at v6.19-rc8 851 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11#ifndef _ASM_GENERIC__TLB_H 12#define _ASM_GENERIC__TLB_H 13 14#include <linux/mmu_notifier.h> 15#include <linux/swap.h> 16#include <linux/hugetlb_inline.h> 17#include <asm/tlbflush.h> 18#include <asm/cacheflush.h> 19 20/* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25#ifndef nmi_uaccess_okay 26# define nmi_uaccess_okay() true 27#endif 28 29#ifdef CONFIG_MMU 30 31/* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_gather_mmu_vma() / 50 * tlb_finish_mmu() 51 * 52 * start and finish a mmu_gather 53 * 54 * Finish in particular will issue a (final) TLB invalidate and free 55 * all (remaining) queued pages. 56 * 57 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 58 * 59 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 60 * there's large holes between the VMAs. 61 * 62 * - tlb_free_vmas() 63 * 64 * tlb_free_vmas() marks the start of unlinking of one or more vmas 65 * and freeing page-tables. 66 * 67 * - tlb_remove_table() 68 * 69 * tlb_remove_table() is the basic primitive to free page-table directories 70 * (__p*_free_tlb()). In it's most primitive form it is an alias for 71 * tlb_remove_page() below, for when page directories are pages and have no 72 * additional constraints. 73 * 74 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. 75 * 76 * - tlb_remove_page() / tlb_remove_page_size() 77 * - __tlb_remove_folio_pages() / __tlb_remove_page_size() 78 * - __tlb_remove_folio_pages_size() 79 * 80 * __tlb_remove_folio_pages_size() is the basic primitive that queues pages 81 * for freeing. It will return a boolean indicating if the queue is (now) 82 * full and a call to tlb_flush_mmu() is required. 83 * 84 * tlb_remove_page() and tlb_remove_page_size() imply the call to 85 * tlb_flush_mmu() when required and has no return value. 86 * 87 * __tlb_remove_folio_pages() is similar to __tlb_remove_page_size(), 88 * however, instead of removing a single page, assume PAGE_SIZE and remove 89 * the given number of consecutive pages that are all part of the 90 * same (large) folio. 91 * 92 * - tlb_change_page_size() 93 * 94 * call before __tlb_remove_page*() to set the current page-size; implies a 95 * possible tlb_flush_mmu() call. 96 * 97 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 98 * 99 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 100 * related state, like the range) 101 * 102 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 103 * whatever pages are still batched. 104 * 105 * - mmu_gather::fullmm 106 * 107 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free 108 * the entire mm; this allows a number of optimizations. 109 * 110 * - We can ignore tlb_{start,end}_vma(); because we don't 111 * care about ranges. Everything will be shot down. 112 * 113 * - (RISC) architectures that use ASIDs can cycle to a new ASID 114 * and delay the invalidation until ASID space runs out. 115 * 116 * - mmu_gather::need_flush_all 117 * 118 * A flag that can be set by the arch code if it wants to force 119 * flush the entire TLB irrespective of the range. For instance 120 * x86-PAE needs this when changing top-level entries. 121 * 122 * And allows the architecture to provide and implement tlb_flush(): 123 * 124 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 125 * use of: 126 * 127 * - mmu_gather::start / mmu_gather::end 128 * 129 * which provides the range that needs to be flushed to cover the pages to 130 * be freed. 131 * 132 * - mmu_gather::freed_tables 133 * 134 * set when we freed page table pages 135 * 136 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 137 * 138 * returns the smallest TLB entry size unmapped in this range. 139 * 140 * If an architecture does not provide tlb_flush() a default implementation 141 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 142 * specified, in which case we'll default to flush_tlb_mm(). 143 * 144 * Additionally there are a few opt-in features: 145 * 146 * MMU_GATHER_PAGE_SIZE 147 * 148 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 149 * changes the size and provides mmu_gather::page_size to tlb_flush(). 150 * 151 * This might be useful if your architecture has size specific TLB 152 * invalidation instructions. 153 * 154 * MMU_GATHER_TABLE_FREE 155 * 156 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 157 * for page directores (__p*_free_tlb()). 158 * 159 * Useful if your architecture has non-page page directories. 160 * 161 * When used, an architecture is expected to provide __tlb_remove_table() or 162 * use the generic __tlb_remove_table(), which does the actual freeing of these 163 * pages. 164 * 165 * MMU_GATHER_RCU_TABLE_FREE 166 * 167 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see 168 * comment below). 169 * 170 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 171 * and therefore doesn't naturally serialize with software page-table walkers. 172 * 173 * MMU_GATHER_NO_FLUSH_CACHE 174 * 175 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called 176 * before unmapping a VMA. 177 * 178 * NOTE: strictly speaking we shouldn't have this knob and instead rely on 179 * flush_cache_range() being a NOP, except Sparc64 seems to be 180 * different here. 181 * 182 * MMU_GATHER_MERGE_VMAS 183 * 184 * Indicates the architecture wants to merge ranges over VMAs; typical when 185 * multiple range invalidates are more expensive than a full invalidate. 186 * 187 * MMU_GATHER_NO_RANGE 188 * 189 * Use this if your architecture lacks an efficient flush_tlb_range(). This 190 * option implies MMU_GATHER_MERGE_VMAS above. 191 * 192 * MMU_GATHER_NO_GATHER 193 * 194 * If the option is set the mmu_gather will not track individual pages for 195 * delayed page free anymore. A platform that enables the option needs to 196 * provide its own implementation of the __tlb_remove_page_size() function to 197 * free pages. 198 * 199 * This is useful if your architecture already flushes TLB entries in the 200 * various ptep_get_and_clear() functions. 201 */ 202 203#ifdef CONFIG_MMU_GATHER_TABLE_FREE 204 205struct mmu_table_batch { 206#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 207 struct rcu_head rcu; 208#endif 209 unsigned int nr; 210 void *tables[]; 211}; 212 213#define MAX_TABLE_BATCH \ 214 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 215 216#ifndef __HAVE_ARCH_TLB_REMOVE_TABLE 217static inline void __tlb_remove_table(void *table) 218{ 219 struct ptdesc *ptdesc = (struct ptdesc *)table; 220 221 pagetable_dtor_free(ptdesc); 222} 223#endif 224 225extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 226 227#else /* !CONFIG_MMU_GATHER_TABLE_FREE */ 228 229static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page); 230/* 231 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based 232 * page directories and we can use the normal page batching to free them. 233 */ 234static inline void tlb_remove_table(struct mmu_gather *tlb, void *table) 235{ 236 struct ptdesc *ptdesc = (struct ptdesc *)table; 237 238 pagetable_dtor(ptdesc); 239 tlb_remove_page(tlb, ptdesc_page(ptdesc)); 240} 241#endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 242 243#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 244/* 245 * This allows an architecture that does not use the linux page-tables for 246 * hardware to skip the TLBI when freeing page tables. 247 */ 248#ifndef tlb_needs_table_invalidate 249#define tlb_needs_table_invalidate() (true) 250#endif 251 252void tlb_remove_table_sync_one(void); 253 254#else 255 256#ifdef tlb_needs_table_invalidate 257#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE 258#endif 259 260static inline void tlb_remove_table_sync_one(void) { } 261 262#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 263 264 265#ifndef CONFIG_MMU_GATHER_NO_GATHER 266/* 267 * If we can't allocate a page to make a big batch of page pointers 268 * to work on, then just handle a few from the on-stack structure. 269 */ 270#define MMU_GATHER_BUNDLE 8 271 272struct mmu_gather_batch { 273 struct mmu_gather_batch *next; 274 unsigned int nr; 275 unsigned int max; 276 struct encoded_page *encoded_pages[]; 277}; 278 279#define MAX_GATHER_BATCH \ 280 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 281 282/* 283 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 284 * lockups for non-preemptible kernels on huge machines when a lot of memory 285 * is zapped during unmapping. 286 * 10K pages freed at once should be safe even without a preemption point. 287 */ 288#define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 289 290extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, 291 bool delay_rmap, int page_size); 292bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page, 293 unsigned int nr_pages, bool delay_rmap); 294 295#ifdef CONFIG_SMP 296/* 297 * This both sets 'delayed_rmap', and returns true. It would be an inline 298 * function, except we define it before the 'struct mmu_gather'. 299 */ 300#define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true) 301extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma); 302#endif 303 304#endif 305 306/* 307 * We have a no-op version of the rmap removal that doesn't 308 * delay anything. That is used on S390, which flushes remote 309 * TLBs synchronously, and on UP, which doesn't have any 310 * remote TLBs to flush and is not preemptible due to this 311 * all happening under the page table lock. 312 */ 313#ifndef tlb_delay_rmap 314#define tlb_delay_rmap(tlb) (false) 315static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 316#endif 317 318/* 319 * struct mmu_gather is an opaque type used by the mm code for passing around 320 * any data needed by arch specific code for tlb_remove_page. 321 */ 322struct mmu_gather { 323 struct mm_struct *mm; 324 325#ifdef CONFIG_MMU_GATHER_TABLE_FREE 326 struct mmu_table_batch *batch; 327#endif 328 329 unsigned long start; 330 unsigned long end; 331 /* 332 * we are in the middle of an operation to clear 333 * a full mm and can make some optimizations 334 */ 335 unsigned int fullmm : 1; 336 337 /* 338 * we have performed an operation which 339 * requires a complete flush of the tlb 340 */ 341 unsigned int need_flush_all : 1; 342 343 /* 344 * we have removed page directories 345 */ 346 unsigned int freed_tables : 1; 347 348 /* 349 * Do we have pending delayed rmap removals? 350 */ 351 unsigned int delayed_rmap : 1; 352 353 /* 354 * at which levels have we cleared entries? 355 */ 356 unsigned int cleared_ptes : 1; 357 unsigned int cleared_pmds : 1; 358 unsigned int cleared_puds : 1; 359 unsigned int cleared_p4ds : 1; 360 361 /* 362 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 363 */ 364 unsigned int vma_exec : 1; 365 unsigned int vma_huge : 1; 366 unsigned int vma_pfn : 1; 367 368 /* 369 * Did we unshare (unmap) any shared page tables? For now only 370 * used for hugetlb PMD table sharing. 371 */ 372 unsigned int unshared_tables : 1; 373 374 /* 375 * Did we unshare any page tables such that they are now exclusive 376 * and could get reused+modified by the new owner? When setting this 377 * flag, "unshared_tables" will be set as well. For now only used 378 * for hugetlb PMD table sharing. 379 */ 380 unsigned int fully_unshared_tables : 1; 381 382 unsigned int batch_count; 383 384#ifndef CONFIG_MMU_GATHER_NO_GATHER 385 struct mmu_gather_batch *active; 386 struct mmu_gather_batch local; 387 struct page *__pages[MMU_GATHER_BUNDLE]; 388 389#ifdef CONFIG_MMU_GATHER_PAGE_SIZE 390 unsigned int page_size; 391#endif 392#endif 393}; 394 395void tlb_flush_mmu(struct mmu_gather *tlb); 396 397static inline void __tlb_adjust_range(struct mmu_gather *tlb, 398 unsigned long address, 399 unsigned int range_size) 400{ 401 tlb->start = min(tlb->start, address); 402 tlb->end = max(tlb->end, address + range_size); 403} 404 405static inline void __tlb_reset_range(struct mmu_gather *tlb) 406{ 407 if (tlb->fullmm) { 408 tlb->start = tlb->end = ~0; 409 } else { 410 tlb->start = TASK_SIZE; 411 tlb->end = 0; 412 } 413 tlb->freed_tables = 0; 414 tlb->cleared_ptes = 0; 415 tlb->cleared_pmds = 0; 416 tlb->cleared_puds = 0; 417 tlb->cleared_p4ds = 0; 418 tlb->unshared_tables = 0; 419 /* 420 * Do not reset mmu_gather::vma_* fields here, we do not 421 * call into tlb_start_vma() again to set them if there is an 422 * intermediate flush. 423 */ 424} 425 426#ifdef CONFIG_MMU_GATHER_NO_RANGE 427 428#if defined(tlb_flush) 429#error MMU_GATHER_NO_RANGE relies on default tlb_flush() 430#endif 431 432/* 433 * When an architecture does not have efficient means of range flushing TLBs 434 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 435 * range small. We equally don't have to worry about page granularity or other 436 * things. 437 * 438 * All we need to do is issue a full flush for any !0 range. 439 */ 440static inline void tlb_flush(struct mmu_gather *tlb) 441{ 442 if (tlb->end) 443 flush_tlb_mm(tlb->mm); 444} 445 446#else /* CONFIG_MMU_GATHER_NO_RANGE */ 447 448#ifndef tlb_flush 449/* 450 * When an architecture does not provide its own tlb_flush() implementation 451 * but does have a reasonably efficient flush_vma_range() implementation 452 * use that. 453 */ 454static inline void tlb_flush(struct mmu_gather *tlb) 455{ 456 if (tlb->fullmm || tlb->need_flush_all) { 457 flush_tlb_mm(tlb->mm); 458 } else if (tlb->end) { 459 struct vm_area_struct vma = { 460 .vm_mm = tlb->mm, 461 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 462 (tlb->vma_huge ? VM_HUGETLB : 0), 463 }; 464 465 flush_tlb_range(&vma, tlb->start, tlb->end); 466 } 467} 468#endif 469 470#endif /* CONFIG_MMU_GATHER_NO_RANGE */ 471 472static inline void 473tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 474{ 475 /* 476 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 477 * mips-4k) flush only large pages. 478 * 479 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 480 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 481 * range. 482 * 483 * We rely on tlb_end_vma() to issue a flush, such that when we reset 484 * these values the batch is empty. 485 */ 486 tlb->vma_huge = is_vm_hugetlb_page(vma); 487 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 488 489 /* 490 * Track if there's at least one VM_PFNMAP/VM_MIXEDMAP vma 491 * in the tracked range, see tlb_free_vmas(). 492 */ 493 tlb->vma_pfn |= !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)); 494} 495 496static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 497{ 498 /* 499 * Anything calling __tlb_adjust_range() also sets at least one of 500 * these bits. 501 */ 502 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || 503 tlb->cleared_puds || tlb->cleared_p4ds || tlb->unshared_tables)) 504 return; 505 506 tlb_flush(tlb); 507 __tlb_reset_range(tlb); 508} 509 510static inline void tlb_remove_page_size(struct mmu_gather *tlb, 511 struct page *page, int page_size) 512{ 513 if (__tlb_remove_page_size(tlb, page, false, page_size)) 514 tlb_flush_mmu(tlb); 515} 516 517static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 518{ 519 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 520} 521 522static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt) 523{ 524 tlb_remove_table(tlb, pt); 525} 526 527static inline void tlb_change_page_size(struct mmu_gather *tlb, 528 unsigned int page_size) 529{ 530#ifdef CONFIG_MMU_GATHER_PAGE_SIZE 531 if (tlb->page_size && tlb->page_size != page_size) { 532 if (!tlb->fullmm && !tlb->need_flush_all) 533 tlb_flush_mmu(tlb); 534 } 535 536 tlb->page_size = page_size; 537#endif 538} 539 540static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 541{ 542 if (tlb->cleared_ptes) 543 return PAGE_SHIFT; 544 if (tlb->cleared_pmds) 545 return PMD_SHIFT; 546 if (tlb->cleared_puds) 547 return PUD_SHIFT; 548 if (tlb->cleared_p4ds) 549 return P4D_SHIFT; 550 551 return PAGE_SHIFT; 552} 553 554static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 555{ 556 return 1UL << tlb_get_unmap_shift(tlb); 557} 558 559/* 560 * In the case of tlb vma handling, we can optimise these away in the 561 * case where we're doing a full MM flush. When we're doing a munmap, 562 * the vmas are adjusted to only cover the region to be torn down. 563 */ 564static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 565{ 566 if (tlb->fullmm) 567 return; 568 569 tlb_update_vma_flags(tlb, vma); 570#ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE 571 flush_cache_range(vma, vma->vm_start, vma->vm_end); 572#endif 573} 574 575static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 576{ 577 if (tlb->fullmm || IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) 578 return; 579 580 /* 581 * Do a TLB flush and reset the range at VMA boundaries; this avoids 582 * the ranges growing with the unused space between consecutive VMAs, 583 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on 584 * this. 585 */ 586 tlb_flush_mmu_tlbonly(tlb); 587} 588 589static inline void tlb_free_vmas(struct mmu_gather *tlb) 590{ 591 if (tlb->fullmm) 592 return; 593 594 /* 595 * VM_PFNMAP is more fragile because the core mm will not track the 596 * page mapcount -- there might not be page-frames for these PFNs 597 * after all. 598 * 599 * Specifically() there is a race between munmap() and 600 * unmap_mapping_range(), where munmap() will unlink the VMA, such 601 * that unmap_mapping_range() will no longer observe the VMA and 602 * no-op, without observing the TLBI, returning prematurely. 603 * 604 * So if we're about to unlink such a VMA, and we have pending 605 * TLBI for such a vma, flush things now. 606 */ 607 if (tlb->vma_pfn) 608 tlb_flush_mmu_tlbonly(tlb); 609} 610 611/* 612 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, 613 * and set corresponding cleared_*. 614 */ 615static inline void tlb_flush_pte_range(struct mmu_gather *tlb, 616 unsigned long address, unsigned long size) 617{ 618 __tlb_adjust_range(tlb, address, size); 619 tlb->cleared_ptes = 1; 620} 621 622static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, 623 unsigned long address, unsigned long size) 624{ 625 __tlb_adjust_range(tlb, address, size); 626 tlb->cleared_pmds = 1; 627} 628 629static inline void tlb_flush_pud_range(struct mmu_gather *tlb, 630 unsigned long address, unsigned long size) 631{ 632 __tlb_adjust_range(tlb, address, size); 633 tlb->cleared_puds = 1; 634} 635 636static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, 637 unsigned long address, unsigned long size) 638{ 639 __tlb_adjust_range(tlb, address, size); 640 tlb->cleared_p4ds = 1; 641} 642 643#ifndef __tlb_remove_tlb_entry 644static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address) 645{ 646} 647#endif 648 649/** 650 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 651 * 652 * Record the fact that pte's were really unmapped by updating the range, 653 * so we can later optimise away the tlb invalidate. This helps when 654 * userspace is unmapping already-unmapped pages, which happens quite a lot. 655 */ 656#define tlb_remove_tlb_entry(tlb, ptep, address) \ 657 do { \ 658 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ 659 __tlb_remove_tlb_entry(tlb, ptep, address); \ 660 } while (0) 661 662/** 663 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for 664 * later tlb invalidation. 665 * 666 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple 667 * consecutive ptes instead of only a single one. 668 */ 669static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb, 670 pte_t *ptep, unsigned int nr, unsigned long address) 671{ 672 tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr); 673 for (;;) { 674 __tlb_remove_tlb_entry(tlb, ptep, address); 675 if (--nr == 0) 676 break; 677 ptep++; 678 address += PAGE_SIZE; 679 } 680} 681 682#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 683 do { \ 684 unsigned long _sz = huge_page_size(h); \ 685 if (_sz >= P4D_SIZE) \ 686 tlb_flush_p4d_range(tlb, address, _sz); \ 687 else if (_sz >= PUD_SIZE) \ 688 tlb_flush_pud_range(tlb, address, _sz); \ 689 else if (_sz >= PMD_SIZE) \ 690 tlb_flush_pmd_range(tlb, address, _sz); \ 691 else \ 692 tlb_flush_pte_range(tlb, address, _sz); \ 693 __tlb_remove_tlb_entry(tlb, ptep, address); \ 694 } while (0) 695 696/** 697 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 698 * This is a nop so far, because only x86 needs it. 699 */ 700#ifndef __tlb_remove_pmd_tlb_entry 701#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 702#endif 703 704#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 705 do { \ 706 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ 707 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 708 } while (0) 709 710/** 711 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 712 * invalidation. This is a nop so far, because only x86 needs it. 713 */ 714#ifndef __tlb_remove_pud_tlb_entry 715#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 716#endif 717 718#define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 719 do { \ 720 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ 721 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 722 } while (0) 723 724/* 725 * For things like page tables caches (ie caching addresses "inside" the 726 * page tables, like x86 does), for legacy reasons, flushing an 727 * individual page had better flush the page table caches behind it. This 728 * is definitely how x86 works, for example. And if you have an 729 * architected non-legacy page table cache (which I'm not aware of 730 * anybody actually doing), you're going to have some architecturally 731 * explicit flushing for that, likely *separate* from a regular TLB entry 732 * flush, and thus you'd need more than just some range expansion.. 733 * 734 * So if we ever find an architecture 735 * that would want something that odd, I think it is up to that 736 * architecture to do its own odd thing, not cause pain for others 737 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 738 * 739 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 740 */ 741 742#ifndef pte_free_tlb 743#define pte_free_tlb(tlb, ptep, address) \ 744 do { \ 745 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ 746 tlb->freed_tables = 1; \ 747 __pte_free_tlb(tlb, ptep, address); \ 748 } while (0) 749#endif 750 751#ifndef pmd_free_tlb 752#define pmd_free_tlb(tlb, pmdp, address) \ 753 do { \ 754 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ 755 tlb->freed_tables = 1; \ 756 __pmd_free_tlb(tlb, pmdp, address); \ 757 } while (0) 758#endif 759 760#ifndef pud_free_tlb 761#define pud_free_tlb(tlb, pudp, address) \ 762 do { \ 763 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ 764 tlb->freed_tables = 1; \ 765 __pud_free_tlb(tlb, pudp, address); \ 766 } while (0) 767#endif 768 769#ifndef p4d_free_tlb 770#define p4d_free_tlb(tlb, pudp, address) \ 771 do { \ 772 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 773 tlb->freed_tables = 1; \ 774 __p4d_free_tlb(tlb, pudp, address); \ 775 } while (0) 776#endif 777 778#ifndef pte_needs_flush 779static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte) 780{ 781 return true; 782} 783#endif 784 785#ifndef huge_pmd_needs_flush 786static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd) 787{ 788 return true; 789} 790#endif 791 792#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 793static inline void tlb_unshare_pmd_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt, 794 unsigned long addr) 795{ 796 /* 797 * The caller must make sure that concurrent unsharing + exclusive 798 * reuse is impossible until tlb_flush_unshared_tables() was called. 799 */ 800 VM_WARN_ON_ONCE(!ptdesc_pmd_is_shared(pt)); 801 ptdesc_pmd_pts_dec(pt); 802 803 /* Clearing a PUD pointing at a PMD table with PMD leaves. */ 804 tlb_flush_pmd_range(tlb, addr & PUD_MASK, PUD_SIZE); 805 806 /* 807 * If the page table is now exclusively owned, we fully unshared 808 * a page table. 809 */ 810 if (!ptdesc_pmd_is_shared(pt)) 811 tlb->fully_unshared_tables = true; 812 tlb->unshared_tables = true; 813} 814 815static inline void tlb_flush_unshared_tables(struct mmu_gather *tlb) 816{ 817 /* 818 * As soon as the caller drops locks to allow for reuse of 819 * previously-shared tables, these tables could get modified and 820 * even reused outside of hugetlb context, so we have to make sure that 821 * any page table walkers (incl. TLB, GUP-fast) are aware of that 822 * change. 823 * 824 * Even if we are not fully unsharing a PMD table, we must 825 * flush the TLB for the unsharer now. 826 */ 827 if (tlb->unshared_tables) 828 tlb_flush_mmu_tlbonly(tlb); 829 830 /* 831 * Similarly, we must make sure that concurrent GUP-fast will not 832 * walk previously-shared page tables that are getting modified+reused 833 * elsewhere. So broadcast an IPI to wait for any concurrent GUP-fast. 834 * 835 * We only perform this when we are the last sharer of a page table, 836 * as the IPI will reach all CPUs: any GUP-fast. 837 * 838 * Note that on configs where tlb_remove_table_sync_one() is a NOP, 839 * the expectation is that the tlb_flush_mmu_tlbonly() would have issued 840 * required IPIs already for us. 841 */ 842 if (tlb->fully_unshared_tables) { 843 tlb_remove_table_sync_one(); 844 tlb->fully_unshared_tables = false; 845 } 846} 847#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 848 849#endif /* CONFIG_MMU */ 850 851#endif /* _ASM_GENERIC__TLB_H */