at v6.19-rc7 7719 lines 221 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18#include <linux/stddef.h> 19#include <linux/mm.h> 20#include <linux/highmem.h> 21#include <linux/interrupt.h> 22#include <linux/jiffies.h> 23#include <linux/compiler.h> 24#include <linux/kernel.h> 25#include <linux/kasan.h> 26#include <linux/kmsan.h> 27#include <linux/module.h> 28#include <linux/suspend.h> 29#include <linux/ratelimit.h> 30#include <linux/oom.h> 31#include <linux/topology.h> 32#include <linux/sysctl.h> 33#include <linux/cpu.h> 34#include <linux/cpuset.h> 35#include <linux/pagevec.h> 36#include <linux/memory_hotplug.h> 37#include <linux/nodemask.h> 38#include <linux/vmstat.h> 39#include <linux/fault-inject.h> 40#include <linux/compaction.h> 41#include <trace/events/kmem.h> 42#include <trace/events/oom.h> 43#include <linux/prefetch.h> 44#include <linux/mm_inline.h> 45#include <linux/mmu_notifier.h> 46#include <linux/migrate.h> 47#include <linux/sched/mm.h> 48#include <linux/page_owner.h> 49#include <linux/page_table_check.h> 50#include <linux/memcontrol.h> 51#include <linux/ftrace.h> 52#include <linux/lockdep.h> 53#include <linux/psi.h> 54#include <linux/khugepaged.h> 55#include <linux/delayacct.h> 56#include <linux/cacheinfo.h> 57#include <linux/pgalloc_tag.h> 58#include <asm/div64.h> 59#include "internal.h" 60#include "shuffle.h" 61#include "page_reporting.h" 62 63/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64typedef int __bitwise fpi_t; 65 66/* No special request */ 67#define FPI_NONE ((__force fpi_t)0) 68 69/* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79/* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89#define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91/* Free the page without taking locks. Rely on trylock only. */ 92#define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95static DEFINE_MUTEX(pcp_batch_high_lock); 96#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99/* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 * Pass flags to a no-op inline function to typecheck and silence the unused 103 * variable warning. 104 */ 105static inline void __pcp_trylock_noop(unsigned long *flags) { } 106#define pcp_trylock_prepare(flags) __pcp_trylock_noop(&(flags)) 107#define pcp_trylock_finish(flags) __pcp_trylock_noop(&(flags)) 108#else 109 110/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 111#define pcp_trylock_prepare(flags) local_irq_save(flags) 112#define pcp_trylock_finish(flags) local_irq_restore(flags) 113#endif 114 115/* 116 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 117 * a migration causing the wrong PCP to be locked and remote memory being 118 * potentially allocated, pin the task to the CPU for the lookup+lock. 119 * preempt_disable is used on !RT because it is faster than migrate_disable. 120 * migrate_disable is used on RT because otherwise RT spinlock usage is 121 * interfered with and a high priority task cannot preempt the allocator. 122 */ 123#ifndef CONFIG_PREEMPT_RT 124#define pcpu_task_pin() preempt_disable() 125#define pcpu_task_unpin() preempt_enable() 126#else 127#define pcpu_task_pin() migrate_disable() 128#define pcpu_task_unpin() migrate_enable() 129#endif 130 131/* 132 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 133 * Return value should be used with equivalent unlock helper. 134 */ 135#define pcpu_spin_trylock(type, member, ptr) \ 136({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145}) 146 147#define pcpu_spin_unlock(member, ptr) \ 148({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151}) 152 153/* struct per_cpu_pages specific helpers. */ 154#define pcp_spin_trylock(ptr, UP_flags) \ 155({ \ 156 struct per_cpu_pages *__ret; \ 157 pcp_trylock_prepare(UP_flags); \ 158 __ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr); \ 159 if (!__ret) \ 160 pcp_trylock_finish(UP_flags); \ 161 __ret; \ 162}) 163 164#define pcp_spin_unlock(ptr, UP_flags) \ 165({ \ 166 pcpu_spin_unlock(lock, ptr); \ 167 pcp_trylock_finish(UP_flags); \ 168}) 169 170/* 171 * With the UP spinlock implementation, when we spin_lock(&pcp->lock) (for i.e. 172 * a potentially remote cpu drain) and get interrupted by an operation that 173 * attempts pcp_spin_trylock(), we can't rely on the trylock failure due to UP 174 * spinlock assumptions making the trylock a no-op. So we have to turn that 175 * spin_lock() to a spin_lock_irqsave(). This works because on UP there are no 176 * remote cpu's so we can only be locking the only existing local one. 177 */ 178#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 179static inline void __flags_noop(unsigned long *flags) { } 180#define pcp_spin_lock_maybe_irqsave(ptr, flags) \ 181({ \ 182 __flags_noop(&(flags)); \ 183 spin_lock(&(ptr)->lock); \ 184}) 185#define pcp_spin_unlock_maybe_irqrestore(ptr, flags) \ 186({ \ 187 spin_unlock(&(ptr)->lock); \ 188 __flags_noop(&(flags)); \ 189}) 190#else 191#define pcp_spin_lock_maybe_irqsave(ptr, flags) \ 192 spin_lock_irqsave(&(ptr)->lock, flags) 193#define pcp_spin_unlock_maybe_irqrestore(ptr, flags) \ 194 spin_unlock_irqrestore(&(ptr)->lock, flags) 195#endif 196 197#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 198DEFINE_PER_CPU(int, numa_node); 199EXPORT_PER_CPU_SYMBOL(numa_node); 200#endif 201 202DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 203 204#ifdef CONFIG_HAVE_MEMORYLESS_NODES 205/* 206 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 207 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 208 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 209 * defined in <linux/topology.h>. 210 */ 211DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 212EXPORT_PER_CPU_SYMBOL(_numa_mem_); 213#endif 214 215static DEFINE_MUTEX(pcpu_drain_mutex); 216 217#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 218volatile unsigned long latent_entropy __latent_entropy; 219EXPORT_SYMBOL(latent_entropy); 220#endif 221 222/* 223 * Array of node states. 224 */ 225nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 226 [N_POSSIBLE] = NODE_MASK_ALL, 227 [N_ONLINE] = { { [0] = 1UL } }, 228#ifndef CONFIG_NUMA 229 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 230#ifdef CONFIG_HIGHMEM 231 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 232#endif 233 [N_MEMORY] = { { [0] = 1UL } }, 234 [N_CPU] = { { [0] = 1UL } }, 235#endif /* NUMA */ 236}; 237EXPORT_SYMBOL(node_states); 238 239gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 240 241#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 242unsigned int pageblock_order __read_mostly; 243#endif 244 245static void __free_pages_ok(struct page *page, unsigned int order, 246 fpi_t fpi_flags); 247 248/* 249 * results with 256, 32 in the lowmem_reserve sysctl: 250 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 251 * 1G machine -> (16M dma, 784M normal, 224M high) 252 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 253 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 254 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 255 * 256 * TBD: should special case ZONE_DMA32 machines here - in those we normally 257 * don't need any ZONE_NORMAL reservation 258 */ 259static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 260#ifdef CONFIG_ZONE_DMA 261 [ZONE_DMA] = 256, 262#endif 263#ifdef CONFIG_ZONE_DMA32 264 [ZONE_DMA32] = 256, 265#endif 266 [ZONE_NORMAL] = 32, 267#ifdef CONFIG_HIGHMEM 268 [ZONE_HIGHMEM] = 0, 269#endif 270 [ZONE_MOVABLE] = 0, 271}; 272 273char * const zone_names[MAX_NR_ZONES] = { 274#ifdef CONFIG_ZONE_DMA 275 "DMA", 276#endif 277#ifdef CONFIG_ZONE_DMA32 278 "DMA32", 279#endif 280 "Normal", 281#ifdef CONFIG_HIGHMEM 282 "HighMem", 283#endif 284 "Movable", 285#ifdef CONFIG_ZONE_DEVICE 286 "Device", 287#endif 288}; 289 290const char * const migratetype_names[MIGRATE_TYPES] = { 291 "Unmovable", 292 "Movable", 293 "Reclaimable", 294 "HighAtomic", 295#ifdef CONFIG_CMA 296 "CMA", 297#endif 298#ifdef CONFIG_MEMORY_ISOLATION 299 "Isolate", 300#endif 301}; 302 303int min_free_kbytes = 1024; 304int user_min_free_kbytes = -1; 305static int watermark_boost_factor __read_mostly = 15000; 306static int watermark_scale_factor = 10; 307int defrag_mode; 308 309/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 310int movable_zone; 311EXPORT_SYMBOL(movable_zone); 312 313#if MAX_NUMNODES > 1 314unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 315unsigned int nr_online_nodes __read_mostly = 1; 316EXPORT_SYMBOL(nr_node_ids); 317EXPORT_SYMBOL(nr_online_nodes); 318#endif 319 320static bool page_contains_unaccepted(struct page *page, unsigned int order); 321static bool cond_accept_memory(struct zone *zone, unsigned int order, 322 int alloc_flags); 323static bool __free_unaccepted(struct page *page); 324 325int page_group_by_mobility_disabled __read_mostly; 326 327#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 328/* 329 * During boot we initialize deferred pages on-demand, as needed, but once 330 * page_alloc_init_late() has finished, the deferred pages are all initialized, 331 * and we can permanently disable that path. 332 */ 333DEFINE_STATIC_KEY_TRUE(deferred_pages); 334 335static inline bool deferred_pages_enabled(void) 336{ 337 return static_branch_unlikely(&deferred_pages); 338} 339 340/* 341 * deferred_grow_zone() is __init, but it is called from 342 * get_page_from_freelist() during early boot until deferred_pages permanently 343 * disables this call. This is why we have refdata wrapper to avoid warning, 344 * and to ensure that the function body gets unloaded. 345 */ 346static bool __ref 347_deferred_grow_zone(struct zone *zone, unsigned int order) 348{ 349 return deferred_grow_zone(zone, order); 350} 351#else 352static inline bool deferred_pages_enabled(void) 353{ 354 return false; 355} 356 357static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 358{ 359 return false; 360} 361#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 362 363/* Return a pointer to the bitmap storing bits affecting a block of pages */ 364static inline unsigned long *get_pageblock_bitmap(const struct page *page, 365 unsigned long pfn) 366{ 367#ifdef CONFIG_SPARSEMEM 368 return section_to_usemap(__pfn_to_section(pfn)); 369#else 370 return page_zone(page)->pageblock_flags; 371#endif /* CONFIG_SPARSEMEM */ 372} 373 374static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 375{ 376#ifdef CONFIG_SPARSEMEM 377 pfn &= (PAGES_PER_SECTION-1); 378#else 379 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 380#endif /* CONFIG_SPARSEMEM */ 381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 382} 383 384static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 385{ 386 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 387} 388 389static __always_inline void 390get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 391 unsigned long **bitmap_word, unsigned long *bitidx) 392{ 393 unsigned long *bitmap; 394 unsigned long word_bitidx; 395 396#ifdef CONFIG_MEMORY_ISOLATION 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 398#else 399 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 400#endif 401 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 402 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 403 404 bitmap = get_pageblock_bitmap(page, pfn); 405 *bitidx = pfn_to_bitidx(page, pfn); 406 word_bitidx = *bitidx / BITS_PER_LONG; 407 *bitidx &= (BITS_PER_LONG - 1); 408 *bitmap_word = &bitmap[word_bitidx]; 409} 410 411 412/** 413 * __get_pfnblock_flags_mask - Return the requested group of flags for 414 * a pageblock_nr_pages block of pages 415 * @page: The page within the block of interest 416 * @pfn: The target page frame number 417 * @mask: mask of bits that the caller is interested in 418 * 419 * Return: pageblock_bits flags 420 */ 421static unsigned long __get_pfnblock_flags_mask(const struct page *page, 422 unsigned long pfn, 423 unsigned long mask) 424{ 425 unsigned long *bitmap_word; 426 unsigned long bitidx; 427 unsigned long word; 428 429 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 430 /* 431 * This races, without locks, with set_pfnblock_migratetype(). Ensure 432 * a consistent read of the memory array, so that results, even though 433 * racy, are not corrupted. 434 */ 435 word = READ_ONCE(*bitmap_word); 436 return (word >> bitidx) & mask; 437} 438 439/** 440 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 441 * @page: The page within the block of interest 442 * @pfn: The target page frame number 443 * @pb_bit: pageblock bit to check 444 * 445 * Return: true if the bit is set, otherwise false 446 */ 447bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 448 enum pageblock_bits pb_bit) 449{ 450 unsigned long *bitmap_word; 451 unsigned long bitidx; 452 453 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 454 return false; 455 456 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 457 458 return test_bit(bitidx + pb_bit, bitmap_word); 459} 460 461/** 462 * get_pfnblock_migratetype - Return the migratetype of a pageblock 463 * @page: The page within the block of interest 464 * @pfn: The target page frame number 465 * 466 * Return: The migratetype of the pageblock 467 * 468 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 469 * to save a call to page_to_pfn(). 470 */ 471__always_inline enum migratetype 472get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 473{ 474 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 475 unsigned long flags; 476 477 flags = __get_pfnblock_flags_mask(page, pfn, mask); 478 479#ifdef CONFIG_MEMORY_ISOLATION 480 if (flags & BIT(PB_migrate_isolate)) 481 return MIGRATE_ISOLATE; 482#endif 483 return flags & MIGRATETYPE_MASK; 484} 485 486/** 487 * __set_pfnblock_flags_mask - Set the requested group of flags for 488 * a pageblock_nr_pages block of pages 489 * @page: The page within the block of interest 490 * @pfn: The target page frame number 491 * @flags: The flags to set 492 * @mask: mask of bits that the caller is interested in 493 */ 494static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 495 unsigned long flags, unsigned long mask) 496{ 497 unsigned long *bitmap_word; 498 unsigned long bitidx; 499 unsigned long word; 500 501 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 502 503 mask <<= bitidx; 504 flags <<= bitidx; 505 506 word = READ_ONCE(*bitmap_word); 507 do { 508 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 509} 510 511/** 512 * set_pfnblock_bit - Set a standalone bit of a pageblock 513 * @page: The page within the block of interest 514 * @pfn: The target page frame number 515 * @pb_bit: pageblock bit to set 516 */ 517void set_pfnblock_bit(const struct page *page, unsigned long pfn, 518 enum pageblock_bits pb_bit) 519{ 520 unsigned long *bitmap_word; 521 unsigned long bitidx; 522 523 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 524 return; 525 526 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 527 528 set_bit(bitidx + pb_bit, bitmap_word); 529} 530 531/** 532 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 533 * @page: The page within the block of interest 534 * @pfn: The target page frame number 535 * @pb_bit: pageblock bit to clear 536 */ 537void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 538 enum pageblock_bits pb_bit) 539{ 540 unsigned long *bitmap_word; 541 unsigned long bitidx; 542 543 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 544 return; 545 546 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 547 548 clear_bit(bitidx + pb_bit, bitmap_word); 549} 550 551/** 552 * set_pageblock_migratetype - Set the migratetype of a pageblock 553 * @page: The page within the block of interest 554 * @migratetype: migratetype to set 555 */ 556static void set_pageblock_migratetype(struct page *page, 557 enum migratetype migratetype) 558{ 559 if (unlikely(page_group_by_mobility_disabled && 560 migratetype < MIGRATE_PCPTYPES)) 561 migratetype = MIGRATE_UNMOVABLE; 562 563#ifdef CONFIG_MEMORY_ISOLATION 564 if (migratetype == MIGRATE_ISOLATE) { 565 VM_WARN_ONCE(1, 566 "Use set_pageblock_isolate() for pageblock isolation"); 567 return; 568 } 569 VM_WARN_ONCE(get_pageblock_isolate(page), 570 "Use clear_pageblock_isolate() to unisolate pageblock"); 571 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 572#endif 573 __set_pfnblock_flags_mask(page, page_to_pfn(page), 574 (unsigned long)migratetype, 575 MIGRATETYPE_AND_ISO_MASK); 576} 577 578void __meminit init_pageblock_migratetype(struct page *page, 579 enum migratetype migratetype, 580 bool isolate) 581{ 582 unsigned long flags; 583 584 if (unlikely(page_group_by_mobility_disabled && 585 migratetype < MIGRATE_PCPTYPES)) 586 migratetype = MIGRATE_UNMOVABLE; 587 588 flags = migratetype; 589 590#ifdef CONFIG_MEMORY_ISOLATION 591 if (migratetype == MIGRATE_ISOLATE) { 592 VM_WARN_ONCE( 593 1, 594 "Set isolate=true to isolate pageblock with a migratetype"); 595 return; 596 } 597 if (isolate) 598 flags |= BIT(PB_migrate_isolate); 599#endif 600 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 601 MIGRATETYPE_AND_ISO_MASK); 602} 603 604#ifdef CONFIG_DEBUG_VM 605static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 606{ 607 int ret; 608 unsigned seq; 609 unsigned long pfn = page_to_pfn(page); 610 unsigned long sp, start_pfn; 611 612 do { 613 seq = zone_span_seqbegin(zone); 614 start_pfn = zone->zone_start_pfn; 615 sp = zone->spanned_pages; 616 ret = !zone_spans_pfn(zone, pfn); 617 } while (zone_span_seqretry(zone, seq)); 618 619 if (ret) 620 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 621 pfn, zone_to_nid(zone), zone->name, 622 start_pfn, start_pfn + sp); 623 624 return ret; 625} 626 627/* 628 * Temporary debugging check for pages not lying within a given zone. 629 */ 630static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 631{ 632 if (page_outside_zone_boundaries(zone, page)) 633 return true; 634 if (zone != page_zone(page)) 635 return true; 636 637 return false; 638} 639#else 640static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 641{ 642 return false; 643} 644#endif 645 646static void bad_page(struct page *page, const char *reason) 647{ 648 static unsigned long resume; 649 static unsigned long nr_shown; 650 static unsigned long nr_unshown; 651 652 /* 653 * Allow a burst of 60 reports, then keep quiet for that minute; 654 * or allow a steady drip of one report per second. 655 */ 656 if (nr_shown == 60) { 657 if (time_before(jiffies, resume)) { 658 nr_unshown++; 659 goto out; 660 } 661 if (nr_unshown) { 662 pr_alert( 663 "BUG: Bad page state: %lu messages suppressed\n", 664 nr_unshown); 665 nr_unshown = 0; 666 } 667 nr_shown = 0; 668 } 669 if (nr_shown++ == 0) 670 resume = jiffies + 60 * HZ; 671 672 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 673 current->comm, page_to_pfn(page)); 674 dump_page(page, reason); 675 676 print_modules(); 677 dump_stack(); 678out: 679 /* Leave bad fields for debug, except PageBuddy could make trouble */ 680 if (PageBuddy(page)) 681 __ClearPageBuddy(page); 682 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 683} 684 685static inline unsigned int order_to_pindex(int migratetype, int order) 686{ 687 688#ifdef CONFIG_TRANSPARENT_HUGEPAGE 689 bool movable; 690 if (order > PAGE_ALLOC_COSTLY_ORDER) { 691 VM_BUG_ON(order != HPAGE_PMD_ORDER); 692 693 movable = migratetype == MIGRATE_MOVABLE; 694 695 return NR_LOWORDER_PCP_LISTS + movable; 696 } 697#else 698 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 699#endif 700 701 return (MIGRATE_PCPTYPES * order) + migratetype; 702} 703 704static inline int pindex_to_order(unsigned int pindex) 705{ 706 int order = pindex / MIGRATE_PCPTYPES; 707 708#ifdef CONFIG_TRANSPARENT_HUGEPAGE 709 if (pindex >= NR_LOWORDER_PCP_LISTS) 710 order = HPAGE_PMD_ORDER; 711#else 712 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 713#endif 714 715 return order; 716} 717 718static inline bool pcp_allowed_order(unsigned int order) 719{ 720 if (order <= PAGE_ALLOC_COSTLY_ORDER) 721 return true; 722#ifdef CONFIG_TRANSPARENT_HUGEPAGE 723 if (order == HPAGE_PMD_ORDER) 724 return true; 725#endif 726 return false; 727} 728 729/* 730 * Higher-order pages are called "compound pages". They are structured thusly: 731 * 732 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 733 * 734 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 735 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 736 * 737 * The first tail page's ->compound_order holds the order of allocation. 738 * This usage means that zero-order pages may not be compound. 739 */ 740 741void prep_compound_page(struct page *page, unsigned int order) 742{ 743 int i; 744 int nr_pages = 1 << order; 745 746 __SetPageHead(page); 747 for (i = 1; i < nr_pages; i++) 748 prep_compound_tail(page, i); 749 750 prep_compound_head(page, order); 751} 752 753static inline void set_buddy_order(struct page *page, unsigned int order) 754{ 755 set_page_private(page, order); 756 __SetPageBuddy(page); 757} 758 759#ifdef CONFIG_COMPACTION 760static inline struct capture_control *task_capc(struct zone *zone) 761{ 762 struct capture_control *capc = current->capture_control; 763 764 return unlikely(capc) && 765 !(current->flags & PF_KTHREAD) && 766 !capc->page && 767 capc->cc->zone == zone ? capc : NULL; 768} 769 770static inline bool 771compaction_capture(struct capture_control *capc, struct page *page, 772 int order, int migratetype) 773{ 774 if (!capc || order != capc->cc->order) 775 return false; 776 777 /* Do not accidentally pollute CMA or isolated regions*/ 778 if (is_migrate_cma(migratetype) || 779 is_migrate_isolate(migratetype)) 780 return false; 781 782 /* 783 * Do not let lower order allocations pollute a movable pageblock 784 * unless compaction is also requesting movable pages. 785 * This might let an unmovable request use a reclaimable pageblock 786 * and vice-versa but no more than normal fallback logic which can 787 * have trouble finding a high-order free page. 788 */ 789 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 790 capc->cc->migratetype != MIGRATE_MOVABLE) 791 return false; 792 793 if (migratetype != capc->cc->migratetype) 794 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 795 capc->cc->migratetype, migratetype); 796 797 capc->page = page; 798 return true; 799} 800 801#else 802static inline struct capture_control *task_capc(struct zone *zone) 803{ 804 return NULL; 805} 806 807static inline bool 808compaction_capture(struct capture_control *capc, struct page *page, 809 int order, int migratetype) 810{ 811 return false; 812} 813#endif /* CONFIG_COMPACTION */ 814 815static inline void account_freepages(struct zone *zone, int nr_pages, 816 int migratetype) 817{ 818 lockdep_assert_held(&zone->lock); 819 820 if (is_migrate_isolate(migratetype)) 821 return; 822 823 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 824 825 if (is_migrate_cma(migratetype)) 826 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 827 else if (migratetype == MIGRATE_HIGHATOMIC) 828 WRITE_ONCE(zone->nr_free_highatomic, 829 zone->nr_free_highatomic + nr_pages); 830} 831 832/* Used for pages not on another list */ 833static inline void __add_to_free_list(struct page *page, struct zone *zone, 834 unsigned int order, int migratetype, 835 bool tail) 836{ 837 struct free_area *area = &zone->free_area[order]; 838 int nr_pages = 1 << order; 839 840 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 841 "page type is %d, passed migratetype is %d (nr=%d)\n", 842 get_pageblock_migratetype(page), migratetype, nr_pages); 843 844 if (tail) 845 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 846 else 847 list_add(&page->buddy_list, &area->free_list[migratetype]); 848 area->nr_free++; 849 850 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 851 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 852} 853 854/* 855 * Used for pages which are on another list. Move the pages to the tail 856 * of the list - so the moved pages won't immediately be considered for 857 * allocation again (e.g., optimization for memory onlining). 858 */ 859static inline void move_to_free_list(struct page *page, struct zone *zone, 860 unsigned int order, int old_mt, int new_mt) 861{ 862 struct free_area *area = &zone->free_area[order]; 863 int nr_pages = 1 << order; 864 865 /* Free page moving can fail, so it happens before the type update */ 866 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 867 "page type is %d, passed migratetype is %d (nr=%d)\n", 868 get_pageblock_migratetype(page), old_mt, nr_pages); 869 870 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 871 872 account_freepages(zone, -nr_pages, old_mt); 873 account_freepages(zone, nr_pages, new_mt); 874 875 if (order >= pageblock_order && 876 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 877 if (!is_migrate_isolate(old_mt)) 878 nr_pages = -nr_pages; 879 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 880 } 881} 882 883static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 884 unsigned int order, int migratetype) 885{ 886 int nr_pages = 1 << order; 887 888 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 889 "page type is %d, passed migratetype is %d (nr=%d)\n", 890 get_pageblock_migratetype(page), migratetype, nr_pages); 891 892 /* clear reported state and update reported page count */ 893 if (page_reported(page)) 894 __ClearPageReported(page); 895 896 list_del(&page->buddy_list); 897 __ClearPageBuddy(page); 898 set_page_private(page, 0); 899 zone->free_area[order].nr_free--; 900 901 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 902 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 903} 904 905static inline void del_page_from_free_list(struct page *page, struct zone *zone, 906 unsigned int order, int migratetype) 907{ 908 __del_page_from_free_list(page, zone, order, migratetype); 909 account_freepages(zone, -(1 << order), migratetype); 910} 911 912static inline struct page *get_page_from_free_area(struct free_area *area, 913 int migratetype) 914{ 915 return list_first_entry_or_null(&area->free_list[migratetype], 916 struct page, buddy_list); 917} 918 919/* 920 * If this is less than the 2nd largest possible page, check if the buddy 921 * of the next-higher order is free. If it is, it's possible 922 * that pages are being freed that will coalesce soon. In case, 923 * that is happening, add the free page to the tail of the list 924 * so it's less likely to be used soon and more likely to be merged 925 * as a 2-level higher order page 926 */ 927static inline bool 928buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 929 struct page *page, unsigned int order) 930{ 931 unsigned long higher_page_pfn; 932 struct page *higher_page; 933 934 if (order >= MAX_PAGE_ORDER - 1) 935 return false; 936 937 higher_page_pfn = buddy_pfn & pfn; 938 higher_page = page + (higher_page_pfn - pfn); 939 940 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 941 NULL) != NULL; 942} 943 944static void change_pageblock_range(struct page *pageblock_page, 945 int start_order, int migratetype) 946{ 947 int nr_pageblocks = 1 << (start_order - pageblock_order); 948 949 while (nr_pageblocks--) { 950 set_pageblock_migratetype(pageblock_page, migratetype); 951 pageblock_page += pageblock_nr_pages; 952 } 953} 954 955/* 956 * Freeing function for a buddy system allocator. 957 * 958 * The concept of a buddy system is to maintain direct-mapped table 959 * (containing bit values) for memory blocks of various "orders". 960 * The bottom level table contains the map for the smallest allocatable 961 * units of memory (here, pages), and each level above it describes 962 * pairs of units from the levels below, hence, "buddies". 963 * At a high level, all that happens here is marking the table entry 964 * at the bottom level available, and propagating the changes upward 965 * as necessary, plus some accounting needed to play nicely with other 966 * parts of the VM system. 967 * At each level, we keep a list of pages, which are heads of continuous 968 * free pages of length of (1 << order) and marked with PageBuddy. 969 * Page's order is recorded in page_private(page) field. 970 * So when we are allocating or freeing one, we can derive the state of the 971 * other. That is, if we allocate a small block, and both were 972 * free, the remainder of the region must be split into blocks. 973 * If a block is freed, and its buddy is also free, then this 974 * triggers coalescing into a block of larger size. 975 * 976 * -- nyc 977 */ 978 979static inline void __free_one_page(struct page *page, 980 unsigned long pfn, 981 struct zone *zone, unsigned int order, 982 int migratetype, fpi_t fpi_flags) 983{ 984 struct capture_control *capc = task_capc(zone); 985 unsigned long buddy_pfn = 0; 986 unsigned long combined_pfn; 987 struct page *buddy; 988 bool to_tail; 989 990 VM_BUG_ON(!zone_is_initialized(zone)); 991 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 992 993 VM_BUG_ON(migratetype == -1); 994 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 995 VM_BUG_ON_PAGE(bad_range(zone, page), page); 996 997 account_freepages(zone, 1 << order, migratetype); 998 999 while (order < MAX_PAGE_ORDER) { 1000 int buddy_mt = migratetype; 1001 1002 if (compaction_capture(capc, page, order, migratetype)) { 1003 account_freepages(zone, -(1 << order), migratetype); 1004 return; 1005 } 1006 1007 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1008 if (!buddy) 1009 goto done_merging; 1010 1011 if (unlikely(order >= pageblock_order)) { 1012 /* 1013 * We want to prevent merge between freepages on pageblock 1014 * without fallbacks and normal pageblock. Without this, 1015 * pageblock isolation could cause incorrect freepage or CMA 1016 * accounting or HIGHATOMIC accounting. 1017 */ 1018 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 1019 1020 if (migratetype != buddy_mt && 1021 (!migratetype_is_mergeable(migratetype) || 1022 !migratetype_is_mergeable(buddy_mt))) 1023 goto done_merging; 1024 } 1025 1026 /* 1027 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1028 * merge with it and move up one order. 1029 */ 1030 if (page_is_guard(buddy)) 1031 clear_page_guard(zone, buddy, order); 1032 else 1033 __del_page_from_free_list(buddy, zone, order, buddy_mt); 1034 1035 if (unlikely(buddy_mt != migratetype)) { 1036 /* 1037 * Match buddy type. This ensures that an 1038 * expand() down the line puts the sub-blocks 1039 * on the right freelists. 1040 */ 1041 change_pageblock_range(buddy, order, migratetype); 1042 } 1043 1044 combined_pfn = buddy_pfn & pfn; 1045 page = page + (combined_pfn - pfn); 1046 pfn = combined_pfn; 1047 order++; 1048 } 1049 1050done_merging: 1051 set_buddy_order(page, order); 1052 1053 if (fpi_flags & FPI_TO_TAIL) 1054 to_tail = true; 1055 else if (is_shuffle_order(order)) 1056 to_tail = shuffle_pick_tail(); 1057 else 1058 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1059 1060 __add_to_free_list(page, zone, order, migratetype, to_tail); 1061 1062 /* Notify page reporting subsystem of freed page */ 1063 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1064 page_reporting_notify_free(order); 1065} 1066 1067/* 1068 * A bad page could be due to a number of fields. Instead of multiple branches, 1069 * try and check multiple fields with one check. The caller must do a detailed 1070 * check if necessary. 1071 */ 1072static inline bool page_expected_state(struct page *page, 1073 unsigned long check_flags) 1074{ 1075 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1076 return false; 1077 1078 if (unlikely((unsigned long)page->mapping | 1079 page_ref_count(page) | 1080#ifdef CONFIG_MEMCG 1081 page->memcg_data | 1082#endif 1083 page_pool_page_is_pp(page) | 1084 (page->flags.f & check_flags))) 1085 return false; 1086 1087 return true; 1088} 1089 1090static const char *page_bad_reason(struct page *page, unsigned long flags) 1091{ 1092 const char *bad_reason = NULL; 1093 1094 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1095 bad_reason = "nonzero mapcount"; 1096 if (unlikely(page->mapping != NULL)) 1097 bad_reason = "non-NULL mapping"; 1098 if (unlikely(page_ref_count(page) != 0)) 1099 bad_reason = "nonzero _refcount"; 1100 if (unlikely(page->flags.f & flags)) { 1101 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1102 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1103 else 1104 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1105 } 1106#ifdef CONFIG_MEMCG 1107 if (unlikely(page->memcg_data)) 1108 bad_reason = "page still charged to cgroup"; 1109#endif 1110 if (unlikely(page_pool_page_is_pp(page))) 1111 bad_reason = "page_pool leak"; 1112 return bad_reason; 1113} 1114 1115static inline bool free_page_is_bad(struct page *page) 1116{ 1117 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1118 return false; 1119 1120 /* Something has gone sideways, find it */ 1121 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1122 return true; 1123} 1124 1125static inline bool is_check_pages_enabled(void) 1126{ 1127 return static_branch_unlikely(&check_pages_enabled); 1128} 1129 1130static int free_tail_page_prepare(struct page *head_page, struct page *page) 1131{ 1132 struct folio *folio = (struct folio *)head_page; 1133 int ret = 1; 1134 1135 /* 1136 * We rely page->lru.next never has bit 0 set, unless the page 1137 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1138 */ 1139 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1140 1141 if (!is_check_pages_enabled()) { 1142 ret = 0; 1143 goto out; 1144 } 1145 switch (page - head_page) { 1146 case 1: 1147 /* the first tail page: these may be in place of ->mapping */ 1148 if (unlikely(folio_large_mapcount(folio))) { 1149 bad_page(page, "nonzero large_mapcount"); 1150 goto out; 1151 } 1152 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1153 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1154 bad_page(page, "nonzero nr_pages_mapped"); 1155 goto out; 1156 } 1157 if (IS_ENABLED(CONFIG_MM_ID)) { 1158 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1159 bad_page(page, "nonzero mm mapcount 0"); 1160 goto out; 1161 } 1162 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1163 bad_page(page, "nonzero mm mapcount 1"); 1164 goto out; 1165 } 1166 } 1167 if (IS_ENABLED(CONFIG_64BIT)) { 1168 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1169 bad_page(page, "nonzero entire_mapcount"); 1170 goto out; 1171 } 1172 if (unlikely(atomic_read(&folio->_pincount))) { 1173 bad_page(page, "nonzero pincount"); 1174 goto out; 1175 } 1176 } 1177 break; 1178 case 2: 1179 /* the second tail page: deferred_list overlaps ->mapping */ 1180 if (unlikely(!list_empty(&folio->_deferred_list))) { 1181 bad_page(page, "on deferred list"); 1182 goto out; 1183 } 1184 if (!IS_ENABLED(CONFIG_64BIT)) { 1185 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1186 bad_page(page, "nonzero entire_mapcount"); 1187 goto out; 1188 } 1189 if (unlikely(atomic_read(&folio->_pincount))) { 1190 bad_page(page, "nonzero pincount"); 1191 goto out; 1192 } 1193 } 1194 break; 1195 case 3: 1196 /* the third tail page: hugetlb specifics overlap ->mappings */ 1197 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1198 break; 1199 fallthrough; 1200 default: 1201 if (page->mapping != TAIL_MAPPING) { 1202 bad_page(page, "corrupted mapping in tail page"); 1203 goto out; 1204 } 1205 break; 1206 } 1207 if (unlikely(!PageTail(page))) { 1208 bad_page(page, "PageTail not set"); 1209 goto out; 1210 } 1211 if (unlikely(compound_head(page) != head_page)) { 1212 bad_page(page, "compound_head not consistent"); 1213 goto out; 1214 } 1215 ret = 0; 1216out: 1217 page->mapping = NULL; 1218 clear_compound_head(page); 1219 return ret; 1220} 1221 1222/* 1223 * Skip KASAN memory poisoning when either: 1224 * 1225 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1226 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1227 * using page tags instead (see below). 1228 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1229 * that error detection is disabled for accesses via the page address. 1230 * 1231 * Pages will have match-all tags in the following circumstances: 1232 * 1233 * 1. Pages are being initialized for the first time, including during deferred 1234 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1235 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1236 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1237 * 3. The allocation was excluded from being checked due to sampling, 1238 * see the call to kasan_unpoison_pages. 1239 * 1240 * Poisoning pages during deferred memory init will greatly lengthen the 1241 * process and cause problem in large memory systems as the deferred pages 1242 * initialization is done with interrupt disabled. 1243 * 1244 * Assuming that there will be no reference to those newly initialized 1245 * pages before they are ever allocated, this should have no effect on 1246 * KASAN memory tracking as the poison will be properly inserted at page 1247 * allocation time. The only corner case is when pages are allocated by 1248 * on-demand allocation and then freed again before the deferred pages 1249 * initialization is done, but this is not likely to happen. 1250 */ 1251static inline bool should_skip_kasan_poison(struct page *page) 1252{ 1253 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1254 return deferred_pages_enabled(); 1255 1256 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1257} 1258 1259static void kernel_init_pages(struct page *page, int numpages) 1260{ 1261 int i; 1262 1263 /* s390's use of memset() could override KASAN redzones. */ 1264 kasan_disable_current(); 1265 for (i = 0; i < numpages; i++) 1266 clear_highpage_kasan_tagged(page + i); 1267 kasan_enable_current(); 1268} 1269 1270#ifdef CONFIG_MEM_ALLOC_PROFILING 1271 1272/* Should be called only if mem_alloc_profiling_enabled() */ 1273void __clear_page_tag_ref(struct page *page) 1274{ 1275 union pgtag_ref_handle handle; 1276 union codetag_ref ref; 1277 1278 if (get_page_tag_ref(page, &ref, &handle)) { 1279 set_codetag_empty(&ref); 1280 update_page_tag_ref(handle, &ref); 1281 put_page_tag_ref(handle); 1282 } 1283} 1284 1285/* Should be called only if mem_alloc_profiling_enabled() */ 1286static noinline 1287void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1288 unsigned int nr) 1289{ 1290 union pgtag_ref_handle handle; 1291 union codetag_ref ref; 1292 1293 if (get_page_tag_ref(page, &ref, &handle)) { 1294 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1295 update_page_tag_ref(handle, &ref); 1296 put_page_tag_ref(handle); 1297 } 1298} 1299 1300static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1301 unsigned int nr) 1302{ 1303 if (mem_alloc_profiling_enabled()) 1304 __pgalloc_tag_add(page, task, nr); 1305} 1306 1307/* Should be called only if mem_alloc_profiling_enabled() */ 1308static noinline 1309void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1310{ 1311 union pgtag_ref_handle handle; 1312 union codetag_ref ref; 1313 1314 if (get_page_tag_ref(page, &ref, &handle)) { 1315 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1316 update_page_tag_ref(handle, &ref); 1317 put_page_tag_ref(handle); 1318 } 1319} 1320 1321static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1322{ 1323 if (mem_alloc_profiling_enabled()) 1324 __pgalloc_tag_sub(page, nr); 1325} 1326 1327/* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1328static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1329{ 1330 if (tag) 1331 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1332} 1333 1334#else /* CONFIG_MEM_ALLOC_PROFILING */ 1335 1336static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1337 unsigned int nr) {} 1338static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1339static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1340 1341#endif /* CONFIG_MEM_ALLOC_PROFILING */ 1342 1343__always_inline bool free_pages_prepare(struct page *page, 1344 unsigned int order) 1345{ 1346 int bad = 0; 1347 bool skip_kasan_poison = should_skip_kasan_poison(page); 1348 bool init = want_init_on_free(); 1349 bool compound = PageCompound(page); 1350 struct folio *folio = page_folio(page); 1351 1352 VM_BUG_ON_PAGE(PageTail(page), page); 1353 1354 trace_mm_page_free(page, order); 1355 kmsan_free_page(page, order); 1356 1357 if (memcg_kmem_online() && PageMemcgKmem(page)) 1358 __memcg_kmem_uncharge_page(page, order); 1359 1360 /* 1361 * In rare cases, when truncation or holepunching raced with 1362 * munlock after VM_LOCKED was cleared, Mlocked may still be 1363 * found set here. This does not indicate a problem, unless 1364 * "unevictable_pgs_cleared" appears worryingly large. 1365 */ 1366 if (unlikely(folio_test_mlocked(folio))) { 1367 long nr_pages = folio_nr_pages(folio); 1368 1369 __folio_clear_mlocked(folio); 1370 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1371 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1372 } 1373 1374 if (unlikely(PageHWPoison(page)) && !order) { 1375 /* Do not let hwpoison pages hit pcplists/buddy */ 1376 reset_page_owner(page, order); 1377 page_table_check_free(page, order); 1378 pgalloc_tag_sub(page, 1 << order); 1379 1380 /* 1381 * The page is isolated and accounted for. 1382 * Mark the codetag as empty to avoid accounting error 1383 * when the page is freed by unpoison_memory(). 1384 */ 1385 clear_page_tag_ref(page); 1386 return false; 1387 } 1388 1389 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1390 1391 /* 1392 * Check tail pages before head page information is cleared to 1393 * avoid checking PageCompound for order-0 pages. 1394 */ 1395 if (unlikely(order)) { 1396 int i; 1397 1398 if (compound) { 1399 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1400#ifdef NR_PAGES_IN_LARGE_FOLIO 1401 folio->_nr_pages = 0; 1402#endif 1403 } 1404 for (i = 1; i < (1 << order); i++) { 1405 if (compound) 1406 bad += free_tail_page_prepare(page, page + i); 1407 if (is_check_pages_enabled()) { 1408 if (free_page_is_bad(page + i)) { 1409 bad++; 1410 continue; 1411 } 1412 } 1413 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1414 } 1415 } 1416 if (folio_test_anon(folio)) { 1417 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1418 folio->mapping = NULL; 1419 } 1420 if (unlikely(page_has_type(page))) 1421 /* Reset the page_type (which overlays _mapcount) */ 1422 page->page_type = UINT_MAX; 1423 1424 if (is_check_pages_enabled()) { 1425 if (free_page_is_bad(page)) 1426 bad++; 1427 if (bad) 1428 return false; 1429 } 1430 1431 page_cpupid_reset_last(page); 1432 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1433 reset_page_owner(page, order); 1434 page_table_check_free(page, order); 1435 pgalloc_tag_sub(page, 1 << order); 1436 1437 if (!PageHighMem(page)) { 1438 debug_check_no_locks_freed(page_address(page), 1439 PAGE_SIZE << order); 1440 debug_check_no_obj_freed(page_address(page), 1441 PAGE_SIZE << order); 1442 } 1443 1444 kernel_poison_pages(page, 1 << order); 1445 1446 /* 1447 * As memory initialization might be integrated into KASAN, 1448 * KASAN poisoning and memory initialization code must be 1449 * kept together to avoid discrepancies in behavior. 1450 * 1451 * With hardware tag-based KASAN, memory tags must be set before the 1452 * page becomes unavailable via debug_pagealloc or arch_free_page. 1453 */ 1454 if (!skip_kasan_poison) { 1455 kasan_poison_pages(page, order, init); 1456 1457 /* Memory is already initialized if KASAN did it internally. */ 1458 if (kasan_has_integrated_init()) 1459 init = false; 1460 } 1461 if (init) 1462 kernel_init_pages(page, 1 << order); 1463 1464 /* 1465 * arch_free_page() can make the page's contents inaccessible. s390 1466 * does this. So nothing which can access the page's contents should 1467 * happen after this. 1468 */ 1469 arch_free_page(page, order); 1470 1471 debug_pagealloc_unmap_pages(page, 1 << order); 1472 1473 return true; 1474} 1475 1476/* 1477 * Frees a number of pages from the PCP lists 1478 * Assumes all pages on list are in same zone. 1479 * count is the number of pages to free. 1480 */ 1481static void free_pcppages_bulk(struct zone *zone, int count, 1482 struct per_cpu_pages *pcp, 1483 int pindex) 1484{ 1485 unsigned long flags; 1486 unsigned int order; 1487 struct page *page; 1488 1489 /* 1490 * Ensure proper count is passed which otherwise would stuck in the 1491 * below while (list_empty(list)) loop. 1492 */ 1493 count = min(pcp->count, count); 1494 1495 /* Ensure requested pindex is drained first. */ 1496 pindex = pindex - 1; 1497 1498 spin_lock_irqsave(&zone->lock, flags); 1499 1500 while (count > 0) { 1501 struct list_head *list; 1502 int nr_pages; 1503 1504 /* Remove pages from lists in a round-robin fashion. */ 1505 do { 1506 if (++pindex > NR_PCP_LISTS - 1) 1507 pindex = 0; 1508 list = &pcp->lists[pindex]; 1509 } while (list_empty(list)); 1510 1511 order = pindex_to_order(pindex); 1512 nr_pages = 1 << order; 1513 do { 1514 unsigned long pfn; 1515 int mt; 1516 1517 page = list_last_entry(list, struct page, pcp_list); 1518 pfn = page_to_pfn(page); 1519 mt = get_pfnblock_migratetype(page, pfn); 1520 1521 /* must delete to avoid corrupting pcp list */ 1522 list_del(&page->pcp_list); 1523 count -= nr_pages; 1524 pcp->count -= nr_pages; 1525 1526 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1527 trace_mm_page_pcpu_drain(page, order, mt); 1528 } while (count > 0 && !list_empty(list)); 1529 } 1530 1531 spin_unlock_irqrestore(&zone->lock, flags); 1532} 1533 1534/* Split a multi-block free page into its individual pageblocks. */ 1535static void split_large_buddy(struct zone *zone, struct page *page, 1536 unsigned long pfn, int order, fpi_t fpi) 1537{ 1538 unsigned long end = pfn + (1 << order); 1539 1540 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1541 /* Caller removed page from freelist, buddy info cleared! */ 1542 VM_WARN_ON_ONCE(PageBuddy(page)); 1543 1544 if (order > pageblock_order) 1545 order = pageblock_order; 1546 1547 do { 1548 int mt = get_pfnblock_migratetype(page, pfn); 1549 1550 __free_one_page(page, pfn, zone, order, mt, fpi); 1551 pfn += 1 << order; 1552 if (pfn == end) 1553 break; 1554 page = pfn_to_page(pfn); 1555 } while (1); 1556} 1557 1558static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1559 unsigned int order) 1560{ 1561 /* Remember the order */ 1562 page->private = order; 1563 /* Add the page to the free list */ 1564 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1565} 1566 1567static void free_one_page(struct zone *zone, struct page *page, 1568 unsigned long pfn, unsigned int order, 1569 fpi_t fpi_flags) 1570{ 1571 struct llist_head *llhead; 1572 unsigned long flags; 1573 1574 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1575 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1576 add_page_to_zone_llist(zone, page, order); 1577 return; 1578 } 1579 } else { 1580 spin_lock_irqsave(&zone->lock, flags); 1581 } 1582 1583 /* The lock succeeded. Process deferred pages. */ 1584 llhead = &zone->trylock_free_pages; 1585 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1586 struct llist_node *llnode; 1587 struct page *p, *tmp; 1588 1589 llnode = llist_del_all(llhead); 1590 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1591 unsigned int p_order = p->private; 1592 1593 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1594 __count_vm_events(PGFREE, 1 << p_order); 1595 } 1596 } 1597 split_large_buddy(zone, page, pfn, order, fpi_flags); 1598 spin_unlock_irqrestore(&zone->lock, flags); 1599 1600 __count_vm_events(PGFREE, 1 << order); 1601} 1602 1603static void __free_pages_ok(struct page *page, unsigned int order, 1604 fpi_t fpi_flags) 1605{ 1606 unsigned long pfn = page_to_pfn(page); 1607 struct zone *zone = page_zone(page); 1608 1609 if (free_pages_prepare(page, order)) 1610 free_one_page(zone, page, pfn, order, fpi_flags); 1611} 1612 1613void __meminit __free_pages_core(struct page *page, unsigned int order, 1614 enum meminit_context context) 1615{ 1616 unsigned int nr_pages = 1 << order; 1617 struct page *p = page; 1618 unsigned int loop; 1619 1620 /* 1621 * When initializing the memmap, __init_single_page() sets the refcount 1622 * of all pages to 1 ("allocated"/"not free"). We have to set the 1623 * refcount of all involved pages to 0. 1624 * 1625 * Note that hotplugged memory pages are initialized to PageOffline(). 1626 * Pages freed from memblock might be marked as reserved. 1627 */ 1628 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1629 unlikely(context == MEMINIT_HOTPLUG)) { 1630 for (loop = 0; loop < nr_pages; loop++, p++) { 1631 VM_WARN_ON_ONCE(PageReserved(p)); 1632 __ClearPageOffline(p); 1633 set_page_count(p, 0); 1634 } 1635 1636 adjust_managed_page_count(page, nr_pages); 1637 } else { 1638 for (loop = 0; loop < nr_pages; loop++, p++) { 1639 __ClearPageReserved(p); 1640 set_page_count(p, 0); 1641 } 1642 1643 /* memblock adjusts totalram_pages() manually. */ 1644 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1645 } 1646 1647 if (page_contains_unaccepted(page, order)) { 1648 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1649 return; 1650 1651 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1652 } 1653 1654 /* 1655 * Bypass PCP and place fresh pages right to the tail, primarily 1656 * relevant for memory onlining. 1657 */ 1658 __free_pages_ok(page, order, FPI_TO_TAIL); 1659} 1660 1661/* 1662 * Check that the whole (or subset of) a pageblock given by the interval of 1663 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1664 * with the migration of free compaction scanner. 1665 * 1666 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1667 * 1668 * It's possible on some configurations to have a setup like node0 node1 node0 1669 * i.e. it's possible that all pages within a zones range of pages do not 1670 * belong to a single zone. We assume that a border between node0 and node1 1671 * can occur within a single pageblock, but not a node0 node1 node0 1672 * interleaving within a single pageblock. It is therefore sufficient to check 1673 * the first and last page of a pageblock and avoid checking each individual 1674 * page in a pageblock. 1675 * 1676 * Note: the function may return non-NULL struct page even for a page block 1677 * which contains a memory hole (i.e. there is no physical memory for a subset 1678 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1679 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1680 * even though the start pfn is online and valid. This should be safe most of 1681 * the time because struct pages are still initialized via init_unavailable_range() 1682 * and pfn walkers shouldn't touch any physical memory range for which they do 1683 * not recognize any specific metadata in struct pages. 1684 */ 1685struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1686 unsigned long end_pfn, struct zone *zone) 1687{ 1688 struct page *start_page; 1689 struct page *end_page; 1690 1691 /* end_pfn is one past the range we are checking */ 1692 end_pfn--; 1693 1694 if (!pfn_valid(end_pfn)) 1695 return NULL; 1696 1697 start_page = pfn_to_online_page(start_pfn); 1698 if (!start_page) 1699 return NULL; 1700 1701 if (page_zone(start_page) != zone) 1702 return NULL; 1703 1704 end_page = pfn_to_page(end_pfn); 1705 1706 /* This gives a shorter code than deriving page_zone(end_page) */ 1707 if (page_zone_id(start_page) != page_zone_id(end_page)) 1708 return NULL; 1709 1710 return start_page; 1711} 1712 1713/* 1714 * The order of subdivision here is critical for the IO subsystem. 1715 * Please do not alter this order without good reasons and regression 1716 * testing. Specifically, as large blocks of memory are subdivided, 1717 * the order in which smaller blocks are delivered depends on the order 1718 * they're subdivided in this function. This is the primary factor 1719 * influencing the order in which pages are delivered to the IO 1720 * subsystem according to empirical testing, and this is also justified 1721 * by considering the behavior of a buddy system containing a single 1722 * large block of memory acted on by a series of small allocations. 1723 * This behavior is a critical factor in sglist merging's success. 1724 * 1725 * -- nyc 1726 */ 1727static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1728 int high, int migratetype) 1729{ 1730 unsigned int size = 1 << high; 1731 unsigned int nr_added = 0; 1732 1733 while (high > low) { 1734 high--; 1735 size >>= 1; 1736 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1737 1738 /* 1739 * Mark as guard pages (or page), that will allow to 1740 * merge back to allocator when buddy will be freed. 1741 * Corresponding page table entries will not be touched, 1742 * pages will stay not present in virtual address space 1743 */ 1744 if (set_page_guard(zone, &page[size], high)) 1745 continue; 1746 1747 __add_to_free_list(&page[size], zone, high, migratetype, false); 1748 set_buddy_order(&page[size], high); 1749 nr_added += size; 1750 } 1751 1752 return nr_added; 1753} 1754 1755static __always_inline void page_del_and_expand(struct zone *zone, 1756 struct page *page, int low, 1757 int high, int migratetype) 1758{ 1759 int nr_pages = 1 << high; 1760 1761 __del_page_from_free_list(page, zone, high, migratetype); 1762 nr_pages -= expand(zone, page, low, high, migratetype); 1763 account_freepages(zone, -nr_pages, migratetype); 1764} 1765 1766static void check_new_page_bad(struct page *page) 1767{ 1768 if (unlikely(PageHWPoison(page))) { 1769 /* Don't complain about hwpoisoned pages */ 1770 if (PageBuddy(page)) 1771 __ClearPageBuddy(page); 1772 return; 1773 } 1774 1775 bad_page(page, 1776 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1777} 1778 1779/* 1780 * This page is about to be returned from the page allocator 1781 */ 1782static bool check_new_page(struct page *page) 1783{ 1784 if (likely(page_expected_state(page, 1785 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1786 return false; 1787 1788 check_new_page_bad(page); 1789 return true; 1790} 1791 1792static inline bool check_new_pages(struct page *page, unsigned int order) 1793{ 1794 if (is_check_pages_enabled()) { 1795 for (int i = 0; i < (1 << order); i++) { 1796 struct page *p = page + i; 1797 1798 if (check_new_page(p)) 1799 return true; 1800 } 1801 } 1802 1803 return false; 1804} 1805 1806static inline bool should_skip_kasan_unpoison(gfp_t flags) 1807{ 1808 /* Don't skip if a software KASAN mode is enabled. */ 1809 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1810 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1811 return false; 1812 1813 /* Skip, if hardware tag-based KASAN is not enabled. */ 1814 if (!kasan_hw_tags_enabled()) 1815 return true; 1816 1817 /* 1818 * With hardware tag-based KASAN enabled, skip if this has been 1819 * requested via __GFP_SKIP_KASAN. 1820 */ 1821 return flags & __GFP_SKIP_KASAN; 1822} 1823 1824static inline bool should_skip_init(gfp_t flags) 1825{ 1826 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1827 if (!kasan_hw_tags_enabled()) 1828 return false; 1829 1830 /* For hardware tag-based KASAN, skip if requested. */ 1831 return (flags & __GFP_SKIP_ZERO); 1832} 1833 1834inline void post_alloc_hook(struct page *page, unsigned int order, 1835 gfp_t gfp_flags) 1836{ 1837 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1838 !should_skip_init(gfp_flags); 1839 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1840 int i; 1841 1842 set_page_private(page, 0); 1843 1844 arch_alloc_page(page, order); 1845 debug_pagealloc_map_pages(page, 1 << order); 1846 1847 /* 1848 * Page unpoisoning must happen before memory initialization. 1849 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1850 * allocations and the page unpoisoning code will complain. 1851 */ 1852 kernel_unpoison_pages(page, 1 << order); 1853 1854 /* 1855 * As memory initialization might be integrated into KASAN, 1856 * KASAN unpoisoning and memory initializion code must be 1857 * kept together to avoid discrepancies in behavior. 1858 */ 1859 1860 /* 1861 * If memory tags should be zeroed 1862 * (which happens only when memory should be initialized as well). 1863 */ 1864 if (zero_tags) 1865 init = !tag_clear_highpages(page, 1 << order); 1866 1867 if (!should_skip_kasan_unpoison(gfp_flags) && 1868 kasan_unpoison_pages(page, order, init)) { 1869 /* Take note that memory was initialized by KASAN. */ 1870 if (kasan_has_integrated_init()) 1871 init = false; 1872 } else { 1873 /* 1874 * If memory tags have not been set by KASAN, reset the page 1875 * tags to ensure page_address() dereferencing does not fault. 1876 */ 1877 for (i = 0; i != 1 << order; ++i) 1878 page_kasan_tag_reset(page + i); 1879 } 1880 /* If memory is still not initialized, initialize it now. */ 1881 if (init) 1882 kernel_init_pages(page, 1 << order); 1883 1884 set_page_owner(page, order, gfp_flags); 1885 page_table_check_alloc(page, order); 1886 pgalloc_tag_add(page, current, 1 << order); 1887} 1888 1889static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1890 unsigned int alloc_flags) 1891{ 1892 post_alloc_hook(page, order, gfp_flags); 1893 1894 if (order && (gfp_flags & __GFP_COMP)) 1895 prep_compound_page(page, order); 1896 1897 /* 1898 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1899 * allocate the page. The expectation is that the caller is taking 1900 * steps that will free more memory. The caller should avoid the page 1901 * being used for !PFMEMALLOC purposes. 1902 */ 1903 if (alloc_flags & ALLOC_NO_WATERMARKS) 1904 set_page_pfmemalloc(page); 1905 else 1906 clear_page_pfmemalloc(page); 1907} 1908 1909/* 1910 * Go through the free lists for the given migratetype and remove 1911 * the smallest available page from the freelists 1912 */ 1913static __always_inline 1914struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1915 int migratetype) 1916{ 1917 unsigned int current_order; 1918 struct free_area *area; 1919 struct page *page; 1920 1921 /* Find a page of the appropriate size in the preferred list */ 1922 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1923 area = &(zone->free_area[current_order]); 1924 page = get_page_from_free_area(area, migratetype); 1925 if (!page) 1926 continue; 1927 1928 page_del_and_expand(zone, page, order, current_order, 1929 migratetype); 1930 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1931 pcp_allowed_order(order) && 1932 migratetype < MIGRATE_PCPTYPES); 1933 return page; 1934 } 1935 1936 return NULL; 1937} 1938 1939 1940/* 1941 * This array describes the order lists are fallen back to when 1942 * the free lists for the desirable migrate type are depleted 1943 * 1944 * The other migratetypes do not have fallbacks. 1945 */ 1946static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1947 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1948 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1949 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1950}; 1951 1952#ifdef CONFIG_CMA 1953static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1954 unsigned int order) 1955{ 1956 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1957} 1958#else 1959static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1960 unsigned int order) { return NULL; } 1961#endif 1962 1963/* 1964 * Move all free pages of a block to new type's freelist. Caller needs to 1965 * change the block type. 1966 */ 1967static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1968 int old_mt, int new_mt) 1969{ 1970 struct page *page; 1971 unsigned long pfn, end_pfn; 1972 unsigned int order; 1973 int pages_moved = 0; 1974 1975 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1976 end_pfn = pageblock_end_pfn(start_pfn); 1977 1978 for (pfn = start_pfn; pfn < end_pfn;) { 1979 page = pfn_to_page(pfn); 1980 if (!PageBuddy(page)) { 1981 pfn++; 1982 continue; 1983 } 1984 1985 /* Make sure we are not inadvertently changing nodes */ 1986 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1987 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1988 1989 order = buddy_order(page); 1990 1991 move_to_free_list(page, zone, order, old_mt, new_mt); 1992 1993 pfn += 1 << order; 1994 pages_moved += 1 << order; 1995 } 1996 1997 return pages_moved; 1998} 1999 2000static bool prep_move_freepages_block(struct zone *zone, struct page *page, 2001 unsigned long *start_pfn, 2002 int *num_free, int *num_movable) 2003{ 2004 unsigned long pfn, start, end; 2005 2006 pfn = page_to_pfn(page); 2007 start = pageblock_start_pfn(pfn); 2008 end = pageblock_end_pfn(pfn); 2009 2010 /* 2011 * The caller only has the lock for @zone, don't touch ranges 2012 * that straddle into other zones. While we could move part of 2013 * the range that's inside the zone, this call is usually 2014 * accompanied by other operations such as migratetype updates 2015 * which also should be locked. 2016 */ 2017 if (!zone_spans_pfn(zone, start)) 2018 return false; 2019 if (!zone_spans_pfn(zone, end - 1)) 2020 return false; 2021 2022 *start_pfn = start; 2023 2024 if (num_free) { 2025 *num_free = 0; 2026 *num_movable = 0; 2027 for (pfn = start; pfn < end;) { 2028 page = pfn_to_page(pfn); 2029 if (PageBuddy(page)) { 2030 int nr = 1 << buddy_order(page); 2031 2032 *num_free += nr; 2033 pfn += nr; 2034 continue; 2035 } 2036 /* 2037 * We assume that pages that could be isolated for 2038 * migration are movable. But we don't actually try 2039 * isolating, as that would be expensive. 2040 */ 2041 if (PageLRU(page) || page_has_movable_ops(page)) 2042 (*num_movable)++; 2043 pfn++; 2044 } 2045 } 2046 2047 return true; 2048} 2049 2050static int move_freepages_block(struct zone *zone, struct page *page, 2051 int old_mt, int new_mt) 2052{ 2053 unsigned long start_pfn; 2054 int res; 2055 2056 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2057 return -1; 2058 2059 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2060 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2061 2062 return res; 2063 2064} 2065 2066#ifdef CONFIG_MEMORY_ISOLATION 2067/* Look for a buddy that straddles start_pfn */ 2068static unsigned long find_large_buddy(unsigned long start_pfn) 2069{ 2070 /* 2071 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2072 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2073 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2074 * the starting order does not matter. 2075 */ 2076 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2077 struct page *page; 2078 unsigned long pfn = start_pfn; 2079 2080 while (!PageBuddy(page = pfn_to_page(pfn))) { 2081 /* Nothing found */ 2082 if (++order > MAX_PAGE_ORDER) 2083 return start_pfn; 2084 pfn &= ~0UL << order; 2085 } 2086 2087 /* 2088 * Found a preceding buddy, but does it straddle? 2089 */ 2090 if (pfn + (1 << buddy_order(page)) > start_pfn) 2091 return pfn; 2092 2093 /* Nothing found */ 2094 return start_pfn; 2095} 2096 2097static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2098{ 2099 if (isolate) 2100 set_pageblock_isolate(page); 2101 else 2102 clear_pageblock_isolate(page); 2103} 2104 2105/** 2106 * __move_freepages_block_isolate - move free pages in block for page isolation 2107 * @zone: the zone 2108 * @page: the pageblock page 2109 * @isolate: to isolate the given pageblock or unisolate it 2110 * 2111 * This is similar to move_freepages_block(), but handles the special 2112 * case encountered in page isolation, where the block of interest 2113 * might be part of a larger buddy spanning multiple pageblocks. 2114 * 2115 * Unlike the regular page allocator path, which moves pages while 2116 * stealing buddies off the freelist, page isolation is interested in 2117 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2118 * 2119 * This function handles that. Straddling buddies are split into 2120 * individual pageblocks. Only the block of interest is moved. 2121 * 2122 * Returns %true if pages could be moved, %false otherwise. 2123 */ 2124static bool __move_freepages_block_isolate(struct zone *zone, 2125 struct page *page, bool isolate) 2126{ 2127 unsigned long start_pfn, buddy_pfn; 2128 int from_mt; 2129 int to_mt; 2130 struct page *buddy; 2131 2132 if (isolate == get_pageblock_isolate(page)) { 2133 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2134 isolate ? "Isolate" : "Unisolate"); 2135 return false; 2136 } 2137 2138 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2139 return false; 2140 2141 /* No splits needed if buddies can't span multiple blocks */ 2142 if (pageblock_order == MAX_PAGE_ORDER) 2143 goto move; 2144 2145 buddy_pfn = find_large_buddy(start_pfn); 2146 buddy = pfn_to_page(buddy_pfn); 2147 /* We're a part of a larger buddy */ 2148 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2149 int order = buddy_order(buddy); 2150 2151 del_page_from_free_list(buddy, zone, order, 2152 get_pfnblock_migratetype(buddy, buddy_pfn)); 2153 toggle_pageblock_isolate(page, isolate); 2154 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2155 return true; 2156 } 2157 2158move: 2159 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2160 if (isolate) { 2161 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2162 MIGRATETYPE_MASK); 2163 to_mt = MIGRATE_ISOLATE; 2164 } else { 2165 from_mt = MIGRATE_ISOLATE; 2166 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2167 MIGRATETYPE_MASK); 2168 } 2169 2170 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2171 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2172 2173 return true; 2174} 2175 2176bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2177{ 2178 return __move_freepages_block_isolate(zone, page, true); 2179} 2180 2181bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2182{ 2183 return __move_freepages_block_isolate(zone, page, false); 2184} 2185 2186#endif /* CONFIG_MEMORY_ISOLATION */ 2187 2188static inline bool boost_watermark(struct zone *zone) 2189{ 2190 unsigned long max_boost; 2191 2192 if (!watermark_boost_factor) 2193 return false; 2194 /* 2195 * Don't bother in zones that are unlikely to produce results. 2196 * On small machines, including kdump capture kernels running 2197 * in a small area, boosting the watermark can cause an out of 2198 * memory situation immediately. 2199 */ 2200 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2201 return false; 2202 2203 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2204 watermark_boost_factor, 10000); 2205 2206 /* 2207 * high watermark may be uninitialised if fragmentation occurs 2208 * very early in boot so do not boost. We do not fall 2209 * through and boost by pageblock_nr_pages as failing 2210 * allocations that early means that reclaim is not going 2211 * to help and it may even be impossible to reclaim the 2212 * boosted watermark resulting in a hang. 2213 */ 2214 if (!max_boost) 2215 return false; 2216 2217 max_boost = max(pageblock_nr_pages, max_boost); 2218 2219 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2220 max_boost); 2221 2222 return true; 2223} 2224 2225/* 2226 * When we are falling back to another migratetype during allocation, should we 2227 * try to claim an entire block to satisfy further allocations, instead of 2228 * polluting multiple pageblocks? 2229 */ 2230static bool should_try_claim_block(unsigned int order, int start_mt) 2231{ 2232 /* 2233 * Leaving this order check is intended, although there is 2234 * relaxed order check in next check. The reason is that 2235 * we can actually claim the whole pageblock if this condition met, 2236 * but, below check doesn't guarantee it and that is just heuristic 2237 * so could be changed anytime. 2238 */ 2239 if (order >= pageblock_order) 2240 return true; 2241 2242 /* 2243 * Above a certain threshold, always try to claim, as it's likely there 2244 * will be more free pages in the pageblock. 2245 */ 2246 if (order >= pageblock_order / 2) 2247 return true; 2248 2249 /* 2250 * Unmovable/reclaimable allocations would cause permanent 2251 * fragmentations if they fell back to allocating from a movable block 2252 * (polluting it), so we try to claim the whole block regardless of the 2253 * allocation size. Later movable allocations can always steal from this 2254 * block, which is less problematic. 2255 */ 2256 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2257 return true; 2258 2259 if (page_group_by_mobility_disabled) 2260 return true; 2261 2262 /* 2263 * Movable pages won't cause permanent fragmentation, so when you alloc 2264 * small pages, we just need to temporarily steal unmovable or 2265 * reclaimable pages that are closest to the request size. After a 2266 * while, memory compaction may occur to form large contiguous pages, 2267 * and the next movable allocation may not need to steal. 2268 */ 2269 return false; 2270} 2271 2272/* 2273 * Check whether there is a suitable fallback freepage with requested order. 2274 * If claimable is true, this function returns fallback_mt only if 2275 * we would do this whole-block claiming. This would help to reduce 2276 * fragmentation due to mixed migratetype pages in one pageblock. 2277 */ 2278int find_suitable_fallback(struct free_area *area, unsigned int order, 2279 int migratetype, bool claimable) 2280{ 2281 int i; 2282 2283 if (claimable && !should_try_claim_block(order, migratetype)) 2284 return -2; 2285 2286 if (area->nr_free == 0) 2287 return -1; 2288 2289 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2290 int fallback_mt = fallbacks[migratetype][i]; 2291 2292 if (!free_area_empty(area, fallback_mt)) 2293 return fallback_mt; 2294 } 2295 2296 return -1; 2297} 2298 2299/* 2300 * This function implements actual block claiming behaviour. If order is large 2301 * enough, we can claim the whole pageblock for the requested migratetype. If 2302 * not, we check the pageblock for constituent pages; if at least half of the 2303 * pages are free or compatible, we can still claim the whole block, so pages 2304 * freed in the future will be put on the correct free list. 2305 */ 2306static struct page * 2307try_to_claim_block(struct zone *zone, struct page *page, 2308 int current_order, int order, int start_type, 2309 int block_type, unsigned int alloc_flags) 2310{ 2311 int free_pages, movable_pages, alike_pages; 2312 unsigned long start_pfn; 2313 2314 /* Take ownership for orders >= pageblock_order */ 2315 if (current_order >= pageblock_order) { 2316 unsigned int nr_added; 2317 2318 del_page_from_free_list(page, zone, current_order, block_type); 2319 change_pageblock_range(page, current_order, start_type); 2320 nr_added = expand(zone, page, order, current_order, start_type); 2321 account_freepages(zone, nr_added, start_type); 2322 return page; 2323 } 2324 2325 /* 2326 * Boost watermarks to increase reclaim pressure to reduce the 2327 * likelihood of future fallbacks. Wake kswapd now as the node 2328 * may be balanced overall and kswapd will not wake naturally. 2329 */ 2330 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2331 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2332 2333 /* moving whole block can fail due to zone boundary conditions */ 2334 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2335 &movable_pages)) 2336 return NULL; 2337 2338 /* 2339 * Determine how many pages are compatible with our allocation. 2340 * For movable allocation, it's the number of movable pages which 2341 * we just obtained. For other types it's a bit more tricky. 2342 */ 2343 if (start_type == MIGRATE_MOVABLE) { 2344 alike_pages = movable_pages; 2345 } else { 2346 /* 2347 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2348 * to MOVABLE pageblock, consider all non-movable pages as 2349 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2350 * vice versa, be conservative since we can't distinguish the 2351 * exact migratetype of non-movable pages. 2352 */ 2353 if (block_type == MIGRATE_MOVABLE) 2354 alike_pages = pageblock_nr_pages 2355 - (free_pages + movable_pages); 2356 else 2357 alike_pages = 0; 2358 } 2359 /* 2360 * If a sufficient number of pages in the block are either free or of 2361 * compatible migratability as our allocation, claim the whole block. 2362 */ 2363 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2364 page_group_by_mobility_disabled) { 2365 __move_freepages_block(zone, start_pfn, block_type, start_type); 2366 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2367 return __rmqueue_smallest(zone, order, start_type); 2368 } 2369 2370 return NULL; 2371} 2372 2373/* 2374 * Try to allocate from some fallback migratetype by claiming the entire block, 2375 * i.e. converting it to the allocation's start migratetype. 2376 * 2377 * The use of signed ints for order and current_order is a deliberate 2378 * deviation from the rest of this file, to make the for loop 2379 * condition simpler. 2380 */ 2381static __always_inline struct page * 2382__rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2383 unsigned int alloc_flags) 2384{ 2385 struct free_area *area; 2386 int current_order; 2387 int min_order = order; 2388 struct page *page; 2389 int fallback_mt; 2390 2391 /* 2392 * Do not steal pages from freelists belonging to other pageblocks 2393 * i.e. orders < pageblock_order. If there are no local zones free, 2394 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2395 */ 2396 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2397 min_order = pageblock_order; 2398 2399 /* 2400 * Find the largest available free page in the other list. This roughly 2401 * approximates finding the pageblock with the most free pages, which 2402 * would be too costly to do exactly. 2403 */ 2404 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2405 --current_order) { 2406 area = &(zone->free_area[current_order]); 2407 fallback_mt = find_suitable_fallback(area, current_order, 2408 start_migratetype, true); 2409 2410 /* No block in that order */ 2411 if (fallback_mt == -1) 2412 continue; 2413 2414 /* Advanced into orders too low to claim, abort */ 2415 if (fallback_mt == -2) 2416 break; 2417 2418 page = get_page_from_free_area(area, fallback_mt); 2419 page = try_to_claim_block(zone, page, current_order, order, 2420 start_migratetype, fallback_mt, 2421 alloc_flags); 2422 if (page) { 2423 trace_mm_page_alloc_extfrag(page, order, current_order, 2424 start_migratetype, fallback_mt); 2425 return page; 2426 } 2427 } 2428 2429 return NULL; 2430} 2431 2432/* 2433 * Try to steal a single page from some fallback migratetype. Leave the rest of 2434 * the block as its current migratetype, potentially causing fragmentation. 2435 */ 2436static __always_inline struct page * 2437__rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2438{ 2439 struct free_area *area; 2440 int current_order; 2441 struct page *page; 2442 int fallback_mt; 2443 2444 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2445 area = &(zone->free_area[current_order]); 2446 fallback_mt = find_suitable_fallback(area, current_order, 2447 start_migratetype, false); 2448 if (fallback_mt == -1) 2449 continue; 2450 2451 page = get_page_from_free_area(area, fallback_mt); 2452 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2453 trace_mm_page_alloc_extfrag(page, order, current_order, 2454 start_migratetype, fallback_mt); 2455 return page; 2456 } 2457 2458 return NULL; 2459} 2460 2461enum rmqueue_mode { 2462 RMQUEUE_NORMAL, 2463 RMQUEUE_CMA, 2464 RMQUEUE_CLAIM, 2465 RMQUEUE_STEAL, 2466}; 2467 2468/* 2469 * Do the hard work of removing an element from the buddy allocator. 2470 * Call me with the zone->lock already held. 2471 */ 2472static __always_inline struct page * 2473__rmqueue(struct zone *zone, unsigned int order, int migratetype, 2474 unsigned int alloc_flags, enum rmqueue_mode *mode) 2475{ 2476 struct page *page; 2477 2478 if (IS_ENABLED(CONFIG_CMA)) { 2479 /* 2480 * Balance movable allocations between regular and CMA areas by 2481 * allocating from CMA when over half of the zone's free memory 2482 * is in the CMA area. 2483 */ 2484 if (alloc_flags & ALLOC_CMA && 2485 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2486 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2487 page = __rmqueue_cma_fallback(zone, order); 2488 if (page) 2489 return page; 2490 } 2491 } 2492 2493 /* 2494 * First try the freelists of the requested migratetype, then try 2495 * fallbacks modes with increasing levels of fragmentation risk. 2496 * 2497 * The fallback logic is expensive and rmqueue_bulk() calls in 2498 * a loop with the zone->lock held, meaning the freelists are 2499 * not subject to any outside changes. Remember in *mode where 2500 * we found pay dirt, to save us the search on the next call. 2501 */ 2502 switch (*mode) { 2503 case RMQUEUE_NORMAL: 2504 page = __rmqueue_smallest(zone, order, migratetype); 2505 if (page) 2506 return page; 2507 fallthrough; 2508 case RMQUEUE_CMA: 2509 if (alloc_flags & ALLOC_CMA) { 2510 page = __rmqueue_cma_fallback(zone, order); 2511 if (page) { 2512 *mode = RMQUEUE_CMA; 2513 return page; 2514 } 2515 } 2516 fallthrough; 2517 case RMQUEUE_CLAIM: 2518 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2519 if (page) { 2520 /* Replenished preferred freelist, back to normal mode. */ 2521 *mode = RMQUEUE_NORMAL; 2522 return page; 2523 } 2524 fallthrough; 2525 case RMQUEUE_STEAL: 2526 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2527 page = __rmqueue_steal(zone, order, migratetype); 2528 if (page) { 2529 *mode = RMQUEUE_STEAL; 2530 return page; 2531 } 2532 } 2533 } 2534 return NULL; 2535} 2536 2537/* 2538 * Obtain a specified number of elements from the buddy allocator, all under 2539 * a single hold of the lock, for efficiency. Add them to the supplied list. 2540 * Returns the number of new pages which were placed at *list. 2541 */ 2542static int rmqueue_bulk(struct zone *zone, unsigned int order, 2543 unsigned long count, struct list_head *list, 2544 int migratetype, unsigned int alloc_flags) 2545{ 2546 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2547 unsigned long flags; 2548 int i; 2549 2550 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2551 if (!spin_trylock_irqsave(&zone->lock, flags)) 2552 return 0; 2553 } else { 2554 spin_lock_irqsave(&zone->lock, flags); 2555 } 2556 for (i = 0; i < count; ++i) { 2557 struct page *page = __rmqueue(zone, order, migratetype, 2558 alloc_flags, &rmqm); 2559 if (unlikely(page == NULL)) 2560 break; 2561 2562 /* 2563 * Split buddy pages returned by expand() are received here in 2564 * physical page order. The page is added to the tail of 2565 * caller's list. From the callers perspective, the linked list 2566 * is ordered by page number under some conditions. This is 2567 * useful for IO devices that can forward direction from the 2568 * head, thus also in the physical page order. This is useful 2569 * for IO devices that can merge IO requests if the physical 2570 * pages are ordered properly. 2571 */ 2572 list_add_tail(&page->pcp_list, list); 2573 } 2574 spin_unlock_irqrestore(&zone->lock, flags); 2575 2576 return i; 2577} 2578 2579/* 2580 * Called from the vmstat counter updater to decay the PCP high. 2581 * Return whether there are addition works to do. 2582 */ 2583bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2584{ 2585 int high_min, to_drain, to_drain_batched, batch; 2586 unsigned long UP_flags; 2587 bool todo = false; 2588 2589 high_min = READ_ONCE(pcp->high_min); 2590 batch = READ_ONCE(pcp->batch); 2591 /* 2592 * Decrease pcp->high periodically to try to free possible 2593 * idle PCP pages. And, avoid to free too many pages to 2594 * control latency. This caps pcp->high decrement too. 2595 */ 2596 if (pcp->high > high_min) { 2597 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2598 pcp->high - (pcp->high >> 3), high_min); 2599 if (pcp->high > high_min) 2600 todo = true; 2601 } 2602 2603 to_drain = pcp->count - pcp->high; 2604 while (to_drain > 0) { 2605 to_drain_batched = min(to_drain, batch); 2606 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2607 free_pcppages_bulk(zone, to_drain_batched, pcp, 0); 2608 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2609 todo = true; 2610 2611 to_drain -= to_drain_batched; 2612 } 2613 2614 return todo; 2615} 2616 2617#ifdef CONFIG_NUMA 2618/* 2619 * Called from the vmstat counter updater to drain pagesets of this 2620 * currently executing processor on remote nodes after they have 2621 * expired. 2622 */ 2623void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2624{ 2625 unsigned long UP_flags; 2626 int to_drain, batch; 2627 2628 batch = READ_ONCE(pcp->batch); 2629 to_drain = min(pcp->count, batch); 2630 if (to_drain > 0) { 2631 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2632 free_pcppages_bulk(zone, to_drain, pcp, 0); 2633 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2634 } 2635} 2636#endif 2637 2638/* 2639 * Drain pcplists of the indicated processor and zone. 2640 */ 2641static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2642{ 2643 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2644 unsigned long UP_flags; 2645 int count; 2646 2647 do { 2648 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2649 count = pcp->count; 2650 if (count) { 2651 int to_drain = min(count, 2652 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2653 2654 free_pcppages_bulk(zone, to_drain, pcp, 0); 2655 count -= to_drain; 2656 } 2657 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2658 } while (count); 2659} 2660 2661/* 2662 * Drain pcplists of all zones on the indicated processor. 2663 */ 2664static void drain_pages(unsigned int cpu) 2665{ 2666 struct zone *zone; 2667 2668 for_each_populated_zone(zone) { 2669 drain_pages_zone(cpu, zone); 2670 } 2671} 2672 2673/* 2674 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2675 */ 2676void drain_local_pages(struct zone *zone) 2677{ 2678 int cpu = smp_processor_id(); 2679 2680 if (zone) 2681 drain_pages_zone(cpu, zone); 2682 else 2683 drain_pages(cpu); 2684} 2685 2686/* 2687 * The implementation of drain_all_pages(), exposing an extra parameter to 2688 * drain on all cpus. 2689 * 2690 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2691 * not empty. The check for non-emptiness can however race with a free to 2692 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2693 * that need the guarantee that every CPU has drained can disable the 2694 * optimizing racy check. 2695 */ 2696static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2697{ 2698 int cpu; 2699 2700 /* 2701 * Allocate in the BSS so we won't require allocation in 2702 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2703 */ 2704 static cpumask_t cpus_with_pcps; 2705 2706 /* 2707 * Do not drain if one is already in progress unless it's specific to 2708 * a zone. Such callers are primarily CMA and memory hotplug and need 2709 * the drain to be complete when the call returns. 2710 */ 2711 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2712 if (!zone) 2713 return; 2714 mutex_lock(&pcpu_drain_mutex); 2715 } 2716 2717 /* 2718 * We don't care about racing with CPU hotplug event 2719 * as offline notification will cause the notified 2720 * cpu to drain that CPU pcps and on_each_cpu_mask 2721 * disables preemption as part of its processing 2722 */ 2723 for_each_online_cpu(cpu) { 2724 struct per_cpu_pages *pcp; 2725 struct zone *z; 2726 bool has_pcps = false; 2727 2728 if (force_all_cpus) { 2729 /* 2730 * The pcp.count check is racy, some callers need a 2731 * guarantee that no cpu is missed. 2732 */ 2733 has_pcps = true; 2734 } else if (zone) { 2735 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2736 if (pcp->count) 2737 has_pcps = true; 2738 } else { 2739 for_each_populated_zone(z) { 2740 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2741 if (pcp->count) { 2742 has_pcps = true; 2743 break; 2744 } 2745 } 2746 } 2747 2748 if (has_pcps) 2749 cpumask_set_cpu(cpu, &cpus_with_pcps); 2750 else 2751 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2752 } 2753 2754 for_each_cpu(cpu, &cpus_with_pcps) { 2755 if (zone) 2756 drain_pages_zone(cpu, zone); 2757 else 2758 drain_pages(cpu); 2759 } 2760 2761 mutex_unlock(&pcpu_drain_mutex); 2762} 2763 2764/* 2765 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2766 * 2767 * When zone parameter is non-NULL, spill just the single zone's pages. 2768 */ 2769void drain_all_pages(struct zone *zone) 2770{ 2771 __drain_all_pages(zone, false); 2772} 2773 2774static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2775{ 2776 int min_nr_free, max_nr_free; 2777 2778 /* Free as much as possible if batch freeing high-order pages. */ 2779 if (unlikely(free_high)) 2780 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2781 2782 /* Check for PCP disabled or boot pageset */ 2783 if (unlikely(high < batch)) 2784 return 1; 2785 2786 /* Leave at least pcp->batch pages on the list */ 2787 min_nr_free = batch; 2788 max_nr_free = high - batch; 2789 2790 /* 2791 * Increase the batch number to the number of the consecutive 2792 * freed pages to reduce zone lock contention. 2793 */ 2794 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2795 2796 return batch; 2797} 2798 2799static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2800 int batch, bool free_high) 2801{ 2802 int high, high_min, high_max; 2803 2804 high_min = READ_ONCE(pcp->high_min); 2805 high_max = READ_ONCE(pcp->high_max); 2806 high = pcp->high = clamp(pcp->high, high_min, high_max); 2807 2808 if (unlikely(!high)) 2809 return 0; 2810 2811 if (unlikely(free_high)) { 2812 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2813 high_min); 2814 return 0; 2815 } 2816 2817 /* 2818 * If reclaim is active, limit the number of pages that can be 2819 * stored on pcp lists 2820 */ 2821 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2822 int free_count = max_t(int, pcp->free_count, batch); 2823 2824 pcp->high = max(high - free_count, high_min); 2825 return min(batch << 2, pcp->high); 2826 } 2827 2828 if (high_min == high_max) 2829 return high; 2830 2831 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2832 int free_count = max_t(int, pcp->free_count, batch); 2833 2834 pcp->high = max(high - free_count, high_min); 2835 high = max(pcp->count, high_min); 2836 } else if (pcp->count >= high) { 2837 int need_high = pcp->free_count + batch; 2838 2839 /* pcp->high should be large enough to hold batch freed pages */ 2840 if (pcp->high < need_high) 2841 pcp->high = clamp(need_high, high_min, high_max); 2842 } 2843 2844 return high; 2845} 2846 2847/* 2848 * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the 2849 * pcp's watermarks below high. 2850 * 2851 * May return a freed pcp, if during page freeing the pcp spinlock cannot be 2852 * reacquired. Return true if pcp is locked, false otherwise. 2853 */ 2854static bool free_frozen_page_commit(struct zone *zone, 2855 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2856 unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags) 2857{ 2858 int high, batch; 2859 int to_free, to_free_batched; 2860 int pindex; 2861 int cpu = smp_processor_id(); 2862 int ret = true; 2863 bool free_high = false; 2864 2865 /* 2866 * On freeing, reduce the number of pages that are batch allocated. 2867 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2868 * allocations. 2869 */ 2870 pcp->alloc_factor >>= 1; 2871 __count_vm_events(PGFREE, 1 << order); 2872 pindex = order_to_pindex(migratetype, order); 2873 list_add(&page->pcp_list, &pcp->lists[pindex]); 2874 pcp->count += 1 << order; 2875 2876 batch = READ_ONCE(pcp->batch); 2877 /* 2878 * As high-order pages other than THP's stored on PCP can contribute 2879 * to fragmentation, limit the number stored when PCP is heavily 2880 * freeing without allocation. The remainder after bulk freeing 2881 * stops will be drained from vmstat refresh context. 2882 */ 2883 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2884 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2885 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2886 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2887 pcp->count >= batch)); 2888 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2889 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2890 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2891 } 2892 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2893 pcp->free_count += (1 << order); 2894 2895 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2896 /* 2897 * Do not attempt to take a zone lock. Let pcp->count get 2898 * over high mark temporarily. 2899 */ 2900 return true; 2901 } 2902 2903 high = nr_pcp_high(pcp, zone, batch, free_high); 2904 if (pcp->count < high) 2905 return true; 2906 2907 to_free = nr_pcp_free(pcp, batch, high, free_high); 2908 while (to_free > 0 && pcp->count > 0) { 2909 to_free_batched = min(to_free, batch); 2910 free_pcppages_bulk(zone, to_free_batched, pcp, pindex); 2911 to_free -= to_free_batched; 2912 2913 if (to_free == 0 || pcp->count == 0) 2914 break; 2915 2916 pcp_spin_unlock(pcp, *UP_flags); 2917 2918 pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags); 2919 if (!pcp) { 2920 ret = false; 2921 break; 2922 } 2923 2924 /* 2925 * Check if this thread has been migrated to a different CPU. 2926 * If that is the case, give up and indicate that the pcp is 2927 * returned in an unlocked state. 2928 */ 2929 if (smp_processor_id() != cpu) { 2930 pcp_spin_unlock(pcp, *UP_flags); 2931 ret = false; 2932 break; 2933 } 2934 } 2935 2936 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2937 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2938 ZONE_MOVABLE, 0)) { 2939 struct pglist_data *pgdat = zone->zone_pgdat; 2940 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2941 2942 /* 2943 * Assume that memory pressure on this node is gone and may be 2944 * in a reclaimable state. If a memory fallback node exists, 2945 * direct reclaim may not have been triggered, causing a 2946 * 'hopeless node' to stay in that state for a while. Let 2947 * kswapd work again by resetting kswapd_failures. 2948 */ 2949 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES && 2950 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2951 atomic_set(&pgdat->kswapd_failures, 0); 2952 } 2953 return ret; 2954} 2955 2956/* 2957 * Free a pcp page 2958 */ 2959static void __free_frozen_pages(struct page *page, unsigned int order, 2960 fpi_t fpi_flags) 2961{ 2962 unsigned long UP_flags; 2963 struct per_cpu_pages *pcp; 2964 struct zone *zone; 2965 unsigned long pfn = page_to_pfn(page); 2966 int migratetype; 2967 2968 if (!pcp_allowed_order(order)) { 2969 __free_pages_ok(page, order, fpi_flags); 2970 return; 2971 } 2972 2973 if (!free_pages_prepare(page, order)) 2974 return; 2975 2976 /* 2977 * We only track unmovable, reclaimable and movable on pcp lists. 2978 * Place ISOLATE pages on the isolated list because they are being 2979 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2980 * get those areas back if necessary. Otherwise, we may have to free 2981 * excessively into the page allocator 2982 */ 2983 zone = page_zone(page); 2984 migratetype = get_pfnblock_migratetype(page, pfn); 2985 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2986 if (unlikely(is_migrate_isolate(migratetype))) { 2987 free_one_page(zone, page, pfn, order, fpi_flags); 2988 return; 2989 } 2990 migratetype = MIGRATE_MOVABLE; 2991 } 2992 2993 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2994 && (in_nmi() || in_hardirq()))) { 2995 add_page_to_zone_llist(zone, page, order); 2996 return; 2997 } 2998 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 2999 if (pcp) { 3000 if (!free_frozen_page_commit(zone, pcp, page, migratetype, 3001 order, fpi_flags, &UP_flags)) 3002 return; 3003 pcp_spin_unlock(pcp, UP_flags); 3004 } else { 3005 free_one_page(zone, page, pfn, order, fpi_flags); 3006 } 3007} 3008 3009void free_frozen_pages(struct page *page, unsigned int order) 3010{ 3011 __free_frozen_pages(page, order, FPI_NONE); 3012} 3013 3014/* 3015 * Free a batch of folios 3016 */ 3017void free_unref_folios(struct folio_batch *folios) 3018{ 3019 unsigned long UP_flags; 3020 struct per_cpu_pages *pcp = NULL; 3021 struct zone *locked_zone = NULL; 3022 int i, j; 3023 3024 /* Prepare folios for freeing */ 3025 for (i = 0, j = 0; i < folios->nr; i++) { 3026 struct folio *folio = folios->folios[i]; 3027 unsigned long pfn = folio_pfn(folio); 3028 unsigned int order = folio_order(folio); 3029 3030 if (!free_pages_prepare(&folio->page, order)) 3031 continue; 3032 /* 3033 * Free orders not handled on the PCP directly to the 3034 * allocator. 3035 */ 3036 if (!pcp_allowed_order(order)) { 3037 free_one_page(folio_zone(folio), &folio->page, 3038 pfn, order, FPI_NONE); 3039 continue; 3040 } 3041 folio->private = (void *)(unsigned long)order; 3042 if (j != i) 3043 folios->folios[j] = folio; 3044 j++; 3045 } 3046 folios->nr = j; 3047 3048 for (i = 0; i < folios->nr; i++) { 3049 struct folio *folio = folios->folios[i]; 3050 struct zone *zone = folio_zone(folio); 3051 unsigned long pfn = folio_pfn(folio); 3052 unsigned int order = (unsigned long)folio->private; 3053 int migratetype; 3054 3055 folio->private = NULL; 3056 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 3057 3058 /* Different zone requires a different pcp lock */ 3059 if (zone != locked_zone || 3060 is_migrate_isolate(migratetype)) { 3061 if (pcp) { 3062 pcp_spin_unlock(pcp, UP_flags); 3063 locked_zone = NULL; 3064 pcp = NULL; 3065 } 3066 3067 /* 3068 * Free isolated pages directly to the 3069 * allocator, see comment in free_frozen_pages. 3070 */ 3071 if (is_migrate_isolate(migratetype)) { 3072 free_one_page(zone, &folio->page, pfn, 3073 order, FPI_NONE); 3074 continue; 3075 } 3076 3077 /* 3078 * trylock is necessary as folios may be getting freed 3079 * from IRQ or SoftIRQ context after an IO completion. 3080 */ 3081 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3082 if (unlikely(!pcp)) { 3083 free_one_page(zone, &folio->page, pfn, 3084 order, FPI_NONE); 3085 continue; 3086 } 3087 locked_zone = zone; 3088 } 3089 3090 /* 3091 * Non-isolated types over MIGRATE_PCPTYPES get added 3092 * to the MIGRATE_MOVABLE pcp list. 3093 */ 3094 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3095 migratetype = MIGRATE_MOVABLE; 3096 3097 trace_mm_page_free_batched(&folio->page); 3098 if (!free_frozen_page_commit(zone, pcp, &folio->page, 3099 migratetype, order, FPI_NONE, &UP_flags)) { 3100 pcp = NULL; 3101 locked_zone = NULL; 3102 } 3103 } 3104 3105 if (pcp) 3106 pcp_spin_unlock(pcp, UP_flags); 3107 folio_batch_reinit(folios); 3108} 3109 3110/* 3111 * split_page takes a non-compound higher-order page, and splits it into 3112 * n (1<<order) sub-pages: page[0..n] 3113 * Each sub-page must be freed individually. 3114 * 3115 * Note: this is probably too low level an operation for use in drivers. 3116 * Please consult with lkml before using this in your driver. 3117 */ 3118void split_page(struct page *page, unsigned int order) 3119{ 3120 int i; 3121 3122 VM_BUG_ON_PAGE(PageCompound(page), page); 3123 VM_BUG_ON_PAGE(!page_count(page), page); 3124 3125 for (i = 1; i < (1 << order); i++) 3126 set_page_refcounted(page + i); 3127 split_page_owner(page, order, 0); 3128 pgalloc_tag_split(page_folio(page), order, 0); 3129 split_page_memcg(page, order); 3130} 3131EXPORT_SYMBOL_GPL(split_page); 3132 3133int __isolate_free_page(struct page *page, unsigned int order) 3134{ 3135 struct zone *zone = page_zone(page); 3136 int mt = get_pageblock_migratetype(page); 3137 3138 if (!is_migrate_isolate(mt)) { 3139 unsigned long watermark; 3140 /* 3141 * Obey watermarks as if the page was being allocated. We can 3142 * emulate a high-order watermark check with a raised order-0 3143 * watermark, because we already know our high-order page 3144 * exists. 3145 */ 3146 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3147 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3148 return 0; 3149 } 3150 3151 del_page_from_free_list(page, zone, order, mt); 3152 3153 /* 3154 * Set the pageblock if the isolated page is at least half of a 3155 * pageblock 3156 */ 3157 if (order >= pageblock_order - 1) { 3158 struct page *endpage = page + (1 << order) - 1; 3159 for (; page < endpage; page += pageblock_nr_pages) { 3160 int mt = get_pageblock_migratetype(page); 3161 /* 3162 * Only change normal pageblocks (i.e., they can merge 3163 * with others) 3164 */ 3165 if (migratetype_is_mergeable(mt)) 3166 move_freepages_block(zone, page, mt, 3167 MIGRATE_MOVABLE); 3168 } 3169 } 3170 3171 return 1UL << order; 3172} 3173 3174/** 3175 * __putback_isolated_page - Return a now-isolated page back where we got it 3176 * @page: Page that was isolated 3177 * @order: Order of the isolated page 3178 * @mt: The page's pageblock's migratetype 3179 * 3180 * This function is meant to return a page pulled from the free lists via 3181 * __isolate_free_page back to the free lists they were pulled from. 3182 */ 3183void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3184{ 3185 struct zone *zone = page_zone(page); 3186 3187 /* zone lock should be held when this function is called */ 3188 lockdep_assert_held(&zone->lock); 3189 3190 /* Return isolated page to tail of freelist. */ 3191 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3192 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3193} 3194 3195/* 3196 * Update NUMA hit/miss statistics 3197 */ 3198static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3199 long nr_account) 3200{ 3201#ifdef CONFIG_NUMA 3202 enum numa_stat_item local_stat = NUMA_LOCAL; 3203 3204 /* skip numa counters update if numa stats is disabled */ 3205 if (!static_branch_likely(&vm_numa_stat_key)) 3206 return; 3207 3208 if (zone_to_nid(z) != numa_node_id()) 3209 local_stat = NUMA_OTHER; 3210 3211 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3212 __count_numa_events(z, NUMA_HIT, nr_account); 3213 else { 3214 __count_numa_events(z, NUMA_MISS, nr_account); 3215 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3216 } 3217 __count_numa_events(z, local_stat, nr_account); 3218#endif 3219} 3220 3221static __always_inline 3222struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3223 unsigned int order, unsigned int alloc_flags, 3224 int migratetype) 3225{ 3226 struct page *page; 3227 unsigned long flags; 3228 3229 do { 3230 page = NULL; 3231 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3232 if (!spin_trylock_irqsave(&zone->lock, flags)) 3233 return NULL; 3234 } else { 3235 spin_lock_irqsave(&zone->lock, flags); 3236 } 3237 if (alloc_flags & ALLOC_HIGHATOMIC) 3238 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3239 if (!page) { 3240 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3241 3242 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3243 3244 /* 3245 * If the allocation fails, allow OOM handling and 3246 * order-0 (atomic) allocs access to HIGHATOMIC 3247 * reserves as failing now is worse than failing a 3248 * high-order atomic allocation in the future. 3249 */ 3250 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3251 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3252 3253 if (!page) { 3254 spin_unlock_irqrestore(&zone->lock, flags); 3255 return NULL; 3256 } 3257 } 3258 spin_unlock_irqrestore(&zone->lock, flags); 3259 } while (check_new_pages(page, order)); 3260 3261 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3262 zone_statistics(preferred_zone, zone, 1); 3263 3264 return page; 3265} 3266 3267static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3268{ 3269 int high, base_batch, batch, max_nr_alloc; 3270 int high_max, high_min; 3271 3272 base_batch = READ_ONCE(pcp->batch); 3273 high_min = READ_ONCE(pcp->high_min); 3274 high_max = READ_ONCE(pcp->high_max); 3275 high = pcp->high = clamp(pcp->high, high_min, high_max); 3276 3277 /* Check for PCP disabled or boot pageset */ 3278 if (unlikely(high < base_batch)) 3279 return 1; 3280 3281 if (order) 3282 batch = base_batch; 3283 else 3284 batch = (base_batch << pcp->alloc_factor); 3285 3286 /* 3287 * If we had larger pcp->high, we could avoid to allocate from 3288 * zone. 3289 */ 3290 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3291 high = pcp->high = min(high + batch, high_max); 3292 3293 if (!order) { 3294 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3295 /* 3296 * Double the number of pages allocated each time there is 3297 * subsequent allocation of order-0 pages without any freeing. 3298 */ 3299 if (batch <= max_nr_alloc && 3300 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3301 pcp->alloc_factor++; 3302 batch = min(batch, max_nr_alloc); 3303 } 3304 3305 /* 3306 * Scale batch relative to order if batch implies free pages 3307 * can be stored on the PCP. Batch can be 1 for small zones or 3308 * for boot pagesets which should never store free pages as 3309 * the pages may belong to arbitrary zones. 3310 */ 3311 if (batch > 1) 3312 batch = max(batch >> order, 2); 3313 3314 return batch; 3315} 3316 3317/* Remove page from the per-cpu list, caller must protect the list */ 3318static inline 3319struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3320 int migratetype, 3321 unsigned int alloc_flags, 3322 struct per_cpu_pages *pcp, 3323 struct list_head *list) 3324{ 3325 struct page *page; 3326 3327 do { 3328 if (list_empty(list)) { 3329 int batch = nr_pcp_alloc(pcp, zone, order); 3330 int alloced; 3331 3332 alloced = rmqueue_bulk(zone, order, 3333 batch, list, 3334 migratetype, alloc_flags); 3335 3336 pcp->count += alloced << order; 3337 if (unlikely(list_empty(list))) 3338 return NULL; 3339 } 3340 3341 page = list_first_entry(list, struct page, pcp_list); 3342 list_del(&page->pcp_list); 3343 pcp->count -= 1 << order; 3344 } while (check_new_pages(page, order)); 3345 3346 return page; 3347} 3348 3349/* Lock and remove page from the per-cpu list */ 3350static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3351 struct zone *zone, unsigned int order, 3352 int migratetype, unsigned int alloc_flags) 3353{ 3354 struct per_cpu_pages *pcp; 3355 struct list_head *list; 3356 struct page *page; 3357 unsigned long UP_flags; 3358 3359 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3360 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3361 if (!pcp) 3362 return NULL; 3363 3364 /* 3365 * On allocation, reduce the number of pages that are batch freed. 3366 * See nr_pcp_free() where free_factor is increased for subsequent 3367 * frees. 3368 */ 3369 pcp->free_count >>= 1; 3370 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3371 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3372 pcp_spin_unlock(pcp, UP_flags); 3373 if (page) { 3374 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3375 zone_statistics(preferred_zone, zone, 1); 3376 } 3377 return page; 3378} 3379 3380/* 3381 * Allocate a page from the given zone. 3382 * Use pcplists for THP or "cheap" high-order allocations. 3383 */ 3384 3385/* 3386 * Do not instrument rmqueue() with KMSAN. This function may call 3387 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3388 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3389 * may call rmqueue() again, which will result in a deadlock. 3390 */ 3391__no_sanitize_memory 3392static inline 3393struct page *rmqueue(struct zone *preferred_zone, 3394 struct zone *zone, unsigned int order, 3395 gfp_t gfp_flags, unsigned int alloc_flags, 3396 int migratetype) 3397{ 3398 struct page *page; 3399 3400 if (likely(pcp_allowed_order(order))) { 3401 page = rmqueue_pcplist(preferred_zone, zone, order, 3402 migratetype, alloc_flags); 3403 if (likely(page)) 3404 goto out; 3405 } 3406 3407 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3408 migratetype); 3409 3410out: 3411 /* Separate test+clear to avoid unnecessary atomics */ 3412 if ((alloc_flags & ALLOC_KSWAPD) && 3413 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3414 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3415 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3416 } 3417 3418 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3419 return page; 3420} 3421 3422/* 3423 * Reserve the pageblock(s) surrounding an allocation request for 3424 * exclusive use of high-order atomic allocations if there are no 3425 * empty page blocks that contain a page with a suitable order 3426 */ 3427static void reserve_highatomic_pageblock(struct page *page, int order, 3428 struct zone *zone) 3429{ 3430 int mt; 3431 unsigned long max_managed, flags; 3432 3433 /* 3434 * The number reserved as: minimum is 1 pageblock, maximum is 3435 * roughly 1% of a zone. But if 1% of a zone falls below a 3436 * pageblock size, then don't reserve any pageblocks. 3437 * Check is race-prone but harmless. 3438 */ 3439 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3440 return; 3441 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3442 if (zone->nr_reserved_highatomic >= max_managed) 3443 return; 3444 3445 spin_lock_irqsave(&zone->lock, flags); 3446 3447 /* Recheck the nr_reserved_highatomic limit under the lock */ 3448 if (zone->nr_reserved_highatomic >= max_managed) 3449 goto out_unlock; 3450 3451 /* Yoink! */ 3452 mt = get_pageblock_migratetype(page); 3453 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3454 if (!migratetype_is_mergeable(mt)) 3455 goto out_unlock; 3456 3457 if (order < pageblock_order) { 3458 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3459 goto out_unlock; 3460 zone->nr_reserved_highatomic += pageblock_nr_pages; 3461 } else { 3462 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3463 zone->nr_reserved_highatomic += 1 << order; 3464 } 3465 3466out_unlock: 3467 spin_unlock_irqrestore(&zone->lock, flags); 3468} 3469 3470/* 3471 * Used when an allocation is about to fail under memory pressure. This 3472 * potentially hurts the reliability of high-order allocations when under 3473 * intense memory pressure but failed atomic allocations should be easier 3474 * to recover from than an OOM. 3475 * 3476 * If @force is true, try to unreserve pageblocks even though highatomic 3477 * pageblock is exhausted. 3478 */ 3479static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3480 bool force) 3481{ 3482 struct zonelist *zonelist = ac->zonelist; 3483 unsigned long flags; 3484 struct zoneref *z; 3485 struct zone *zone; 3486 struct page *page; 3487 int order; 3488 int ret; 3489 3490 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3491 ac->nodemask) { 3492 /* 3493 * Preserve at least one pageblock unless memory pressure 3494 * is really high. 3495 */ 3496 if (!force && zone->nr_reserved_highatomic <= 3497 pageblock_nr_pages) 3498 continue; 3499 3500 spin_lock_irqsave(&zone->lock, flags); 3501 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3502 struct free_area *area = &(zone->free_area[order]); 3503 unsigned long size; 3504 3505 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3506 if (!page) 3507 continue; 3508 3509 size = max(pageblock_nr_pages, 1UL << order); 3510 /* 3511 * It should never happen but changes to 3512 * locking could inadvertently allow a per-cpu 3513 * drain to add pages to MIGRATE_HIGHATOMIC 3514 * while unreserving so be safe and watch for 3515 * underflows. 3516 */ 3517 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3518 size = zone->nr_reserved_highatomic; 3519 zone->nr_reserved_highatomic -= size; 3520 3521 /* 3522 * Convert to ac->migratetype and avoid the normal 3523 * pageblock stealing heuristics. Minimally, the caller 3524 * is doing the work and needs the pages. More 3525 * importantly, if the block was always converted to 3526 * MIGRATE_UNMOVABLE or another type then the number 3527 * of pageblocks that cannot be completely freed 3528 * may increase. 3529 */ 3530 if (order < pageblock_order) 3531 ret = move_freepages_block(zone, page, 3532 MIGRATE_HIGHATOMIC, 3533 ac->migratetype); 3534 else { 3535 move_to_free_list(page, zone, order, 3536 MIGRATE_HIGHATOMIC, 3537 ac->migratetype); 3538 change_pageblock_range(page, order, 3539 ac->migratetype); 3540 ret = 1; 3541 } 3542 /* 3543 * Reserving the block(s) already succeeded, 3544 * so this should not fail on zone boundaries. 3545 */ 3546 WARN_ON_ONCE(ret == -1); 3547 if (ret > 0) { 3548 spin_unlock_irqrestore(&zone->lock, flags); 3549 return ret; 3550 } 3551 } 3552 spin_unlock_irqrestore(&zone->lock, flags); 3553 } 3554 3555 return false; 3556} 3557 3558static inline long __zone_watermark_unusable_free(struct zone *z, 3559 unsigned int order, unsigned int alloc_flags) 3560{ 3561 long unusable_free = (1 << order) - 1; 3562 3563 /* 3564 * If the caller does not have rights to reserves below the min 3565 * watermark then subtract the free pages reserved for highatomic. 3566 */ 3567 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3568 unusable_free += READ_ONCE(z->nr_free_highatomic); 3569 3570#ifdef CONFIG_CMA 3571 /* If allocation can't use CMA areas don't use free CMA pages */ 3572 if (!(alloc_flags & ALLOC_CMA)) 3573 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3574#endif 3575 3576 return unusable_free; 3577} 3578 3579/* 3580 * Return true if free base pages are above 'mark'. For high-order checks it 3581 * will return true of the order-0 watermark is reached and there is at least 3582 * one free page of a suitable size. Checking now avoids taking the zone lock 3583 * to check in the allocation paths if no pages are free. 3584 */ 3585bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3586 int highest_zoneidx, unsigned int alloc_flags, 3587 long free_pages) 3588{ 3589 long min = mark; 3590 int o; 3591 3592 /* free_pages may go negative - that's OK */ 3593 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3594 3595 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3596 /* 3597 * __GFP_HIGH allows access to 50% of the min reserve as well 3598 * as OOM. 3599 */ 3600 if (alloc_flags & ALLOC_MIN_RESERVE) { 3601 min -= min / 2; 3602 3603 /* 3604 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3605 * access more reserves than just __GFP_HIGH. Other 3606 * non-blocking allocations requests such as GFP_NOWAIT 3607 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3608 * access to the min reserve. 3609 */ 3610 if (alloc_flags & ALLOC_NON_BLOCK) 3611 min -= min / 4; 3612 } 3613 3614 /* 3615 * OOM victims can try even harder than the normal reserve 3616 * users on the grounds that it's definitely going to be in 3617 * the exit path shortly and free memory. Any allocation it 3618 * makes during the free path will be small and short-lived. 3619 */ 3620 if (alloc_flags & ALLOC_OOM) 3621 min -= min / 2; 3622 } 3623 3624 /* 3625 * Check watermarks for an order-0 allocation request. If these 3626 * are not met, then a high-order request also cannot go ahead 3627 * even if a suitable page happened to be free. 3628 */ 3629 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3630 return false; 3631 3632 /* If this is an order-0 request then the watermark is fine */ 3633 if (!order) 3634 return true; 3635 3636 /* For a high-order request, check at least one suitable page is free */ 3637 for (o = order; o < NR_PAGE_ORDERS; o++) { 3638 struct free_area *area = &z->free_area[o]; 3639 int mt; 3640 3641 if (!area->nr_free) 3642 continue; 3643 3644 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3645 if (!free_area_empty(area, mt)) 3646 return true; 3647 } 3648 3649#ifdef CONFIG_CMA 3650 if ((alloc_flags & ALLOC_CMA) && 3651 !free_area_empty(area, MIGRATE_CMA)) { 3652 return true; 3653 } 3654#endif 3655 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3656 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3657 return true; 3658 } 3659 } 3660 return false; 3661} 3662 3663bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3664 int highest_zoneidx, unsigned int alloc_flags) 3665{ 3666 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3667 zone_page_state(z, NR_FREE_PAGES)); 3668} 3669 3670static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3671 unsigned long mark, int highest_zoneidx, 3672 unsigned int alloc_flags, gfp_t gfp_mask) 3673{ 3674 long free_pages; 3675 3676 free_pages = zone_page_state(z, NR_FREE_PAGES); 3677 3678 /* 3679 * Fast check for order-0 only. If this fails then the reserves 3680 * need to be calculated. 3681 */ 3682 if (!order) { 3683 long usable_free; 3684 long reserved; 3685 3686 usable_free = free_pages; 3687 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3688 3689 /* reserved may over estimate high-atomic reserves. */ 3690 usable_free -= min(usable_free, reserved); 3691 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3692 return true; 3693 } 3694 3695 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3696 free_pages)) 3697 return true; 3698 3699 /* 3700 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3701 * when checking the min watermark. The min watermark is the 3702 * point where boosting is ignored so that kswapd is woken up 3703 * when below the low watermark. 3704 */ 3705 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3706 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3707 mark = z->_watermark[WMARK_MIN]; 3708 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3709 alloc_flags, free_pages); 3710 } 3711 3712 return false; 3713} 3714 3715#ifdef CONFIG_NUMA 3716int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3717 3718static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3719{ 3720 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3721 node_reclaim_distance; 3722} 3723#else /* CONFIG_NUMA */ 3724static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3725{ 3726 return true; 3727} 3728#endif /* CONFIG_NUMA */ 3729 3730/* 3731 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3732 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3733 * premature use of a lower zone may cause lowmem pressure problems that 3734 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3735 * probably too small. It only makes sense to spread allocations to avoid 3736 * fragmentation between the Normal and DMA32 zones. 3737 */ 3738static inline unsigned int 3739alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3740{ 3741 unsigned int alloc_flags; 3742 3743 /* 3744 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3745 * to save a branch. 3746 */ 3747 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3748 3749 if (defrag_mode) { 3750 alloc_flags |= ALLOC_NOFRAGMENT; 3751 return alloc_flags; 3752 } 3753 3754#ifdef CONFIG_ZONE_DMA32 3755 if (!zone) 3756 return alloc_flags; 3757 3758 if (zone_idx(zone) != ZONE_NORMAL) 3759 return alloc_flags; 3760 3761 /* 3762 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3763 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3764 * on UMA that if Normal is populated then so is DMA32. 3765 */ 3766 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3767 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3768 return alloc_flags; 3769 3770 alloc_flags |= ALLOC_NOFRAGMENT; 3771#endif /* CONFIG_ZONE_DMA32 */ 3772 return alloc_flags; 3773} 3774 3775/* Must be called after current_gfp_context() which can change gfp_mask */ 3776static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3777 unsigned int alloc_flags) 3778{ 3779#ifdef CONFIG_CMA 3780 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3781 alloc_flags |= ALLOC_CMA; 3782#endif 3783 return alloc_flags; 3784} 3785 3786/* 3787 * get_page_from_freelist goes through the zonelist trying to allocate 3788 * a page. 3789 */ 3790static struct page * 3791get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3792 const struct alloc_context *ac) 3793{ 3794 struct zoneref *z; 3795 struct zone *zone; 3796 struct pglist_data *last_pgdat = NULL; 3797 bool last_pgdat_dirty_ok = false; 3798 bool no_fallback; 3799 bool skip_kswapd_nodes = nr_online_nodes > 1; 3800 bool skipped_kswapd_nodes = false; 3801 3802retry: 3803 /* 3804 * Scan zonelist, looking for a zone with enough free. 3805 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3806 */ 3807 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3808 z = ac->preferred_zoneref; 3809 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3810 ac->nodemask) { 3811 struct page *page; 3812 unsigned long mark; 3813 3814 if (cpusets_enabled() && 3815 (alloc_flags & ALLOC_CPUSET) && 3816 !__cpuset_zone_allowed(zone, gfp_mask)) 3817 continue; 3818 /* 3819 * When allocating a page cache page for writing, we 3820 * want to get it from a node that is within its dirty 3821 * limit, such that no single node holds more than its 3822 * proportional share of globally allowed dirty pages. 3823 * The dirty limits take into account the node's 3824 * lowmem reserves and high watermark so that kswapd 3825 * should be able to balance it without having to 3826 * write pages from its LRU list. 3827 * 3828 * XXX: For now, allow allocations to potentially 3829 * exceed the per-node dirty limit in the slowpath 3830 * (spread_dirty_pages unset) before going into reclaim, 3831 * which is important when on a NUMA setup the allowed 3832 * nodes are together not big enough to reach the 3833 * global limit. The proper fix for these situations 3834 * will require awareness of nodes in the 3835 * dirty-throttling and the flusher threads. 3836 */ 3837 if (ac->spread_dirty_pages) { 3838 if (last_pgdat != zone->zone_pgdat) { 3839 last_pgdat = zone->zone_pgdat; 3840 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3841 } 3842 3843 if (!last_pgdat_dirty_ok) 3844 continue; 3845 } 3846 3847 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3848 zone != zonelist_zone(ac->preferred_zoneref)) { 3849 int local_nid; 3850 3851 /* 3852 * If moving to a remote node, retry but allow 3853 * fragmenting fallbacks. Locality is more important 3854 * than fragmentation avoidance. 3855 */ 3856 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3857 if (zone_to_nid(zone) != local_nid) { 3858 alloc_flags &= ~ALLOC_NOFRAGMENT; 3859 goto retry; 3860 } 3861 } 3862 3863 /* 3864 * If kswapd is already active on a node, keep looking 3865 * for other nodes that might be idle. This can happen 3866 * if another process has NUMA bindings and is causing 3867 * kswapd wakeups on only some nodes. Avoid accidental 3868 * "node_reclaim_mode"-like behavior in this case. 3869 */ 3870 if (skip_kswapd_nodes && 3871 !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) { 3872 skipped_kswapd_nodes = true; 3873 continue; 3874 } 3875 3876 cond_accept_memory(zone, order, alloc_flags); 3877 3878 /* 3879 * Detect whether the number of free pages is below high 3880 * watermark. If so, we will decrease pcp->high and free 3881 * PCP pages in free path to reduce the possibility of 3882 * premature page reclaiming. Detection is done here to 3883 * avoid to do that in hotter free path. 3884 */ 3885 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3886 goto check_alloc_wmark; 3887 3888 mark = high_wmark_pages(zone); 3889 if (zone_watermark_fast(zone, order, mark, 3890 ac->highest_zoneidx, alloc_flags, 3891 gfp_mask)) 3892 goto try_this_zone; 3893 else 3894 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3895 3896check_alloc_wmark: 3897 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3898 if (!zone_watermark_fast(zone, order, mark, 3899 ac->highest_zoneidx, alloc_flags, 3900 gfp_mask)) { 3901 int ret; 3902 3903 if (cond_accept_memory(zone, order, alloc_flags)) 3904 goto try_this_zone; 3905 3906 /* 3907 * Watermark failed for this zone, but see if we can 3908 * grow this zone if it contains deferred pages. 3909 */ 3910 if (deferred_pages_enabled()) { 3911 if (_deferred_grow_zone(zone, order)) 3912 goto try_this_zone; 3913 } 3914 /* Checked here to keep the fast path fast */ 3915 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3916 if (alloc_flags & ALLOC_NO_WATERMARKS) 3917 goto try_this_zone; 3918 3919 if (!node_reclaim_enabled() || 3920 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3921 continue; 3922 3923 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3924 switch (ret) { 3925 case NODE_RECLAIM_NOSCAN: 3926 /* did not scan */ 3927 continue; 3928 case NODE_RECLAIM_FULL: 3929 /* scanned but unreclaimable */ 3930 continue; 3931 default: 3932 /* did we reclaim enough */ 3933 if (zone_watermark_ok(zone, order, mark, 3934 ac->highest_zoneidx, alloc_flags)) 3935 goto try_this_zone; 3936 3937 continue; 3938 } 3939 } 3940 3941try_this_zone: 3942 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3943 gfp_mask, alloc_flags, ac->migratetype); 3944 if (page) { 3945 prep_new_page(page, order, gfp_mask, alloc_flags); 3946 3947 /* 3948 * If this is a high-order atomic allocation then check 3949 * if the pageblock should be reserved for the future 3950 */ 3951 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3952 reserve_highatomic_pageblock(page, order, zone); 3953 3954 return page; 3955 } else { 3956 if (cond_accept_memory(zone, order, alloc_flags)) 3957 goto try_this_zone; 3958 3959 /* Try again if zone has deferred pages */ 3960 if (deferred_pages_enabled()) { 3961 if (_deferred_grow_zone(zone, order)) 3962 goto try_this_zone; 3963 } 3964 } 3965 } 3966 3967 /* 3968 * If we skipped over nodes with active kswapds and found no 3969 * idle nodes, retry and place anywhere the watermarks permit. 3970 */ 3971 if (skip_kswapd_nodes && skipped_kswapd_nodes) { 3972 skip_kswapd_nodes = false; 3973 goto retry; 3974 } 3975 3976 /* 3977 * It's possible on a UMA machine to get through all zones that are 3978 * fragmented. If avoiding fragmentation, reset and try again. 3979 */ 3980 if (no_fallback && !defrag_mode) { 3981 alloc_flags &= ~ALLOC_NOFRAGMENT; 3982 goto retry; 3983 } 3984 3985 return NULL; 3986} 3987 3988static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3989{ 3990 unsigned int filter = SHOW_MEM_FILTER_NODES; 3991 3992 /* 3993 * This documents exceptions given to allocations in certain 3994 * contexts that are allowed to allocate outside current's set 3995 * of allowed nodes. 3996 */ 3997 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3998 if (tsk_is_oom_victim(current) || 3999 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4000 filter &= ~SHOW_MEM_FILTER_NODES; 4001 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4002 filter &= ~SHOW_MEM_FILTER_NODES; 4003 4004 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4005 mem_cgroup_show_protected_memory(NULL); 4006} 4007 4008void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4009{ 4010 struct va_format vaf; 4011 va_list args; 4012 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4013 4014 if ((gfp_mask & __GFP_NOWARN) || 4015 !__ratelimit(&nopage_rs) || 4016 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4017 return; 4018 4019 va_start(args, fmt); 4020 vaf.fmt = fmt; 4021 vaf.va = &args; 4022 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4023 current->comm, &vaf, gfp_mask, &gfp_mask, 4024 nodemask_pr_args(nodemask)); 4025 va_end(args); 4026 4027 cpuset_print_current_mems_allowed(); 4028 pr_cont("\n"); 4029 dump_stack(); 4030 warn_alloc_show_mem(gfp_mask, nodemask); 4031} 4032 4033static inline struct page * 4034__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4035 unsigned int alloc_flags, 4036 const struct alloc_context *ac) 4037{ 4038 struct page *page; 4039 4040 page = get_page_from_freelist(gfp_mask, order, 4041 alloc_flags|ALLOC_CPUSET, ac); 4042 /* 4043 * fallback to ignore cpuset restriction if our nodes 4044 * are depleted 4045 */ 4046 if (!page) 4047 page = get_page_from_freelist(gfp_mask, order, 4048 alloc_flags, ac); 4049 return page; 4050} 4051 4052static inline struct page * 4053__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4054 const struct alloc_context *ac, unsigned long *did_some_progress) 4055{ 4056 struct oom_control oc = { 4057 .zonelist = ac->zonelist, 4058 .nodemask = ac->nodemask, 4059 .memcg = NULL, 4060 .gfp_mask = gfp_mask, 4061 .order = order, 4062 }; 4063 struct page *page; 4064 4065 *did_some_progress = 0; 4066 4067 /* 4068 * Acquire the oom lock. If that fails, somebody else is 4069 * making progress for us. 4070 */ 4071 if (!mutex_trylock(&oom_lock)) { 4072 *did_some_progress = 1; 4073 schedule_timeout_uninterruptible(1); 4074 return NULL; 4075 } 4076 4077 /* 4078 * Go through the zonelist yet one more time, keep very high watermark 4079 * here, this is only to catch a parallel oom killing, we must fail if 4080 * we're still under heavy pressure. But make sure that this reclaim 4081 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4082 * allocation which will never fail due to oom_lock already held. 4083 */ 4084 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4085 ~__GFP_DIRECT_RECLAIM, order, 4086 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4087 if (page) 4088 goto out; 4089 4090 /* Coredumps can quickly deplete all memory reserves */ 4091 if (current->flags & PF_DUMPCORE) 4092 goto out; 4093 /* The OOM killer will not help higher order allocs */ 4094 if (order > PAGE_ALLOC_COSTLY_ORDER) 4095 goto out; 4096 /* 4097 * We have already exhausted all our reclaim opportunities without any 4098 * success so it is time to admit defeat. We will skip the OOM killer 4099 * because it is very likely that the caller has a more reasonable 4100 * fallback than shooting a random task. 4101 * 4102 * The OOM killer may not free memory on a specific node. 4103 */ 4104 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4105 goto out; 4106 /* The OOM killer does not needlessly kill tasks for lowmem */ 4107 if (ac->highest_zoneidx < ZONE_NORMAL) 4108 goto out; 4109 if (pm_suspended_storage()) 4110 goto out; 4111 /* 4112 * XXX: GFP_NOFS allocations should rather fail than rely on 4113 * other request to make a forward progress. 4114 * We are in an unfortunate situation where out_of_memory cannot 4115 * do much for this context but let's try it to at least get 4116 * access to memory reserved if the current task is killed (see 4117 * out_of_memory). Once filesystems are ready to handle allocation 4118 * failures more gracefully we should just bail out here. 4119 */ 4120 4121 /* Exhausted what can be done so it's blame time */ 4122 if (out_of_memory(&oc) || 4123 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4124 *did_some_progress = 1; 4125 4126 /* 4127 * Help non-failing allocations by giving them access to memory 4128 * reserves 4129 */ 4130 if (gfp_mask & __GFP_NOFAIL) 4131 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4132 ALLOC_NO_WATERMARKS, ac); 4133 } 4134out: 4135 mutex_unlock(&oom_lock); 4136 return page; 4137} 4138 4139/* 4140 * Maximum number of compaction retries with a progress before OOM 4141 * killer is consider as the only way to move forward. 4142 */ 4143#define MAX_COMPACT_RETRIES 16 4144 4145#ifdef CONFIG_COMPACTION 4146/* Try memory compaction for high-order allocations before reclaim */ 4147static struct page * 4148__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4149 unsigned int alloc_flags, const struct alloc_context *ac, 4150 enum compact_priority prio, enum compact_result *compact_result) 4151{ 4152 struct page *page = NULL; 4153 unsigned long pflags; 4154 unsigned int noreclaim_flag; 4155 4156 if (!order) 4157 return NULL; 4158 4159 psi_memstall_enter(&pflags); 4160 delayacct_compact_start(); 4161 noreclaim_flag = memalloc_noreclaim_save(); 4162 4163 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4164 prio, &page); 4165 4166 memalloc_noreclaim_restore(noreclaim_flag); 4167 psi_memstall_leave(&pflags); 4168 delayacct_compact_end(); 4169 4170 if (*compact_result == COMPACT_SKIPPED) 4171 return NULL; 4172 /* 4173 * At least in one zone compaction wasn't deferred or skipped, so let's 4174 * count a compaction stall 4175 */ 4176 count_vm_event(COMPACTSTALL); 4177 4178 /* Prep a captured page if available */ 4179 if (page) 4180 prep_new_page(page, order, gfp_mask, alloc_flags); 4181 4182 /* Try get a page from the freelist if available */ 4183 if (!page) 4184 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4185 4186 if (page) { 4187 struct zone *zone = page_zone(page); 4188 4189 zone->compact_blockskip_flush = false; 4190 compaction_defer_reset(zone, order, true); 4191 count_vm_event(COMPACTSUCCESS); 4192 return page; 4193 } 4194 4195 /* 4196 * It's bad if compaction run occurs and fails. The most likely reason 4197 * is that pages exist, but not enough to satisfy watermarks. 4198 */ 4199 count_vm_event(COMPACTFAIL); 4200 4201 cond_resched(); 4202 4203 return NULL; 4204} 4205 4206static inline bool 4207should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4208 enum compact_result compact_result, 4209 enum compact_priority *compact_priority, 4210 int *compaction_retries) 4211{ 4212 int max_retries = MAX_COMPACT_RETRIES; 4213 int min_priority; 4214 bool ret = false; 4215 int retries = *compaction_retries; 4216 enum compact_priority priority = *compact_priority; 4217 4218 if (!order) 4219 return false; 4220 4221 if (fatal_signal_pending(current)) 4222 return false; 4223 4224 /* 4225 * Compaction was skipped due to a lack of free order-0 4226 * migration targets. Continue if reclaim can help. 4227 */ 4228 if (compact_result == COMPACT_SKIPPED) { 4229 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4230 goto out; 4231 } 4232 4233 /* 4234 * Compaction managed to coalesce some page blocks, but the 4235 * allocation failed presumably due to a race. Retry some. 4236 */ 4237 if (compact_result == COMPACT_SUCCESS) { 4238 /* 4239 * !costly requests are much more important than 4240 * __GFP_RETRY_MAYFAIL costly ones because they are de 4241 * facto nofail and invoke OOM killer to move on while 4242 * costly can fail and users are ready to cope with 4243 * that. 1/4 retries is rather arbitrary but we would 4244 * need much more detailed feedback from compaction to 4245 * make a better decision. 4246 */ 4247 if (order > PAGE_ALLOC_COSTLY_ORDER) 4248 max_retries /= 4; 4249 4250 if (++(*compaction_retries) <= max_retries) { 4251 ret = true; 4252 goto out; 4253 } 4254 } 4255 4256 /* 4257 * Compaction failed. Retry with increasing priority. 4258 */ 4259 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4260 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4261 4262 if (*compact_priority > min_priority) { 4263 (*compact_priority)--; 4264 *compaction_retries = 0; 4265 ret = true; 4266 } 4267out: 4268 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4269 return ret; 4270} 4271#else 4272static inline struct page * 4273__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4274 unsigned int alloc_flags, const struct alloc_context *ac, 4275 enum compact_priority prio, enum compact_result *compact_result) 4276{ 4277 *compact_result = COMPACT_SKIPPED; 4278 return NULL; 4279} 4280 4281static inline bool 4282should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4283 enum compact_result compact_result, 4284 enum compact_priority *compact_priority, 4285 int *compaction_retries) 4286{ 4287 struct zone *zone; 4288 struct zoneref *z; 4289 4290 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4291 return false; 4292 4293 /* 4294 * There are setups with compaction disabled which would prefer to loop 4295 * inside the allocator rather than hit the oom killer prematurely. 4296 * Let's give them a good hope and keep retrying while the order-0 4297 * watermarks are OK. 4298 */ 4299 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4300 ac->highest_zoneidx, ac->nodemask) { 4301 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4302 ac->highest_zoneidx, alloc_flags)) 4303 return true; 4304 } 4305 return false; 4306} 4307#endif /* CONFIG_COMPACTION */ 4308 4309#ifdef CONFIG_LOCKDEP 4310static struct lockdep_map __fs_reclaim_map = 4311 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4312 4313static bool __need_reclaim(gfp_t gfp_mask) 4314{ 4315 /* no reclaim without waiting on it */ 4316 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4317 return false; 4318 4319 /* this guy won't enter reclaim */ 4320 if (current->flags & PF_MEMALLOC) 4321 return false; 4322 4323 if (gfp_mask & __GFP_NOLOCKDEP) 4324 return false; 4325 4326 return true; 4327} 4328 4329void __fs_reclaim_acquire(unsigned long ip) 4330{ 4331 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4332} 4333 4334void __fs_reclaim_release(unsigned long ip) 4335{ 4336 lock_release(&__fs_reclaim_map, ip); 4337} 4338 4339void fs_reclaim_acquire(gfp_t gfp_mask) 4340{ 4341 gfp_mask = current_gfp_context(gfp_mask); 4342 4343 if (__need_reclaim(gfp_mask)) { 4344 if (gfp_mask & __GFP_FS) 4345 __fs_reclaim_acquire(_RET_IP_); 4346 4347#ifdef CONFIG_MMU_NOTIFIER 4348 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4349 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4350#endif 4351 4352 } 4353} 4354EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4355 4356void fs_reclaim_release(gfp_t gfp_mask) 4357{ 4358 gfp_mask = current_gfp_context(gfp_mask); 4359 4360 if (__need_reclaim(gfp_mask)) { 4361 if (gfp_mask & __GFP_FS) 4362 __fs_reclaim_release(_RET_IP_); 4363 } 4364} 4365EXPORT_SYMBOL_GPL(fs_reclaim_release); 4366#endif 4367 4368/* 4369 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4370 * have been rebuilt so allocation retries. Reader side does not lock and 4371 * retries the allocation if zonelist changes. Writer side is protected by the 4372 * embedded spin_lock. 4373 */ 4374static DEFINE_SEQLOCK(zonelist_update_seq); 4375 4376static unsigned int zonelist_iter_begin(void) 4377{ 4378 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4379 return read_seqbegin(&zonelist_update_seq); 4380 4381 return 0; 4382} 4383 4384static unsigned int check_retry_zonelist(unsigned int seq) 4385{ 4386 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4387 return read_seqretry(&zonelist_update_seq, seq); 4388 4389 return seq; 4390} 4391 4392/* Perform direct synchronous page reclaim */ 4393static unsigned long 4394__perform_reclaim(gfp_t gfp_mask, unsigned int order, 4395 const struct alloc_context *ac) 4396{ 4397 unsigned int noreclaim_flag; 4398 unsigned long progress; 4399 4400 cond_resched(); 4401 4402 /* We now go into synchronous reclaim */ 4403 cpuset_memory_pressure_bump(); 4404 fs_reclaim_acquire(gfp_mask); 4405 noreclaim_flag = memalloc_noreclaim_save(); 4406 4407 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4408 ac->nodemask); 4409 4410 memalloc_noreclaim_restore(noreclaim_flag); 4411 fs_reclaim_release(gfp_mask); 4412 4413 cond_resched(); 4414 4415 return progress; 4416} 4417 4418/* The really slow allocator path where we enter direct reclaim */ 4419static inline struct page * 4420__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4421 unsigned int alloc_flags, const struct alloc_context *ac, 4422 unsigned long *did_some_progress) 4423{ 4424 struct page *page = NULL; 4425 unsigned long pflags; 4426 bool drained = false; 4427 4428 psi_memstall_enter(&pflags); 4429 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4430 if (unlikely(!(*did_some_progress))) 4431 goto out; 4432 4433retry: 4434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4435 4436 /* 4437 * If an allocation failed after direct reclaim, it could be because 4438 * pages are pinned on the per-cpu lists or in high alloc reserves. 4439 * Shrink them and try again 4440 */ 4441 if (!page && !drained) { 4442 unreserve_highatomic_pageblock(ac, false); 4443 drain_all_pages(NULL); 4444 drained = true; 4445 goto retry; 4446 } 4447out: 4448 psi_memstall_leave(&pflags); 4449 4450 return page; 4451} 4452 4453static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4454 const struct alloc_context *ac) 4455{ 4456 struct zoneref *z; 4457 struct zone *zone; 4458 pg_data_t *last_pgdat = NULL; 4459 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4460 unsigned int reclaim_order; 4461 4462 if (defrag_mode) 4463 reclaim_order = max(order, pageblock_order); 4464 else 4465 reclaim_order = order; 4466 4467 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4468 ac->nodemask) { 4469 if (!managed_zone(zone)) 4470 continue; 4471 if (last_pgdat == zone->zone_pgdat) 4472 continue; 4473 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4474 last_pgdat = zone->zone_pgdat; 4475 } 4476} 4477 4478static inline unsigned int 4479gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4480{ 4481 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4482 4483 /* 4484 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4485 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4486 * to save two branches. 4487 */ 4488 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4489 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4490 4491 /* 4492 * The caller may dip into page reserves a bit more if the caller 4493 * cannot run direct reclaim, or if the caller has realtime scheduling 4494 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4495 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4496 */ 4497 alloc_flags |= (__force int) 4498 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4499 4500 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4501 /* 4502 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4503 * if it can't schedule. 4504 */ 4505 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4506 alloc_flags |= ALLOC_NON_BLOCK; 4507 4508 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4509 alloc_flags |= ALLOC_HIGHATOMIC; 4510 } 4511 4512 /* 4513 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4514 * GFP_ATOMIC) rather than fail, see the comment for 4515 * cpuset_current_node_allowed(). 4516 */ 4517 if (alloc_flags & ALLOC_MIN_RESERVE) 4518 alloc_flags &= ~ALLOC_CPUSET; 4519 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4520 alloc_flags |= ALLOC_MIN_RESERVE; 4521 4522 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4523 4524 if (defrag_mode) 4525 alloc_flags |= ALLOC_NOFRAGMENT; 4526 4527 return alloc_flags; 4528} 4529 4530static bool oom_reserves_allowed(struct task_struct *tsk) 4531{ 4532 if (!tsk_is_oom_victim(tsk)) 4533 return false; 4534 4535 /* 4536 * !MMU doesn't have oom reaper so give access to memory reserves 4537 * only to the thread with TIF_MEMDIE set 4538 */ 4539 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4540 return false; 4541 4542 return true; 4543} 4544 4545/* 4546 * Distinguish requests which really need access to full memory 4547 * reserves from oom victims which can live with a portion of it 4548 */ 4549static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4550{ 4551 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4552 return 0; 4553 if (gfp_mask & __GFP_MEMALLOC) 4554 return ALLOC_NO_WATERMARKS; 4555 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4556 return ALLOC_NO_WATERMARKS; 4557 if (!in_interrupt()) { 4558 if (current->flags & PF_MEMALLOC) 4559 return ALLOC_NO_WATERMARKS; 4560 else if (oom_reserves_allowed(current)) 4561 return ALLOC_OOM; 4562 } 4563 4564 return 0; 4565} 4566 4567bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4568{ 4569 return !!__gfp_pfmemalloc_flags(gfp_mask); 4570} 4571 4572/* 4573 * Checks whether it makes sense to retry the reclaim to make a forward progress 4574 * for the given allocation request. 4575 * 4576 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4577 * without success, or when we couldn't even meet the watermark if we 4578 * reclaimed all remaining pages on the LRU lists. 4579 * 4580 * Returns true if a retry is viable or false to enter the oom path. 4581 */ 4582static inline bool 4583should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4584 struct alloc_context *ac, int alloc_flags, 4585 bool did_some_progress, int *no_progress_loops) 4586{ 4587 struct zone *zone; 4588 struct zoneref *z; 4589 bool ret = false; 4590 4591 /* 4592 * Costly allocations might have made a progress but this doesn't mean 4593 * their order will become available due to high fragmentation so 4594 * always increment the no progress counter for them 4595 */ 4596 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4597 *no_progress_loops = 0; 4598 else 4599 (*no_progress_loops)++; 4600 4601 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4602 goto out; 4603 4604 4605 /* 4606 * Keep reclaiming pages while there is a chance this will lead 4607 * somewhere. If none of the target zones can satisfy our allocation 4608 * request even if all reclaimable pages are considered then we are 4609 * screwed and have to go OOM. 4610 */ 4611 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4612 ac->highest_zoneidx, ac->nodemask) { 4613 unsigned long available; 4614 unsigned long reclaimable; 4615 unsigned long min_wmark = min_wmark_pages(zone); 4616 bool wmark; 4617 4618 if (cpusets_enabled() && 4619 (alloc_flags & ALLOC_CPUSET) && 4620 !__cpuset_zone_allowed(zone, gfp_mask)) 4621 continue; 4622 4623 available = reclaimable = zone_reclaimable_pages(zone); 4624 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4625 4626 /* 4627 * Would the allocation succeed if we reclaimed all 4628 * reclaimable pages? 4629 */ 4630 wmark = __zone_watermark_ok(zone, order, min_wmark, 4631 ac->highest_zoneidx, alloc_flags, available); 4632 trace_reclaim_retry_zone(z, order, reclaimable, 4633 available, min_wmark, *no_progress_loops, wmark); 4634 if (wmark) { 4635 ret = true; 4636 break; 4637 } 4638 } 4639 4640 /* 4641 * Memory allocation/reclaim might be called from a WQ context and the 4642 * current implementation of the WQ concurrency control doesn't 4643 * recognize that a particular WQ is congested if the worker thread is 4644 * looping without ever sleeping. Therefore we have to do a short sleep 4645 * here rather than calling cond_resched(). 4646 */ 4647 if (current->flags & PF_WQ_WORKER) 4648 schedule_timeout_uninterruptible(1); 4649 else 4650 cond_resched(); 4651out: 4652 /* Before OOM, exhaust highatomic_reserve */ 4653 if (!ret) 4654 return unreserve_highatomic_pageblock(ac, true); 4655 4656 return ret; 4657} 4658 4659static inline bool 4660check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4661{ 4662 /* 4663 * It's possible that cpuset's mems_allowed and the nodemask from 4664 * mempolicy don't intersect. This should be normally dealt with by 4665 * policy_nodemask(), but it's possible to race with cpuset update in 4666 * such a way the check therein was true, and then it became false 4667 * before we got our cpuset_mems_cookie here. 4668 * This assumes that for all allocations, ac->nodemask can come only 4669 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4670 * when it does not intersect with the cpuset restrictions) or the 4671 * caller can deal with a violated nodemask. 4672 */ 4673 if (cpusets_enabled() && ac->nodemask && 4674 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4675 ac->nodemask = NULL; 4676 return true; 4677 } 4678 4679 /* 4680 * When updating a task's mems_allowed or mempolicy nodemask, it is 4681 * possible to race with parallel threads in such a way that our 4682 * allocation can fail while the mask is being updated. If we are about 4683 * to fail, check if the cpuset changed during allocation and if so, 4684 * retry. 4685 */ 4686 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4687 return true; 4688 4689 return false; 4690} 4691 4692static inline struct page * 4693__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4694 struct alloc_context *ac) 4695{ 4696 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4697 bool can_compact = gfp_compaction_allowed(gfp_mask); 4698 bool nofail = gfp_mask & __GFP_NOFAIL; 4699 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4700 struct page *page = NULL; 4701 unsigned int alloc_flags; 4702 unsigned long did_some_progress; 4703 enum compact_priority compact_priority; 4704 enum compact_result compact_result; 4705 int compaction_retries; 4706 int no_progress_loops; 4707 unsigned int cpuset_mems_cookie; 4708 unsigned int zonelist_iter_cookie; 4709 int reserve_flags; 4710 4711 if (unlikely(nofail)) { 4712 /* 4713 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4714 * otherwise, we may result in lockup. 4715 */ 4716 WARN_ON_ONCE(!can_direct_reclaim); 4717 /* 4718 * PF_MEMALLOC request from this context is rather bizarre 4719 * because we cannot reclaim anything and only can loop waiting 4720 * for somebody to do a work for us. 4721 */ 4722 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4723 } 4724 4725restart: 4726 compaction_retries = 0; 4727 no_progress_loops = 0; 4728 compact_result = COMPACT_SKIPPED; 4729 compact_priority = DEF_COMPACT_PRIORITY; 4730 cpuset_mems_cookie = read_mems_allowed_begin(); 4731 zonelist_iter_cookie = zonelist_iter_begin(); 4732 4733 /* 4734 * The fast path uses conservative alloc_flags to succeed only until 4735 * kswapd needs to be woken up, and to avoid the cost of setting up 4736 * alloc_flags precisely. So we do that now. 4737 */ 4738 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4739 4740 /* 4741 * We need to recalculate the starting point for the zonelist iterator 4742 * because we might have used different nodemask in the fast path, or 4743 * there was a cpuset modification and we are retrying - otherwise we 4744 * could end up iterating over non-eligible zones endlessly. 4745 */ 4746 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4747 ac->highest_zoneidx, ac->nodemask); 4748 if (!zonelist_zone(ac->preferred_zoneref)) 4749 goto nopage; 4750 4751 /* 4752 * Check for insane configurations where the cpuset doesn't contain 4753 * any suitable zone to satisfy the request - e.g. non-movable 4754 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4755 */ 4756 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4757 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4758 ac->highest_zoneidx, 4759 &cpuset_current_mems_allowed); 4760 if (!zonelist_zone(z)) 4761 goto nopage; 4762 } 4763 4764 if (alloc_flags & ALLOC_KSWAPD) 4765 wake_all_kswapds(order, gfp_mask, ac); 4766 4767 /* 4768 * The adjusted alloc_flags might result in immediate success, so try 4769 * that first 4770 */ 4771 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4772 if (page) 4773 goto got_pg; 4774 4775 /* 4776 * For costly allocations, try direct compaction first, as it's likely 4777 * that we have enough base pages and don't need to reclaim. For non- 4778 * movable high-order allocations, do that as well, as compaction will 4779 * try prevent permanent fragmentation by migrating from blocks of the 4780 * same migratetype. 4781 * Don't try this for allocations that are allowed to ignore 4782 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4783 */ 4784 if (can_direct_reclaim && can_compact && 4785 (costly_order || 4786 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4787 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4788 page = __alloc_pages_direct_compact(gfp_mask, order, 4789 alloc_flags, ac, 4790 INIT_COMPACT_PRIORITY, 4791 &compact_result); 4792 if (page) 4793 goto got_pg; 4794 4795 /* 4796 * Checks for costly allocations with __GFP_NORETRY, which 4797 * includes some THP page fault allocations 4798 */ 4799 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4800 /* 4801 * If allocating entire pageblock(s) and compaction 4802 * failed because all zones are below low watermarks 4803 * or is prohibited because it recently failed at this 4804 * order, fail immediately unless the allocator has 4805 * requested compaction and reclaim retry. 4806 * 4807 * Reclaim is 4808 * - potentially very expensive because zones are far 4809 * below their low watermarks or this is part of very 4810 * bursty high order allocations, 4811 * - not guaranteed to help because isolate_freepages() 4812 * may not iterate over freed pages as part of its 4813 * linear scan, and 4814 * - unlikely to make entire pageblocks free on its 4815 * own. 4816 */ 4817 if (compact_result == COMPACT_SKIPPED || 4818 compact_result == COMPACT_DEFERRED) 4819 goto nopage; 4820 4821 /* 4822 * Looks like reclaim/compaction is worth trying, but 4823 * sync compaction could be very expensive, so keep 4824 * using async compaction. 4825 */ 4826 compact_priority = INIT_COMPACT_PRIORITY; 4827 } 4828 } 4829 4830retry: 4831 /* 4832 * Deal with possible cpuset update races or zonelist updates to avoid 4833 * infinite retries. 4834 */ 4835 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4836 check_retry_zonelist(zonelist_iter_cookie)) 4837 goto restart; 4838 4839 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4840 if (alloc_flags & ALLOC_KSWAPD) 4841 wake_all_kswapds(order, gfp_mask, ac); 4842 4843 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4844 if (reserve_flags) 4845 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4846 (alloc_flags & ALLOC_KSWAPD); 4847 4848 /* 4849 * Reset the nodemask and zonelist iterators if memory policies can be 4850 * ignored. These allocations are high priority and system rather than 4851 * user oriented. 4852 */ 4853 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4854 ac->nodemask = NULL; 4855 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4856 ac->highest_zoneidx, ac->nodemask); 4857 } 4858 4859 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4860 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4861 if (page) 4862 goto got_pg; 4863 4864 /* Caller is not willing to reclaim, we can't balance anything */ 4865 if (!can_direct_reclaim) 4866 goto nopage; 4867 4868 /* Avoid recursion of direct reclaim */ 4869 if (current->flags & PF_MEMALLOC) 4870 goto nopage; 4871 4872 /* Try direct reclaim and then allocating */ 4873 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4874 &did_some_progress); 4875 if (page) 4876 goto got_pg; 4877 4878 /* Try direct compaction and then allocating */ 4879 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4880 compact_priority, &compact_result); 4881 if (page) 4882 goto got_pg; 4883 4884 /* Do not loop if specifically requested */ 4885 if (gfp_mask & __GFP_NORETRY) 4886 goto nopage; 4887 4888 /* 4889 * Do not retry costly high order allocations unless they are 4890 * __GFP_RETRY_MAYFAIL and we can compact 4891 */ 4892 if (costly_order && (!can_compact || 4893 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4894 goto nopage; 4895 4896 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4897 did_some_progress > 0, &no_progress_loops)) 4898 goto retry; 4899 4900 /* 4901 * It doesn't make any sense to retry for the compaction if the order-0 4902 * reclaim is not able to make any progress because the current 4903 * implementation of the compaction depends on the sufficient amount 4904 * of free memory (see __compaction_suitable) 4905 */ 4906 if (did_some_progress > 0 && can_compact && 4907 should_compact_retry(ac, order, alloc_flags, 4908 compact_result, &compact_priority, 4909 &compaction_retries)) 4910 goto retry; 4911 4912 /* Reclaim/compaction failed to prevent the fallback */ 4913 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4914 alloc_flags &= ~ALLOC_NOFRAGMENT; 4915 goto retry; 4916 } 4917 4918 /* 4919 * Deal with possible cpuset update races or zonelist updates to avoid 4920 * a unnecessary OOM kill. 4921 */ 4922 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4923 check_retry_zonelist(zonelist_iter_cookie)) 4924 goto restart; 4925 4926 /* Reclaim has failed us, start killing things */ 4927 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4928 if (page) 4929 goto got_pg; 4930 4931 /* Avoid allocations with no watermarks from looping endlessly */ 4932 if (tsk_is_oom_victim(current) && 4933 (alloc_flags & ALLOC_OOM || 4934 (gfp_mask & __GFP_NOMEMALLOC))) 4935 goto nopage; 4936 4937 /* Retry as long as the OOM killer is making progress */ 4938 if (did_some_progress) { 4939 no_progress_loops = 0; 4940 goto retry; 4941 } 4942 4943nopage: 4944 /* 4945 * Deal with possible cpuset update races or zonelist updates to avoid 4946 * a unnecessary OOM kill. 4947 */ 4948 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4949 check_retry_zonelist(zonelist_iter_cookie)) 4950 goto restart; 4951 4952 /* 4953 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4954 * we always retry 4955 */ 4956 if (unlikely(nofail)) { 4957 /* 4958 * Lacking direct_reclaim we can't do anything to reclaim memory, 4959 * we disregard these unreasonable nofail requests and still 4960 * return NULL 4961 */ 4962 if (!can_direct_reclaim) 4963 goto fail; 4964 4965 /* 4966 * Help non-failing allocations by giving some access to memory 4967 * reserves normally used for high priority non-blocking 4968 * allocations but do not use ALLOC_NO_WATERMARKS because this 4969 * could deplete whole memory reserves which would just make 4970 * the situation worse. 4971 */ 4972 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4973 if (page) 4974 goto got_pg; 4975 4976 cond_resched(); 4977 goto retry; 4978 } 4979fail: 4980 warn_alloc(gfp_mask, ac->nodemask, 4981 "page allocation failure: order:%u", order); 4982got_pg: 4983 return page; 4984} 4985 4986static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4987 int preferred_nid, nodemask_t *nodemask, 4988 struct alloc_context *ac, gfp_t *alloc_gfp, 4989 unsigned int *alloc_flags) 4990{ 4991 ac->highest_zoneidx = gfp_zone(gfp_mask); 4992 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4993 ac->nodemask = nodemask; 4994 ac->migratetype = gfp_migratetype(gfp_mask); 4995 4996 if (cpusets_enabled()) { 4997 *alloc_gfp |= __GFP_HARDWALL; 4998 /* 4999 * When we are in the interrupt context, it is irrelevant 5000 * to the current task context. It means that any node ok. 5001 */ 5002 if (in_task() && !ac->nodemask) 5003 ac->nodemask = &cpuset_current_mems_allowed; 5004 else 5005 *alloc_flags |= ALLOC_CPUSET; 5006 } 5007 5008 might_alloc(gfp_mask); 5009 5010 /* 5011 * Don't invoke should_fail logic, since it may call 5012 * get_random_u32() and printk() which need to spin_lock. 5013 */ 5014 if (!(*alloc_flags & ALLOC_TRYLOCK) && 5015 should_fail_alloc_page(gfp_mask, order)) 5016 return false; 5017 5018 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5019 5020 /* Dirty zone balancing only done in the fast path */ 5021 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5022 5023 /* 5024 * The preferred zone is used for statistics but crucially it is 5025 * also used as the starting point for the zonelist iterator. It 5026 * may get reset for allocations that ignore memory policies. 5027 */ 5028 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5029 ac->highest_zoneidx, ac->nodemask); 5030 5031 return true; 5032} 5033 5034/* 5035 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 5036 * @gfp: GFP flags for the allocation 5037 * @preferred_nid: The preferred NUMA node ID to allocate from 5038 * @nodemask: Set of nodes to allocate from, may be NULL 5039 * @nr_pages: The number of pages desired in the array 5040 * @page_array: Array to store the pages 5041 * 5042 * This is a batched version of the page allocator that attempts to allocate 5043 * @nr_pages quickly. Pages are added to @page_array. 5044 * 5045 * Note that only the elements in @page_array that were cleared to %NULL on 5046 * entry are populated with newly allocated pages. @nr_pages is the maximum 5047 * number of pages that will be stored in the array. 5048 * 5049 * Returns the number of pages in @page_array, including ones already 5050 * allocated on entry. This can be less than the number requested in @nr_pages, 5051 * but all empty slots are filled from the beginning. I.e., if all slots in 5052 * @page_array were set to %NULL on entry, the slots from 0 to the return value 5053 * - 1 will be filled. 5054 */ 5055unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 5056 nodemask_t *nodemask, int nr_pages, 5057 struct page **page_array) 5058{ 5059 struct page *page; 5060 unsigned long UP_flags; 5061 struct zone *zone; 5062 struct zoneref *z; 5063 struct per_cpu_pages *pcp; 5064 struct list_head *pcp_list; 5065 struct alloc_context ac; 5066 gfp_t alloc_gfp; 5067 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5068 int nr_populated = 0, nr_account = 0; 5069 5070 /* 5071 * Skip populated array elements to determine if any pages need 5072 * to be allocated before disabling IRQs. 5073 */ 5074 while (nr_populated < nr_pages && page_array[nr_populated]) 5075 nr_populated++; 5076 5077 /* No pages requested? */ 5078 if (unlikely(nr_pages <= 0)) 5079 goto out; 5080 5081 /* Already populated array? */ 5082 if (unlikely(nr_pages - nr_populated == 0)) 5083 goto out; 5084 5085 /* Bulk allocator does not support memcg accounting. */ 5086 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5087 goto failed; 5088 5089 /* Use the single page allocator for one page. */ 5090 if (nr_pages - nr_populated == 1) 5091 goto failed; 5092 5093#ifdef CONFIG_PAGE_OWNER 5094 /* 5095 * PAGE_OWNER may recurse into the allocator to allocate space to 5096 * save the stack with pagesets.lock held. Releasing/reacquiring 5097 * removes much of the performance benefit of bulk allocation so 5098 * force the caller to allocate one page at a time as it'll have 5099 * similar performance to added complexity to the bulk allocator. 5100 */ 5101 if (static_branch_unlikely(&page_owner_inited)) 5102 goto failed; 5103#endif 5104 5105 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5106 gfp &= gfp_allowed_mask; 5107 alloc_gfp = gfp; 5108 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5109 goto out; 5110 gfp = alloc_gfp; 5111 5112 /* Find an allowed local zone that meets the low watermark. */ 5113 z = ac.preferred_zoneref; 5114 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5115 unsigned long mark; 5116 5117 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5118 !__cpuset_zone_allowed(zone, gfp)) { 5119 continue; 5120 } 5121 5122 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5123 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5124 goto failed; 5125 } 5126 5127 cond_accept_memory(zone, 0, alloc_flags); 5128retry_this_zone: 5129 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5130 if (zone_watermark_fast(zone, 0, mark, 5131 zonelist_zone_idx(ac.preferred_zoneref), 5132 alloc_flags, gfp)) { 5133 break; 5134 } 5135 5136 if (cond_accept_memory(zone, 0, alloc_flags)) 5137 goto retry_this_zone; 5138 5139 /* Try again if zone has deferred pages */ 5140 if (deferred_pages_enabled()) { 5141 if (_deferred_grow_zone(zone, 0)) 5142 goto retry_this_zone; 5143 } 5144 } 5145 5146 /* 5147 * If there are no allowed local zones that meets the watermarks then 5148 * try to allocate a single page and reclaim if necessary. 5149 */ 5150 if (unlikely(!zone)) 5151 goto failed; 5152 5153 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5154 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 5155 if (!pcp) 5156 goto failed; 5157 5158 /* Attempt the batch allocation */ 5159 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5160 while (nr_populated < nr_pages) { 5161 5162 /* Skip existing pages */ 5163 if (page_array[nr_populated]) { 5164 nr_populated++; 5165 continue; 5166 } 5167 5168 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5169 pcp, pcp_list); 5170 if (unlikely(!page)) { 5171 /* Try and allocate at least one page */ 5172 if (!nr_account) { 5173 pcp_spin_unlock(pcp, UP_flags); 5174 goto failed; 5175 } 5176 break; 5177 } 5178 nr_account++; 5179 5180 prep_new_page(page, 0, gfp, 0); 5181 set_page_refcounted(page); 5182 page_array[nr_populated++] = page; 5183 } 5184 5185 pcp_spin_unlock(pcp, UP_flags); 5186 5187 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5188 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5189 5190out: 5191 return nr_populated; 5192 5193failed: 5194 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5195 if (page) 5196 page_array[nr_populated++] = page; 5197 goto out; 5198} 5199EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5200 5201/* 5202 * This is the 'heart' of the zoned buddy allocator. 5203 */ 5204struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5205 int preferred_nid, nodemask_t *nodemask) 5206{ 5207 struct page *page; 5208 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5209 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5210 struct alloc_context ac = { }; 5211 5212 /* 5213 * There are several places where we assume that the order value is sane 5214 * so bail out early if the request is out of bound. 5215 */ 5216 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5217 return NULL; 5218 5219 gfp &= gfp_allowed_mask; 5220 /* 5221 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5222 * resp. GFP_NOIO which has to be inherited for all allocation requests 5223 * from a particular context which has been marked by 5224 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5225 * movable zones are not used during allocation. 5226 */ 5227 gfp = current_gfp_context(gfp); 5228 alloc_gfp = gfp; 5229 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5230 &alloc_gfp, &alloc_flags)) 5231 return NULL; 5232 5233 /* 5234 * Forbid the first pass from falling back to types that fragment 5235 * memory until all local zones are considered. 5236 */ 5237 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5238 5239 /* First allocation attempt */ 5240 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5241 if (likely(page)) 5242 goto out; 5243 5244 alloc_gfp = gfp; 5245 ac.spread_dirty_pages = false; 5246 5247 /* 5248 * Restore the original nodemask if it was potentially replaced with 5249 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5250 */ 5251 ac.nodemask = nodemask; 5252 5253 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5254 5255out: 5256 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5257 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5258 free_frozen_pages(page, order); 5259 page = NULL; 5260 } 5261 5262 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5263 kmsan_alloc_page(page, order, alloc_gfp); 5264 5265 return page; 5266} 5267EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5268 5269struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5270 int preferred_nid, nodemask_t *nodemask) 5271{ 5272 struct page *page; 5273 5274 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5275 if (page) 5276 set_page_refcounted(page); 5277 return page; 5278} 5279EXPORT_SYMBOL(__alloc_pages_noprof); 5280 5281struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5282 nodemask_t *nodemask) 5283{ 5284 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5285 preferred_nid, nodemask); 5286 return page_rmappable_folio(page); 5287} 5288EXPORT_SYMBOL(__folio_alloc_noprof); 5289 5290/* 5291 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5292 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5293 * you need to access high mem. 5294 */ 5295unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5296{ 5297 struct page *page; 5298 5299 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5300 if (!page) 5301 return 0; 5302 return (unsigned long) page_address(page); 5303} 5304EXPORT_SYMBOL(get_free_pages_noprof); 5305 5306unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5307{ 5308 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5309} 5310EXPORT_SYMBOL(get_zeroed_page_noprof); 5311 5312static void ___free_pages(struct page *page, unsigned int order, 5313 fpi_t fpi_flags) 5314{ 5315 /* get PageHead before we drop reference */ 5316 int head = PageHead(page); 5317 /* get alloc tag in case the page is released by others */ 5318 struct alloc_tag *tag = pgalloc_tag_get(page); 5319 5320 if (put_page_testzero(page)) 5321 __free_frozen_pages(page, order, fpi_flags); 5322 else if (!head) { 5323 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5324 while (order-- > 0) { 5325 /* 5326 * The "tail" pages of this non-compound high-order 5327 * page will have no code tags, so to avoid warnings 5328 * mark them as empty. 5329 */ 5330 clear_page_tag_ref(page + (1 << order)); 5331 __free_frozen_pages(page + (1 << order), order, 5332 fpi_flags); 5333 } 5334 } 5335} 5336 5337/** 5338 * __free_pages - Free pages allocated with alloc_pages(). 5339 * @page: The page pointer returned from alloc_pages(). 5340 * @order: The order of the allocation. 5341 * 5342 * This function can free multi-page allocations that are not compound 5343 * pages. It does not check that the @order passed in matches that of 5344 * the allocation, so it is easy to leak memory. Freeing more memory 5345 * than was allocated will probably emit a warning. 5346 * 5347 * If the last reference to this page is speculative, it will be released 5348 * by put_page() which only frees the first page of a non-compound 5349 * allocation. To prevent the remaining pages from being leaked, we free 5350 * the subsequent pages here. If you want to use the page's reference 5351 * count to decide when to free the allocation, you should allocate a 5352 * compound page, and use put_page() instead of __free_pages(). 5353 * 5354 * Context: May be called in interrupt context or while holding a normal 5355 * spinlock, but not in NMI context or while holding a raw spinlock. 5356 */ 5357void __free_pages(struct page *page, unsigned int order) 5358{ 5359 ___free_pages(page, order, FPI_NONE); 5360} 5361EXPORT_SYMBOL(__free_pages); 5362 5363/* 5364 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5365 * page type (not only those that came from alloc_pages_nolock) 5366 */ 5367void free_pages_nolock(struct page *page, unsigned int order) 5368{ 5369 ___free_pages(page, order, FPI_TRYLOCK); 5370} 5371 5372/** 5373 * free_pages - Free pages allocated with __get_free_pages(). 5374 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5375 * @order: The order of the allocation. 5376 * 5377 * This function behaves the same as __free_pages(). Use this function 5378 * to free pages when you only have a valid virtual address. If you have 5379 * the page, call __free_pages() instead. 5380 */ 5381void free_pages(unsigned long addr, unsigned int order) 5382{ 5383 if (addr != 0) { 5384 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5385 __free_pages(virt_to_page((void *)addr), order); 5386 } 5387} 5388 5389EXPORT_SYMBOL(free_pages); 5390 5391static void *make_alloc_exact(unsigned long addr, unsigned int order, 5392 size_t size) 5393{ 5394 if (addr) { 5395 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5396 struct page *page = virt_to_page((void *)addr); 5397 struct page *last = page + nr; 5398 5399 split_page_owner(page, order, 0); 5400 pgalloc_tag_split(page_folio(page), order, 0); 5401 split_page_memcg(page, order); 5402 while (page < --last) 5403 set_page_refcounted(last); 5404 5405 last = page + (1UL << order); 5406 for (page += nr; page < last; page++) 5407 __free_pages_ok(page, 0, FPI_TO_TAIL); 5408 } 5409 return (void *)addr; 5410} 5411 5412/** 5413 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5414 * @size: the number of bytes to allocate 5415 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5416 * 5417 * This function is similar to alloc_pages(), except that it allocates the 5418 * minimum number of pages to satisfy the request. alloc_pages() can only 5419 * allocate memory in power-of-two pages. 5420 * 5421 * This function is also limited by MAX_PAGE_ORDER. 5422 * 5423 * Memory allocated by this function must be released by free_pages_exact(). 5424 * 5425 * Return: pointer to the allocated area or %NULL in case of error. 5426 */ 5427void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5428{ 5429 unsigned int order = get_order(size); 5430 unsigned long addr; 5431 5432 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5433 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5434 5435 addr = get_free_pages_noprof(gfp_mask, order); 5436 return make_alloc_exact(addr, order, size); 5437} 5438EXPORT_SYMBOL(alloc_pages_exact_noprof); 5439 5440/** 5441 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5442 * pages on a node. 5443 * @nid: the preferred node ID where memory should be allocated 5444 * @size: the number of bytes to allocate 5445 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5446 * 5447 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5448 * back. 5449 * 5450 * Return: pointer to the allocated area or %NULL in case of error. 5451 */ 5452void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5453{ 5454 unsigned int order = get_order(size); 5455 struct page *p; 5456 5457 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5458 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5459 5460 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5461 if (!p) 5462 return NULL; 5463 return make_alloc_exact((unsigned long)page_address(p), order, size); 5464} 5465 5466/** 5467 * free_pages_exact - release memory allocated via alloc_pages_exact() 5468 * @virt: the value returned by alloc_pages_exact. 5469 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5470 * 5471 * Release the memory allocated by a previous call to alloc_pages_exact. 5472 */ 5473void free_pages_exact(void *virt, size_t size) 5474{ 5475 unsigned long addr = (unsigned long)virt; 5476 unsigned long end = addr + PAGE_ALIGN(size); 5477 5478 while (addr < end) { 5479 free_page(addr); 5480 addr += PAGE_SIZE; 5481 } 5482} 5483EXPORT_SYMBOL(free_pages_exact); 5484 5485/** 5486 * nr_free_zone_pages - count number of pages beyond high watermark 5487 * @offset: The zone index of the highest zone 5488 * 5489 * nr_free_zone_pages() counts the number of pages which are beyond the 5490 * high watermark within all zones at or below a given zone index. For each 5491 * zone, the number of pages is calculated as: 5492 * 5493 * nr_free_zone_pages = managed_pages - high_pages 5494 * 5495 * Return: number of pages beyond high watermark. 5496 */ 5497static unsigned long nr_free_zone_pages(int offset) 5498{ 5499 struct zoneref *z; 5500 struct zone *zone; 5501 5502 /* Just pick one node, since fallback list is circular */ 5503 unsigned long sum = 0; 5504 5505 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5506 5507 for_each_zone_zonelist(zone, z, zonelist, offset) { 5508 unsigned long size = zone_managed_pages(zone); 5509 unsigned long high = high_wmark_pages(zone); 5510 if (size > high) 5511 sum += size - high; 5512 } 5513 5514 return sum; 5515} 5516 5517/** 5518 * nr_free_buffer_pages - count number of pages beyond high watermark 5519 * 5520 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5521 * watermark within ZONE_DMA and ZONE_NORMAL. 5522 * 5523 * Return: number of pages beyond high watermark within ZONE_DMA and 5524 * ZONE_NORMAL. 5525 */ 5526unsigned long nr_free_buffer_pages(void) 5527{ 5528 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5529} 5530EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5531 5532static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5533{ 5534 zoneref->zone = zone; 5535 zoneref->zone_idx = zone_idx(zone); 5536} 5537 5538/* 5539 * Builds allocation fallback zone lists. 5540 * 5541 * Add all populated zones of a node to the zonelist. 5542 */ 5543static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5544{ 5545 struct zone *zone; 5546 enum zone_type zone_type = MAX_NR_ZONES; 5547 int nr_zones = 0; 5548 5549 do { 5550 zone_type--; 5551 zone = pgdat->node_zones + zone_type; 5552 if (populated_zone(zone)) { 5553 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5554 check_highest_zone(zone_type); 5555 } 5556 } while (zone_type); 5557 5558 return nr_zones; 5559} 5560 5561#ifdef CONFIG_NUMA 5562 5563static int __parse_numa_zonelist_order(char *s) 5564{ 5565 /* 5566 * We used to support different zonelists modes but they turned 5567 * out to be just not useful. Let's keep the warning in place 5568 * if somebody still use the cmd line parameter so that we do 5569 * not fail it silently 5570 */ 5571 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5572 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5573 return -EINVAL; 5574 } 5575 return 0; 5576} 5577 5578static char numa_zonelist_order[] = "Node"; 5579#define NUMA_ZONELIST_ORDER_LEN 16 5580/* 5581 * sysctl handler for numa_zonelist_order 5582 */ 5583static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5584 void *buffer, size_t *length, loff_t *ppos) 5585{ 5586 if (write) 5587 return __parse_numa_zonelist_order(buffer); 5588 return proc_dostring(table, write, buffer, length, ppos); 5589} 5590 5591static int node_load[MAX_NUMNODES]; 5592 5593/** 5594 * find_next_best_node - find the next node that should appear in a given node's fallback list 5595 * @node: node whose fallback list we're appending 5596 * @used_node_mask: nodemask_t of already used nodes 5597 * 5598 * We use a number of factors to determine which is the next node that should 5599 * appear on a given node's fallback list. The node should not have appeared 5600 * already in @node's fallback list, and it should be the next closest node 5601 * according to the distance array (which contains arbitrary distance values 5602 * from each node to each node in the system), and should also prefer nodes 5603 * with no CPUs, since presumably they'll have very little allocation pressure 5604 * on them otherwise. 5605 * 5606 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5607 */ 5608int find_next_best_node(int node, nodemask_t *used_node_mask) 5609{ 5610 int n, val; 5611 int min_val = INT_MAX; 5612 int best_node = NUMA_NO_NODE; 5613 5614 /* 5615 * Use the local node if we haven't already, but for memoryless local 5616 * node, we should skip it and fall back to other nodes. 5617 */ 5618 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5619 node_set(node, *used_node_mask); 5620 return node; 5621 } 5622 5623 for_each_node_state(n, N_MEMORY) { 5624 5625 /* Don't want a node to appear more than once */ 5626 if (node_isset(n, *used_node_mask)) 5627 continue; 5628 5629 /* Use the distance array to find the distance */ 5630 val = node_distance(node, n); 5631 5632 /* Penalize nodes under us ("prefer the next node") */ 5633 val += (n < node); 5634 5635 /* Give preference to headless and unused nodes */ 5636 if (!cpumask_empty(cpumask_of_node(n))) 5637 val += PENALTY_FOR_NODE_WITH_CPUS; 5638 5639 /* Slight preference for less loaded node */ 5640 val *= MAX_NUMNODES; 5641 val += node_load[n]; 5642 5643 if (val < min_val) { 5644 min_val = val; 5645 best_node = n; 5646 } 5647 } 5648 5649 if (best_node >= 0) 5650 node_set(best_node, *used_node_mask); 5651 5652 return best_node; 5653} 5654 5655 5656/* 5657 * Build zonelists ordered by node and zones within node. 5658 * This results in maximum locality--normal zone overflows into local 5659 * DMA zone, if any--but risks exhausting DMA zone. 5660 */ 5661static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5662 unsigned nr_nodes) 5663{ 5664 struct zoneref *zonerefs; 5665 int i; 5666 5667 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5668 5669 for (i = 0; i < nr_nodes; i++) { 5670 int nr_zones; 5671 5672 pg_data_t *node = NODE_DATA(node_order[i]); 5673 5674 nr_zones = build_zonerefs_node(node, zonerefs); 5675 zonerefs += nr_zones; 5676 } 5677 zonerefs->zone = NULL; 5678 zonerefs->zone_idx = 0; 5679} 5680 5681/* 5682 * Build __GFP_THISNODE zonelists 5683 */ 5684static void build_thisnode_zonelists(pg_data_t *pgdat) 5685{ 5686 struct zoneref *zonerefs; 5687 int nr_zones; 5688 5689 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5690 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5691 zonerefs += nr_zones; 5692 zonerefs->zone = NULL; 5693 zonerefs->zone_idx = 0; 5694} 5695 5696static void build_zonelists(pg_data_t *pgdat) 5697{ 5698 static int node_order[MAX_NUMNODES]; 5699 int node, nr_nodes = 0; 5700 nodemask_t used_mask = NODE_MASK_NONE; 5701 int local_node, prev_node; 5702 5703 /* NUMA-aware ordering of nodes */ 5704 local_node = pgdat->node_id; 5705 prev_node = local_node; 5706 5707 memset(node_order, 0, sizeof(node_order)); 5708 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5709 /* 5710 * We don't want to pressure a particular node. 5711 * So adding penalty to the first node in same 5712 * distance group to make it round-robin. 5713 */ 5714 if (node_distance(local_node, node) != 5715 node_distance(local_node, prev_node)) 5716 node_load[node] += 1; 5717 5718 node_order[nr_nodes++] = node; 5719 prev_node = node; 5720 } 5721 5722 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5723 build_thisnode_zonelists(pgdat); 5724 pr_info("Fallback order for Node %d: ", local_node); 5725 for (node = 0; node < nr_nodes; node++) 5726 pr_cont("%d ", node_order[node]); 5727 pr_cont("\n"); 5728} 5729 5730#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5731/* 5732 * Return node id of node used for "local" allocations. 5733 * I.e., first node id of first zone in arg node's generic zonelist. 5734 * Used for initializing percpu 'numa_mem', which is used primarily 5735 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5736 */ 5737int local_memory_node(int node) 5738{ 5739 struct zoneref *z; 5740 5741 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5742 gfp_zone(GFP_KERNEL), 5743 NULL); 5744 return zonelist_node_idx(z); 5745} 5746#endif 5747 5748static void setup_min_unmapped_ratio(void); 5749static void setup_min_slab_ratio(void); 5750#else /* CONFIG_NUMA */ 5751 5752static void build_zonelists(pg_data_t *pgdat) 5753{ 5754 struct zoneref *zonerefs; 5755 int nr_zones; 5756 5757 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5758 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5759 zonerefs += nr_zones; 5760 5761 zonerefs->zone = NULL; 5762 zonerefs->zone_idx = 0; 5763} 5764 5765#endif /* CONFIG_NUMA */ 5766 5767/* 5768 * Boot pageset table. One per cpu which is going to be used for all 5769 * zones and all nodes. The parameters will be set in such a way 5770 * that an item put on a list will immediately be handed over to 5771 * the buddy list. This is safe since pageset manipulation is done 5772 * with interrupts disabled. 5773 * 5774 * The boot_pagesets must be kept even after bootup is complete for 5775 * unused processors and/or zones. They do play a role for bootstrapping 5776 * hotplugged processors. 5777 * 5778 * zoneinfo_show() and maybe other functions do 5779 * not check if the processor is online before following the pageset pointer. 5780 * Other parts of the kernel may not check if the zone is available. 5781 */ 5782static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5783/* These effectively disable the pcplists in the boot pageset completely */ 5784#define BOOT_PAGESET_HIGH 0 5785#define BOOT_PAGESET_BATCH 1 5786static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5787static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5788 5789static void __build_all_zonelists(void *data) 5790{ 5791 int nid; 5792 int __maybe_unused cpu; 5793 pg_data_t *self = data; 5794 unsigned long flags; 5795 5796 /* 5797 * The zonelist_update_seq must be acquired with irqsave because the 5798 * reader can be invoked from IRQ with GFP_ATOMIC. 5799 */ 5800 write_seqlock_irqsave(&zonelist_update_seq, flags); 5801 /* 5802 * Also disable synchronous printk() to prevent any printk() from 5803 * trying to hold port->lock, for 5804 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5805 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5806 */ 5807 printk_deferred_enter(); 5808 5809#ifdef CONFIG_NUMA 5810 memset(node_load, 0, sizeof(node_load)); 5811#endif 5812 5813 /* 5814 * This node is hotadded and no memory is yet present. So just 5815 * building zonelists is fine - no need to touch other nodes. 5816 */ 5817 if (self && !node_online(self->node_id)) { 5818 build_zonelists(self); 5819 } else { 5820 /* 5821 * All possible nodes have pgdat preallocated 5822 * in free_area_init 5823 */ 5824 for_each_node(nid) { 5825 pg_data_t *pgdat = NODE_DATA(nid); 5826 5827 build_zonelists(pgdat); 5828 } 5829 5830#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5831 /* 5832 * We now know the "local memory node" for each node-- 5833 * i.e., the node of the first zone in the generic zonelist. 5834 * Set up numa_mem percpu variable for on-line cpus. During 5835 * boot, only the boot cpu should be on-line; we'll init the 5836 * secondary cpus' numa_mem as they come on-line. During 5837 * node/memory hotplug, we'll fixup all on-line cpus. 5838 */ 5839 for_each_online_cpu(cpu) 5840 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5841#endif 5842 } 5843 5844 printk_deferred_exit(); 5845 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5846} 5847 5848static noinline void __init 5849build_all_zonelists_init(void) 5850{ 5851 int cpu; 5852 5853 __build_all_zonelists(NULL); 5854 5855 /* 5856 * Initialize the boot_pagesets that are going to be used 5857 * for bootstrapping processors. The real pagesets for 5858 * each zone will be allocated later when the per cpu 5859 * allocator is available. 5860 * 5861 * boot_pagesets are used also for bootstrapping offline 5862 * cpus if the system is already booted because the pagesets 5863 * are needed to initialize allocators on a specific cpu too. 5864 * F.e. the percpu allocator needs the page allocator which 5865 * needs the percpu allocator in order to allocate its pagesets 5866 * (a chicken-egg dilemma). 5867 */ 5868 for_each_possible_cpu(cpu) 5869 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5870 5871 mminit_verify_zonelist(); 5872 cpuset_init_current_mems_allowed(); 5873} 5874 5875/* 5876 * unless system_state == SYSTEM_BOOTING. 5877 * 5878 * __ref due to call of __init annotated helper build_all_zonelists_init 5879 * [protected by SYSTEM_BOOTING]. 5880 */ 5881void __ref build_all_zonelists(pg_data_t *pgdat) 5882{ 5883 unsigned long vm_total_pages; 5884 5885 if (system_state == SYSTEM_BOOTING) { 5886 build_all_zonelists_init(); 5887 } else { 5888 __build_all_zonelists(pgdat); 5889 /* cpuset refresh routine should be here */ 5890 } 5891 /* Get the number of free pages beyond high watermark in all zones. */ 5892 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5893 /* 5894 * Disable grouping by mobility if the number of pages in the 5895 * system is too low to allow the mechanism to work. It would be 5896 * more accurate, but expensive to check per-zone. This check is 5897 * made on memory-hotadd so a system can start with mobility 5898 * disabled and enable it later 5899 */ 5900 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5901 page_group_by_mobility_disabled = 1; 5902 else 5903 page_group_by_mobility_disabled = 0; 5904 5905 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5906 nr_online_nodes, 5907 str_off_on(page_group_by_mobility_disabled), 5908 vm_total_pages); 5909#ifdef CONFIG_NUMA 5910 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5911#endif 5912} 5913 5914static int zone_batchsize(struct zone *zone) 5915{ 5916#ifdef CONFIG_MMU 5917 int batch; 5918 5919 /* 5920 * The number of pages to batch allocate is either ~0.025% 5921 * of the zone or 256KB, whichever is smaller. The batch 5922 * size is striking a balance between allocation latency 5923 * and zone lock contention. 5924 */ 5925 batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE); 5926 if (batch <= 1) 5927 return 1; 5928 5929 /* 5930 * Clamp the batch to a 2^n - 1 value. Having a power 5931 * of 2 value was found to be more likely to have 5932 * suboptimal cache aliasing properties in some cases. 5933 * 5934 * For example if 2 tasks are alternately allocating 5935 * batches of pages, one task can end up with a lot 5936 * of pages of one half of the possible page colors 5937 * and the other with pages of the other colors. 5938 */ 5939 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5940 5941 return batch; 5942 5943#else 5944 /* The deferral and batching of frees should be suppressed under NOMMU 5945 * conditions. 5946 * 5947 * The problem is that NOMMU needs to be able to allocate large chunks 5948 * of contiguous memory as there's no hardware page translation to 5949 * assemble apparent contiguous memory from discontiguous pages. 5950 * 5951 * Queueing large contiguous runs of pages for batching, however, 5952 * causes the pages to actually be freed in smaller chunks. As there 5953 * can be a significant delay between the individual batches being 5954 * recycled, this leads to the once large chunks of space being 5955 * fragmented and becoming unavailable for high-order allocations. 5956 */ 5957 return 1; 5958#endif 5959} 5960 5961static int percpu_pagelist_high_fraction; 5962static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5963 int high_fraction) 5964{ 5965#ifdef CONFIG_MMU 5966 int high; 5967 int nr_split_cpus; 5968 unsigned long total_pages; 5969 5970 if (!high_fraction) { 5971 /* 5972 * By default, the high value of the pcp is based on the zone 5973 * low watermark so that if they are full then background 5974 * reclaim will not be started prematurely. 5975 */ 5976 total_pages = low_wmark_pages(zone); 5977 } else { 5978 /* 5979 * If percpu_pagelist_high_fraction is configured, the high 5980 * value is based on a fraction of the managed pages in the 5981 * zone. 5982 */ 5983 total_pages = zone_managed_pages(zone) / high_fraction; 5984 } 5985 5986 /* 5987 * Split the high value across all online CPUs local to the zone. Note 5988 * that early in boot that CPUs may not be online yet and that during 5989 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5990 * onlined. For memory nodes that have no CPUs, split the high value 5991 * across all online CPUs to mitigate the risk that reclaim is triggered 5992 * prematurely due to pages stored on pcp lists. 5993 */ 5994 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5995 if (!nr_split_cpus) 5996 nr_split_cpus = num_online_cpus(); 5997 high = total_pages / nr_split_cpus; 5998 5999 /* 6000 * Ensure high is at least batch*4. The multiple is based on the 6001 * historical relationship between high and batch. 6002 */ 6003 high = max(high, batch << 2); 6004 6005 return high; 6006#else 6007 return 0; 6008#endif 6009} 6010 6011/* 6012 * pcp->high and pcp->batch values are related and generally batch is lower 6013 * than high. They are also related to pcp->count such that count is lower 6014 * than high, and as soon as it reaches high, the pcplist is flushed. 6015 * 6016 * However, guaranteeing these relations at all times would require e.g. write 6017 * barriers here but also careful usage of read barriers at the read side, and 6018 * thus be prone to error and bad for performance. Thus the update only prevents 6019 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 6020 * should ensure they can cope with those fields changing asynchronously, and 6021 * fully trust only the pcp->count field on the local CPU with interrupts 6022 * disabled. 6023 * 6024 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6025 * outside of boot time (or some other assurance that no concurrent updaters 6026 * exist). 6027 */ 6028static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 6029 unsigned long high_max, unsigned long batch) 6030{ 6031 WRITE_ONCE(pcp->batch, batch); 6032 WRITE_ONCE(pcp->high_min, high_min); 6033 WRITE_ONCE(pcp->high_max, high_max); 6034} 6035 6036static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6037{ 6038 int pindex; 6039 6040 memset(pcp, 0, sizeof(*pcp)); 6041 memset(pzstats, 0, sizeof(*pzstats)); 6042 6043 spin_lock_init(&pcp->lock); 6044 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6045 INIT_LIST_HEAD(&pcp->lists[pindex]); 6046 6047 /* 6048 * Set batch and high values safe for a boot pageset. A true percpu 6049 * pageset's initialization will update them subsequently. Here we don't 6050 * need to be as careful as pageset_update() as nobody can access the 6051 * pageset yet. 6052 */ 6053 pcp->high_min = BOOT_PAGESET_HIGH; 6054 pcp->high_max = BOOT_PAGESET_HIGH; 6055 pcp->batch = BOOT_PAGESET_BATCH; 6056} 6057 6058static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 6059 unsigned long high_max, unsigned long batch) 6060{ 6061 struct per_cpu_pages *pcp; 6062 int cpu; 6063 6064 for_each_possible_cpu(cpu) { 6065 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6066 pageset_update(pcp, high_min, high_max, batch); 6067 } 6068} 6069 6070/* 6071 * Calculate and set new high and batch values for all per-cpu pagesets of a 6072 * zone based on the zone's size. 6073 */ 6074static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6075{ 6076 int new_high_min, new_high_max, new_batch; 6077 6078 new_batch = zone_batchsize(zone); 6079 if (percpu_pagelist_high_fraction) { 6080 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6081 percpu_pagelist_high_fraction); 6082 /* 6083 * PCP high is tuned manually, disable auto-tuning via 6084 * setting high_min and high_max to the manual value. 6085 */ 6086 new_high_max = new_high_min; 6087 } else { 6088 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6089 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6090 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6091 } 6092 6093 if (zone->pageset_high_min == new_high_min && 6094 zone->pageset_high_max == new_high_max && 6095 zone->pageset_batch == new_batch) 6096 return; 6097 6098 zone->pageset_high_min = new_high_min; 6099 zone->pageset_high_max = new_high_max; 6100 zone->pageset_batch = new_batch; 6101 6102 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6103 new_batch); 6104} 6105 6106void __meminit setup_zone_pageset(struct zone *zone) 6107{ 6108 int cpu; 6109 6110 /* Size may be 0 on !SMP && !NUMA */ 6111 if (sizeof(struct per_cpu_zonestat) > 0) 6112 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6113 6114 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6115 for_each_possible_cpu(cpu) { 6116 struct per_cpu_pages *pcp; 6117 struct per_cpu_zonestat *pzstats; 6118 6119 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6120 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6121 per_cpu_pages_init(pcp, pzstats); 6122 } 6123 6124 zone_set_pageset_high_and_batch(zone, 0); 6125} 6126 6127/* 6128 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6129 * page high values need to be recalculated. 6130 */ 6131static void zone_pcp_update(struct zone *zone, int cpu_online) 6132{ 6133 mutex_lock(&pcp_batch_high_lock); 6134 zone_set_pageset_high_and_batch(zone, cpu_online); 6135 mutex_unlock(&pcp_batch_high_lock); 6136} 6137 6138static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6139{ 6140 struct per_cpu_pages *pcp; 6141 struct cpu_cacheinfo *cci; 6142 unsigned long UP_flags; 6143 6144 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6145 cci = get_cpu_cacheinfo(cpu); 6146 /* 6147 * If data cache slice of CPU is large enough, "pcp->batch" 6148 * pages can be preserved in PCP before draining PCP for 6149 * consecutive high-order pages freeing without allocation. 6150 * This can reduce zone lock contention without hurting 6151 * cache-hot pages sharing. 6152 */ 6153 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 6154 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6155 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6156 else 6157 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6158 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 6159} 6160 6161void setup_pcp_cacheinfo(unsigned int cpu) 6162{ 6163 struct zone *zone; 6164 6165 for_each_populated_zone(zone) 6166 zone_pcp_update_cacheinfo(zone, cpu); 6167} 6168 6169/* 6170 * Allocate per cpu pagesets and initialize them. 6171 * Before this call only boot pagesets were available. 6172 */ 6173void __init setup_per_cpu_pageset(void) 6174{ 6175 struct pglist_data *pgdat; 6176 struct zone *zone; 6177 int __maybe_unused cpu; 6178 6179 for_each_populated_zone(zone) 6180 setup_zone_pageset(zone); 6181 6182#ifdef CONFIG_NUMA 6183 /* 6184 * Unpopulated zones continue using the boot pagesets. 6185 * The numa stats for these pagesets need to be reset. 6186 * Otherwise, they will end up skewing the stats of 6187 * the nodes these zones are associated with. 6188 */ 6189 for_each_possible_cpu(cpu) { 6190 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6191 memset(pzstats->vm_numa_event, 0, 6192 sizeof(pzstats->vm_numa_event)); 6193 } 6194#endif 6195 6196 for_each_online_pgdat(pgdat) 6197 pgdat->per_cpu_nodestats = 6198 alloc_percpu(struct per_cpu_nodestat); 6199} 6200 6201__meminit void zone_pcp_init(struct zone *zone) 6202{ 6203 /* 6204 * per cpu subsystem is not up at this point. The following code 6205 * relies on the ability of the linker to provide the 6206 * offset of a (static) per cpu variable into the per cpu area. 6207 */ 6208 zone->per_cpu_pageset = &boot_pageset; 6209 zone->per_cpu_zonestats = &boot_zonestats; 6210 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6211 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6212 zone->pageset_batch = BOOT_PAGESET_BATCH; 6213 6214 if (populated_zone(zone)) 6215 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6216 zone->present_pages, zone_batchsize(zone)); 6217} 6218 6219static void setup_per_zone_lowmem_reserve(void); 6220 6221void adjust_managed_page_count(struct page *page, long count) 6222{ 6223 atomic_long_add(count, &page_zone(page)->managed_pages); 6224 totalram_pages_add(count); 6225 setup_per_zone_lowmem_reserve(); 6226} 6227EXPORT_SYMBOL(adjust_managed_page_count); 6228 6229unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6230{ 6231 void *pos; 6232 unsigned long pages = 0; 6233 6234 start = (void *)PAGE_ALIGN((unsigned long)start); 6235 end = (void *)((unsigned long)end & PAGE_MASK); 6236 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6237 struct page *page = virt_to_page(pos); 6238 void *direct_map_addr; 6239 6240 /* 6241 * 'direct_map_addr' might be different from 'pos' 6242 * because some architectures' virt_to_page() 6243 * work with aliases. Getting the direct map 6244 * address ensures that we get a _writeable_ 6245 * alias for the memset(). 6246 */ 6247 direct_map_addr = page_address(page); 6248 /* 6249 * Perform a kasan-unchecked memset() since this memory 6250 * has not been initialized. 6251 */ 6252 direct_map_addr = kasan_reset_tag(direct_map_addr); 6253 if ((unsigned int)poison <= 0xFF) 6254 memset(direct_map_addr, poison, PAGE_SIZE); 6255 6256 free_reserved_page(page); 6257 } 6258 6259 if (pages && s) 6260 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6261 6262 return pages; 6263} 6264 6265void free_reserved_page(struct page *page) 6266{ 6267 clear_page_tag_ref(page); 6268 ClearPageReserved(page); 6269 init_page_count(page); 6270 __free_page(page); 6271 adjust_managed_page_count(page, 1); 6272} 6273EXPORT_SYMBOL(free_reserved_page); 6274 6275static int page_alloc_cpu_dead(unsigned int cpu) 6276{ 6277 struct zone *zone; 6278 6279 lru_add_drain_cpu(cpu); 6280 mlock_drain_remote(cpu); 6281 drain_pages(cpu); 6282 6283 /* 6284 * Spill the event counters of the dead processor 6285 * into the current processors event counters. 6286 * This artificially elevates the count of the current 6287 * processor. 6288 */ 6289 vm_events_fold_cpu(cpu); 6290 6291 /* 6292 * Zero the differential counters of the dead processor 6293 * so that the vm statistics are consistent. 6294 * 6295 * This is only okay since the processor is dead and cannot 6296 * race with what we are doing. 6297 */ 6298 cpu_vm_stats_fold(cpu); 6299 6300 for_each_populated_zone(zone) 6301 zone_pcp_update(zone, 0); 6302 6303 return 0; 6304} 6305 6306static int page_alloc_cpu_online(unsigned int cpu) 6307{ 6308 struct zone *zone; 6309 6310 for_each_populated_zone(zone) 6311 zone_pcp_update(zone, 1); 6312 return 0; 6313} 6314 6315void __init page_alloc_init_cpuhp(void) 6316{ 6317 int ret; 6318 6319 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6320 "mm/page_alloc:pcp", 6321 page_alloc_cpu_online, 6322 page_alloc_cpu_dead); 6323 WARN_ON(ret < 0); 6324} 6325 6326/* 6327 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6328 * or min_free_kbytes changes. 6329 */ 6330static void calculate_totalreserve_pages(void) 6331{ 6332 struct pglist_data *pgdat; 6333 unsigned long reserve_pages = 0; 6334 enum zone_type i, j; 6335 6336 for_each_online_pgdat(pgdat) { 6337 6338 pgdat->totalreserve_pages = 0; 6339 6340 for (i = 0; i < MAX_NR_ZONES; i++) { 6341 struct zone *zone = pgdat->node_zones + i; 6342 long max = 0; 6343 unsigned long managed_pages = zone_managed_pages(zone); 6344 6345 /* 6346 * lowmem_reserve[j] is monotonically non-decreasing 6347 * in j for a given zone (see 6348 * setup_per_zone_lowmem_reserve()). The maximum 6349 * valid reserve lives at the highest index with a 6350 * non-zero value, so scan backwards and stop at the 6351 * first hit. 6352 */ 6353 for (j = MAX_NR_ZONES - 1; j > i; j--) { 6354 if (!zone->lowmem_reserve[j]) 6355 continue; 6356 6357 max = zone->lowmem_reserve[j]; 6358 break; 6359 } 6360 /* we treat the high watermark as reserved pages. */ 6361 max += high_wmark_pages(zone); 6362 6363 max = min_t(unsigned long, max, managed_pages); 6364 6365 pgdat->totalreserve_pages += max; 6366 6367 reserve_pages += max; 6368 } 6369 } 6370 totalreserve_pages = reserve_pages; 6371 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6372} 6373 6374/* 6375 * setup_per_zone_lowmem_reserve - called whenever 6376 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6377 * has a correct pages reserved value, so an adequate number of 6378 * pages are left in the zone after a successful __alloc_pages(). 6379 */ 6380static void setup_per_zone_lowmem_reserve(void) 6381{ 6382 struct pglist_data *pgdat; 6383 enum zone_type i, j; 6384 /* 6385 * For a given zone node_zones[i], lowmem_reserve[j] (j > i) 6386 * represents how many pages in zone i must effectively be kept 6387 * in reserve when deciding whether an allocation class that is 6388 * allowed to allocate from zones up to j may fall back into 6389 * zone i. 6390 * 6391 * As j increases, the allocation class can use a strictly larger 6392 * set of fallback zones and therefore must not be allowed to 6393 * deplete low zones more aggressively than a less flexible one. 6394 * As a result, lowmem_reserve[j] is required to be monotonically 6395 * non-decreasing in j for each zone i. Callers such as 6396 * calculate_totalreserve_pages() rely on this monotonicity when 6397 * selecting the maximum reserve entry. 6398 */ 6399 for_each_online_pgdat(pgdat) { 6400 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6401 struct zone *zone = &pgdat->node_zones[i]; 6402 int ratio = sysctl_lowmem_reserve_ratio[i]; 6403 bool clear = !ratio || !zone_managed_pages(zone); 6404 unsigned long managed_pages = 0; 6405 6406 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6407 struct zone *upper_zone = &pgdat->node_zones[j]; 6408 6409 managed_pages += zone_managed_pages(upper_zone); 6410 6411 if (clear) 6412 zone->lowmem_reserve[j] = 0; 6413 else 6414 zone->lowmem_reserve[j] = managed_pages / ratio; 6415 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6416 zone->lowmem_reserve[j]); 6417 } 6418 } 6419 } 6420 6421 /* update totalreserve_pages */ 6422 calculate_totalreserve_pages(); 6423} 6424 6425static void __setup_per_zone_wmarks(void) 6426{ 6427 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6428 unsigned long lowmem_pages = 0; 6429 struct zone *zone; 6430 unsigned long flags; 6431 6432 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6433 for_each_zone(zone) { 6434 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6435 lowmem_pages += zone_managed_pages(zone); 6436 } 6437 6438 for_each_zone(zone) { 6439 u64 tmp; 6440 6441 spin_lock_irqsave(&zone->lock, flags); 6442 tmp = (u64)pages_min * zone_managed_pages(zone); 6443 tmp = div64_ul(tmp, lowmem_pages); 6444 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6445 /* 6446 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6447 * need highmem and movable zones pages, so cap pages_min 6448 * to a small value here. 6449 * 6450 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6451 * deltas control async page reclaim, and so should 6452 * not be capped for highmem and movable zones. 6453 */ 6454 unsigned long min_pages; 6455 6456 min_pages = zone_managed_pages(zone) / 1024; 6457 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6458 zone->_watermark[WMARK_MIN] = min_pages; 6459 } else { 6460 /* 6461 * If it's a lowmem zone, reserve a number of pages 6462 * proportionate to the zone's size. 6463 */ 6464 zone->_watermark[WMARK_MIN] = tmp; 6465 } 6466 6467 /* 6468 * Set the kswapd watermarks distance according to the 6469 * scale factor in proportion to available memory, but 6470 * ensure a minimum size on small systems. 6471 */ 6472 tmp = max_t(u64, tmp >> 2, 6473 mult_frac(zone_managed_pages(zone), 6474 watermark_scale_factor, 10000)); 6475 6476 zone->watermark_boost = 0; 6477 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6478 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6479 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6480 trace_mm_setup_per_zone_wmarks(zone); 6481 6482 spin_unlock_irqrestore(&zone->lock, flags); 6483 } 6484 6485 /* update totalreserve_pages */ 6486 calculate_totalreserve_pages(); 6487} 6488 6489/** 6490 * setup_per_zone_wmarks - called when min_free_kbytes changes 6491 * or when memory is hot-{added|removed} 6492 * 6493 * Ensures that the watermark[min,low,high] values for each zone are set 6494 * correctly with respect to min_free_kbytes. 6495 */ 6496void setup_per_zone_wmarks(void) 6497{ 6498 struct zone *zone; 6499 static DEFINE_SPINLOCK(lock); 6500 6501 spin_lock(&lock); 6502 __setup_per_zone_wmarks(); 6503 spin_unlock(&lock); 6504 6505 /* 6506 * The watermark size have changed so update the pcpu batch 6507 * and high limits or the limits may be inappropriate. 6508 */ 6509 for_each_zone(zone) 6510 zone_pcp_update(zone, 0); 6511} 6512 6513/* 6514 * Initialise min_free_kbytes. 6515 * 6516 * For small machines we want it small (128k min). For large machines 6517 * we want it large (256MB max). But it is not linear, because network 6518 * bandwidth does not increase linearly with machine size. We use 6519 * 6520 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6521 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6522 * 6523 * which yields 6524 * 6525 * 16MB: 512k 6526 * 32MB: 724k 6527 * 64MB: 1024k 6528 * 128MB: 1448k 6529 * 256MB: 2048k 6530 * 512MB: 2896k 6531 * 1024MB: 4096k 6532 * 2048MB: 5792k 6533 * 4096MB: 8192k 6534 * 8192MB: 11584k 6535 * 16384MB: 16384k 6536 */ 6537void calculate_min_free_kbytes(void) 6538{ 6539 unsigned long lowmem_kbytes; 6540 int new_min_free_kbytes; 6541 6542 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6543 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6544 6545 if (new_min_free_kbytes > user_min_free_kbytes) 6546 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6547 else 6548 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6549 new_min_free_kbytes, user_min_free_kbytes); 6550 6551} 6552 6553int __meminit init_per_zone_wmark_min(void) 6554{ 6555 calculate_min_free_kbytes(); 6556 setup_per_zone_wmarks(); 6557 refresh_zone_stat_thresholds(); 6558 setup_per_zone_lowmem_reserve(); 6559 6560#ifdef CONFIG_NUMA 6561 setup_min_unmapped_ratio(); 6562 setup_min_slab_ratio(); 6563#endif 6564 6565 khugepaged_min_free_kbytes_update(); 6566 6567 return 0; 6568} 6569postcore_initcall(init_per_zone_wmark_min) 6570 6571/* 6572 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6573 * that we can call two helper functions whenever min_free_kbytes 6574 * changes. 6575 */ 6576static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6577 void *buffer, size_t *length, loff_t *ppos) 6578{ 6579 int rc; 6580 6581 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6582 if (rc) 6583 return rc; 6584 6585 if (write) { 6586 user_min_free_kbytes = min_free_kbytes; 6587 setup_per_zone_wmarks(); 6588 } 6589 return 0; 6590} 6591 6592static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6593 void *buffer, size_t *length, loff_t *ppos) 6594{ 6595 int rc; 6596 6597 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6598 if (rc) 6599 return rc; 6600 6601 if (write) 6602 setup_per_zone_wmarks(); 6603 6604 return 0; 6605} 6606 6607#ifdef CONFIG_NUMA 6608static void setup_min_unmapped_ratio(void) 6609{ 6610 pg_data_t *pgdat; 6611 struct zone *zone; 6612 6613 for_each_online_pgdat(pgdat) 6614 pgdat->min_unmapped_pages = 0; 6615 6616 for_each_zone(zone) 6617 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6618 sysctl_min_unmapped_ratio) / 100; 6619} 6620 6621 6622static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6623 void *buffer, size_t *length, loff_t *ppos) 6624{ 6625 int rc; 6626 6627 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6628 if (rc) 6629 return rc; 6630 6631 setup_min_unmapped_ratio(); 6632 6633 return 0; 6634} 6635 6636static void setup_min_slab_ratio(void) 6637{ 6638 pg_data_t *pgdat; 6639 struct zone *zone; 6640 6641 for_each_online_pgdat(pgdat) 6642 pgdat->min_slab_pages = 0; 6643 6644 for_each_zone(zone) 6645 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6646 sysctl_min_slab_ratio) / 100; 6647} 6648 6649static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6650 void *buffer, size_t *length, loff_t *ppos) 6651{ 6652 int rc; 6653 6654 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6655 if (rc) 6656 return rc; 6657 6658 setup_min_slab_ratio(); 6659 6660 return 0; 6661} 6662#endif 6663 6664/* 6665 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6666 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6667 * whenever sysctl_lowmem_reserve_ratio changes. 6668 * 6669 * The reserve ratio obviously has absolutely no relation with the 6670 * minimum watermarks. The lowmem reserve ratio can only make sense 6671 * if in function of the boot time zone sizes. 6672 */ 6673static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6674 int write, void *buffer, size_t *length, loff_t *ppos) 6675{ 6676 int i; 6677 6678 proc_dointvec_minmax(table, write, buffer, length, ppos); 6679 6680 for (i = 0; i < MAX_NR_ZONES; i++) { 6681 if (sysctl_lowmem_reserve_ratio[i] < 1) 6682 sysctl_lowmem_reserve_ratio[i] = 0; 6683 } 6684 6685 setup_per_zone_lowmem_reserve(); 6686 return 0; 6687} 6688 6689/* 6690 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6691 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6692 * pagelist can have before it gets flushed back to buddy allocator. 6693 */ 6694static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6695 int write, void *buffer, size_t *length, loff_t *ppos) 6696{ 6697 struct zone *zone; 6698 int old_percpu_pagelist_high_fraction; 6699 int ret; 6700 6701 /* 6702 * Avoid using pcp_batch_high_lock for reads as the value is read 6703 * atomically and a race with offlining is harmless. 6704 */ 6705 6706 if (!write) 6707 return proc_dointvec_minmax(table, write, buffer, length, ppos); 6708 6709 mutex_lock(&pcp_batch_high_lock); 6710 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6711 6712 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6713 if (ret < 0) 6714 goto out; 6715 6716 /* Sanity checking to avoid pcp imbalance */ 6717 if (percpu_pagelist_high_fraction && 6718 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6719 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6720 ret = -EINVAL; 6721 goto out; 6722 } 6723 6724 /* No change? */ 6725 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6726 goto out; 6727 6728 for_each_populated_zone(zone) 6729 zone_set_pageset_high_and_batch(zone, 0); 6730out: 6731 mutex_unlock(&pcp_batch_high_lock); 6732 return ret; 6733} 6734 6735static const struct ctl_table page_alloc_sysctl_table[] = { 6736 { 6737 .procname = "min_free_kbytes", 6738 .data = &min_free_kbytes, 6739 .maxlen = sizeof(min_free_kbytes), 6740 .mode = 0644, 6741 .proc_handler = min_free_kbytes_sysctl_handler, 6742 .extra1 = SYSCTL_ZERO, 6743 }, 6744 { 6745 .procname = "watermark_boost_factor", 6746 .data = &watermark_boost_factor, 6747 .maxlen = sizeof(watermark_boost_factor), 6748 .mode = 0644, 6749 .proc_handler = proc_dointvec_minmax, 6750 .extra1 = SYSCTL_ZERO, 6751 }, 6752 { 6753 .procname = "watermark_scale_factor", 6754 .data = &watermark_scale_factor, 6755 .maxlen = sizeof(watermark_scale_factor), 6756 .mode = 0644, 6757 .proc_handler = watermark_scale_factor_sysctl_handler, 6758 .extra1 = SYSCTL_ONE, 6759 .extra2 = SYSCTL_THREE_THOUSAND, 6760 }, 6761 { 6762 .procname = "defrag_mode", 6763 .data = &defrag_mode, 6764 .maxlen = sizeof(defrag_mode), 6765 .mode = 0644, 6766 .proc_handler = proc_dointvec_minmax, 6767 .extra1 = SYSCTL_ZERO, 6768 .extra2 = SYSCTL_ONE, 6769 }, 6770 { 6771 .procname = "percpu_pagelist_high_fraction", 6772 .data = &percpu_pagelist_high_fraction, 6773 .maxlen = sizeof(percpu_pagelist_high_fraction), 6774 .mode = 0644, 6775 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6776 .extra1 = SYSCTL_ZERO, 6777 }, 6778 { 6779 .procname = "lowmem_reserve_ratio", 6780 .data = &sysctl_lowmem_reserve_ratio, 6781 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6782 .mode = 0644, 6783 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6784 }, 6785#ifdef CONFIG_NUMA 6786 { 6787 .procname = "numa_zonelist_order", 6788 .data = &numa_zonelist_order, 6789 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6790 .mode = 0644, 6791 .proc_handler = numa_zonelist_order_handler, 6792 }, 6793 { 6794 .procname = "min_unmapped_ratio", 6795 .data = &sysctl_min_unmapped_ratio, 6796 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6797 .mode = 0644, 6798 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6799 .extra1 = SYSCTL_ZERO, 6800 .extra2 = SYSCTL_ONE_HUNDRED, 6801 }, 6802 { 6803 .procname = "min_slab_ratio", 6804 .data = &sysctl_min_slab_ratio, 6805 .maxlen = sizeof(sysctl_min_slab_ratio), 6806 .mode = 0644, 6807 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6808 .extra1 = SYSCTL_ZERO, 6809 .extra2 = SYSCTL_ONE_HUNDRED, 6810 }, 6811#endif 6812}; 6813 6814void __init page_alloc_sysctl_init(void) 6815{ 6816 register_sysctl_init("vm", page_alloc_sysctl_table); 6817} 6818 6819#ifdef CONFIG_CONTIG_ALLOC 6820/* Usage: See admin-guide/dynamic-debug-howto.rst */ 6821static void alloc_contig_dump_pages(struct list_head *page_list) 6822{ 6823 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6824 6825 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6826 struct page *page; 6827 6828 dump_stack(); 6829 list_for_each_entry(page, page_list, lru) 6830 dump_page(page, "migration failure"); 6831 } 6832} 6833 6834/* [start, end) must belong to a single zone. */ 6835static int __alloc_contig_migrate_range(struct compact_control *cc, 6836 unsigned long start, unsigned long end) 6837{ 6838 /* This function is based on compact_zone() from compaction.c. */ 6839 unsigned int nr_reclaimed; 6840 unsigned long pfn = start; 6841 unsigned int tries = 0; 6842 int ret = 0; 6843 struct migration_target_control mtc = { 6844 .nid = zone_to_nid(cc->zone), 6845 .gfp_mask = cc->gfp_mask, 6846 .reason = MR_CONTIG_RANGE, 6847 }; 6848 6849 lru_cache_disable(); 6850 6851 while (pfn < end || !list_empty(&cc->migratepages)) { 6852 if (fatal_signal_pending(current)) { 6853 ret = -EINTR; 6854 break; 6855 } 6856 6857 if (list_empty(&cc->migratepages)) { 6858 cc->nr_migratepages = 0; 6859 ret = isolate_migratepages_range(cc, pfn, end); 6860 if (ret && ret != -EAGAIN) 6861 break; 6862 pfn = cc->migrate_pfn; 6863 tries = 0; 6864 } else if (++tries == 5) { 6865 ret = -EBUSY; 6866 break; 6867 } 6868 6869 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6870 &cc->migratepages); 6871 cc->nr_migratepages -= nr_reclaimed; 6872 6873 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6874 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6875 6876 /* 6877 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6878 * to retry again over this error, so do the same here. 6879 */ 6880 if (ret == -ENOMEM) 6881 break; 6882 } 6883 6884 lru_cache_enable(); 6885 if (ret < 0) { 6886 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6887 alloc_contig_dump_pages(&cc->migratepages); 6888 putback_movable_pages(&cc->migratepages); 6889 } 6890 6891 return (ret < 0) ? ret : 0; 6892} 6893 6894static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6895{ 6896 int order; 6897 6898 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6899 struct page *page, *next; 6900 int nr_pages = 1 << order; 6901 6902 list_for_each_entry_safe(page, next, &list[order], lru) { 6903 int i; 6904 6905 post_alloc_hook(page, order, gfp_mask); 6906 set_page_refcounted(page); 6907 if (!order) 6908 continue; 6909 6910 split_page(page, order); 6911 6912 /* Add all subpages to the order-0 head, in sequence. */ 6913 list_del(&page->lru); 6914 for (i = 0; i < nr_pages; i++) 6915 list_add_tail(&page[i].lru, &list[0]); 6916 } 6917 } 6918} 6919 6920static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6921{ 6922 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6923 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6924 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6925 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6926 6927 /* 6928 * We are given the range to allocate; node, mobility and placement 6929 * hints are irrelevant at this point. We'll simply ignore them. 6930 */ 6931 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6932 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6933 6934 /* 6935 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6936 * selected action flags. 6937 */ 6938 if (gfp_mask & ~(reclaim_mask | action_mask)) 6939 return -EINVAL; 6940 6941 /* 6942 * Flags to control page compaction/migration/reclaim, to free up our 6943 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6944 * for them. 6945 * 6946 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6947 * to not degrade callers. 6948 */ 6949 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6950 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6951 return 0; 6952} 6953 6954/** 6955 * alloc_contig_range() -- tries to allocate given range of pages 6956 * @start: start PFN to allocate 6957 * @end: one-past-the-last PFN to allocate 6958 * @alloc_flags: allocation information 6959 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6960 * action and reclaim modifiers are supported. Reclaim modifiers 6961 * control allocation behavior during compaction/migration/reclaim. 6962 * 6963 * The PFN range does not have to be pageblock aligned. The PFN range must 6964 * belong to a single zone. 6965 * 6966 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6967 * pageblocks in the range. Once isolated, the pageblocks should not 6968 * be modified by others. 6969 * 6970 * Return: zero on success or negative error code. On success all 6971 * pages which PFN is in [start, end) are allocated for the caller and 6972 * need to be freed with free_contig_range(). 6973 */ 6974int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6975 acr_flags_t alloc_flags, gfp_t gfp_mask) 6976{ 6977 const unsigned int order = ilog2(end - start); 6978 unsigned long outer_start, outer_end; 6979 int ret = 0; 6980 6981 struct compact_control cc = { 6982 .nr_migratepages = 0, 6983 .order = -1, 6984 .zone = page_zone(pfn_to_page(start)), 6985 .mode = MIGRATE_SYNC, 6986 .ignore_skip_hint = true, 6987 .no_set_skip_hint = true, 6988 .alloc_contig = true, 6989 }; 6990 INIT_LIST_HEAD(&cc.migratepages); 6991 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6992 PB_ISOLATE_MODE_CMA_ALLOC : 6993 PB_ISOLATE_MODE_OTHER; 6994 6995 /* 6996 * In contrast to the buddy, we allow for orders here that exceed 6997 * MAX_PAGE_ORDER, so we must manually make sure that we are not 6998 * exceeding the maximum folio order. 6999 */ 7000 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 7001 return -EINVAL; 7002 7003 gfp_mask = current_gfp_context(gfp_mask); 7004 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 7005 return -EINVAL; 7006 7007 /* 7008 * What we do here is we mark all pageblocks in range as 7009 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7010 * have different sizes, and due to the way page allocator 7011 * work, start_isolate_page_range() has special handlings for this. 7012 * 7013 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7014 * migrate the pages from an unaligned range (ie. pages that 7015 * we are interested in). This will put all the pages in 7016 * range back to page allocator as MIGRATE_ISOLATE. 7017 * 7018 * When this is done, we take the pages in range from page 7019 * allocator removing them from the buddy system. This way 7020 * page allocator will never consider using them. 7021 * 7022 * This lets us mark the pageblocks back as 7023 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7024 * aligned range but not in the unaligned, original range are 7025 * put back to page allocator so that buddy can use them. 7026 */ 7027 7028 ret = start_isolate_page_range(start, end, mode); 7029 if (ret) 7030 goto done; 7031 7032 drain_all_pages(cc.zone); 7033 7034 /* 7035 * In case of -EBUSY, we'd like to know which page causes problem. 7036 * So, just fall through. test_pages_isolated() has a tracepoint 7037 * which will report the busy page. 7038 * 7039 * It is possible that busy pages could become available before 7040 * the call to test_pages_isolated, and the range will actually be 7041 * allocated. So, if we fall through be sure to clear ret so that 7042 * -EBUSY is not accidentally used or returned to caller. 7043 */ 7044 ret = __alloc_contig_migrate_range(&cc, start, end); 7045 if (ret && ret != -EBUSY) 7046 goto done; 7047 7048 /* 7049 * When in-use hugetlb pages are migrated, they may simply be released 7050 * back into the free hugepage pool instead of being returned to the 7051 * buddy system. After the migration of in-use huge pages is completed, 7052 * we will invoke replace_free_hugepage_folios() to ensure that these 7053 * hugepages are properly released to the buddy system. 7054 */ 7055 ret = replace_free_hugepage_folios(start, end); 7056 if (ret) 7057 goto done; 7058 7059 /* 7060 * Pages from [start, end) are within a pageblock_nr_pages 7061 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7062 * more, all pages in [start, end) are free in page allocator. 7063 * What we are going to do is to allocate all pages from 7064 * [start, end) (that is remove them from page allocator). 7065 * 7066 * The only problem is that pages at the beginning and at the 7067 * end of interesting range may be not aligned with pages that 7068 * page allocator holds, ie. they can be part of higher order 7069 * pages. Because of this, we reserve the bigger range and 7070 * once this is done free the pages we are not interested in. 7071 * 7072 * We don't have to hold zone->lock here because the pages are 7073 * isolated thus they won't get removed from buddy. 7074 */ 7075 outer_start = find_large_buddy(start); 7076 7077 /* Make sure the range is really isolated. */ 7078 if (test_pages_isolated(outer_start, end, mode)) { 7079 ret = -EBUSY; 7080 goto done; 7081 } 7082 7083 /* Grab isolated pages from freelists. */ 7084 outer_end = isolate_freepages_range(&cc, outer_start, end); 7085 if (!outer_end) { 7086 ret = -EBUSY; 7087 goto done; 7088 } 7089 7090 if (!(gfp_mask & __GFP_COMP)) { 7091 split_free_pages(cc.freepages, gfp_mask); 7092 7093 /* Free head and tail (if any) */ 7094 if (start != outer_start) 7095 free_contig_range(outer_start, start - outer_start); 7096 if (end != outer_end) 7097 free_contig_range(end, outer_end - end); 7098 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 7099 struct page *head = pfn_to_page(start); 7100 7101 check_new_pages(head, order); 7102 prep_new_page(head, order, gfp_mask, 0); 7103 set_page_refcounted(head); 7104 } else { 7105 ret = -EINVAL; 7106 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 7107 start, end, outer_start, outer_end); 7108 } 7109done: 7110 undo_isolate_page_range(start, end); 7111 return ret; 7112} 7113EXPORT_SYMBOL(alloc_contig_range_noprof); 7114 7115static int __alloc_contig_pages(unsigned long start_pfn, 7116 unsigned long nr_pages, gfp_t gfp_mask) 7117{ 7118 unsigned long end_pfn = start_pfn + nr_pages; 7119 7120 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 7121 gfp_mask); 7122} 7123 7124static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7125 unsigned long nr_pages) 7126{ 7127 unsigned long i, end_pfn = start_pfn + nr_pages; 7128 struct page *page; 7129 7130 for (i = start_pfn; i < end_pfn; i++) { 7131 page = pfn_to_online_page(i); 7132 if (!page) 7133 return false; 7134 7135 if (page_zone(page) != z) 7136 return false; 7137 7138 if (PageReserved(page)) 7139 return false; 7140 7141 if (PageHuge(page)) 7142 return false; 7143 } 7144 return true; 7145} 7146 7147static bool zone_spans_last_pfn(const struct zone *zone, 7148 unsigned long start_pfn, unsigned long nr_pages) 7149{ 7150 unsigned long last_pfn = start_pfn + nr_pages - 1; 7151 7152 return zone_spans_pfn(zone, last_pfn); 7153} 7154 7155/** 7156 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7157 * @nr_pages: Number of contiguous pages to allocate 7158 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7159 * action and reclaim modifiers are supported. Reclaim modifiers 7160 * control allocation behavior during compaction/migration/reclaim. 7161 * @nid: Target node 7162 * @nodemask: Mask for other possible nodes 7163 * 7164 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7165 * on an applicable zonelist to find a contiguous pfn range which can then be 7166 * tried for allocation with alloc_contig_range(). This routine is intended 7167 * for allocation requests which can not be fulfilled with the buddy allocator. 7168 * 7169 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7170 * power of two, then allocated range is also guaranteed to be aligned to same 7171 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7172 * 7173 * Allocated pages can be freed with free_contig_range() or by manually calling 7174 * __free_page() on each allocated page. 7175 * 7176 * Return: pointer to contiguous pages on success, or NULL if not successful. 7177 */ 7178struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7179 int nid, nodemask_t *nodemask) 7180{ 7181 unsigned long ret, pfn, flags; 7182 struct zonelist *zonelist; 7183 struct zone *zone; 7184 struct zoneref *z; 7185 7186 zonelist = node_zonelist(nid, gfp_mask); 7187 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7188 gfp_zone(gfp_mask), nodemask) { 7189 spin_lock_irqsave(&zone->lock, flags); 7190 7191 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7192 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7193 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7194 /* 7195 * We release the zone lock here because 7196 * alloc_contig_range() will also lock the zone 7197 * at some point. If there's an allocation 7198 * spinning on this lock, it may win the race 7199 * and cause alloc_contig_range() to fail... 7200 */ 7201 spin_unlock_irqrestore(&zone->lock, flags); 7202 ret = __alloc_contig_pages(pfn, nr_pages, 7203 gfp_mask); 7204 if (!ret) 7205 return pfn_to_page(pfn); 7206 spin_lock_irqsave(&zone->lock, flags); 7207 } 7208 pfn += nr_pages; 7209 } 7210 spin_unlock_irqrestore(&zone->lock, flags); 7211 } 7212 return NULL; 7213} 7214#endif /* CONFIG_CONTIG_ALLOC */ 7215 7216void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7217{ 7218 unsigned long count = 0; 7219 struct folio *folio = pfn_folio(pfn); 7220 7221 if (folio_test_large(folio)) { 7222 int expected = folio_nr_pages(folio); 7223 7224 if (nr_pages == expected) 7225 folio_put(folio); 7226 else 7227 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7228 pfn, nr_pages, expected); 7229 return; 7230 } 7231 7232 for (; nr_pages--; pfn++) { 7233 struct page *page = pfn_to_page(pfn); 7234 7235 count += page_count(page) != 1; 7236 __free_page(page); 7237 } 7238 WARN(count != 0, "%lu pages are still in use!\n", count); 7239} 7240EXPORT_SYMBOL(free_contig_range); 7241 7242/* 7243 * Effectively disable pcplists for the zone by setting the high limit to 0 7244 * and draining all cpus. A concurrent page freeing on another CPU that's about 7245 * to put the page on pcplist will either finish before the drain and the page 7246 * will be drained, or observe the new high limit and skip the pcplist. 7247 * 7248 * Must be paired with a call to zone_pcp_enable(). 7249 */ 7250void zone_pcp_disable(struct zone *zone) 7251{ 7252 mutex_lock(&pcp_batch_high_lock); 7253 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7254 __drain_all_pages(zone, true); 7255} 7256 7257void zone_pcp_enable(struct zone *zone) 7258{ 7259 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7260 zone->pageset_high_max, zone->pageset_batch); 7261 mutex_unlock(&pcp_batch_high_lock); 7262} 7263 7264void zone_pcp_reset(struct zone *zone) 7265{ 7266 int cpu; 7267 struct per_cpu_zonestat *pzstats; 7268 7269 if (zone->per_cpu_pageset != &boot_pageset) { 7270 for_each_online_cpu(cpu) { 7271 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7272 drain_zonestat(zone, pzstats); 7273 } 7274 free_percpu(zone->per_cpu_pageset); 7275 zone->per_cpu_pageset = &boot_pageset; 7276 if (zone->per_cpu_zonestats != &boot_zonestats) { 7277 free_percpu(zone->per_cpu_zonestats); 7278 zone->per_cpu_zonestats = &boot_zonestats; 7279 } 7280 } 7281} 7282 7283#ifdef CONFIG_MEMORY_HOTREMOVE 7284/* 7285 * All pages in the range must be in a single zone, must not contain holes, 7286 * must span full sections, and must be isolated before calling this function. 7287 * 7288 * Returns the number of managed (non-PageOffline()) pages in the range: the 7289 * number of pages for which memory offlining code must adjust managed page 7290 * counters using adjust_managed_page_count(). 7291 */ 7292unsigned long __offline_isolated_pages(unsigned long start_pfn, 7293 unsigned long end_pfn) 7294{ 7295 unsigned long already_offline = 0, flags; 7296 unsigned long pfn = start_pfn; 7297 struct page *page; 7298 struct zone *zone; 7299 unsigned int order; 7300 7301 offline_mem_sections(pfn, end_pfn); 7302 zone = page_zone(pfn_to_page(pfn)); 7303 spin_lock_irqsave(&zone->lock, flags); 7304 while (pfn < end_pfn) { 7305 page = pfn_to_page(pfn); 7306 /* 7307 * The HWPoisoned page may be not in buddy system, and 7308 * page_count() is not 0. 7309 */ 7310 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7311 pfn++; 7312 continue; 7313 } 7314 /* 7315 * At this point all remaining PageOffline() pages have a 7316 * reference count of 0 and can simply be skipped. 7317 */ 7318 if (PageOffline(page)) { 7319 BUG_ON(page_count(page)); 7320 BUG_ON(PageBuddy(page)); 7321 already_offline++; 7322 pfn++; 7323 continue; 7324 } 7325 7326 BUG_ON(page_count(page)); 7327 BUG_ON(!PageBuddy(page)); 7328 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7329 order = buddy_order(page); 7330 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7331 pfn += (1 << order); 7332 } 7333 spin_unlock_irqrestore(&zone->lock, flags); 7334 7335 return end_pfn - start_pfn - already_offline; 7336} 7337#endif 7338 7339/* 7340 * This function returns a stable result only if called under zone lock. 7341 */ 7342bool is_free_buddy_page(const struct page *page) 7343{ 7344 unsigned long pfn = page_to_pfn(page); 7345 unsigned int order; 7346 7347 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7348 const struct page *head = page - (pfn & ((1 << order) - 1)); 7349 7350 if (PageBuddy(head) && 7351 buddy_order_unsafe(head) >= order) 7352 break; 7353 } 7354 7355 return order <= MAX_PAGE_ORDER; 7356} 7357EXPORT_SYMBOL(is_free_buddy_page); 7358 7359#ifdef CONFIG_MEMORY_FAILURE 7360static inline void add_to_free_list(struct page *page, struct zone *zone, 7361 unsigned int order, int migratetype, 7362 bool tail) 7363{ 7364 __add_to_free_list(page, zone, order, migratetype, tail); 7365 account_freepages(zone, 1 << order, migratetype); 7366} 7367 7368/* 7369 * Break down a higher-order page in sub-pages, and keep our target out of 7370 * buddy allocator. 7371 */ 7372static void break_down_buddy_pages(struct zone *zone, struct page *page, 7373 struct page *target, int low, int high, 7374 int migratetype) 7375{ 7376 unsigned long size = 1 << high; 7377 struct page *current_buddy; 7378 7379 while (high > low) { 7380 high--; 7381 size >>= 1; 7382 7383 if (target >= &page[size]) { 7384 current_buddy = page; 7385 page = page + size; 7386 } else { 7387 current_buddy = page + size; 7388 } 7389 7390 if (set_page_guard(zone, current_buddy, high)) 7391 continue; 7392 7393 add_to_free_list(current_buddy, zone, high, migratetype, false); 7394 set_buddy_order(current_buddy, high); 7395 } 7396} 7397 7398/* 7399 * Take a page that will be marked as poisoned off the buddy allocator. 7400 */ 7401bool take_page_off_buddy(struct page *page) 7402{ 7403 struct zone *zone = page_zone(page); 7404 unsigned long pfn = page_to_pfn(page); 7405 unsigned long flags; 7406 unsigned int order; 7407 bool ret = false; 7408 7409 spin_lock_irqsave(&zone->lock, flags); 7410 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7411 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7412 int page_order = buddy_order(page_head); 7413 7414 if (PageBuddy(page_head) && page_order >= order) { 7415 unsigned long pfn_head = page_to_pfn(page_head); 7416 int migratetype = get_pfnblock_migratetype(page_head, 7417 pfn_head); 7418 7419 del_page_from_free_list(page_head, zone, page_order, 7420 migratetype); 7421 break_down_buddy_pages(zone, page_head, page, 0, 7422 page_order, migratetype); 7423 SetPageHWPoisonTakenOff(page); 7424 ret = true; 7425 break; 7426 } 7427 if (page_count(page_head) > 0) 7428 break; 7429 } 7430 spin_unlock_irqrestore(&zone->lock, flags); 7431 return ret; 7432} 7433 7434/* 7435 * Cancel takeoff done by take_page_off_buddy(). 7436 */ 7437bool put_page_back_buddy(struct page *page) 7438{ 7439 struct zone *zone = page_zone(page); 7440 unsigned long flags; 7441 bool ret = false; 7442 7443 spin_lock_irqsave(&zone->lock, flags); 7444 if (put_page_testzero(page)) { 7445 unsigned long pfn = page_to_pfn(page); 7446 int migratetype = get_pfnblock_migratetype(page, pfn); 7447 7448 ClearPageHWPoisonTakenOff(page); 7449 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7450 if (TestClearPageHWPoison(page)) { 7451 ret = true; 7452 } 7453 } 7454 spin_unlock_irqrestore(&zone->lock, flags); 7455 7456 return ret; 7457} 7458#endif 7459 7460bool has_managed_zone(enum zone_type zone) 7461{ 7462 struct pglist_data *pgdat; 7463 7464 for_each_online_pgdat(pgdat) { 7465 if (managed_zone(&pgdat->node_zones[zone])) 7466 return true; 7467 } 7468 return false; 7469} 7470 7471#ifdef CONFIG_UNACCEPTED_MEMORY 7472 7473static bool lazy_accept = true; 7474 7475static int __init accept_memory_parse(char *p) 7476{ 7477 if (!strcmp(p, "lazy")) { 7478 lazy_accept = true; 7479 return 0; 7480 } else if (!strcmp(p, "eager")) { 7481 lazy_accept = false; 7482 return 0; 7483 } else { 7484 return -EINVAL; 7485 } 7486} 7487early_param("accept_memory", accept_memory_parse); 7488 7489static bool page_contains_unaccepted(struct page *page, unsigned int order) 7490{ 7491 phys_addr_t start = page_to_phys(page); 7492 7493 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7494} 7495 7496static void __accept_page(struct zone *zone, unsigned long *flags, 7497 struct page *page) 7498{ 7499 list_del(&page->lru); 7500 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7501 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7502 __ClearPageUnaccepted(page); 7503 spin_unlock_irqrestore(&zone->lock, *flags); 7504 7505 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7506 7507 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7508} 7509 7510void accept_page(struct page *page) 7511{ 7512 struct zone *zone = page_zone(page); 7513 unsigned long flags; 7514 7515 spin_lock_irqsave(&zone->lock, flags); 7516 if (!PageUnaccepted(page)) { 7517 spin_unlock_irqrestore(&zone->lock, flags); 7518 return; 7519 } 7520 7521 /* Unlocks zone->lock */ 7522 __accept_page(zone, &flags, page); 7523} 7524 7525static bool try_to_accept_memory_one(struct zone *zone) 7526{ 7527 unsigned long flags; 7528 struct page *page; 7529 7530 spin_lock_irqsave(&zone->lock, flags); 7531 page = list_first_entry_or_null(&zone->unaccepted_pages, 7532 struct page, lru); 7533 if (!page) { 7534 spin_unlock_irqrestore(&zone->lock, flags); 7535 return false; 7536 } 7537 7538 /* Unlocks zone->lock */ 7539 __accept_page(zone, &flags, page); 7540 7541 return true; 7542} 7543 7544static bool cond_accept_memory(struct zone *zone, unsigned int order, 7545 int alloc_flags) 7546{ 7547 long to_accept, wmark; 7548 bool ret = false; 7549 7550 if (list_empty(&zone->unaccepted_pages)) 7551 return false; 7552 7553 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7554 if (alloc_flags & ALLOC_TRYLOCK) 7555 return false; 7556 7557 wmark = promo_wmark_pages(zone); 7558 7559 /* 7560 * Watermarks have not been initialized yet. 7561 * 7562 * Accepting one MAX_ORDER page to ensure progress. 7563 */ 7564 if (!wmark) 7565 return try_to_accept_memory_one(zone); 7566 7567 /* How much to accept to get to promo watermark? */ 7568 to_accept = wmark - 7569 (zone_page_state(zone, NR_FREE_PAGES) - 7570 __zone_watermark_unusable_free(zone, order, 0) - 7571 zone_page_state(zone, NR_UNACCEPTED)); 7572 7573 while (to_accept > 0) { 7574 if (!try_to_accept_memory_one(zone)) 7575 break; 7576 ret = true; 7577 to_accept -= MAX_ORDER_NR_PAGES; 7578 } 7579 7580 return ret; 7581} 7582 7583static bool __free_unaccepted(struct page *page) 7584{ 7585 struct zone *zone = page_zone(page); 7586 unsigned long flags; 7587 7588 if (!lazy_accept) 7589 return false; 7590 7591 spin_lock_irqsave(&zone->lock, flags); 7592 list_add_tail(&page->lru, &zone->unaccepted_pages); 7593 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7594 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7595 __SetPageUnaccepted(page); 7596 spin_unlock_irqrestore(&zone->lock, flags); 7597 7598 return true; 7599} 7600 7601#else 7602 7603static bool page_contains_unaccepted(struct page *page, unsigned int order) 7604{ 7605 return false; 7606} 7607 7608static bool cond_accept_memory(struct zone *zone, unsigned int order, 7609 int alloc_flags) 7610{ 7611 return false; 7612} 7613 7614static bool __free_unaccepted(struct page *page) 7615{ 7616 BUILD_BUG(); 7617 return false; 7618} 7619 7620#endif /* CONFIG_UNACCEPTED_MEMORY */ 7621 7622struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7623{ 7624 /* 7625 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7626 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7627 * is not safe in arbitrary context. 7628 * 7629 * These two are the conditions for gfpflags_allow_spinning() being true. 7630 * 7631 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7632 * to warn. Also warn would trigger printk() which is unsafe from 7633 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7634 * since the running context is unknown. 7635 * 7636 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7637 * is safe in any context. Also zeroing the page is mandatory for 7638 * BPF use cases. 7639 * 7640 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7641 * specify it here to highlight that alloc_pages_nolock() 7642 * doesn't want to deplete reserves. 7643 */ 7644 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP 7645 | gfp_flags; 7646 unsigned int alloc_flags = ALLOC_TRYLOCK; 7647 struct alloc_context ac = { }; 7648 struct page *page; 7649 7650 VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT); 7651 /* 7652 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7653 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7654 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7655 * mark the task as the owner of another rt_spin_lock which will 7656 * confuse PI logic, so return immediately if called form hard IRQ or 7657 * NMI. 7658 * 7659 * Note, irqs_disabled() case is ok. This function can be called 7660 * from raw_spin_lock_irqsave region. 7661 */ 7662 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7663 return NULL; 7664 if (!pcp_allowed_order(order)) 7665 return NULL; 7666 7667 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7668 if (deferred_pages_enabled()) 7669 return NULL; 7670 7671 if (nid == NUMA_NO_NODE) 7672 nid = numa_node_id(); 7673 7674 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7675 &alloc_gfp, &alloc_flags); 7676 7677 /* 7678 * Best effort allocation from percpu free list. 7679 * If it's empty attempt to spin_trylock zone->lock. 7680 */ 7681 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7682 7683 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7684 7685 if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) && 7686 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7687 __free_frozen_pages(page, order, FPI_TRYLOCK); 7688 page = NULL; 7689 } 7690 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7691 kmsan_alloc_page(page, order, alloc_gfp); 7692 return page; 7693} 7694/** 7695 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7696 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed. 7697 * @nid: node to allocate from 7698 * @order: allocation order size 7699 * 7700 * Allocates pages of a given order from the given node. This is safe to 7701 * call from any context (from atomic, NMI, and also reentrant 7702 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7703 * Allocation is best effort and to be expected to fail easily so nobody should 7704 * rely on the success. Failures are not reported via warn_alloc(). 7705 * See always fail conditions below. 7706 * 7707 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7708 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7709 */ 7710struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7711{ 7712 struct page *page; 7713 7714 page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order); 7715 if (page) 7716 set_page_refcounted(page); 7717 return page; 7718} 7719EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof);