at v6.19-rc7 575 lines 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_MM_H 3#define _LINUX_SCHED_MM_H 4 5#include <linux/kernel.h> 6#include <linux/atomic.h> 7#include <linux/sched.h> 8#include <linux/mm_types.h> 9#include <linux/gfp.h> 10#include <linux/sync_core.h> 11#include <linux/sched/coredump.h> 12 13/* 14 * Routines for handling mm_structs 15 */ 16extern struct mm_struct *mm_alloc(void); 17 18/** 19 * mmgrab() - Pin a &struct mm_struct. 20 * @mm: The &struct mm_struct to pin. 21 * 22 * Make sure that @mm will not get freed even after the owning task 23 * exits. This doesn't guarantee that the associated address space 24 * will still exist later on and mmget_not_zero() has to be used before 25 * accessing it. 26 * 27 * This is a preferred way to pin @mm for a longer/unbounded amount 28 * of time. 29 * 30 * Use mmdrop() to release the reference acquired by mmgrab(). 31 * 32 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 33 * of &mm_struct.mm_count vs &mm_struct.mm_users. 34 */ 35static inline void mmgrab(struct mm_struct *mm) 36{ 37 atomic_inc(&mm->mm_count); 38} 39 40static inline void smp_mb__after_mmgrab(void) 41{ 42 smp_mb__after_atomic(); 43} 44 45extern void __mmdrop(struct mm_struct *mm); 46 47static inline void mmdrop(struct mm_struct *mm) 48{ 49 /* 50 * The implicit full barrier implied by atomic_dec_and_test() is 51 * required by the membarrier system call before returning to 52 * user-space, after storing to rq->curr. 53 */ 54 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 55 __mmdrop(mm); 56} 57 58#ifdef CONFIG_PREEMPT_RT 59/* 60 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is 61 * by far the least expensive way to do that. 62 */ 63static inline void __mmdrop_delayed(struct rcu_head *rhp) 64{ 65 struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); 66 67 __mmdrop(mm); 68} 69 70/* 71 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT 72 * kernels via RCU. 73 */ 74static inline void mmdrop_sched(struct mm_struct *mm) 75{ 76 /* Provides a full memory barrier. See mmdrop() */ 77 if (atomic_dec_and_test(&mm->mm_count)) 78 call_rcu(&mm->delayed_drop, __mmdrop_delayed); 79} 80#else 81static inline void mmdrop_sched(struct mm_struct *mm) 82{ 83 mmdrop(mm); 84} 85#endif 86 87/* Helpers for lazy TLB mm refcounting */ 88static inline void mmgrab_lazy_tlb(struct mm_struct *mm) 89{ 90 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 91 mmgrab(mm); 92} 93 94static inline void mmdrop_lazy_tlb(struct mm_struct *mm) 95{ 96 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) { 97 mmdrop(mm); 98 } else { 99 /* 100 * mmdrop_lazy_tlb must provide a full memory barrier, see the 101 * membarrier comment finish_task_switch which relies on this. 102 */ 103 smp_mb(); 104 } 105} 106 107static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm) 108{ 109 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 110 mmdrop_sched(mm); 111 else 112 smp_mb(); /* see mmdrop_lazy_tlb() above */ 113} 114 115/** 116 * mmget() - Pin the address space associated with a &struct mm_struct. 117 * @mm: The address space to pin. 118 * 119 * Make sure that the address space of the given &struct mm_struct doesn't 120 * go away. This does not protect against parts of the address space being 121 * modified or freed, however. 122 * 123 * Never use this function to pin this address space for an 124 * unbounded/indefinite amount of time. 125 * 126 * Use mmput() to release the reference acquired by mmget(). 127 * 128 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 129 * of &mm_struct.mm_count vs &mm_struct.mm_users. 130 */ 131static inline void mmget(struct mm_struct *mm) 132{ 133 atomic_inc(&mm->mm_users); 134} 135 136static inline bool mmget_not_zero(struct mm_struct *mm) 137{ 138 return atomic_inc_not_zero(&mm->mm_users); 139} 140 141/* mmput gets rid of the mappings and all user-space */ 142extern void mmput(struct mm_struct *); 143#if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) 144/* same as above but performs the slow path from the async context. Can 145 * be called from the atomic context as well 146 */ 147void mmput_async(struct mm_struct *); 148#endif 149 150/* Grab a reference to a task's mm, if it is not already going away */ 151extern struct mm_struct *get_task_mm(struct task_struct *task); 152/* 153 * Grab a reference to a task's mm, if it is not already going away 154 * and ptrace_may_access with the mode parameter passed to it 155 * succeeds. 156 */ 157extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 158/* Remove the current tasks stale references to the old mm_struct on exit() */ 159extern void exit_mm_release(struct task_struct *, struct mm_struct *); 160/* Remove the current tasks stale references to the old mm_struct on exec() */ 161extern void exec_mm_release(struct task_struct *, struct mm_struct *); 162 163#ifdef CONFIG_MEMCG 164extern void mm_update_next_owner(struct mm_struct *mm); 165#else 166static inline void mm_update_next_owner(struct mm_struct *mm) 167{ 168} 169#endif /* CONFIG_MEMCG */ 170 171#ifdef CONFIG_MMU 172#ifndef arch_get_mmap_end 173#define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) 174#endif 175 176#ifndef arch_get_mmap_base 177#define arch_get_mmap_base(addr, base) (base) 178#endif 179 180extern void arch_pick_mmap_layout(struct mm_struct *mm, 181 const struct rlimit *rlim_stack); 182 183unsigned long 184arch_get_unmapped_area(struct file *filp, unsigned long addr, 185 unsigned long len, unsigned long pgoff, 186 unsigned long flags, vm_flags_t vm_flags); 187unsigned long 188arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 189 unsigned long len, unsigned long pgoff, 190 unsigned long flags, vm_flags_t); 191 192unsigned long mm_get_unmapped_area(struct file *filp, unsigned long addr, 193 unsigned long len, unsigned long pgoff, 194 unsigned long flags); 195 196unsigned long mm_get_unmapped_area_vmflags(struct file *filp, 197 unsigned long addr, 198 unsigned long len, 199 unsigned long pgoff, 200 unsigned long flags, 201 vm_flags_t vm_flags); 202 203unsigned long 204generic_get_unmapped_area(struct file *filp, unsigned long addr, 205 unsigned long len, unsigned long pgoff, 206 unsigned long flags, vm_flags_t vm_flags); 207unsigned long 208generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 209 unsigned long len, unsigned long pgoff, 210 unsigned long flags, vm_flags_t vm_flags); 211#else 212static inline void arch_pick_mmap_layout(struct mm_struct *mm, 213 const struct rlimit *rlim_stack) {} 214#endif 215 216static inline bool in_vfork(struct task_struct *tsk) 217{ 218 bool ret; 219 220 /* 221 * need RCU to access ->real_parent if CLONE_VM was used along with 222 * CLONE_PARENT. 223 * 224 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 225 * imply CLONE_VM 226 * 227 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 228 * ->real_parent is not necessarily the task doing vfork(), so in 229 * theory we can't rely on task_lock() if we want to dereference it. 230 * 231 * And in this case we can't trust the real_parent->mm == tsk->mm 232 * check, it can be false negative. But we do not care, if init or 233 * another oom-unkillable task does this it should blame itself. 234 */ 235 rcu_read_lock(); 236 ret = tsk->vfork_done && 237 rcu_dereference(tsk->real_parent)->mm == tsk->mm; 238 rcu_read_unlock(); 239 240 return ret; 241} 242 243/* 244 * Applies per-task gfp context to the given allocation flags. 245 * PF_MEMALLOC_NOIO implies GFP_NOIO 246 * PF_MEMALLOC_NOFS implies GFP_NOFS 247 * PF_MEMALLOC_PIN implies !GFP_MOVABLE 248 */ 249static inline gfp_t current_gfp_context(gfp_t flags) 250{ 251 unsigned int pflags = READ_ONCE(current->flags); 252 253 if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) { 254 /* 255 * NOIO implies both NOIO and NOFS and it is a weaker context 256 * so always make sure it makes precedence 257 */ 258 if (pflags & PF_MEMALLOC_NOIO) 259 flags &= ~(__GFP_IO | __GFP_FS); 260 else if (pflags & PF_MEMALLOC_NOFS) 261 flags &= ~__GFP_FS; 262 263 if (pflags & PF_MEMALLOC_PIN) 264 flags &= ~__GFP_MOVABLE; 265 } 266 return flags; 267} 268 269#ifdef CONFIG_LOCKDEP 270extern void __fs_reclaim_acquire(unsigned long ip); 271extern void __fs_reclaim_release(unsigned long ip); 272extern void fs_reclaim_acquire(gfp_t gfp_mask); 273extern void fs_reclaim_release(gfp_t gfp_mask); 274#else 275static inline void __fs_reclaim_acquire(unsigned long ip) { } 276static inline void __fs_reclaim_release(unsigned long ip) { } 277static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } 278static inline void fs_reclaim_release(gfp_t gfp_mask) { } 279#endif 280 281/* Any memory-allocation retry loop should use 282 * memalloc_retry_wait(), and pass the flags for the most 283 * constrained allocation attempt that might have failed. 284 * This provides useful documentation of where loops are, 285 * and a central place to fine tune the waiting as the MM 286 * implementation changes. 287 */ 288static inline void memalloc_retry_wait(gfp_t gfp_flags) 289{ 290 /* We use io_schedule_timeout because waiting for memory 291 * typically included waiting for dirty pages to be 292 * written out, which requires IO. 293 */ 294 __set_current_state(TASK_UNINTERRUPTIBLE); 295 gfp_flags = current_gfp_context(gfp_flags); 296 if (gfpflags_allow_blocking(gfp_flags) && 297 !(gfp_flags & __GFP_NORETRY)) 298 /* Probably waited already, no need for much more */ 299 io_schedule_timeout(1); 300 else 301 /* Probably didn't wait, and has now released a lock, 302 * so now is a good time to wait 303 */ 304 io_schedule_timeout(HZ/50); 305} 306 307/** 308 * might_alloc - Mark possible allocation sites 309 * @gfp_mask: gfp_t flags that would be used to allocate 310 * 311 * Similar to might_sleep() and other annotations, this can be used in functions 312 * that might allocate, but often don't. Compiles to nothing without 313 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. 314 */ 315static inline void might_alloc(gfp_t gfp_mask) 316{ 317 fs_reclaim_acquire(gfp_mask); 318 fs_reclaim_release(gfp_mask); 319 320 if (current->flags & PF_MEMALLOC) 321 return; 322 323 might_sleep_if(gfpflags_allow_blocking(gfp_mask)); 324} 325 326/** 327 * memalloc_flags_save - Add a PF_* flag to current->flags, save old value 328 * @flags: Flags to add. 329 * 330 * This allows PF_* flags to be conveniently added, irrespective of current 331 * value, and then the old version restored with memalloc_flags_restore(). 332 */ 333static inline unsigned memalloc_flags_save(unsigned flags) 334{ 335 unsigned oldflags = ~current->flags & flags; 336 current->flags |= flags; 337 return oldflags; 338} 339 340static inline void memalloc_flags_restore(unsigned flags) 341{ 342 current->flags &= ~flags; 343} 344 345/** 346 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. 347 * 348 * This functions marks the beginning of the GFP_NOIO allocation scope. 349 * All further allocations will implicitly drop __GFP_IO flag and so 350 * they are safe for the IO critical section from the allocation recursion 351 * point of view. Use memalloc_noio_restore to end the scope with flags 352 * returned by this function. 353 * 354 * Context: This function is safe to be used from any context. 355 * Return: The saved flags to be passed to memalloc_noio_restore. 356 */ 357static inline unsigned int memalloc_noio_save(void) 358{ 359 return memalloc_flags_save(PF_MEMALLOC_NOIO); 360} 361 362/** 363 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. 364 * @flags: Flags to restore. 365 * 366 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. 367 * Always make sure that the given flags is the return value from the 368 * pairing memalloc_noio_save call. 369 */ 370static inline void memalloc_noio_restore(unsigned int flags) 371{ 372 memalloc_flags_restore(flags); 373} 374 375/** 376 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. 377 * 378 * This functions marks the beginning of the GFP_NOFS allocation scope. 379 * All further allocations will implicitly drop __GFP_FS flag and so 380 * they are safe for the FS critical section from the allocation recursion 381 * point of view. Use memalloc_nofs_restore to end the scope with flags 382 * returned by this function. 383 * 384 * Context: This function is safe to be used from any context. 385 * Return: The saved flags to be passed to memalloc_nofs_restore. 386 */ 387static inline unsigned int memalloc_nofs_save(void) 388{ 389 return memalloc_flags_save(PF_MEMALLOC_NOFS); 390} 391 392/** 393 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. 394 * @flags: Flags to restore. 395 * 396 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. 397 * Always make sure that the given flags is the return value from the 398 * pairing memalloc_nofs_save call. 399 */ 400static inline void memalloc_nofs_restore(unsigned int flags) 401{ 402 memalloc_flags_restore(flags); 403} 404 405/** 406 * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope. 407 * 408 * This function marks the beginning of the __GFP_MEMALLOC allocation scope. 409 * All further allocations will implicitly add the __GFP_MEMALLOC flag, which 410 * prevents entering reclaim and allows access to all memory reserves. This 411 * should only be used when the caller guarantees the allocation will allow more 412 * memory to be freed very shortly, i.e. it needs to allocate some memory in 413 * the process of freeing memory, and cannot reclaim due to potential recursion. 414 * 415 * Users of this scope have to be extremely careful to not deplete the reserves 416 * completely and implement a throttling mechanism which controls the 417 * consumption of the reserve based on the amount of freed memory. Usage of a 418 * pre-allocated pool (e.g. mempool) should be always considered before using 419 * this scope. 420 * 421 * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC 422 * 423 * Context: This function should not be used in an interrupt context as that one 424 * does not give PF_MEMALLOC access to reserves. 425 * See __gfp_pfmemalloc_flags(). 426 * Return: The saved flags to be passed to memalloc_noreclaim_restore. 427 */ 428static inline unsigned int memalloc_noreclaim_save(void) 429{ 430 return memalloc_flags_save(PF_MEMALLOC); 431} 432 433/** 434 * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope. 435 * @flags: Flags to restore. 436 * 437 * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save 438 * function. Always make sure that the given flags is the return value from the 439 * pairing memalloc_noreclaim_save call. 440 */ 441static inline void memalloc_noreclaim_restore(unsigned int flags) 442{ 443 memalloc_flags_restore(flags); 444} 445 446/** 447 * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope. 448 * 449 * This function marks the beginning of the ~__GFP_MOVABLE allocation scope. 450 * All further allocations will implicitly remove the __GFP_MOVABLE flag, which 451 * will constraint the allocations to zones that allow long term pinning, i.e. 452 * not ZONE_MOVABLE zones. 453 * 454 * Return: The saved flags to be passed to memalloc_pin_restore. 455 */ 456static inline unsigned int memalloc_pin_save(void) 457{ 458 return memalloc_flags_save(PF_MEMALLOC_PIN); 459} 460 461/** 462 * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope. 463 * @flags: Flags to restore. 464 * 465 * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function. 466 * Always make sure that the given flags is the return value from the pairing 467 * memalloc_pin_save call. 468 */ 469static inline void memalloc_pin_restore(unsigned int flags) 470{ 471 memalloc_flags_restore(flags); 472} 473 474#ifdef CONFIG_MEMCG 475DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); 476/** 477 * set_active_memcg - Starts the remote memcg charging scope. 478 * @memcg: memcg to charge. 479 * 480 * This function marks the beginning of the remote memcg charging scope. All the 481 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the 482 * given memcg. 483 * 484 * Please, make sure that caller has a reference to the passed memcg structure, 485 * so its lifetime is guaranteed to exceed the scope between two 486 * set_active_memcg() calls. 487 * 488 * NOTE: This function can nest. Users must save the return value and 489 * reset the previous value after their own charging scope is over. 490 */ 491static inline struct mem_cgroup * 492set_active_memcg(struct mem_cgroup *memcg) 493{ 494 struct mem_cgroup *old; 495 496 if (!in_task()) { 497 old = this_cpu_read(int_active_memcg); 498 this_cpu_write(int_active_memcg, memcg); 499 } else { 500 old = current->active_memcg; 501 current->active_memcg = memcg; 502 } 503 504 return old; 505} 506#else 507static inline struct mem_cgroup * 508set_active_memcg(struct mem_cgroup *memcg) 509{ 510 return NULL; 511} 512#endif 513 514#ifdef CONFIG_MEMBARRIER 515enum { 516 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), 517 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), 518 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), 519 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), 520 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), 521 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), 522 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), 523 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), 524}; 525 526enum { 527 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), 528 MEMBARRIER_FLAG_RSEQ = (1U << 1), 529}; 530 531#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 532#include <asm/membarrier.h> 533#endif 534 535static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 536{ 537 /* 538 * The atomic_read() below prevents CSE. The following should 539 * help the compiler generate more efficient code on architectures 540 * where sync_core_before_usermode() is a no-op. 541 */ 542 if (!IS_ENABLED(CONFIG_ARCH_HAS_SYNC_CORE_BEFORE_USERMODE)) 543 return; 544 if (current->mm != mm) 545 return; 546 if (likely(!(atomic_read(&mm->membarrier_state) & 547 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) 548 return; 549 sync_core_before_usermode(); 550} 551 552extern void membarrier_exec_mmap(struct mm_struct *mm); 553 554extern void membarrier_update_current_mm(struct mm_struct *next_mm); 555 556#else 557#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 558static inline void membarrier_arch_switch_mm(struct mm_struct *prev, 559 struct mm_struct *next, 560 struct task_struct *tsk) 561{ 562} 563#endif 564static inline void membarrier_exec_mmap(struct mm_struct *mm) 565{ 566} 567static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 568{ 569} 570static inline void membarrier_update_current_mm(struct mm_struct *next_mm) 571{ 572} 573#endif 574 575#endif /* _LINUX_SCHED_MM_H */