 * Just in case there're leftover special ptes even after the region 4415 * got unregistered - we can simply clear them. 4416 */ 4417 if (unlikely(!userfaultfd_wp(vmf->vma))) 4418 return pte_marker_clear(vmf); 4419 4420 return do_pte_missing(vmf); 4421} 4422 4423static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4424{ 4425 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte); 4426 const pte_marker marker = softleaf_to_marker(entry); 4427 4428 /* 4429 * PTE markers should never be empty. If anything weird happened, 4430 * the best thing to do is to kill the process along with its mm. 4431 */ 4432 if (WARN_ON_ONCE(!marker)) 4433 return VM_FAULT_SIGBUS; 4434 4435 /* Higher priority than uffd-wp when data corrupted */ 4436 if (marker & PTE_MARKER_POISONED) 4437 return VM_FAULT_HWPOISON; 4438 4439 /* Hitting a guard page is always a fatal condition. */ 4440 if (marker & PTE_MARKER_GUARD) 4441 return VM_FAULT_SIGSEGV; 4442 4443 if (softleaf_is_uffd_wp_marker(entry)) 4444 return pte_marker_handle_uffd_wp(vmf); 4445 4446 /* This is an unknown pte marker */ 4447 return VM_FAULT_SIGBUS; 4448} 4449 4450static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4451{ 4452 struct vm_area_struct *vma = vmf->vma; 4453 struct folio *folio; 4454 softleaf_t entry; 4455 4456 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4457 if (!folio) 4458 return NULL; 4459 4460 entry = softleaf_from_pte(vmf->orig_pte); 4461 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4462 GFP_KERNEL, entry)) { 4463 folio_put(folio); 4464 return NULL; 4465 } 4466 4467 return folio; 4468} 4469 4470#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4471/* 4472 * Check if the PTEs within a range are contiguous swap entries 4473 * and have consistent swapcache, zeromap. 4474 */ 4475static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4476{ 4477 unsigned long addr; 4478 softleaf_t entry; 4479 int idx; 4480 pte_t pte; 4481 4482 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4483 idx = (vmf->address - addr) / PAGE_SIZE; 4484 pte = ptep_get(ptep); 4485 4486 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4487 return false; 4488 entry = softleaf_from_pte(pte); 4489 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4490 return false; 4491 4492 /* 4493 * swap_read_folio() can't handle the case a large folio is hybridly 4494 * from different backends. And they are likely corner cases. Similar 4495 * things might be added once zswap support large folios. 4496 */ 4497 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4498 return false; 4499 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4500 return false; 4501 4502 return true; 4503} 4504 4505static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4506 unsigned long addr, 4507 unsigned long orders) 4508{ 4509 int order, nr; 4510 4511 order = highest_order(orders); 4512 4513 /* 4514 * To swap in a THP with nr pages, we require that its first swap_offset 4515 * is aligned with that number, as it was when the THP was swapped out. 4516 * This helps filter out most invalid entries. 4517 */ 4518 while (orders) { 4519 nr = 1 << order; 4520 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4521 break; 4522 order = next_order(&orders, order); 4523 } 4524 4525 return orders; 4526} 4527 4528static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4529{ 4530 struct vm_area_struct *vma = vmf->vma; 4531 unsigned long orders; 4532 struct folio *folio; 4533 unsigned long addr; 4534 softleaf_t entry; 4535 spinlock_t *ptl; 4536 pte_t *pte; 4537 gfp_t gfp; 4538 int order; 4539 4540 /* 4541 * If uffd is active for the vma we need per-page fault fidelity to 4542 * maintain the uffd semantics. 4543 */ 4544 if (unlikely(userfaultfd_armed(vma))) 4545 goto fallback; 4546 4547 /* 4548 * A large swapped out folio could be partially or fully in zswap. We 4549 * lack handling for such cases, so fallback to swapping in order-0 4550 * folio. 4551 */ 4552 if (!zswap_never_enabled()) 4553 goto fallback; 4554 4555 entry = softleaf_from_pte(vmf->orig_pte); 4556 /* 4557 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4558 * and suitable for swapping THP. 4559 */ 4560 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4561 BIT(PMD_ORDER) - 1); 4562 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4563 orders = thp_swap_suitable_orders(swp_offset(entry), 4564 vmf->address, orders); 4565 4566 if (!orders) 4567 goto fallback; 4568 4569 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4570 vmf->address & PMD_MASK, &ptl); 4571 if (unlikely(!pte)) 4572 goto fallback; 4573 4574 /* 4575 * For do_swap_page, find the highest order where the aligned range is 4576 * completely swap entries with contiguous swap offsets. 4577 */ 4578 order = highest_order(orders); 4579 while (orders) { 4580 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4581 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4582 break; 4583 order = next_order(&orders, order); 4584 } 4585 4586 pte_unmap_unlock(pte, ptl); 4587 4588 /* Try allocating the highest of the remaining orders. */ 4589 gfp = vma_thp_gfp_mask(vma); 4590 while (orders) { 4591 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4592 folio = vma_alloc_folio(gfp, order, vma, addr); 4593 if (folio) { 4594 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4595 gfp, entry)) 4596 return folio; 4597 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4598 folio_put(folio); 4599 } 4600 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4601 order = next_order(&orders, order); 4602 } 4603 4604fallback: 4605 return __alloc_swap_folio(vmf); 4606} 4607#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4608static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4609{ 4610 return __alloc_swap_folio(vmf); 4611} 4612#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4613 4614static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4615 4616/* 4617 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4618 * but allow concurrent faults), and pte mapped but not yet locked. 4619 * We return with pte unmapped and unlocked. 4620 * 4621 * We return with the mmap_lock locked or unlocked in the same cases 4622 * as does filemap_fault(). 4623 */ 4624vm_fault_t do_swap_page(struct vm_fault *vmf) 4625{ 4626 struct vm_area_struct *vma = vmf->vma; 4627 struct folio *swapcache, *folio = NULL; 4628 DECLARE_WAITQUEUE(wait, current); 4629 struct page *page; 4630 struct swap_info_struct *si = NULL; 4631 rmap_t rmap_flags = RMAP_NONE; 4632 bool need_clear_cache = false; 4633 bool exclusive = false; 4634 softleaf_t entry; 4635 pte_t pte; 4636 vm_fault_t ret = 0; 4637 void *shadow = NULL; 4638 int nr_pages; 4639 unsigned long page_idx; 4640 unsigned long address; 4641 pte_t *ptep; 4642 4643 if (!pte_unmap_same(vmf)) 4644 goto out; 4645 4646 entry = softleaf_from_pte(vmf->orig_pte); 4647 if (unlikely(!softleaf_is_swap(entry))) { 4648 if (softleaf_is_migration(entry)) { 4649 migration_entry_wait(vma->vm_mm, vmf->pmd, 4650 vmf->address); 4651 } else if (softleaf_is_device_exclusive(entry)) { 4652 vmf->page = softleaf_to_page(entry); 4653 ret = remove_device_exclusive_entry(vmf); 4654 } else if (softleaf_is_device_private(entry)) { 4655 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4656 /* 4657 * migrate_to_ram is not yet ready to operate 4658 * under VMA lock. 4659 */ 4660 vma_end_read(vma); 4661 ret = VM_FAULT_RETRY; 4662 goto out; 4663 } 4664 4665 vmf->page = softleaf_to_page(entry); 4666 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4667 vmf->address, &vmf->ptl); 4668 if (unlikely(!vmf->pte || 4669 !pte_same(ptep_get(vmf->pte), 4670 vmf->orig_pte))) 4671 goto unlock; 4672 4673 /* 4674 * Get a page reference while we know the page can't be 4675 * freed. 4676 */ 4677 if (trylock_page(vmf->page)) { 4678 struct dev_pagemap *pgmap; 4679 4680 get_page(vmf->page); 4681 pte_unmap_unlock(vmf->pte, vmf->ptl); 4682 pgmap = page_pgmap(vmf->page); 4683 ret = pgmap->ops->migrate_to_ram(vmf); 4684 unlock_page(vmf->page); 4685 put_page(vmf->page); 4686 } else { 4687 pte_unmap_unlock(vmf->pte, vmf->ptl); 4688 } 4689 } else if (softleaf_is_hwpoison(entry)) { 4690 ret = VM_FAULT_HWPOISON; 4691 } else if (softleaf_is_marker(entry)) { 4692 ret = handle_pte_marker(vmf); 4693 } else { 4694 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4695 ret = VM_FAULT_SIGBUS; 4696 } 4697 goto out; 4698 } 4699 4700 /* Prevent swapoff from happening to us. */ 4701 si = get_swap_device(entry); 4702 if (unlikely(!si)) 4703 goto out; 4704 4705 folio = swap_cache_get_folio(entry); 4706 if (folio) 4707 swap_update_readahead(folio, vma, vmf->address); 4708 swapcache = folio; 4709 4710 if (!folio) { 4711 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4712 __swap_count(entry) == 1) { 4713 /* skip swapcache */ 4714 folio = alloc_swap_folio(vmf); 4715 if (folio) { 4716 __folio_set_locked(folio); 4717 __folio_set_swapbacked(folio); 4718 4719 nr_pages = folio_nr_pages(folio); 4720 if (folio_test_large(folio)) 4721 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4722 /* 4723 * Prevent parallel swapin from proceeding with 4724 * the cache flag. Otherwise, another thread 4725 * may finish swapin first, free the entry, and 4726 * swapout reusing the same entry. It's 4727 * undetectable as pte_same() returns true due 4728 * to entry reuse. 4729 */ 4730 if (swapcache_prepare(entry, nr_pages)) { 4731 /* 4732 * Relax a bit to prevent rapid 4733 * repeated page faults. 4734 */ 4735 add_wait_queue(&swapcache_wq, &wait); 4736 schedule_timeout_uninterruptible(1); 4737 remove_wait_queue(&swapcache_wq, &wait); 4738 goto out_page; 4739 } 4740 need_clear_cache = true; 4741 4742 memcg1_swapin(entry, nr_pages); 4743 4744 shadow = swap_cache_get_shadow(entry); 4745 if (shadow) 4746 workingset_refault(folio, shadow); 4747 4748 folio_add_lru(folio); 4749 4750 /* To provide entry to swap_read_folio() */ 4751 folio->swap = entry; 4752 swap_read_folio(folio, NULL); 4753 folio->private = NULL; 4754 } 4755 } else { 4756 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4757 vmf); 4758 swapcache = folio; 4759 } 4760 4761 if (!folio) { 4762 /* 4763 * Back out if somebody else faulted in this pte 4764 * while we released the pte lock. 4765 */ 4766 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4767 vmf->address, &vmf->ptl); 4768 if (likely(vmf->pte && 4769 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4770 ret = VM_FAULT_OOM; 4771 goto unlock; 4772 } 4773 4774 /* Had to read the page from swap area: Major fault */ 4775 ret = VM_FAULT_MAJOR; 4776 count_vm_event(PGMAJFAULT); 4777 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4778 } 4779 4780 ret |= folio_lock_or_retry(folio, vmf); 4781 if (ret & VM_FAULT_RETRY) 4782 goto out_release; 4783 4784 page = folio_file_page(folio, swp_offset(entry)); 4785 if (swapcache) { 4786 /* 4787 * Make sure folio_free_swap() or swapoff did not release the 4788 * swapcache from under us. The page pin, and pte_same test 4789 * below, are not enough to exclude that. Even if it is still 4790 * swapcache, we need to check that the page's swap has not 4791 * changed. 4792 */ 4793 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4794 goto out_page; 4795 4796 if (unlikely(PageHWPoison(page))) { 4797 /* 4798 * hwpoisoned dirty swapcache pages are kept for killing 4799 * owner processes (which may be unknown at hwpoison time) 4800 */ 4801 ret = VM_FAULT_HWPOISON; 4802 goto out_page; 4803 } 4804 4805 /* 4806 * KSM sometimes has to copy on read faults, for example, if 4807 * folio->index of non-ksm folios would be nonlinear inside the 4808 * anon VMA -- the ksm flag is lost on actual swapout. 4809 */ 4810 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4811 if (unlikely(!folio)) { 4812 ret = VM_FAULT_OOM; 4813 folio = swapcache; 4814 goto out_page; 4815 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4816 ret = VM_FAULT_HWPOISON; 4817 folio = swapcache; 4818 goto out_page; 4819 } 4820 if (folio != swapcache) 4821 page = folio_page(folio, 0); 4822 4823 /* 4824 * If we want to map a page that's in the swapcache writable, we 4825 * have to detect via the refcount if we're really the exclusive 4826 * owner. Try removing the extra reference from the local LRU 4827 * caches if required. 4828 */ 4829 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4830 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4831 lru_add_drain(); 4832 } 4833 4834 folio_throttle_swaprate(folio, GFP_KERNEL); 4835 4836 /* 4837 * Back out if somebody else already faulted in this pte. 4838 */ 4839 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4840 &vmf->ptl); 4841 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4842 goto out_nomap; 4843 4844 if (unlikely(!folio_test_uptodate(folio))) { 4845 ret = VM_FAULT_SIGBUS; 4846 goto out_nomap; 4847 } 4848 4849 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4850 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4851 unsigned long nr = folio_nr_pages(folio); 4852 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4853 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4854 pte_t *folio_ptep = vmf->pte - idx; 4855 pte_t folio_pte = ptep_get(folio_ptep); 4856 4857 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4858 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4859 goto out_nomap; 4860 4861 page_idx = idx; 4862 address = folio_start; 4863 ptep = folio_ptep; 4864 goto check_folio; 4865 } 4866 4867 nr_pages = 1; 4868 page_idx = 0; 4869 address = vmf->address; 4870 ptep = vmf->pte; 4871 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4872 int nr = folio_nr_pages(folio); 4873 unsigned long idx = folio_page_idx(folio, page); 4874 unsigned long folio_start = address - idx * PAGE_SIZE; 4875 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4876 pte_t *folio_ptep; 4877 pte_t folio_pte; 4878 4879 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4880 goto check_folio; 4881 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4882 goto check_folio; 4883 4884 folio_ptep = vmf->pte - idx; 4885 folio_pte = ptep_get(folio_ptep); 4886 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4887 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4888 goto check_folio; 4889 4890 page_idx = idx; 4891 address = folio_start; 4892 ptep = folio_ptep; 4893 nr_pages = nr; 4894 entry = folio->swap; 4895 page = &folio->page; 4896 } 4897 4898check_folio: 4899 /* 4900 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4901 * must never point at an anonymous page in the swapcache that is 4902 * PG_anon_exclusive. Sanity check that this holds and especially, that 4903 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4904 * check after taking the PT lock and making sure that nobody 4905 * concurrently faulted in this page and set PG_anon_exclusive. 4906 */ 4907 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4908 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4909 4910 /* 4911 * Check under PT lock (to protect against concurrent fork() sharing 4912 * the swap entry concurrently) for certainly exclusive pages. 4913 */ 4914 if (!folio_test_ksm(folio)) { 4915 exclusive = pte_swp_exclusive(vmf->orig_pte); 4916 if (folio != swapcache) { 4917 /* 4918 * We have a fresh page that is not exposed to the 4919 * swapcache -> certainly exclusive. 4920 */ 4921 exclusive = true; 4922 } else if (exclusive && folio_test_writeback(folio) && 4923 data_race(si->flags & SWP_STABLE_WRITES)) { 4924 /* 4925 * This is tricky: not all swap backends support 4926 * concurrent page modifications while under writeback. 4927 * 4928 * So if we stumble over such a page in the swapcache 4929 * we must not set the page exclusive, otherwise we can 4930 * map it writable without further checks and modify it 4931 * while still under writeback. 4932 * 4933 * For these problematic swap backends, simply drop the 4934 * exclusive marker: this is perfectly fine as we start 4935 * writeback only if we fully unmapped the page and 4936 * there are no unexpected references on the page after 4937 * unmapping succeeded. After fully unmapped, no 4938 * further GUP references (FOLL_GET and FOLL_PIN) can 4939 * appear, so dropping the exclusive marker and mapping 4940 * it only R/O is fine. 4941 */ 4942 exclusive = false; 4943 } 4944 } 4945 4946 /* 4947 * Some architectures may have to restore extra metadata to the page 4948 * when reading from swap. This metadata may be indexed by swap entry 4949 * so this must be called before swap_free(). 4950 */ 4951 arch_swap_restore(folio_swap(entry, folio), folio); 4952 4953 /* 4954 * Remove the swap entry and conditionally try to free up the swapcache. 4955 * We're already holding a reference on the page but haven't mapped it 4956 * yet. 4957 */ 4958 swap_free_nr(entry, nr_pages); 4959 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4960 folio_free_swap(folio); 4961 4962 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4963 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4964 pte = mk_pte(page, vma->vm_page_prot); 4965 if (pte_swp_soft_dirty(vmf->orig_pte)) 4966 pte = pte_mksoft_dirty(pte); 4967 if (pte_swp_uffd_wp(vmf->orig_pte)) 4968 pte = pte_mkuffd_wp(pte); 4969 4970 /* 4971 * Same logic as in do_wp_page(); however, optimize for pages that are 4972 * certainly not shared either because we just allocated them without 4973 * exposing them to the swapcache or because the swap entry indicates 4974 * exclusivity. 4975 */ 4976 if (!folio_test_ksm(folio) && 4977 (exclusive || folio_ref_count(folio) == 1)) { 4978 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4979 !pte_needs_soft_dirty_wp(vma, pte)) { 4980 pte = pte_mkwrite(pte, vma); 4981 if (vmf->flags & FAULT_FLAG_WRITE) { 4982 pte = pte_mkdirty(pte); 4983 vmf->flags &= ~FAULT_FLAG_WRITE; 4984 } 4985 } 4986 rmap_flags |= RMAP_EXCLUSIVE; 4987 } 4988 folio_ref_add(folio, nr_pages - 1); 4989 flush_icache_pages(vma, page, nr_pages); 4990 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4991 4992 /* ksm created a completely new copy */ 4993 if (unlikely(folio != swapcache && swapcache)) { 4994 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4995 folio_add_lru_vma(folio, vma); 4996 } else if (!folio_test_anon(folio)) { 4997 /* 4998 * We currently only expect small !anon folios which are either 4999 * fully exclusive or fully shared, or new allocated large 5000 * folios which are fully exclusive. If we ever get large 5001 * folios within swapcache here, we have to be careful. 5002 */ 5003 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 5004 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 5005 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 5006 } else { 5007 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 5008 rmap_flags); 5009 } 5010 5011 VM_BUG_ON(!folio_test_anon(folio) || 5012 (pte_write(pte) && !PageAnonExclusive(page))); 5013 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 5014 arch_do_swap_page_nr(vma->vm_mm, vma, address, 5015 pte, pte, nr_pages); 5016 5017 folio_unlock(folio); 5018 if (folio != swapcache && swapcache) { 5019 /* 5020 * Hold the lock to avoid the swap entry to be reused 5021 * until we take the PT lock for the pte_same() check 5022 * (to avoid false positives from pte_same). For 5023 * further safety release the lock after the swap_free 5024 * so that the swap count won't change under a 5025 * parallel locked swapcache. 5026 */ 5027 folio_unlock(swapcache); 5028 folio_put(swapcache); 5029 } 5030 5031 if (vmf->flags & FAULT_FLAG_WRITE) { 5032 ret |= do_wp_page(vmf); 5033 if (ret & VM_FAULT_ERROR) 5034 ret &= VM_FAULT_ERROR; 5035 goto out; 5036 } 5037 5038 /* No need to invalidate - it was non-present before */ 5039 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 5040unlock: 5041 if (vmf->pte) 5042 pte_unmap_unlock(vmf->pte, vmf->ptl); 5043out: 5044 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5045 if (need_clear_cache) { 5046 swapcache_clear(si, entry, nr_pages); 5047 if (waitqueue_active(&swapcache_wq)) 5048 wake_up(&swapcache_wq); 5049 } 5050 if (si) 5051 put_swap_device(si); 5052 return ret; 5053out_nomap: 5054 if (vmf->pte) 5055 pte_unmap_unlock(vmf->pte, vmf->ptl); 5056out_page: 5057 folio_unlock(folio); 5058out_release: 5059 folio_put(folio); 5060 if (folio != swapcache && swapcache) { 5061 folio_unlock(swapcache); 5062 folio_put(swapcache); 5063 } 5064 if (need_clear_cache) { 5065 swapcache_clear(si, entry, nr_pages); 5066 if (waitqueue_active(&swapcache_wq)) 5067 wake_up(&swapcache_wq); 5068 } 5069 if (si) 5070 put_swap_device(si); 5071 return ret; 5072} 5073 5074static bool pte_range_none(pte_t *pte, int nr_pages) 5075{ 5076 int i; 5077 5078 for (i = 0; i < nr_pages; i++) { 5079 if (!pte_none(ptep_get_lockless(pte + i))) 5080 return false; 5081 } 5082 5083 return true; 5084} 5085 5086static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5087{ 5088 struct vm_area_struct *vma = vmf->vma; 5089#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5090 unsigned long orders; 5091 struct folio *folio; 5092 unsigned long addr; 5093 pte_t *pte; 5094 gfp_t gfp; 5095 int order; 5096 5097 /* 5098 * If uffd is active for the vma we need per-page fault fidelity to 5099 * maintain the uffd semantics. 5100 */ 5101 if (unlikely(userfaultfd_armed(vma))) 5102 goto fallback; 5103 5104 /* 5105 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5106 * for this vma. Then filter out the orders that can't be allocated over 5107 * the faulting address and still be fully contained in the vma. 5108 */ 5109 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5110 BIT(PMD_ORDER) - 1); 5111 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5112 5113 if (!orders) 5114 goto fallback; 5115 5116 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5117 if (!pte) 5118 return ERR_PTR(-EAGAIN); 5119 5120 /* 5121 * Find the highest order where the aligned range is completely 5122 * pte_none(). Note that all remaining orders will be completely 5123 * pte_none(). 5124 */ 5125 order = highest_order(orders); 5126 while (orders) { 5127 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5128 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5129 break; 5130 order = next_order(&orders, order); 5131 } 5132 5133 pte_unmap(pte); 5134 5135 if (!orders) 5136 goto fallback; 5137 5138 /* Try allocating the highest of the remaining orders. */ 5139 gfp = vma_thp_gfp_mask(vma); 5140 while (orders) { 5141 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5142 folio = vma_alloc_folio(gfp, order, vma, addr); 5143 if (folio) { 5144 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5145 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5146 folio_put(folio); 5147 goto next; 5148 } 5149 folio_throttle_swaprate(folio, gfp); 5150 /* 5151 * When a folio is not zeroed during allocation 5152 * (__GFP_ZERO not used) or user folios require special 5153 * handling, folio_zero_user() is used to make sure 5154 * that the page corresponding to the faulting address 5155 * will be hot in the cache after zeroing. 5156 */ 5157 if (user_alloc_needs_zeroing()) 5158 folio_zero_user(folio, vmf->address); 5159 return folio; 5160 } 5161next: 5162 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5163 order = next_order(&orders, order); 5164 } 5165 5166fallback: 5167#endif 5168 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5169} 5170 5171/* 5172 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5173 * but allow concurrent faults), and pte mapped but not yet locked. 5174 * We return with mmap_lock still held, but pte unmapped and unlocked. 5175 */ 5176static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5177{ 5178 struct vm_area_struct *vma = vmf->vma; 5179 unsigned long addr = vmf->address; 5180 struct folio *folio; 5181 vm_fault_t ret = 0; 5182 int nr_pages = 1; 5183 pte_t entry; 5184 5185 /* File mapping without ->vm_ops ? */ 5186 if (vma->vm_flags & VM_SHARED) 5187 return VM_FAULT_SIGBUS; 5188 5189 /* 5190 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5191 * be distinguished from a transient failure of pte_offset_map(). 5192 */ 5193 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5194 return VM_FAULT_OOM; 5195 5196 /* Use the zero-page for reads */ 5197 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5198 !mm_forbids_zeropage(vma->vm_mm)) { 5199 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5200 vma->vm_page_prot)); 5201 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5202 vmf->address, &vmf->ptl); 5203 if (!vmf->pte) 5204 goto unlock; 5205 if (vmf_pte_changed(vmf)) { 5206 update_mmu_tlb(vma, vmf->address, vmf->pte); 5207 goto unlock; 5208 } 5209 ret = check_stable_address_space(vma->vm_mm); 5210 if (ret) 5211 goto unlock; 5212 /* Deliver the page fault to userland, check inside PT lock */ 5213 if (userfaultfd_missing(vma)) { 5214 pte_unmap_unlock(vmf->pte, vmf->ptl); 5215 return handle_userfault(vmf, VM_UFFD_MISSING); 5216 } 5217 goto setpte; 5218 } 5219 5220 /* Allocate our own private page. */ 5221 ret = vmf_anon_prepare(vmf); 5222 if (ret) 5223 return ret; 5224 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5225 folio = alloc_anon_folio(vmf); 5226 if (IS_ERR(folio)) 5227 return 0; 5228 if (!folio) 5229 goto oom; 5230 5231 nr_pages = folio_nr_pages(folio); 5232 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5233 5234 /* 5235 * The memory barrier inside __folio_mark_uptodate makes sure that 5236 * preceding stores to the page contents become visible before 5237 * the set_pte_at() write. 5238 */ 5239 __folio_mark_uptodate(folio); 5240 5241 entry = folio_mk_pte(folio, vma->vm_page_prot); 5242 entry = pte_sw_mkyoung(entry); 5243 if (vma->vm_flags & VM_WRITE) 5244 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5245 5246 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5247 if (!vmf->pte) 5248 goto release; 5249 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5250 update_mmu_tlb(vma, addr, vmf->pte); 5251 goto release; 5252 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5253 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5254 goto release; 5255 } 5256 5257 ret = check_stable_address_space(vma->vm_mm); 5258 if (ret) 5259 goto release; 5260 5261 /* Deliver the page fault to userland, check inside PT lock */ 5262 if (userfaultfd_missing(vma)) { 5263 pte_unmap_unlock(vmf->pte, vmf->ptl); 5264 folio_put(folio); 5265 return handle_userfault(vmf, VM_UFFD_MISSING); 5266 } 5267 5268 folio_ref_add(folio, nr_pages - 1); 5269 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5270 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5271 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5272 folio_add_lru_vma(folio, vma); 5273setpte: 5274 if (vmf_orig_pte_uffd_wp(vmf)) 5275 entry = pte_mkuffd_wp(entry); 5276 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5277 5278 /* No need to invalidate - it was non-present before */ 5279 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5280unlock: 5281 if (vmf->pte) 5282 pte_unmap_unlock(vmf->pte, vmf->ptl); 5283 return ret; 5284release: 5285 folio_put(folio); 5286 goto unlock; 5287oom: 5288 return VM_FAULT_OOM; 5289} 5290 5291/* 5292 * The mmap_lock must have been held on entry, and may have been 5293 * released depending on flags and vma->vm_ops->fault() return value. 5294 * See filemap_fault() and __lock_page_retry(). 5295 */ 5296static vm_fault_t __do_fault(struct vm_fault *vmf) 5297{ 5298 struct vm_area_struct *vma = vmf->vma; 5299 struct folio *folio; 5300 vm_fault_t ret; 5301 5302 /* 5303 * Preallocate pte before we take page_lock because this might lead to 5304 * deadlocks for memcg reclaim which waits for pages under writeback: 5305 * lock_page(A) 5306 * SetPageWriteback(A) 5307 * unlock_page(A) 5308 * lock_page(B) 5309 * lock_page(B) 5310 * pte_alloc_one 5311 * shrink_folio_list 5312 * wait_on_page_writeback(A) 5313 * SetPageWriteback(B) 5314 * unlock_page(B) 5315 * # flush A, B to clear the writeback 5316 */ 5317 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5318 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5319 if (!vmf->prealloc_pte) 5320 return VM_FAULT_OOM; 5321 } 5322 5323 ret = vma->vm_ops->fault(vmf); 5324 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5325 VM_FAULT_DONE_COW))) 5326 return ret; 5327 5328 folio = page_folio(vmf->page); 5329 if (unlikely(PageHWPoison(vmf->page))) { 5330 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5331 if (ret & VM_FAULT_LOCKED) { 5332 if (page_mapped(vmf->page)) 5333 unmap_mapping_folio(folio); 5334 /* Retry if a clean folio was removed from the cache. */ 5335 if (mapping_evict_folio(folio->mapping, folio)) 5336 poisonret = VM_FAULT_NOPAGE; 5337 folio_unlock(folio); 5338 } 5339 folio_put(folio); 5340 vmf->page = NULL; 5341 return poisonret; 5342 } 5343 5344 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5345 folio_lock(folio); 5346 else 5347 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5348 5349 return ret; 5350} 5351 5352#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5353static void deposit_prealloc_pte(struct vm_fault *vmf) 5354{ 5355 struct vm_area_struct *vma = vmf->vma; 5356 5357 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5358 /* 5359 * We are going to consume the prealloc table, 5360 * count that as nr_ptes. 5361 */ 5362 mm_inc_nr_ptes(vma->vm_mm); 5363 vmf->prealloc_pte = NULL; 5364} 5365 5366vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5367{ 5368 struct vm_area_struct *vma = vmf->vma; 5369 bool write = vmf->flags & FAULT_FLAG_WRITE; 5370 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5371 pmd_t entry; 5372 vm_fault_t ret = VM_FAULT_FALLBACK; 5373 5374 /* 5375 * It is too late to allocate a small folio, we already have a large 5376 * folio in the pagecache: especially s390 KVM cannot tolerate any 5377 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5378 * PMD mappings if THPs are disabled. As we already have a THP, 5379 * behave as if we are forcing a collapse. 5380 */ 5381 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5382 /* forced_collapse=*/ true)) 5383 return ret; 5384 5385 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5386 return ret; 5387 5388 if (folio_order(folio) != HPAGE_PMD_ORDER) 5389 return ret; 5390 page = &folio->page; 5391 5392 /* 5393 * Just backoff if any subpage of a THP is corrupted otherwise 5394 * the corrupted page may mapped by PMD silently to escape the 5395 * check. This kind of THP just can be PTE mapped. Access to 5396 * the corrupted subpage should trigger SIGBUS as expected. 5397 */ 5398 if (unlikely(folio_test_has_hwpoisoned(folio))) 5399 return ret; 5400 5401 /* 5402 * Archs like ppc64 need additional space to store information 5403 * related to pte entry. Use the preallocated table for that. 5404 */ 5405 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5406 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5407 if (!vmf->prealloc_pte) 5408 return VM_FAULT_OOM; 5409 } 5410 5411 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5412 if (unlikely(!pmd_none(*vmf->pmd))) 5413 goto out; 5414 5415 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5416 5417 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5418 if (write) 5419 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5420 5421 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5422 folio_add_file_rmap_pmd(folio, page, vma); 5423 5424 /* 5425 * deposit and withdraw with pmd lock held 5426 */ 5427 if (arch_needs_pgtable_deposit()) 5428 deposit_prealloc_pte(vmf); 5429 5430 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5431 5432 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5433 5434 /* fault is handled */ 5435 ret = 0; 5436 count_vm_event(THP_FILE_MAPPED); 5437out: 5438 spin_unlock(vmf->ptl); 5439 return ret; 5440} 5441#else 5442vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5443{ 5444 return VM_FAULT_FALLBACK; 5445} 5446#endif 5447 5448/** 5449 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5450 * @vmf: Fault description. 5451 * @folio: The folio that contains @page. 5452 * @page: The first page to create a PTE for. 5453 * @nr: The number of PTEs to create. 5454 * @addr: The first address to create a PTE for. 5455 */ 5456void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5457 struct page *page, unsigned int nr, unsigned long addr) 5458{ 5459 struct vm_area_struct *vma = vmf->vma; 5460 bool write = vmf->flags & FAULT_FLAG_WRITE; 5461 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5462 pte_t entry; 5463 5464 flush_icache_pages(vma, page, nr); 5465 entry = mk_pte(page, vma->vm_page_prot); 5466 5467 if (prefault && arch_wants_old_prefaulted_pte()) 5468 entry = pte_mkold(entry); 5469 else 5470 entry = pte_sw_mkyoung(entry); 5471 5472 if (write) 5473 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5474 else if (pte_write(entry) && folio_test_dirty(folio)) 5475 entry = pte_mkdirty(entry); 5476 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5477 entry = pte_mkuffd_wp(entry); 5478 /* copy-on-write page */ 5479 if (write && !(vma->vm_flags & VM_SHARED)) { 5480 VM_BUG_ON_FOLIO(nr != 1, folio); 5481 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5482 folio_add_lru_vma(folio, vma); 5483 } else { 5484 folio_add_file_rmap_ptes(folio, page, nr, vma); 5485 } 5486 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5487 5488 /* no need to invalidate: a not-present page won't be cached */ 5489 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5490} 5491 5492static bool vmf_pte_changed(struct vm_fault *vmf) 5493{ 5494 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5495 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5496 5497 return !pte_none(ptep_get(vmf->pte)); 5498} 5499 5500/** 5501 * finish_fault - finish page fault once we have prepared the page to fault 5502 * 5503 * @vmf: structure describing the fault 5504 * 5505 * This function handles all that is needed to finish a page fault once the 5506 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5507 * given page, adds reverse page mapping, handles memcg charges and LRU 5508 * addition. 5509 * 5510 * The function expects the page to be locked and on success it consumes a 5511 * reference of a page being mapped (for the PTE which maps it). 5512 * 5513 * Return: %0 on success, %VM_FAULT_ code in case of error. 5514 */ 5515vm_fault_t finish_fault(struct vm_fault *vmf) 5516{ 5517 struct vm_area_struct *vma = vmf->vma; 5518 struct page *page; 5519 struct folio *folio; 5520 vm_fault_t ret; 5521 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5522 !(vma->vm_flags & VM_SHARED); 5523 int type, nr_pages; 5524 unsigned long addr; 5525 bool needs_fallback = false; 5526 5527fallback: 5528 addr = vmf->address; 5529 5530 /* Did we COW the page? */ 5531 if (is_cow) 5532 page = vmf->cow_page; 5533 else 5534 page = vmf->page; 5535 5536 folio = page_folio(page); 5537 /* 5538 * check even for read faults because we might have lost our CoWed 5539 * page 5540 */ 5541 if (!(vma->vm_flags & VM_SHARED)) { 5542 ret = check_stable_address_space(vma->vm_mm); 5543 if (ret) 5544 return ret; 5545 } 5546 5547 if (!needs_fallback && vma->vm_file) { 5548 struct address_space *mapping = vma->vm_file->f_mapping; 5549 pgoff_t file_end; 5550 5551 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5552 5553 /* 5554 * Do not allow to map with PTEs beyond i_size and with PMD 5555 * across i_size to preserve SIGBUS semantics. 5556 * 5557 * Make an exception for shmem/tmpfs that for long time 5558 * intentionally mapped with PMDs across i_size. 5559 */ 5560 needs_fallback = !shmem_mapping(mapping) && 5561 file_end < folio_next_index(folio); 5562 } 5563 5564 if (pmd_none(*vmf->pmd)) { 5565 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5566 ret = do_set_pmd(vmf, folio, page); 5567 if (ret != VM_FAULT_FALLBACK) 5568 return ret; 5569 } 5570 5571 if (vmf->prealloc_pte) 5572 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5573 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5574 return VM_FAULT_OOM; 5575 } 5576 5577 nr_pages = folio_nr_pages(folio); 5578 5579 /* Using per-page fault to maintain the uffd semantics */ 5580 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5581 nr_pages = 1; 5582 } else if (nr_pages > 1) { 5583 pgoff_t idx = folio_page_idx(folio, page); 5584 /* The page offset of vmf->address within the VMA. */ 5585 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5586 /* The index of the entry in the pagetable for fault page. */ 5587 pgoff_t pte_off = pte_index(vmf->address); 5588 5589 /* 5590 * Fallback to per-page fault in case the folio size in page 5591 * cache beyond the VMA limits and PMD pagetable limits. 5592 */ 5593 if (unlikely(vma_off < idx || 5594 vma_off + (nr_pages - idx) > vma_pages(vma) || 5595 pte_off < idx || 5596 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5597 nr_pages = 1; 5598 } else { 5599 /* Now we can set mappings for the whole large folio. */ 5600 addr = vmf->address - idx * PAGE_SIZE; 5601 page = &folio->page; 5602 } 5603 } 5604 5605 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5606 addr, &vmf->ptl); 5607 if (!vmf->pte) 5608 return VM_FAULT_NOPAGE; 5609 5610 /* Re-check under ptl */ 5611 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5612 update_mmu_tlb(vma, addr, vmf->pte); 5613 ret = VM_FAULT_NOPAGE; 5614 goto unlock; 5615 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5616 needs_fallback = true; 5617 pte_unmap_unlock(vmf->pte, vmf->ptl); 5618 goto fallback; 5619 } 5620 5621 folio_ref_add(folio, nr_pages - 1); 5622 set_pte_range(vmf, folio, page, nr_pages, addr); 5623 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5624 add_mm_counter(vma->vm_mm, type, nr_pages); 5625 ret = 0; 5626 5627unlock: 5628 pte_unmap_unlock(vmf->pte, vmf->ptl); 5629 return ret; 5630} 5631 5632static unsigned long fault_around_pages __read_mostly = 5633 65536 >> PAGE_SHIFT; 5634 5635#ifdef CONFIG_DEBUG_FS 5636static int fault_around_bytes_get(void *data, u64 *val) 5637{ 5638 *val = fault_around_pages << PAGE_SHIFT; 5639 return 0; 5640} 5641 5642/* 5643 * fault_around_bytes must be rounded down to the nearest page order as it's 5644 * what do_fault_around() expects to see. 5645 */ 5646static int fault_around_bytes_set(void *data, u64 val) 5647{ 5648 if (val / PAGE_SIZE > PTRS_PER_PTE) 5649 return -EINVAL; 5650 5651 /* 5652 * The minimum value is 1 page, however this results in no fault-around 5653 * at all. See should_fault_around(). 5654 */ 5655 val = max(val, PAGE_SIZE); 5656 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5657 5658 return 0; 5659} 5660DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5661 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5662 5663static int __init fault_around_debugfs(void) 5664{ 5665 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5666 &fault_around_bytes_fops); 5667 return 0; 5668} 5669late_initcall(fault_around_debugfs); 5670#endif 5671 5672/* 5673 * do_fault_around() tries to map few pages around the fault address. The hope 5674 * is that the pages will be needed soon and this will lower the number of 5675 * faults to handle. 5676 * 5677 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5678 * not ready to be mapped: not up-to-date, locked, etc. 5679 * 5680 * This function doesn't cross VMA or page table boundaries, in order to call 5681 * map_pages() and acquire a PTE lock only once. 5682 * 5683 * fault_around_pages defines how many pages we'll try to map. 5684 * do_fault_around() expects it to be set to a power of two less than or equal 5685 * to PTRS_PER_PTE. 5686 * 5687 * The virtual address of the area that we map is naturally aligned to 5688 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5689 * (and therefore to page order). This way it's easier to guarantee 5690 * that we don't cross page table boundaries. 5691 */ 5692static vm_fault_t do_fault_around(struct vm_fault *vmf) 5693{ 5694 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5695 pgoff_t pte_off = pte_index(vmf->address); 5696 /* The page offset of vmf->address within the VMA. */ 5697 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5698 pgoff_t from_pte, to_pte; 5699 vm_fault_t ret; 5700 5701 /* The PTE offset of the start address, clamped to the VMA. */ 5702 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5703 pte_off - min(pte_off, vma_off)); 5704 5705 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5706 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5707 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5708 5709 if (pmd_none(*vmf->pmd)) { 5710 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5711 if (!vmf->prealloc_pte) 5712 return VM_FAULT_OOM; 5713 } 5714 5715 rcu_read_lock(); 5716 ret = vmf->vma->vm_ops->map_pages(vmf, 5717 vmf->pgoff + from_pte - pte_off, 5718 vmf->pgoff + to_pte - pte_off); 5719 rcu_read_unlock(); 5720 5721 return ret; 5722} 5723 5724/* Return true if we should do read fault-around, false otherwise */ 5725static inline bool should_fault_around(struct vm_fault *vmf) 5726{ 5727 /* No ->map_pages? No way to fault around... */ 5728 if (!vmf->vma->vm_ops->map_pages) 5729 return false; 5730 5731 if (uffd_disable_fault_around(vmf->vma)) 5732 return false; 5733 5734 /* A single page implies no faulting 'around' at all. */ 5735 return fault_around_pages > 1; 5736} 5737 5738static vm_fault_t do_read_fault(struct vm_fault *vmf) 5739{ 5740 vm_fault_t ret = 0; 5741 struct folio *folio; 5742 5743 /* 5744 * Let's call ->map_pages() first and use ->fault() as fallback 5745 * if page by the offset is not ready to be mapped (cold cache or 5746 * something). 5747 */ 5748 if (should_fault_around(vmf)) { 5749 ret = do_fault_around(vmf); 5750 if (ret) 5751 return ret; 5752 } 5753 5754 ret = vmf_can_call_fault(vmf); 5755 if (ret) 5756 return ret; 5757 5758 ret = __do_fault(vmf); 5759 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5760 return ret; 5761 5762 ret |= finish_fault(vmf); 5763 folio = page_folio(vmf->page); 5764 folio_unlock(folio); 5765 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5766 folio_put(folio); 5767 return ret; 5768} 5769 5770static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5771{ 5772 struct vm_area_struct *vma = vmf->vma; 5773 struct folio *folio; 5774 vm_fault_t ret; 5775 5776 ret = vmf_can_call_fault(vmf); 5777 if (!ret) 5778 ret = vmf_anon_prepare(vmf); 5779 if (ret) 5780 return ret; 5781 5782 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5783 if (!folio) 5784 return VM_FAULT_OOM; 5785 5786 vmf->cow_page = &folio->page; 5787 5788 ret = __do_fault(vmf); 5789 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5790 goto uncharge_out; 5791 if (ret & VM_FAULT_DONE_COW) 5792 return ret; 5793 5794 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5795 ret = VM_FAULT_HWPOISON; 5796 goto unlock; 5797 } 5798 __folio_mark_uptodate(folio); 5799 5800 ret |= finish_fault(vmf); 5801unlock: 5802 unlock_page(vmf->page); 5803 put_page(vmf->page); 5804 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5805 goto uncharge_out; 5806 return ret; 5807uncharge_out: 5808 folio_put(folio); 5809 return ret; 5810} 5811 5812static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5813{ 5814 struct vm_area_struct *vma = vmf->vma; 5815 vm_fault_t ret, tmp; 5816 struct folio *folio; 5817 5818 ret = vmf_can_call_fault(vmf); 5819 if (ret) 5820 return ret; 5821 5822 ret = __do_fault(vmf); 5823 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5824 return ret; 5825 5826 folio = page_folio(vmf->page); 5827 5828 /* 5829 * Check if the backing address space wants to know that the page is 5830 * about to become writable 5831 */ 5832 if (vma->vm_ops->page_mkwrite) { 5833 folio_unlock(folio); 5834 tmp = do_page_mkwrite(vmf, folio); 5835 if (unlikely(!tmp || 5836 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5837 folio_put(folio); 5838 return tmp; 5839 } 5840 } 5841 5842 ret |= finish_fault(vmf); 5843 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5844 VM_FAULT_RETRY))) { 5845 folio_unlock(folio); 5846 folio_put(folio); 5847 return ret; 5848 } 5849 5850 ret |= fault_dirty_shared_page(vmf); 5851 return ret; 5852} 5853 5854/* 5855 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5856 * but allow concurrent faults). 5857 * The mmap_lock may have been released depending on flags and our 5858 * return value. See filemap_fault() and __folio_lock_or_retry(). 5859 * If mmap_lock is released, vma may become invalid (for example 5860 * by other thread calling munmap()). 5861 */ 5862static vm_fault_t do_fault(struct vm_fault *vmf) 5863{ 5864 struct vm_area_struct *vma = vmf->vma; 5865 struct mm_struct *vm_mm = vma->vm_mm; 5866 vm_fault_t ret; 5867 5868 /* 5869 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5870 */ 5871 if (!vma->vm_ops->fault) { 5872 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5873 vmf->address, &vmf->ptl); 5874 if (unlikely(!vmf->pte)) 5875 ret = VM_FAULT_SIGBUS; 5876 else { 5877 /* 5878 * Make sure this is not a temporary clearing of pte 5879 * by holding ptl and checking again. A R/M/W update 5880 * of pte involves: take ptl, clearing the pte so that 5881 * we don't have concurrent modification by hardware 5882 * followed by an update. 5883 */ 5884 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5885 ret = VM_FAULT_SIGBUS; 5886 else 5887 ret = VM_FAULT_NOPAGE; 5888 5889 pte_unmap_unlock(vmf->pte, vmf->ptl); 5890 } 5891 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5892 ret = do_read_fault(vmf); 5893 else if (!(vma->vm_flags & VM_SHARED)) 5894 ret = do_cow_fault(vmf); 5895 else 5896 ret = do_shared_fault(vmf); 5897 5898 /* preallocated pagetable is unused: free it */ 5899 if (vmf->prealloc_pte) { 5900 pte_free(vm_mm, vmf->prealloc_pte); 5901 vmf->prealloc_pte = NULL; 5902 } 5903 return ret; 5904} 5905 5906int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5907 unsigned long addr, int *flags, 5908 bool writable, int *last_cpupid) 5909{ 5910 struct vm_area_struct *vma = vmf->vma; 5911 5912 /* 5913 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5914 * much anyway since they can be in shared cache state. This misses 5915 * the case where a mapping is writable but the process never writes 5916 * to it but pte_write gets cleared during protection updates and 5917 * pte_dirty has unpredictable behaviour between PTE scan updates, 5918 * background writeback, dirty balancing and application behaviour. 5919 */ 5920 if (!writable) 5921 *flags |= TNF_NO_GROUP; 5922 5923 /* 5924 * Flag if the folio is shared between multiple address spaces. This 5925 * is later used when determining whether to group tasks together 5926 */ 5927 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5928 *flags |= TNF_SHARED; 5929 /* 5930 * For memory tiering mode, cpupid of slow memory page is used 5931 * to record page access time. So use default value. 5932 */ 5933 if (folio_use_access_time(folio)) 5934 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5935 else 5936 *last_cpupid = folio_last_cpupid(folio); 5937 5938 /* Record the current PID acceesing VMA */ 5939 vma_set_access_pid_bit(vma); 5940 5941 count_vm_numa_event(NUMA_HINT_FAULTS); 5942#ifdef CONFIG_NUMA_BALANCING 5943 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5944#endif 5945 if (folio_nid(folio) == numa_node_id()) { 5946 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5947 *flags |= TNF_FAULT_LOCAL; 5948 } 5949 5950 return mpol_misplaced(folio, vmf, addr); 5951} 5952 5953static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5954 unsigned long fault_addr, pte_t *fault_pte, 5955 bool writable) 5956{ 5957 pte_t pte, old_pte; 5958 5959 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5960 pte = pte_modify(old_pte, vma->vm_page_prot); 5961 pte = pte_mkyoung(pte); 5962 if (writable) 5963 pte = pte_mkwrite(pte, vma); 5964 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5965 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5966} 5967 5968static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5969 struct folio *folio, pte_t fault_pte, 5970 bool ignore_writable, bool pte_write_upgrade) 5971{ 5972 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5973 unsigned long start, end, addr = vmf->address; 5974 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5975 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5976 pte_t *start_ptep; 5977 5978 /* Stay within the VMA and within the page table. */ 5979 start = max3(addr_start, pt_start, vma->vm_start); 5980 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5981 vma->vm_end); 5982 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5983 5984 /* Restore all PTEs' mapping of the large folio */ 5985 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5986 pte_t ptent = ptep_get(start_ptep); 5987 bool writable = false; 5988 5989 if (!pte_present(ptent) || !pte_protnone(ptent)) 5990 continue; 5991 5992 if (pfn_folio(pte_pfn(ptent)) != folio) 5993 continue; 5994 5995 if (!ignore_writable) { 5996 ptent = pte_modify(ptent, vma->vm_page_prot); 5997 writable = pte_write(ptent); 5998 if (!writable && pte_write_upgrade && 5999 can_change_pte_writable(vma, addr, ptent)) 6000 writable = true; 6001 } 6002 6003 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 6004 } 6005} 6006 6007static vm_fault_t do_numa_page(struct vm_fault *vmf) 6008{ 6009 struct vm_area_struct *vma = vmf->vma; 6010 struct folio *folio = NULL; 6011 int nid = NUMA_NO_NODE; 6012 bool writable = false, ignore_writable = false; 6013 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 6014 int last_cpupid; 6015 int target_nid; 6016 pte_t pte, old_pte; 6017 int flags = 0, nr_pages; 6018 6019 /* 6020 * The pte cannot be used safely until we verify, while holding the page 6021 * table lock, that its contents have not changed during fault handling. 6022 */ 6023 spin_lock(vmf->ptl); 6024 /* Read the live PTE from the page tables: */ 6025 old_pte = ptep_get(vmf->pte); 6026 6027 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 6028 pte_unmap_unlock(vmf->pte, vmf->ptl); 6029 return 0; 6030 } 6031 6032 pte = pte_modify(old_pte, vma->vm_page_prot); 6033 6034 /* 6035 * Detect now whether the PTE could be writable; this information 6036 * is only valid while holding the PT lock. 6037 */ 6038 writable = pte_write(pte); 6039 if (!writable && pte_write_upgrade && 6040 can_change_pte_writable(vma, vmf->address, pte)) 6041 writable = true; 6042 6043 folio = vm_normal_folio(vma, vmf->address, pte); 6044 if (!folio || folio_is_zone_device(folio)) 6045 goto out_map; 6046 6047 nid = folio_nid(folio); 6048 nr_pages = folio_nr_pages(folio); 6049 6050 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6051 writable, &last_cpupid); 6052 if (target_nid == NUMA_NO_NODE) 6053 goto out_map; 6054 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6055 flags |= TNF_MIGRATE_FAIL; 6056 goto out_map; 6057 } 6058 /* The folio is isolated and isolation code holds a folio reference. */ 6059 pte_unmap_unlock(vmf->pte, vmf->ptl); 6060 writable = false; 6061 ignore_writable = true; 6062 6063 /* Migrate to the requested node */ 6064 if (!migrate_misplaced_folio(folio, target_nid)) { 6065 nid = target_nid; 6066 flags |= TNF_MIGRATED; 6067 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6068 return 0; 6069 } 6070 6071 flags |= TNF_MIGRATE_FAIL; 6072 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6073 vmf->address, &vmf->ptl); 6074 if (unlikely(!vmf->pte)) 6075 return 0; 6076 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6077 pte_unmap_unlock(vmf->pte, vmf->ptl); 6078 return 0; 6079 } 6080out_map: 6081 /* 6082 * Make it present again, depending on how arch implements 6083 * non-accessible ptes, some can allow access by kernel mode. 6084 */ 6085 if (folio && folio_test_large(folio)) 6086 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6087 pte_write_upgrade); 6088 else 6089 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6090 writable); 6091 pte_unmap_unlock(vmf->pte, vmf->ptl); 6092 6093 if (nid != NUMA_NO_NODE) 6094 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6095 return 0; 6096} 6097 6098static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6099{ 6100 struct vm_area_struct *vma = vmf->vma; 6101 if (vma_is_anonymous(vma)) 6102 return do_huge_pmd_anonymous_page(vmf); 6103 if (vma->vm_ops->huge_fault) 6104 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6105 return VM_FAULT_FALLBACK; 6106} 6107 6108/* `inline' is required to avoid gcc 4.1.2 build error */ 6109static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6110{ 6111 struct vm_area_struct *vma = vmf->vma; 6112 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6113 vm_fault_t ret; 6114 6115 if (vma_is_anonymous(vma)) { 6116 if (likely(!unshare) && 6117 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6118 if (userfaultfd_wp_async(vmf->vma)) 6119 goto split; 6120 return handle_userfault(vmf, VM_UFFD_WP); 6121 } 6122 return do_huge_pmd_wp_page(vmf); 6123 } 6124 6125 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6126 if (vma->vm_ops->huge_fault) { 6127 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6128 if (!(ret & VM_FAULT_FALLBACK)) 6129 return ret; 6130 } 6131 } 6132 6133split: 6134 /* COW or write-notify handled on pte level: split pmd. */ 6135 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6136 6137 return VM_FAULT_FALLBACK; 6138} 6139 6140static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6141{ 6142#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6143 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6144 struct vm_area_struct *vma = vmf->vma; 6145 /* No support for anonymous transparent PUD pages yet */ 6146 if (vma_is_anonymous(vma)) 6147 return VM_FAULT_FALLBACK; 6148 if (vma->vm_ops->huge_fault) 6149 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6150#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6151 return VM_FAULT_FALLBACK; 6152} 6153 6154static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6155{ 6156#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6157 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6158 struct vm_area_struct *vma = vmf->vma; 6159 vm_fault_t ret; 6160 6161 /* No support for anonymous transparent PUD pages yet */ 6162 if (vma_is_anonymous(vma)) 6163 goto split; 6164 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6165 if (vma->vm_ops->huge_fault) { 6166 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6167 if (!(ret & VM_FAULT_FALLBACK)) 6168 return ret; 6169 } 6170 } 6171split: 6172 /* COW or write-notify not handled on PUD level: split pud.*/ 6173 __split_huge_pud(vma, vmf->pud, vmf->address); 6174#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6175 return VM_FAULT_FALLBACK; 6176} 6177 6178/* 6179 * The page faults may be spurious because of the racy access to the 6180 * page table. For example, a non-populated virtual page is accessed 6181 * on 2 CPUs simultaneously, thus the page faults are triggered on 6182 * both CPUs. However, it's possible that one CPU (say CPU A) cannot 6183 * find the reason for the page fault if the other CPU (say CPU B) has 6184 * changed the page table before the PTE is checked on CPU A. Most of 6185 * the time, the spurious page faults can be ignored safely. However, 6186 * if the page fault is for the write access, it's possible that a 6187 * stale read-only TLB entry exists in the local CPU and needs to be 6188 * flushed on some architectures. This is called the spurious page 6189 * fault fixing. 6190 * 6191 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page() 6192 * by default and used as such on most architectures, while 6193 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and 6194 * used as such on most architectures. 6195 */ 6196static void fix_spurious_fault(struct vm_fault *vmf, 6197 enum pgtable_level ptlevel) 6198{ 6199 /* Skip spurious TLB flush for retried page fault */ 6200 if (vmf->flags & FAULT_FLAG_TRIED) 6201 return; 6202 /* 6203 * This is needed only for protection faults but the arch code 6204 * is not yet telling us if this is a protection fault or not. 6205 * This still avoids useless tlb flushes for .text page faults 6206 * with threads. 6207 */ 6208 if (vmf->flags & FAULT_FLAG_WRITE) { 6209 if (ptlevel == PGTABLE_LEVEL_PTE) 6210 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6211 vmf->pte); 6212 else 6213 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address, 6214 vmf->pmd); 6215 } 6216} 6217/* 6218 * These routines also need to handle stuff like marking pages dirty 6219 * and/or accessed for architectures that don't do it in hardware (most 6220 * RISC architectures). The early dirtying is also good on the i386. 6221 * 6222 * There is also a hook called "update_mmu_cache()" that architectures 6223 * with external mmu caches can use to update those (ie the Sparc or 6224 * PowerPC hashed page tables that act as extended TLBs). 6225 * 6226 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6227 * concurrent faults). 6228 * 6229 * The mmap_lock may have been released depending on flags and our return value. 6230 * See filemap_fault() and __folio_lock_or_retry(). 6231 */ 6232static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6233{ 6234 pte_t entry; 6235 6236 if (unlikely(pmd_none(*vmf->pmd))) { 6237 /* 6238 * Leave __pte_alloc() until later: because vm_ops->fault may 6239 * want to allocate huge page, and if we expose page table 6240 * for an instant, it will be difficult to retract from 6241 * concurrent faults and from rmap lookups. 6242 */ 6243 vmf->pte = NULL; 6244 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6245 } else { 6246 pmd_t dummy_pmdval; 6247 6248 /* 6249 * A regular pmd is established and it can't morph into a huge 6250 * pmd by anon khugepaged, since that takes mmap_lock in write 6251 * mode; but shmem or file collapse to THP could still morph 6252 * it into a huge pmd: just retry later if so. 6253 * 6254 * Use the maywrite version to indicate that vmf->pte may be 6255 * modified, but since we will use pte_same() to detect the 6256 * change of the !pte_none() entry, there is no need to recheck 6257 * the pmdval. Here we chooes to pass a dummy variable instead 6258 * of NULL, which helps new user think about why this place is 6259 * special. 6260 */ 6261 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6262 vmf->address, &dummy_pmdval, 6263 &vmf->ptl); 6264 if (unlikely(!vmf->pte)) 6265 return 0; 6266 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6267 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6268 6269 if (pte_none(vmf->orig_pte)) { 6270 pte_unmap(vmf->pte); 6271 vmf->pte = NULL; 6272 } 6273 } 6274 6275 if (!vmf->pte) 6276 return do_pte_missing(vmf); 6277 6278 if (!pte_present(vmf->orig_pte)) 6279 return do_swap_page(vmf); 6280 6281 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6282 return do_numa_page(vmf); 6283 6284 spin_lock(vmf->ptl); 6285 entry = vmf->orig_pte; 6286 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6287 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6288 goto unlock; 6289 } 6290 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6291 if (!pte_write(entry)) 6292 return do_wp_page(vmf); 6293 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6294 entry = pte_mkdirty(entry); 6295 } 6296 entry = pte_mkyoung(entry); 6297 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6298 vmf->flags & FAULT_FLAG_WRITE)) 6299 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6300 vmf->pte, 1); 6301 else 6302 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE); 6303unlock: 6304 pte_unmap_unlock(vmf->pte, vmf->ptl); 6305 return 0; 6306} 6307 6308/* 6309 * On entry, we hold either the VMA lock or the mmap_lock 6310 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6311 * the result, the mmap_lock is not held on exit. See filemap_fault() 6312 * and __folio_lock_or_retry(). 6313 */ 6314static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6315 unsigned long address, unsigned int flags) 6316{ 6317 struct vm_fault vmf = { 6318 .vma = vma, 6319 .address = address & PAGE_MASK, 6320 .real_address = address, 6321 .flags = flags, 6322 .pgoff = linear_page_index(vma, address), 6323 .gfp_mask = __get_fault_gfp_mask(vma), 6324 }; 6325 struct mm_struct *mm = vma->vm_mm; 6326 vm_flags_t vm_flags = vma->vm_flags; 6327 pgd_t *pgd; 6328 p4d_t *p4d; 6329 vm_fault_t ret; 6330 6331 pgd = pgd_offset(mm, address); 6332 p4d = p4d_alloc(mm, pgd, address); 6333 if (!p4d) 6334 return VM_FAULT_OOM; 6335 6336 vmf.pud = pud_alloc(mm, p4d, address); 6337 if (!vmf.pud) 6338 return VM_FAULT_OOM; 6339retry_pud: 6340 if (pud_none(*vmf.pud) && 6341 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6342 ret = create_huge_pud(&vmf); 6343 if (!(ret & VM_FAULT_FALLBACK)) 6344 return ret; 6345 } else { 6346 pud_t orig_pud = *vmf.pud; 6347 6348 barrier(); 6349 if (pud_trans_huge(orig_pud)) { 6350 6351 /* 6352 * TODO once we support anonymous PUDs: NUMA case and 6353 * FAULT_FLAG_UNSHARE handling. 6354 */ 6355 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6356 ret = wp_huge_pud(&vmf, orig_pud); 6357 if (!(ret & VM_FAULT_FALLBACK)) 6358 return ret; 6359 } else { 6360 huge_pud_set_accessed(&vmf, orig_pud); 6361 return 0; 6362 } 6363 } 6364 } 6365 6366 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6367 if (!vmf.pmd) 6368 return VM_FAULT_OOM; 6369 6370 /* Huge pud page fault raced with pmd_alloc? */ 6371 if (pud_trans_unstable(vmf.pud)) 6372 goto retry_pud; 6373 6374 if (pmd_none(*vmf.pmd) && 6375 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6376 ret = create_huge_pmd(&vmf); 6377 if (ret & VM_FAULT_FALLBACK) 6378 goto fallback; 6379 else 6380 return ret; 6381 } 6382 6383 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6384 if (pmd_none(vmf.orig_pmd)) 6385 goto fallback; 6386 6387 if (unlikely(!pmd_present(vmf.orig_pmd))) { 6388 if (pmd_is_device_private_entry(vmf.orig_pmd)) 6389 return do_huge_pmd_device_private(&vmf); 6390 6391 if (pmd_is_migration_entry(vmf.orig_pmd)) 6392 pmd_migration_entry_wait(mm, vmf.pmd); 6393 return 0; 6394 } 6395 if (pmd_trans_huge(vmf.orig_pmd)) { 6396 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6397 return do_huge_pmd_numa_page(&vmf); 6398 6399 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6400 !pmd_write(vmf.orig_pmd)) { 6401 ret = wp_huge_pmd(&vmf); 6402 if (!(ret & VM_FAULT_FALLBACK)) 6403 return ret; 6404 } else { 6405 vmf.ptl = pmd_lock(mm, vmf.pmd); 6406 if (!huge_pmd_set_accessed(&vmf)) 6407 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD); 6408 spin_unlock(vmf.ptl); 6409 return 0; 6410 } 6411 } 6412 6413fallback: 6414 return handle_pte_fault(&vmf); 6415} 6416 6417/** 6418 * mm_account_fault - Do page fault accounting 6419 * @mm: mm from which memcg should be extracted. It can be NULL. 6420 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6421 * of perf event counters, but we'll still do the per-task accounting to 6422 * the task who triggered this page fault. 6423 * @address: the faulted address. 6424 * @flags: the fault flags. 6425 * @ret: the fault retcode. 6426 * 6427 * This will take care of most of the page fault accounting. Meanwhile, it 6428 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6429 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6430 * still be in per-arch page fault handlers at the entry of page fault. 6431 */ 6432static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6433 unsigned long address, unsigned int flags, 6434 vm_fault_t ret) 6435{ 6436 bool major; 6437 6438 /* Incomplete faults will be accounted upon completion. */ 6439 if (ret & VM_FAULT_RETRY) 6440 return; 6441 6442 /* 6443 * To preserve the behavior of older kernels, PGFAULT counters record 6444 * both successful and failed faults, as opposed to perf counters, 6445 * which ignore failed cases. 6446 */ 6447 count_vm_event(PGFAULT); 6448 count_memcg_event_mm(mm, PGFAULT); 6449 6450 /* 6451 * Do not account for unsuccessful faults (e.g. when the address wasn't 6452 * valid). That includes arch_vma_access_permitted() failing before 6453 * reaching here. So this is not a "this many hardware page faults" 6454 * counter. We should use the hw profiling for that. 6455 */ 6456 if (ret & VM_FAULT_ERROR) 6457 return; 6458 6459 /* 6460 * We define the fault as a major fault when the final successful fault 6461 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6462 * handle it immediately previously). 6463 */ 6464 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6465 6466 if (major) 6467 current->maj_flt++; 6468 else 6469 current->min_flt++; 6470 6471 /* 6472 * If the fault is done for GUP, regs will be NULL. We only do the 6473 * accounting for the per thread fault counters who triggered the 6474 * fault, and we skip the perf event updates. 6475 */ 6476 if (!regs) 6477 return; 6478 6479 if (major) 6480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6481 else 6482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6483} 6484 6485#ifdef CONFIG_LRU_GEN 6486static void lru_gen_enter_fault(struct vm_area_struct *vma) 6487{ 6488 /* the LRU algorithm only applies to accesses with recency */ 6489 current->in_lru_fault = vma_has_recency(vma); 6490} 6491 6492static void lru_gen_exit_fault(void) 6493{ 6494 current->in_lru_fault = false; 6495} 6496#else 6497static void lru_gen_enter_fault(struct vm_area_struct *vma) 6498{ 6499} 6500 6501static void lru_gen_exit_fault(void) 6502{ 6503} 6504#endif /* CONFIG_LRU_GEN */ 6505 6506static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6507 unsigned int *flags) 6508{ 6509 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6510 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6511 return VM_FAULT_SIGSEGV; 6512 /* 6513 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6514 * just treat it like an ordinary read-fault otherwise. 6515 */ 6516 if (!is_cow_mapping(vma->vm_flags)) 6517 *flags &= ~FAULT_FLAG_UNSHARE; 6518 } else if (*flags & FAULT_FLAG_WRITE) { 6519 /* Write faults on read-only mappings are impossible ... */ 6520 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6521 return VM_FAULT_SIGSEGV; 6522 /* ... and FOLL_FORCE only applies to COW mappings. */ 6523 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6524 !is_cow_mapping(vma->vm_flags))) 6525 return VM_FAULT_SIGSEGV; 6526 } 6527#ifdef CONFIG_PER_VMA_LOCK 6528 /* 6529 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6530 * the assumption that lock is dropped on VM_FAULT_RETRY. 6531 */ 6532 if (WARN_ON_ONCE((*flags & 6533 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6534 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6535 return VM_FAULT_SIGSEGV; 6536#endif 6537 6538 return 0; 6539} 6540 6541/* 6542 * By the time we get here, we already hold either the VMA lock or the 6543 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6544 * 6545 * The mmap_lock may have been released depending on flags and our 6546 * return value. See filemap_fault() and __folio_lock_or_retry(). 6547 */ 6548vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6549 unsigned int flags, struct pt_regs *regs) 6550{ 6551 /* If the fault handler drops the mmap_lock, vma may be freed */ 6552 struct mm_struct *mm = vma->vm_mm; 6553 vm_fault_t ret; 6554 bool is_droppable; 6555 6556 __set_current_state(TASK_RUNNING); 6557 6558 ret = sanitize_fault_flags(vma, &flags); 6559 if (ret) 6560 goto out; 6561 6562 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6563 flags & FAULT_FLAG_INSTRUCTION, 6564 flags & FAULT_FLAG_REMOTE)) { 6565 ret = VM_FAULT_SIGSEGV; 6566 goto out; 6567 } 6568 6569 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6570 6571 /* 6572 * Enable the memcg OOM handling for faults triggered in user 6573 * space. Kernel faults are handled more gracefully. 6574 */ 6575 if (flags & FAULT_FLAG_USER) 6576 mem_cgroup_enter_user_fault(); 6577 6578 lru_gen_enter_fault(vma); 6579 6580 if (unlikely(is_vm_hugetlb_page(vma))) 6581 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6582 else 6583 ret = __handle_mm_fault(vma, address, flags); 6584 6585 /* 6586 * Warning: It is no longer safe to dereference vma-> after this point, 6587 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6588 * vma might be destroyed from underneath us. 6589 */ 6590 6591 lru_gen_exit_fault(); 6592 6593 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6594 if (is_droppable) 6595 ret &= ~VM_FAULT_OOM; 6596 6597 if (flags & FAULT_FLAG_USER) { 6598 mem_cgroup_exit_user_fault(); 6599 /* 6600 * The task may have entered a memcg OOM situation but 6601 * if the allocation error was handled gracefully (no 6602 * VM_FAULT_OOM), there is no need to kill anything. 6603 * Just clean up the OOM state peacefully. 6604 */ 6605 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6606 mem_cgroup_oom_synchronize(false); 6607 } 6608out: 6609 mm_account_fault(mm, regs, address, flags, ret); 6610 6611 return ret; 6612} 6613EXPORT_SYMBOL_GPL(handle_mm_fault); 6614 6615#ifndef __PAGETABLE_P4D_FOLDED 6616/* 6617 * Allocate p4d page table. 6618 * We've already handled the fast-path in-line. 6619 */ 6620int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6621{ 6622 p4d_t *new = p4d_alloc_one(mm, address); 6623 if (!new) 6624 return -ENOMEM; 6625 6626 spin_lock(&mm->page_table_lock); 6627 if (pgd_present(*pgd)) { /* Another has populated it */ 6628 p4d_free(mm, new); 6629 } else { 6630 smp_wmb(); /* See comment in pmd_install() */ 6631 pgd_populate(mm, pgd, new); 6632 } 6633 spin_unlock(&mm->page_table_lock); 6634 return 0; 6635} 6636#endif /* __PAGETABLE_P4D_FOLDED */ 6637 6638#ifndef __PAGETABLE_PUD_FOLDED 6639/* 6640 * Allocate page upper directory. 6641 * We've already handled the fast-path in-line. 6642 */ 6643int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6644{ 6645 pud_t *new = pud_alloc_one(mm, address); 6646 if (!new) 6647 return -ENOMEM; 6648 6649 spin_lock(&mm->page_table_lock); 6650 if (!p4d_present(*p4d)) { 6651 mm_inc_nr_puds(mm); 6652 smp_wmb(); /* See comment in pmd_install() */ 6653 p4d_populate(mm, p4d, new); 6654 } else /* Another has populated it */ 6655 pud_free(mm, new); 6656 spin_unlock(&mm->page_table_lock); 6657 return 0; 6658} 6659#endif /* __PAGETABLE_PUD_FOLDED */ 6660 6661#ifndef __PAGETABLE_PMD_FOLDED 6662/* 6663 * Allocate page middle directory. 6664 * We've already handled the fast-path in-line. 6665 */ 6666int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6667{ 6668 spinlock_t *ptl; 6669 pmd_t *new = pmd_alloc_one(mm, address); 6670 if (!new) 6671 return -ENOMEM; 6672 6673 ptl = pud_lock(mm, pud); 6674 if (!pud_present(*pud)) { 6675 mm_inc_nr_pmds(mm); 6676 smp_wmb(); /* See comment in pmd_install() */ 6677 pud_populate(mm, pud, new); 6678 } else { /* Another has populated it */ 6679 pmd_free(mm, new); 6680 } 6681 spin_unlock(ptl); 6682 return 0; 6683} 6684#endif /* __PAGETABLE_PMD_FOLDED */ 6685 6686static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6687 spinlock_t *lock, pte_t *ptep, 6688 pgprot_t pgprot, unsigned long pfn_base, 6689 unsigned long addr_mask, bool writable, 6690 bool special) 6691{ 6692 args->lock = lock; 6693 args->ptep = ptep; 6694 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6695 args->addr_mask = addr_mask; 6696 args->pgprot = pgprot; 6697 args->writable = writable; 6698 args->special = special; 6699} 6700 6701static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6702{ 6703#ifdef CONFIG_LOCKDEP 6704 struct file *file = vma->vm_file; 6705 struct address_space *mapping = file ? file->f_mapping : NULL; 6706 6707 if (mapping) 6708 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6709 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6710 else 6711 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6712#endif 6713} 6714 6715/** 6716 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6717 * @args: Pointer to struct @follow_pfnmap_args 6718 * 6719 * The caller needs to setup args->vma and args->address to point to the 6720 * virtual address as the target of such lookup. On a successful return, 6721 * the results will be put into other output fields. 6722 * 6723 * After the caller finished using the fields, the caller must invoke 6724 * another follow_pfnmap_end() to proper releases the locks and resources 6725 * of such look up request. 6726 * 6727 * During the start() and end() calls, the results in @args will be valid 6728 * as proper locks will be held. After the end() is called, all the fields 6729 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6730 * use of such information after end() may require proper synchronizations 6731 * by the caller with page table updates, otherwise it can create a 6732 * security bug. 6733 * 6734 * If the PTE maps a refcounted page, callers are responsible to protect 6735 * against invalidation with MMU notifiers; otherwise access to the PFN at 6736 * a later point in time can trigger use-after-free. 6737 * 6738 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6739 * should be taken for read, and the mmap semaphore cannot be released 6740 * before the end() is invoked. 6741 * 6742 * This function must not be used to modify PTE content. 6743 * 6744 * Return: zero on success, negative otherwise. 6745 */ 6746int follow_pfnmap_start(struct follow_pfnmap_args *args) 6747{ 6748 struct vm_area_struct *vma = args->vma; 6749 unsigned long address = args->address; 6750 struct mm_struct *mm = vma->vm_mm; 6751 spinlock_t *lock; 6752 pgd_t *pgdp; 6753 p4d_t *p4dp, p4d; 6754 pud_t *pudp, pud; 6755 pmd_t *pmdp, pmd; 6756 pte_t *ptep, pte; 6757 6758 pfnmap_lockdep_assert(vma); 6759 6760 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6761 goto out; 6762 6763 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6764 goto out; 6765retry: 6766 pgdp = pgd_offset(mm, address); 6767 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6768 goto out; 6769 6770 p4dp = p4d_offset(pgdp, address); 6771 p4d = p4dp_get(p4dp); 6772 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6773 goto out; 6774 6775 pudp = pud_offset(p4dp, address); 6776 pud = pudp_get(pudp); 6777 if (pud_none(pud)) 6778 goto out; 6779 if (pud_leaf(pud)) { 6780 lock = pud_lock(mm, pudp); 6781 if (!unlikely(pud_leaf(pud))) { 6782 spin_unlock(lock); 6783 goto retry; 6784 } 6785 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6786 pud_pfn(pud), PUD_MASK, pud_write(pud), 6787 pud_special(pud)); 6788 return 0; 6789 } 6790 6791 pmdp = pmd_offset(pudp, address); 6792 pmd = pmdp_get_lockless(pmdp); 6793 if (pmd_leaf(pmd)) { 6794 lock = pmd_lock(mm, pmdp); 6795 if (!unlikely(pmd_leaf(pmd))) { 6796 spin_unlock(lock); 6797 goto retry; 6798 } 6799 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6800 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6801 pmd_special(pmd)); 6802 return 0; 6803 } 6804 6805 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6806 if (!ptep) 6807 goto out; 6808 pte = ptep_get(ptep); 6809 if (!pte_present(pte)) 6810 goto unlock; 6811 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6812 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6813 pte_special(pte)); 6814 return 0; 6815unlock: 6816 pte_unmap_unlock(ptep, lock); 6817out: 6818 return -EINVAL; 6819} 6820EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6821 6822/** 6823 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6824 * @args: Pointer to struct @follow_pfnmap_args 6825 * 6826 * Must be used in pair of follow_pfnmap_start(). See the start() function 6827 * above for more information. 6828 */ 6829void follow_pfnmap_end(struct follow_pfnmap_args *args) 6830{ 6831 if (args->lock) 6832 spin_unlock(args->lock); 6833 if (args->ptep) 6834 pte_unmap(args->ptep); 6835} 6836EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6837 6838#ifdef CONFIG_HAVE_IOREMAP_PROT 6839/** 6840 * generic_access_phys - generic implementation for iomem mmap access 6841 * @vma: the vma to access 6842 * @addr: userspace address, not relative offset within @vma 6843 * @buf: buffer to read/write 6844 * @len: length of transfer 6845 * @write: set to FOLL_WRITE when writing, otherwise reading 6846 * 6847 * This is a generic implementation for &vm_operations_struct.access for an 6848 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6849 * not page based. 6850 */ 6851int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6852 void *buf, int len, int write) 6853{ 6854 resource_size_t phys_addr; 6855 pgprot_t prot = __pgprot(0); 6856 void __iomem *maddr; 6857 int offset = offset_in_page(addr); 6858 int ret = -EINVAL; 6859 bool writable; 6860 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6861 6862retry: 6863 if (follow_pfnmap_start(&args)) 6864 return -EINVAL; 6865 prot = args.pgprot; 6866 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6867 writable = args.writable; 6868 follow_pfnmap_end(&args); 6869 6870 if ((write & FOLL_WRITE) && !writable) 6871 return -EINVAL; 6872 6873 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6874 if (!maddr) 6875 return -ENOMEM; 6876 6877 if (follow_pfnmap_start(&args)) 6878 goto out_unmap; 6879 6880 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6881 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6882 (writable != args.writable)) { 6883 follow_pfnmap_end(&args); 6884 iounmap(maddr); 6885 goto retry; 6886 } 6887 6888 if (write) 6889 memcpy_toio(maddr + offset, buf, len); 6890 else 6891 memcpy_fromio(buf, maddr + offset, len); 6892 ret = len; 6893 follow_pfnmap_end(&args); 6894out_unmap: 6895 iounmap(maddr); 6896 6897 return ret; 6898} 6899EXPORT_SYMBOL_GPL(generic_access_phys); 6900#endif 6901 6902/* 6903 * Access another process' address space as given in mm. 6904 */ 6905static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6906 void *buf, int len, unsigned int gup_flags) 6907{ 6908 void *old_buf = buf; 6909 int write = gup_flags & FOLL_WRITE; 6910 6911 if (mmap_read_lock_killable(mm)) 6912 return 0; 6913 6914 /* Untag the address before looking up the VMA */ 6915 addr = untagged_addr_remote(mm, addr); 6916 6917 /* Avoid triggering the temporary warning in __get_user_pages */ 6918 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6919 return 0; 6920 6921 /* ignore errors, just check how much was successfully transferred */ 6922 while (len) { 6923 int bytes, offset; 6924 void *maddr; 6925 struct folio *folio; 6926 struct vm_area_struct *vma = NULL; 6927 struct page *page = get_user_page_vma_remote(mm, addr, 6928 gup_flags, &vma); 6929 6930 if (IS_ERR(page)) { 6931 /* We might need to expand the stack to access it */ 6932 vma = vma_lookup(mm, addr); 6933 if (!vma) { 6934 vma = expand_stack(mm, addr); 6935 6936 /* mmap_lock was dropped on failure */ 6937 if (!vma) 6938 return buf - old_buf; 6939 6940 /* Try again if stack expansion worked */ 6941 continue; 6942 } 6943 6944 /* 6945 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6946 * we can access using slightly different code. 6947 */ 6948 bytes = 0; 6949#ifdef CONFIG_HAVE_IOREMAP_PROT 6950 if (vma->vm_ops && vma->vm_ops->access) 6951 bytes = vma->vm_ops->access(vma, addr, buf, 6952 len, write); 6953#endif 6954 if (bytes <= 0) 6955 break; 6956 } else { 6957 folio = page_folio(page); 6958 bytes = len; 6959 offset = addr & (PAGE_SIZE-1); 6960 if (bytes > PAGE_SIZE-offset) 6961 bytes = PAGE_SIZE-offset; 6962 6963 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6964 if (write) { 6965 copy_to_user_page(vma, page, addr, 6966 maddr + offset, buf, bytes); 6967 folio_mark_dirty_lock(folio); 6968 } else { 6969 copy_from_user_page(vma, page, addr, 6970 buf, maddr + offset, bytes); 6971 } 6972 folio_release_kmap(folio, maddr); 6973 } 6974 len -= bytes; 6975 buf += bytes; 6976 addr += bytes; 6977 } 6978 mmap_read_unlock(mm); 6979 6980 return buf - old_buf; 6981} 6982 6983/** 6984 * access_remote_vm - access another process' address space 6985 * @mm: the mm_struct of the target address space 6986 * @addr: start address to access 6987 * @buf: source or destination buffer 6988 * @len: number of bytes to transfer 6989 * @gup_flags: flags modifying lookup behaviour 6990 * 6991 * The caller must hold a reference on @mm. 6992 * 6993 * Return: number of bytes copied from source to destination. 6994 */ 6995int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6996 void *buf, int len, unsigned int gup_flags) 6997{ 6998 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6999} 7000 7001/* 7002 * Access another process' address space. 7003 * Source/target buffer must be kernel space, 7004 * Do not walk the page table directly, use get_user_pages 7005 */ 7006int access_process_vm(struct task_struct *tsk, unsigned long addr, 7007 void *buf, int len, unsigned int gup_flags) 7008{ 7009 struct mm_struct *mm; 7010 int ret; 7011 7012 mm = get_task_mm(tsk); 7013 if (!mm) 7014 return 0; 7015 7016 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 7017 7018 mmput(mm); 7019 7020 return ret; 7021} 7022EXPORT_SYMBOL_GPL(access_process_vm); 7023 7024#ifdef CONFIG_BPF_SYSCALL 7025/* 7026 * Copy a string from another process's address space as given in mm. 7027 * If there is any error return -EFAULT. 7028 */ 7029static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 7030 void *buf, int len, unsigned int gup_flags) 7031{ 7032 void *old_buf = buf; 7033 int err = 0; 7034 7035 *(char *)buf = '\0'; 7036 7037 if (mmap_read_lock_killable(mm)) 7038 return -EFAULT; 7039 7040 addr = untagged_addr_remote(mm, addr); 7041 7042 /* Avoid triggering the temporary warning in __get_user_pages */ 7043 if (!vma_lookup(mm, addr)) { 7044 err = -EFAULT; 7045 goto out; 7046 } 7047 7048 while (len) { 7049 int bytes, offset, retval; 7050 void *maddr; 7051 struct folio *folio; 7052 struct page *page; 7053 struct vm_area_struct *vma = NULL; 7054 7055 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7056 if (IS_ERR(page)) { 7057 /* 7058 * Treat as a total failure for now until we decide how 7059 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7060 * stack expansion. 7061 */ 7062 *(char *)buf = '\0'; 7063 err = -EFAULT; 7064 goto out; 7065 } 7066 7067 folio = page_folio(page); 7068 bytes = len; 7069 offset = addr & (PAGE_SIZE - 1); 7070 if (bytes > PAGE_SIZE - offset) 7071 bytes = PAGE_SIZE - offset; 7072 7073 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7074 retval = strscpy(buf, maddr + offset, bytes); 7075 if (retval >= 0) { 7076 /* Found the end of the string */ 7077 buf += retval; 7078 folio_release_kmap(folio, maddr); 7079 break; 7080 } 7081 7082 buf += bytes - 1; 7083 /* 7084 * Because strscpy always NUL terminates we need to 7085 * copy the last byte in the page if we are going to 7086 * load more pages 7087 */ 7088 if (bytes != len) { 7089 addr += bytes - 1; 7090 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7091 buf += 1; 7092 addr += 1; 7093 } 7094 len -= bytes; 7095 7096 folio_release_kmap(folio, maddr); 7097 } 7098 7099out: 7100 mmap_read_unlock(mm); 7101 if (err) 7102 return err; 7103 return buf - old_buf; 7104} 7105 7106/** 7107 * copy_remote_vm_str - copy a string from another process's address space. 7108 * @tsk: the task of the target address space 7109 * @addr: start address to read from 7110 * @buf: destination buffer 7111 * @len: number of bytes to copy 7112 * @gup_flags: flags modifying lookup behaviour 7113 * 7114 * The caller must hold a reference on @mm. 7115 * 7116 * Return: number of bytes copied from @addr (source) to @buf (destination); 7117 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7118 * buffer. On any error, return -EFAULT. 7119 */ 7120int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7121 void *buf, int len, unsigned int gup_flags) 7122{ 7123 struct mm_struct *mm; 7124 int ret; 7125 7126 if (unlikely(len == 0)) 7127 return 0; 7128 7129 mm = get_task_mm(tsk); 7130 if (!mm) { 7131 *(char *)buf = '\0'; 7132 return -EFAULT; 7133 } 7134 7135 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7136 7137 mmput(mm); 7138 7139 return ret; 7140} 7141EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7142#endif /* CONFIG_BPF_SYSCALL */ 7143 7144/* 7145 * Print the name of a VMA. 7146 */ 7147void print_vma_addr(char *prefix, unsigned long ip) 7148{ 7149 struct mm_struct *mm = current->mm; 7150 struct vm_area_struct *vma; 7151 7152 /* 7153 * we might be running from an atomic context so we cannot sleep 7154 */ 7155 if (!mmap_read_trylock(mm)) 7156 return; 7157 7158 vma = vma_lookup(mm, ip); 7159 if (vma && vma->vm_file) { 7160 struct file *f = vma->vm_file; 7161 ip -= vma->vm_start; 7162 ip += vma->vm_pgoff << PAGE_SHIFT; 7163 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7164 vma->vm_start, 7165 vma->vm_end - vma->vm_start); 7166 } 7167 mmap_read_unlock(mm); 7168} 7169 7170#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7171void __might_fault(const char *file, int line) 7172{ 7173 if (pagefault_disabled()) 7174 return; 7175 __might_sleep(file, line); 7176 if (current->mm) 7177 might_lock_read(&current->mm->mmap_lock); 7178} 7179EXPORT_SYMBOL(__might_fault); 7180#endif 7181 7182#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7183/* 7184 * Process all subpages of the specified huge page with the specified 7185 * operation. The target subpage will be processed last to keep its 7186 * cache lines hot. 7187 */ 7188static inline int process_huge_page( 7189 unsigned long addr_hint, unsigned int nr_pages, 7190 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7191 void *arg) 7192{ 7193 int i, n, base, l, ret; 7194 unsigned long addr = addr_hint & 7195 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7196 7197 /* Process target subpage last to keep its cache lines hot */ 7198 might_sleep(); 7199 n = (addr_hint - addr) / PAGE_SIZE; 7200 if (2 * n <= nr_pages) { 7201 /* If target subpage in first half of huge page */ 7202 base = 0; 7203 l = n; 7204 /* Process subpages at the end of huge page */ 7205 for (i = nr_pages - 1; i >= 2 * n; i--) { 7206 cond_resched(); 7207 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7208 if (ret) 7209 return ret; 7210 } 7211 } else { 7212 /* If target subpage in second half of huge page */ 7213 base = nr_pages - 2 * (nr_pages - n); 7214 l = nr_pages - n; 7215 /* Process subpages at the begin of huge page */ 7216 for (i = 0; i < base; i++) { 7217 cond_resched(); 7218 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7219 if (ret) 7220 return ret; 7221 } 7222 } 7223 /* 7224 * Process remaining subpages in left-right-left-right pattern 7225 * towards the target subpage 7226 */ 7227 for (i = 0; i < l; i++) { 7228 int left_idx = base + i; 7229 int right_idx = base + 2 * l - 1 - i; 7230 7231 cond_resched(); 7232 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7233 if (ret) 7234 return ret; 7235 cond_resched(); 7236 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7237 if (ret) 7238 return ret; 7239 } 7240 return 0; 7241} 7242 7243static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7244 unsigned int nr_pages) 7245{ 7246 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7247 int i; 7248 7249 might_sleep(); 7250 for (i = 0; i < nr_pages; i++) { 7251 cond_resched(); 7252 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7253 } 7254} 7255 7256static int clear_subpage(unsigned long addr, int idx, void *arg) 7257{ 7258 struct folio *folio = arg; 7259 7260 clear_user_highpage(folio_page(folio, idx), addr); 7261 return 0; 7262} 7263 7264/** 7265 * folio_zero_user - Zero a folio which will be mapped to userspace. 7266 * @folio: The folio to zero. 7267 * @addr_hint: The address will be accessed or the base address if uncelar. 7268 */ 7269void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7270{ 7271 unsigned int nr_pages = folio_nr_pages(folio); 7272 7273 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7274 clear_gigantic_page(folio, addr_hint, nr_pages); 7275 else 7276 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7277} 7278 7279static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7280 unsigned long addr_hint, 7281 struct vm_area_struct *vma, 7282 unsigned int nr_pages) 7283{ 7284 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7285 struct page *dst_page; 7286 struct page *src_page; 7287 int i; 7288 7289 for (i = 0; i < nr_pages; i++) { 7290 dst_page = folio_page(dst, i); 7291 src_page = folio_page(src, i); 7292 7293 cond_resched(); 7294 if (copy_mc_user_highpage(dst_page, src_page, 7295 addr + i*PAGE_SIZE, vma)) 7296 return -EHWPOISON; 7297 } 7298 return 0; 7299} 7300 7301struct copy_subpage_arg { 7302 struct folio *dst; 7303 struct folio *src; 7304 struct vm_area_struct *vma; 7305}; 7306 7307static int copy_subpage(unsigned long addr, int idx, void *arg) 7308{ 7309 struct copy_subpage_arg *copy_arg = arg; 7310 struct page *dst = folio_page(copy_arg->dst, idx); 7311 struct page *src = folio_page(copy_arg->src, idx); 7312 7313 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7314 return -EHWPOISON; 7315 return 0; 7316} 7317 7318int copy_user_large_folio(struct folio *dst, struct folio *src, 7319 unsigned long addr_hint, struct vm_area_struct *vma) 7320{ 7321 unsigned int nr_pages = folio_nr_pages(dst); 7322 struct copy_subpage_arg arg = { 7323 .dst = dst, 7324 .src = src, 7325 .vma = vma, 7326 }; 7327 7328 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7329 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7330 7331 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7332} 7333 7334long copy_folio_from_user(struct folio *dst_folio, 7335 const void __user *usr_src, 7336 bool allow_pagefault) 7337{ 7338 void *kaddr; 7339 unsigned long i, rc = 0; 7340 unsigned int nr_pages = folio_nr_pages(dst_folio); 7341 unsigned long ret_val = nr_pages * PAGE_SIZE; 7342 struct page *subpage; 7343 7344 for (i = 0; i < nr_pages; i++) { 7345 subpage = folio_page(dst_folio, i); 7346 kaddr = kmap_local_page(subpage); 7347 if (!allow_pagefault) 7348 pagefault_disable(); 7349 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7350 if (!allow_pagefault) 7351 pagefault_enable(); 7352 kunmap_local(kaddr); 7353 7354 ret_val -= (PAGE_SIZE - rc); 7355 if (rc) 7356 break; 7357 7358 flush_dcache_page(subpage); 7359 7360 cond_resched(); 7361 } 7362 return ret_val; 7363} 7364#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7365 7366#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7367 7368static struct kmem_cache *page_ptl_cachep; 7369 7370void __init ptlock_cache_init(void) 7371{ 7372 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7373 SLAB_PANIC, NULL); 7374} 7375 7376bool ptlock_alloc(struct ptdesc *ptdesc) 7377{ 7378 spinlock_t *ptl; 7379 7380 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7381 if (!ptl) 7382 return false; 7383 ptdesc->ptl = ptl; 7384 return true; 7385} 7386 7387void ptlock_free(struct ptdesc *ptdesc) 7388{ 7389 if (ptdesc->ptl) 7390 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7391} 7392#endif 7393 7394void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7395{ 7396 if (is_vm_hugetlb_page(vma)) 7397 hugetlb_vma_lock_read(vma); 7398} 7399 7400void vma_pgtable_walk_end(struct vm_area_struct *vma) 7401{ 7402 if (is_vm_hugetlb_page(vma)) 7403 hugetlb_vma_unlock_read(vma); 7404}