Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct folio_batch;
20
21unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
24static inline void invalidate_remote_inode(struct inode *inode)
25{
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29}
30int invalidate_inode_pages2(struct address_space *mapping);
31int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38int write_inode_now(struct inode *, int sync);
39int filemap_fdatawrite(struct address_space *);
40int filemap_flush(struct address_space *);
41int filemap_flush_nr(struct address_space *mapping, long *nr_to_write);
42int filemap_fdatawait_keep_errors(struct address_space *mapping);
43int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
44int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
45 loff_t start_byte, loff_t end_byte);
46int filemap_invalidate_inode(struct inode *inode, bool flush,
47 loff_t start, loff_t end);
48
49static inline int filemap_fdatawait(struct address_space *mapping)
50{
51 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
52}
53
54bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
55int filemap_write_and_wait_range(struct address_space *mapping,
56 loff_t lstart, loff_t lend);
57int filemap_fdatawrite_range(struct address_space *mapping,
58 loff_t start, loff_t end);
59int filemap_check_errors(struct address_space *mapping);
60void __filemap_set_wb_err(struct address_space *mapping, int err);
61int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
62
63static inline int filemap_write_and_wait(struct address_space *mapping)
64{
65 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
66}
67
68/**
69 * filemap_set_wb_err - set a writeback error on an address_space
70 * @mapping: mapping in which to set writeback error
71 * @err: error to be set in mapping
72 *
73 * When writeback fails in some way, we must record that error so that
74 * userspace can be informed when fsync and the like are called. We endeavor
75 * to report errors on any file that was open at the time of the error. Some
76 * internal callers also need to know when writeback errors have occurred.
77 *
78 * When a writeback error occurs, most filesystems will want to call
79 * filemap_set_wb_err to record the error in the mapping so that it will be
80 * automatically reported whenever fsync is called on the file.
81 */
82static inline void filemap_set_wb_err(struct address_space *mapping, int err)
83{
84 /* Fastpath for common case of no error */
85 if (unlikely(err))
86 __filemap_set_wb_err(mapping, err);
87}
88
89/**
90 * filemap_check_wb_err - has an error occurred since the mark was sampled?
91 * @mapping: mapping to check for writeback errors
92 * @since: previously-sampled errseq_t
93 *
94 * Grab the errseq_t value from the mapping, and see if it has changed "since"
95 * the given value was sampled.
96 *
97 * If it has then report the latest error set, otherwise return 0.
98 */
99static inline int filemap_check_wb_err(struct address_space *mapping,
100 errseq_t since)
101{
102 return errseq_check(&mapping->wb_err, since);
103}
104
105/**
106 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
107 * @mapping: mapping to be sampled
108 *
109 * Writeback errors are always reported relative to a particular sample point
110 * in the past. This function provides those sample points.
111 */
112static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
113{
114 return errseq_sample(&mapping->wb_err);
115}
116
117/**
118 * file_sample_sb_err - sample the current errseq_t to test for later errors
119 * @file: file pointer to be sampled
120 *
121 * Grab the most current superblock-level errseq_t value for the given
122 * struct file.
123 */
124static inline errseq_t file_sample_sb_err(struct file *file)
125{
126 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
127}
128
129/*
130 * Flush file data before changing attributes. Caller must hold any locks
131 * required to prevent further writes to this file until we're done setting
132 * flags.
133 */
134static inline int inode_drain_writes(struct inode *inode)
135{
136 inode_dio_wait(inode);
137 return filemap_write_and_wait(inode->i_mapping);
138}
139
140static inline bool mapping_empty(const struct address_space *mapping)
141{
142 return xa_empty(&mapping->i_pages);
143}
144
145/*
146 * mapping_shrinkable - test if page cache state allows inode reclaim
147 * @mapping: the page cache mapping
148 *
149 * This checks the mapping's cache state for the pupose of inode
150 * reclaim and LRU management.
151 *
152 * The caller is expected to hold the i_lock, but is not required to
153 * hold the i_pages lock, which usually protects cache state. That's
154 * because the i_lock and the list_lru lock that protect the inode and
155 * its LRU state don't nest inside the irq-safe i_pages lock.
156 *
157 * Cache deletions are performed under the i_lock, which ensures that
158 * when an inode goes empty, it will reliably get queued on the LRU.
159 *
160 * Cache additions do not acquire the i_lock and may race with this
161 * check, in which case we'll report the inode as shrinkable when it
162 * has cache pages. This is okay: the shrinker also checks the
163 * refcount and the referenced bit, which will be elevated or set in
164 * the process of adding new cache pages to an inode.
165 */
166static inline bool mapping_shrinkable(const struct address_space *mapping)
167{
168 void *head;
169
170 /*
171 * On highmem systems, there could be lowmem pressure from the
172 * inodes before there is highmem pressure from the page
173 * cache. Make inodes shrinkable regardless of cache state.
174 */
175 if (IS_ENABLED(CONFIG_HIGHMEM))
176 return true;
177
178 /* Cache completely empty? Shrink away. */
179 head = rcu_access_pointer(mapping->i_pages.xa_head);
180 if (!head)
181 return true;
182
183 /*
184 * The xarray stores single offset-0 entries directly in the
185 * head pointer, which allows non-resident page cache entries
186 * to escape the shadow shrinker's list of xarray nodes. The
187 * inode shrinker needs to pick them up under memory pressure.
188 */
189 if (!xa_is_node(head) && xa_is_value(head))
190 return true;
191
192 return false;
193}
194
195/*
196 * Bits in mapping->flags.
197 */
198enum mapping_flags {
199 AS_EIO = 0, /* IO error on async write */
200 AS_ENOSPC = 1, /* ENOSPC on async write */
201 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
202 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
203 AS_EXITING = 4, /* final truncate in progress */
204 /* writeback related tags are not used */
205 AS_NO_WRITEBACK_TAGS = 5,
206 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
207 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
208 folio contents */
209 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
210 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
211 AS_KERNEL_FILE = 10, /* mapping for a fake kernel file that shouldn't
212 account usage to user cgroups */
213 AS_NO_DATA_INTEGRITY = 11, /* no data integrity guarantees */
214 /* Bits 16-25 are used for FOLIO_ORDER */
215 AS_FOLIO_ORDER_BITS = 5,
216 AS_FOLIO_ORDER_MIN = 16,
217 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
218};
219
220#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
221#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
222#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
223#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
224
225/**
226 * mapping_set_error - record a writeback error in the address_space
227 * @mapping: the mapping in which an error should be set
228 * @error: the error to set in the mapping
229 *
230 * When writeback fails in some way, we must record that error so that
231 * userspace can be informed when fsync and the like are called. We endeavor
232 * to report errors on any file that was open at the time of the error. Some
233 * internal callers also need to know when writeback errors have occurred.
234 *
235 * When a writeback error occurs, most filesystems will want to call
236 * mapping_set_error to record the error in the mapping so that it can be
237 * reported when the application calls fsync(2).
238 */
239static inline void mapping_set_error(struct address_space *mapping, int error)
240{
241 if (likely(!error))
242 return;
243
244 /* Record in wb_err for checkers using errseq_t based tracking */
245 __filemap_set_wb_err(mapping, error);
246
247 /* Record it in superblock */
248 if (mapping->host)
249 errseq_set(&mapping->host->i_sb->s_wb_err, error);
250
251 /* Record it in flags for now, for legacy callers */
252 if (error == -ENOSPC)
253 set_bit(AS_ENOSPC, &mapping->flags);
254 else
255 set_bit(AS_EIO, &mapping->flags);
256}
257
258static inline void mapping_set_unevictable(struct address_space *mapping)
259{
260 set_bit(AS_UNEVICTABLE, &mapping->flags);
261}
262
263static inline void mapping_clear_unevictable(struct address_space *mapping)
264{
265 clear_bit(AS_UNEVICTABLE, &mapping->flags);
266}
267
268static inline bool mapping_unevictable(const struct address_space *mapping)
269{
270 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
271}
272
273static inline void mapping_set_exiting(struct address_space *mapping)
274{
275 set_bit(AS_EXITING, &mapping->flags);
276}
277
278static inline int mapping_exiting(const struct address_space *mapping)
279{
280 return test_bit(AS_EXITING, &mapping->flags);
281}
282
283static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
284{
285 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
286}
287
288static inline int mapping_use_writeback_tags(const struct address_space *mapping)
289{
290 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
291}
292
293static inline bool mapping_release_always(const struct address_space *mapping)
294{
295 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
296}
297
298static inline void mapping_set_release_always(struct address_space *mapping)
299{
300 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
301}
302
303static inline void mapping_clear_release_always(struct address_space *mapping)
304{
305 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
306}
307
308static inline bool mapping_stable_writes(const struct address_space *mapping)
309{
310 return test_bit(AS_STABLE_WRITES, &mapping->flags);
311}
312
313static inline void mapping_set_stable_writes(struct address_space *mapping)
314{
315 set_bit(AS_STABLE_WRITES, &mapping->flags);
316}
317
318static inline void mapping_clear_stable_writes(struct address_space *mapping)
319{
320 clear_bit(AS_STABLE_WRITES, &mapping->flags);
321}
322
323static inline void mapping_set_inaccessible(struct address_space *mapping)
324{
325 /*
326 * It's expected inaccessible mappings are also unevictable. Compaction
327 * migrate scanner (isolate_migratepages_block()) relies on this to
328 * reduce page locking.
329 */
330 set_bit(AS_UNEVICTABLE, &mapping->flags);
331 set_bit(AS_INACCESSIBLE, &mapping->flags);
332}
333
334static inline bool mapping_inaccessible(const struct address_space *mapping)
335{
336 return test_bit(AS_INACCESSIBLE, &mapping->flags);
337}
338
339static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
340{
341 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
342}
343
344static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping)
345{
346 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
347}
348
349static inline void mapping_set_no_data_integrity(struct address_space *mapping)
350{
351 set_bit(AS_NO_DATA_INTEGRITY, &mapping->flags);
352}
353
354static inline bool mapping_no_data_integrity(const struct address_space *mapping)
355{
356 return test_bit(AS_NO_DATA_INTEGRITY, &mapping->flags);
357}
358
359static inline gfp_t mapping_gfp_mask(const struct address_space *mapping)
360{
361 return mapping->gfp_mask;
362}
363
364/* Restricts the given gfp_mask to what the mapping allows. */
365static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping,
366 gfp_t gfp_mask)
367{
368 return mapping_gfp_mask(mapping) & gfp_mask;
369}
370
371/*
372 * This is non-atomic. Only to be used before the mapping is activated.
373 * Probably needs a barrier...
374 */
375static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
376{
377 m->gfp_mask = mask;
378}
379
380/*
381 * There are some parts of the kernel which assume that PMD entries
382 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
383 * limit the maximum allocation order to PMD size. I'm not aware of any
384 * assumptions about maximum order if THP are disabled, but 8 seems like
385 * a good order (that's 1MB if you're using 4kB pages)
386 */
387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
388#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
389#else
390#define PREFERRED_MAX_PAGECACHE_ORDER 8
391#endif
392
393/*
394 * xas_split_alloc() does not support arbitrary orders. This implies no
395 * 512MB THP on ARM64 with 64KB base page size.
396 */
397#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
398#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
399
400/*
401 * mapping_max_folio_size_supported() - Check the max folio size supported
402 *
403 * The filesystem should call this function at mount time if there is a
404 * requirement on the folio mapping size in the page cache.
405 */
406static inline size_t mapping_max_folio_size_supported(void)
407{
408 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
409 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
410 return PAGE_SIZE;
411}
412
413/*
414 * mapping_set_folio_order_range() - Set the orders supported by a file.
415 * @mapping: The address space of the file.
416 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
417 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
418 *
419 * The filesystem should call this function in its inode constructor to
420 * indicate which base size (min) and maximum size (max) of folio the VFS
421 * can use to cache the contents of the file. This should only be used
422 * if the filesystem needs special handling of folio sizes (ie there is
423 * something the core cannot know).
424 * Do not tune it based on, eg, i_size.
425 *
426 * Context: This should not be called while the inode is active as it
427 * is non-atomic.
428 */
429static inline void mapping_set_folio_order_range(struct address_space *mapping,
430 unsigned int min,
431 unsigned int max)
432{
433 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
434 return;
435
436 if (min > MAX_PAGECACHE_ORDER)
437 min = MAX_PAGECACHE_ORDER;
438
439 if (max > MAX_PAGECACHE_ORDER)
440 max = MAX_PAGECACHE_ORDER;
441
442 if (max < min)
443 max = min;
444
445 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
446 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
447}
448
449static inline void mapping_set_folio_min_order(struct address_space *mapping,
450 unsigned int min)
451{
452 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
453}
454
455/**
456 * mapping_set_large_folios() - Indicate the file supports large folios.
457 * @mapping: The address space of the file.
458 *
459 * The filesystem should call this function in its inode constructor to
460 * indicate that the VFS can use large folios to cache the contents of
461 * the file.
462 *
463 * Context: This should not be called while the inode is active as it
464 * is non-atomic.
465 */
466static inline void mapping_set_large_folios(struct address_space *mapping)
467{
468 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
469}
470
471static inline unsigned int
472mapping_max_folio_order(const struct address_space *mapping)
473{
474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
475 return 0;
476 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
477}
478
479static inline unsigned int
480mapping_min_folio_order(const struct address_space *mapping)
481{
482 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
483 return 0;
484 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
485}
486
487static inline unsigned long
488mapping_min_folio_nrpages(const struct address_space *mapping)
489{
490 return 1UL << mapping_min_folio_order(mapping);
491}
492
493static inline unsigned long
494mapping_min_folio_nrbytes(const struct address_space *mapping)
495{
496 return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT;
497}
498
499/**
500 * mapping_align_index() - Align index for this mapping.
501 * @mapping: The address_space.
502 * @index: The page index.
503 *
504 * The index of a folio must be naturally aligned. If you are adding a
505 * new folio to the page cache and need to know what index to give it,
506 * call this function.
507 */
508static inline pgoff_t mapping_align_index(const struct address_space *mapping,
509 pgoff_t index)
510{
511 return round_down(index, mapping_min_folio_nrpages(mapping));
512}
513
514/*
515 * Large folio support currently depends on THP. These dependencies are
516 * being worked on but are not yet fixed.
517 */
518static inline bool mapping_large_folio_support(const struct address_space *mapping)
519{
520 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
521 VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON,
522 "Anonymous mapping always supports large folio");
523
524 return mapping_max_folio_order(mapping) > 0;
525}
526
527/* Return the maximum folio size for this pagecache mapping, in bytes. */
528static inline size_t mapping_max_folio_size(const struct address_space *mapping)
529{
530 return PAGE_SIZE << mapping_max_folio_order(mapping);
531}
532
533static inline int filemap_nr_thps(const struct address_space *mapping)
534{
535#ifdef CONFIG_READ_ONLY_THP_FOR_FS
536 return atomic_read(&mapping->nr_thps);
537#else
538 return 0;
539#endif
540}
541
542static inline void filemap_nr_thps_inc(struct address_space *mapping)
543{
544#ifdef CONFIG_READ_ONLY_THP_FOR_FS
545 if (!mapping_large_folio_support(mapping))
546 atomic_inc(&mapping->nr_thps);
547#else
548 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
549#endif
550}
551
552static inline void filemap_nr_thps_dec(struct address_space *mapping)
553{
554#ifdef CONFIG_READ_ONLY_THP_FOR_FS
555 if (!mapping_large_folio_support(mapping))
556 atomic_dec(&mapping->nr_thps);
557#else
558 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
559#endif
560}
561
562struct address_space *folio_mapping(const struct folio *folio);
563
564/**
565 * folio_flush_mapping - Find the file mapping this folio belongs to.
566 * @folio: The folio.
567 *
568 * For folios which are in the page cache, return the mapping that this
569 * page belongs to. Anonymous folios return NULL, even if they're in
570 * the swap cache. Other kinds of folio also return NULL.
571 *
572 * This is ONLY used by architecture cache flushing code. If you aren't
573 * writing cache flushing code, you want either folio_mapping() or
574 * folio_file_mapping().
575 */
576static inline struct address_space *folio_flush_mapping(struct folio *folio)
577{
578 if (unlikely(folio_test_swapcache(folio)))
579 return NULL;
580
581 return folio_mapping(folio);
582}
583
584/**
585 * folio_inode - Get the host inode for this folio.
586 * @folio: The folio.
587 *
588 * For folios which are in the page cache, return the inode that this folio
589 * belongs to.
590 *
591 * Do not call this for folios which aren't in the page cache.
592 */
593static inline struct inode *folio_inode(struct folio *folio)
594{
595 return folio->mapping->host;
596}
597
598/**
599 * folio_attach_private - Attach private data to a folio.
600 * @folio: Folio to attach data to.
601 * @data: Data to attach to folio.
602 *
603 * Attaching private data to a folio increments the page's reference count.
604 * The data must be detached before the folio will be freed.
605 */
606static inline void folio_attach_private(struct folio *folio, void *data)
607{
608 folio_get(folio);
609 folio->private = data;
610 folio_set_private(folio);
611}
612
613/**
614 * folio_change_private - Change private data on a folio.
615 * @folio: Folio to change the data on.
616 * @data: Data to set on the folio.
617 *
618 * Change the private data attached to a folio and return the old
619 * data. The page must previously have had data attached and the data
620 * must be detached before the folio will be freed.
621 *
622 * Return: Data that was previously attached to the folio.
623 */
624static inline void *folio_change_private(struct folio *folio, void *data)
625{
626 void *old = folio_get_private(folio);
627
628 folio->private = data;
629 return old;
630}
631
632/**
633 * folio_detach_private - Detach private data from a folio.
634 * @folio: Folio to detach data from.
635 *
636 * Removes the data that was previously attached to the folio and decrements
637 * the refcount on the page.
638 *
639 * Return: Data that was attached to the folio.
640 */
641static inline void *folio_detach_private(struct folio *folio)
642{
643 void *data = folio_get_private(folio);
644
645 if (!folio_test_private(folio))
646 return NULL;
647 folio_clear_private(folio);
648 folio->private = NULL;
649 folio_put(folio);
650
651 return data;
652}
653
654static inline void attach_page_private(struct page *page, void *data)
655{
656 folio_attach_private(page_folio(page), data);
657}
658
659static inline void *detach_page_private(struct page *page)
660{
661 return folio_detach_private(page_folio(page));
662}
663
664#ifdef CONFIG_NUMA
665struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
666 struct mempolicy *policy);
667#else
668static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
669 struct mempolicy *policy)
670{
671 return folio_alloc_noprof(gfp, order);
672}
673#endif
674
675#define filemap_alloc_folio(...) \
676 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
677
678static inline struct page *__page_cache_alloc(gfp_t gfp)
679{
680 return &filemap_alloc_folio(gfp, 0, NULL)->page;
681}
682
683static inline gfp_t readahead_gfp_mask(struct address_space *x)
684{
685 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
686}
687
688typedef int filler_t(struct file *, struct folio *);
689
690pgoff_t page_cache_next_miss(struct address_space *mapping,
691 pgoff_t index, unsigned long max_scan);
692pgoff_t page_cache_prev_miss(struct address_space *mapping,
693 pgoff_t index, unsigned long max_scan);
694
695/**
696 * typedef fgf_t - Flags for getting folios from the page cache.
697 *
698 * Most users of the page cache will not need to use these flags;
699 * there are convenience functions such as filemap_get_folio() and
700 * filemap_lock_folio(). For users which need more control over exactly
701 * what is done with the folios, these flags to __filemap_get_folio()
702 * are available.
703 *
704 * * %FGP_ACCESSED - The folio will be marked accessed.
705 * * %FGP_LOCK - The folio is returned locked.
706 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
707 * added to the page cache and the VM's LRU list. The folio is
708 * returned locked.
709 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
710 * folio is already in cache. If the folio was allocated, unlock it
711 * before returning so the caller can do the same dance.
712 * * %FGP_WRITE - The folio will be written to by the caller.
713 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
714 * * %FGP_NOWAIT - Don't block on the folio lock.
715 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
716 * * %FGP_DONTCACHE - Uncached buffered IO
717 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
718 * implementation.
719 */
720typedef unsigned int __bitwise fgf_t;
721
722#define FGP_ACCESSED ((__force fgf_t)0x00000001)
723#define FGP_LOCK ((__force fgf_t)0x00000002)
724#define FGP_CREAT ((__force fgf_t)0x00000004)
725#define FGP_WRITE ((__force fgf_t)0x00000008)
726#define FGP_NOFS ((__force fgf_t)0x00000010)
727#define FGP_NOWAIT ((__force fgf_t)0x00000020)
728#define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
729#define FGP_STABLE ((__force fgf_t)0x00000080)
730#define FGP_DONTCACHE ((__force fgf_t)0x00000100)
731#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
732
733#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
734
735static inline unsigned int filemap_get_order(size_t size)
736{
737 unsigned int shift = ilog2(size);
738
739 if (shift <= PAGE_SHIFT)
740 return 0;
741
742 return shift - PAGE_SHIFT;
743}
744
745/**
746 * fgf_set_order - Encode a length in the fgf_t flags.
747 * @size: The suggested size of the folio to create.
748 *
749 * The caller of __filemap_get_folio() can use this to suggest a preferred
750 * size for the folio that is created. If there is already a folio at
751 * the index, it will be returned, no matter what its size. If a folio
752 * is freshly created, it may be of a different size than requested
753 * due to alignment constraints, memory pressure, or the presence of
754 * other folios at nearby indices.
755 */
756static inline fgf_t fgf_set_order(size_t size)
757{
758 unsigned int order = filemap_get_order(size);
759
760 if (!order)
761 return 0;
762 return (__force fgf_t)(order << 26);
763}
764
765void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
766struct folio *__filemap_get_folio_mpol(struct address_space *mapping,
767 pgoff_t index, fgf_t fgf_flags, gfp_t gfp, struct mempolicy *policy);
768struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
769 fgf_t fgp_flags, gfp_t gfp);
770
771static inline struct folio *__filemap_get_folio(struct address_space *mapping,
772 pgoff_t index, fgf_t fgf_flags, gfp_t gfp)
773{
774 return __filemap_get_folio_mpol(mapping, index, fgf_flags, gfp, NULL);
775}
776
777/**
778 * write_begin_get_folio - Get folio for write_begin with flags.
779 * @iocb: The kiocb passed from write_begin (may be NULL).
780 * @mapping: The address space to search.
781 * @index: The page cache index.
782 * @len: Length of data being written.
783 *
784 * This is a helper for filesystem write_begin() implementations.
785 * It wraps __filemap_get_folio(), setting appropriate flags in
786 * the write begin context.
787 *
788 * Return: A folio or an ERR_PTR.
789 */
790static inline struct folio *write_begin_get_folio(const struct kiocb *iocb,
791 struct address_space *mapping, pgoff_t index, size_t len)
792{
793 fgf_t fgp_flags = FGP_WRITEBEGIN;
794
795 fgp_flags |= fgf_set_order(len);
796
797 if (iocb && iocb->ki_flags & IOCB_DONTCACHE)
798 fgp_flags |= FGP_DONTCACHE;
799
800 return __filemap_get_folio(mapping, index, fgp_flags,
801 mapping_gfp_mask(mapping));
802}
803
804/**
805 * filemap_get_folio - Find and get a folio.
806 * @mapping: The address_space to search.
807 * @index: The page index.
808 *
809 * Looks up the page cache entry at @mapping & @index. If a folio is
810 * present, it is returned with an increased refcount.
811 *
812 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
813 * this index. Will not return a shadow, swap or DAX entry.
814 */
815static inline struct folio *filemap_get_folio(struct address_space *mapping,
816 pgoff_t index)
817{
818 return __filemap_get_folio(mapping, index, 0, 0);
819}
820
821/**
822 * filemap_lock_folio - Find and lock a folio.
823 * @mapping: The address_space to search.
824 * @index: The page index.
825 *
826 * Looks up the page cache entry at @mapping & @index. If a folio is
827 * present, it is returned locked with an increased refcount.
828 *
829 * Context: May sleep.
830 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
831 * this index. Will not return a shadow, swap or DAX entry.
832 */
833static inline struct folio *filemap_lock_folio(struct address_space *mapping,
834 pgoff_t index)
835{
836 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
837}
838
839/**
840 * filemap_grab_folio - grab a folio from the page cache
841 * @mapping: The address space to search
842 * @index: The page index
843 *
844 * Looks up the page cache entry at @mapping & @index. If no folio is found,
845 * a new folio is created. The folio is locked, marked as accessed, and
846 * returned.
847 *
848 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
849 * and failed to create a folio.
850 */
851static inline struct folio *filemap_grab_folio(struct address_space *mapping,
852 pgoff_t index)
853{
854 return __filemap_get_folio(mapping, index,
855 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
856 mapping_gfp_mask(mapping));
857}
858
859/**
860 * find_get_page - find and get a page reference
861 * @mapping: the address_space to search
862 * @offset: the page index
863 *
864 * Looks up the page cache slot at @mapping & @offset. If there is a
865 * page cache page, it is returned with an increased refcount.
866 *
867 * Otherwise, %NULL is returned.
868 */
869static inline struct page *find_get_page(struct address_space *mapping,
870 pgoff_t offset)
871{
872 return pagecache_get_page(mapping, offset, 0, 0);
873}
874
875static inline struct page *find_get_page_flags(struct address_space *mapping,
876 pgoff_t offset, fgf_t fgp_flags)
877{
878 return pagecache_get_page(mapping, offset, fgp_flags, 0);
879}
880
881/**
882 * find_lock_page - locate, pin and lock a pagecache page
883 * @mapping: the address_space to search
884 * @index: the page index
885 *
886 * Looks up the page cache entry at @mapping & @index. If there is a
887 * page cache page, it is returned locked and with an increased
888 * refcount.
889 *
890 * Context: May sleep.
891 * Return: A struct page or %NULL if there is no page in the cache for this
892 * index.
893 */
894static inline struct page *find_lock_page(struct address_space *mapping,
895 pgoff_t index)
896{
897 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
898}
899
900/**
901 * find_or_create_page - locate or add a pagecache page
902 * @mapping: the page's address_space
903 * @index: the page's index into the mapping
904 * @gfp_mask: page allocation mode
905 *
906 * Looks up the page cache slot at @mapping & @offset. If there is a
907 * page cache page, it is returned locked and with an increased
908 * refcount.
909 *
910 * If the page is not present, a new page is allocated using @gfp_mask
911 * and added to the page cache and the VM's LRU list. The page is
912 * returned locked and with an increased refcount.
913 *
914 * On memory exhaustion, %NULL is returned.
915 *
916 * find_or_create_page() may sleep, even if @gfp_flags specifies an
917 * atomic allocation!
918 */
919static inline struct page *find_or_create_page(struct address_space *mapping,
920 pgoff_t index, gfp_t gfp_mask)
921{
922 return pagecache_get_page(mapping, index,
923 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
924 gfp_mask);
925}
926
927/**
928 * grab_cache_page_nowait - returns locked page at given index in given cache
929 * @mapping: target address_space
930 * @index: the page index
931 *
932 * Returns locked page at given index in given cache, creating it if
933 * needed, but do not wait if the page is locked or to reclaim memory.
934 * This is intended for speculative data generators, where the data can
935 * be regenerated if the page couldn't be grabbed. This routine should
936 * be safe to call while holding the lock for another page.
937 *
938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939 * and deadlock against the caller's locked page.
940 */
941static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
942 pgoff_t index)
943{
944 return pagecache_get_page(mapping, index,
945 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
946 mapping_gfp_mask(mapping));
947}
948
949/**
950 * folio_next_index - Get the index of the next folio.
951 * @folio: The current folio.
952 *
953 * Return: The index of the folio which follows this folio in the file.
954 */
955static inline pgoff_t folio_next_index(const struct folio *folio)
956{
957 return folio->index + folio_nr_pages(folio);
958}
959
960/**
961 * folio_next_pos - Get the file position of the next folio.
962 * @folio: The current folio.
963 *
964 * Return: The position of the folio which follows this folio in the file.
965 */
966static inline loff_t folio_next_pos(const struct folio *folio)
967{
968 return (loff_t)folio_next_index(folio) << PAGE_SHIFT;
969}
970
971/**
972 * folio_file_page - The page for a particular index.
973 * @folio: The folio which contains this index.
974 * @index: The index we want to look up.
975 *
976 * Sometimes after looking up a folio in the page cache, we need to
977 * obtain the specific page for an index (eg a page fault).
978 *
979 * Return: The page containing the file data for this index.
980 */
981static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
982{
983 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
984}
985
986/**
987 * folio_contains - Does this folio contain this index?
988 * @folio: The folio.
989 * @index: The page index within the file.
990 *
991 * Context: The caller should have the folio locked and ensure
992 * e.g., shmem did not move this folio to the swap cache.
993 * Return: true or false.
994 */
995static inline bool folio_contains(const struct folio *folio, pgoff_t index)
996{
997 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
998 return index - folio->index < folio_nr_pages(folio);
999}
1000
1001unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
1002 pgoff_t end, struct folio_batch *fbatch);
1003unsigned filemap_get_folios_contig(struct address_space *mapping,
1004 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
1005unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
1006 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
1007unsigned filemap_get_folios_dirty(struct address_space *mapping,
1008 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
1009
1010struct folio *read_cache_folio(struct address_space *, pgoff_t index,
1011 filler_t *filler, struct file *file);
1012struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
1013 gfp_t flags);
1014struct page *read_cache_page(struct address_space *, pgoff_t index,
1015 filler_t *filler, struct file *file);
1016extern struct page * read_cache_page_gfp(struct address_space *mapping,
1017 pgoff_t index, gfp_t gfp_mask);
1018
1019static inline struct page *read_mapping_page(struct address_space *mapping,
1020 pgoff_t index, struct file *file)
1021{
1022 return read_cache_page(mapping, index, NULL, file);
1023}
1024
1025static inline struct folio *read_mapping_folio(struct address_space *mapping,
1026 pgoff_t index, struct file *file)
1027{
1028 return read_cache_folio(mapping, index, NULL, file);
1029}
1030
1031/**
1032 * page_pgoff - Calculate the logical page offset of this page.
1033 * @folio: The folio containing this page.
1034 * @page: The page which we need the offset of.
1035 *
1036 * For file pages, this is the offset from the beginning of the file
1037 * in units of PAGE_SIZE. For anonymous pages, this is the offset from
1038 * the beginning of the anon_vma in units of PAGE_SIZE. This will
1039 * return nonsense for KSM pages.
1040 *
1041 * Context: Caller must have a reference on the folio or otherwise
1042 * prevent it from being split or freed.
1043 *
1044 * Return: The offset in units of PAGE_SIZE.
1045 */
1046static inline pgoff_t page_pgoff(const struct folio *folio,
1047 const struct page *page)
1048{
1049 return folio->index + folio_page_idx(folio, page);
1050}
1051
1052/**
1053 * folio_pos - Returns the byte position of this folio in its file.
1054 * @folio: The folio.
1055 */
1056static inline loff_t folio_pos(const struct folio *folio)
1057{
1058 return ((loff_t)folio->index) * PAGE_SIZE;
1059}
1060
1061/*
1062 * Return byte-offset into filesystem object for page.
1063 */
1064static inline loff_t page_offset(struct page *page)
1065{
1066 struct folio *folio = page_folio(page);
1067
1068 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1069}
1070
1071/*
1072 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1073 */
1074static inline pgoff_t folio_pgoff(const struct folio *folio)
1075{
1076 return folio->index;
1077}
1078
1079static inline pgoff_t linear_page_index(const struct vm_area_struct *vma,
1080 const unsigned long address)
1081{
1082 pgoff_t pgoff;
1083 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1084 pgoff += vma->vm_pgoff;
1085 return pgoff;
1086}
1087
1088struct wait_page_key {
1089 struct folio *folio;
1090 int bit_nr;
1091 int page_match;
1092};
1093
1094struct wait_page_queue {
1095 struct folio *folio;
1096 int bit_nr;
1097 wait_queue_entry_t wait;
1098};
1099
1100static inline bool wake_page_match(struct wait_page_queue *wait_page,
1101 struct wait_page_key *key)
1102{
1103 if (wait_page->folio != key->folio)
1104 return false;
1105 key->page_match = 1;
1106
1107 if (wait_page->bit_nr != key->bit_nr)
1108 return false;
1109
1110 return true;
1111}
1112
1113void __folio_lock(struct folio *folio);
1114int __folio_lock_killable(struct folio *folio);
1115vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1116void unlock_page(struct page *page);
1117void folio_unlock(struct folio *folio);
1118
1119/**
1120 * folio_trylock() - Attempt to lock a folio.
1121 * @folio: The folio to attempt to lock.
1122 *
1123 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1124 * when the locks are being taken in the wrong order, or if making
1125 * progress through a batch of folios is more important than processing
1126 * them in order). Usually folio_lock() is the correct function to call.
1127 *
1128 * Context: Any context.
1129 * Return: Whether the lock was successfully acquired.
1130 */
1131static inline bool folio_trylock(struct folio *folio)
1132{
1133 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1134}
1135
1136/*
1137 * Return true if the page was successfully locked
1138 */
1139static inline bool trylock_page(struct page *page)
1140{
1141 return folio_trylock(page_folio(page));
1142}
1143
1144/**
1145 * folio_lock() - Lock this folio.
1146 * @folio: The folio to lock.
1147 *
1148 * The folio lock protects against many things, probably more than it
1149 * should. It is primarily held while a folio is being brought uptodate,
1150 * either from its backing file or from swap. It is also held while a
1151 * folio is being truncated from its address_space, so holding the lock
1152 * is sufficient to keep folio->mapping stable.
1153 *
1154 * The folio lock is also held while write() is modifying the page to
1155 * provide POSIX atomicity guarantees (as long as the write does not
1156 * cross a page boundary). Other modifications to the data in the folio
1157 * do not hold the folio lock and can race with writes, eg DMA and stores
1158 * to mapped pages.
1159 *
1160 * Context: May sleep. If you need to acquire the locks of two or
1161 * more folios, they must be in order of ascending index, if they are
1162 * in the same address_space. If they are in different address_spaces,
1163 * acquire the lock of the folio which belongs to the address_space which
1164 * has the lowest address in memory first.
1165 */
1166static inline void folio_lock(struct folio *folio)
1167{
1168 might_sleep();
1169 if (!folio_trylock(folio))
1170 __folio_lock(folio);
1171}
1172
1173/**
1174 * lock_page() - Lock the folio containing this page.
1175 * @page: The page to lock.
1176 *
1177 * See folio_lock() for a description of what the lock protects.
1178 * This is a legacy function and new code should probably use folio_lock()
1179 * instead.
1180 *
1181 * Context: May sleep. Pages in the same folio share a lock, so do not
1182 * attempt to lock two pages which share a folio.
1183 */
1184static inline void lock_page(struct page *page)
1185{
1186 struct folio *folio;
1187 might_sleep();
1188
1189 folio = page_folio(page);
1190 if (!folio_trylock(folio))
1191 __folio_lock(folio);
1192}
1193
1194/**
1195 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1196 * @folio: The folio to lock.
1197 *
1198 * Attempts to lock the folio, like folio_lock(), except that the sleep
1199 * to acquire the lock is interruptible by a fatal signal.
1200 *
1201 * Context: May sleep; see folio_lock().
1202 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1203 */
1204static inline int folio_lock_killable(struct folio *folio)
1205{
1206 might_sleep();
1207 if (!folio_trylock(folio))
1208 return __folio_lock_killable(folio);
1209 return 0;
1210}
1211
1212/*
1213 * folio_lock_or_retry - Lock the folio, unless this would block and the
1214 * caller indicated that it can handle a retry.
1215 *
1216 * Return value and mmap_lock implications depend on flags; see
1217 * __folio_lock_or_retry().
1218 */
1219static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1220 struct vm_fault *vmf)
1221{
1222 might_sleep();
1223 if (!folio_trylock(folio))
1224 return __folio_lock_or_retry(folio, vmf);
1225 return 0;
1226}
1227
1228/*
1229 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1230 * and should not be used directly.
1231 */
1232void folio_wait_bit(struct folio *folio, int bit_nr);
1233int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1234
1235/*
1236 * Wait for a folio to be unlocked.
1237 *
1238 * This must be called with the caller "holding" the folio,
1239 * ie with increased folio reference count so that the folio won't
1240 * go away during the wait.
1241 */
1242static inline void folio_wait_locked(struct folio *folio)
1243{
1244 if (folio_test_locked(folio))
1245 folio_wait_bit(folio, PG_locked);
1246}
1247
1248static inline int folio_wait_locked_killable(struct folio *folio)
1249{
1250 if (!folio_test_locked(folio))
1251 return 0;
1252 return folio_wait_bit_killable(folio, PG_locked);
1253}
1254
1255void folio_end_read(struct folio *folio, bool success);
1256void wait_on_page_writeback(struct page *page);
1257void folio_wait_writeback(struct folio *folio);
1258int folio_wait_writeback_killable(struct folio *folio);
1259void end_page_writeback(struct page *page);
1260void folio_end_writeback(struct folio *folio);
1261void folio_end_writeback_no_dropbehind(struct folio *folio);
1262void folio_end_dropbehind(struct folio *folio);
1263void folio_wait_stable(struct folio *folio);
1264void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1265void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1266void __folio_cancel_dirty(struct folio *folio);
1267static inline void folio_cancel_dirty(struct folio *folio)
1268{
1269 /* Avoid atomic ops, locking, etc. when not actually needed. */
1270 if (folio_test_dirty(folio))
1271 __folio_cancel_dirty(folio);
1272}
1273bool folio_clear_dirty_for_io(struct folio *folio);
1274bool clear_page_dirty_for_io(struct page *page);
1275void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1276bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1277
1278#ifdef CONFIG_MIGRATION
1279int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1280 struct folio *src, enum migrate_mode mode);
1281#else
1282#define filemap_migrate_folio NULL
1283#endif
1284void folio_end_private_2(struct folio *folio);
1285void folio_wait_private_2(struct folio *folio);
1286int folio_wait_private_2_killable(struct folio *folio);
1287
1288/*
1289 * Fault in userspace address range.
1290 */
1291size_t fault_in_writeable(char __user *uaddr, size_t size);
1292size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1293size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1294size_t fault_in_readable(const char __user *uaddr, size_t size);
1295
1296int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1297 pgoff_t index, gfp_t gfp);
1298int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1299 pgoff_t index, gfp_t gfp);
1300void filemap_remove_folio(struct folio *folio);
1301void __filemap_remove_folio(struct folio *folio, void *shadow);
1302void replace_page_cache_folio(struct folio *old, struct folio *new);
1303void delete_from_page_cache_batch(struct address_space *mapping,
1304 struct folio_batch *fbatch);
1305bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1306loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1307 int whence);
1308
1309/* Must be non-static for BPF error injection */
1310int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1311 pgoff_t index, gfp_t gfp, void **shadowp);
1312
1313bool filemap_range_has_writeback(struct address_space *mapping,
1314 loff_t start_byte, loff_t end_byte);
1315
1316/**
1317 * filemap_range_needs_writeback - check if range potentially needs writeback
1318 * @mapping: address space within which to check
1319 * @start_byte: offset in bytes where the range starts
1320 * @end_byte: offset in bytes where the range ends (inclusive)
1321 *
1322 * Find at least one page in the range supplied, usually used to check if
1323 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1324 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1325 * filemap_write_and_wait_range() before proceeding.
1326 *
1327 * Return: %true if the caller should do filemap_write_and_wait_range() before
1328 * doing O_DIRECT to a page in this range, %false otherwise.
1329 */
1330static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1331 loff_t start_byte,
1332 loff_t end_byte)
1333{
1334 if (!mapping->nrpages)
1335 return false;
1336 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1337 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1338 return false;
1339 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1340}
1341
1342/**
1343 * struct readahead_control - Describes a readahead request.
1344 *
1345 * A readahead request is for consecutive pages. Filesystems which
1346 * implement the ->readahead method should call readahead_folio() or
1347 * __readahead_batch() in a loop and attempt to start reads into each
1348 * folio in the request.
1349 *
1350 * Most of the fields in this struct are private and should be accessed
1351 * by the functions below.
1352 *
1353 * @file: The file, used primarily by network filesystems for authentication.
1354 * May be NULL if invoked internally by the filesystem.
1355 * @mapping: Readahead this filesystem object.
1356 * @ra: File readahead state. May be NULL.
1357 */
1358struct readahead_control {
1359 struct file *file;
1360 struct address_space *mapping;
1361 struct file_ra_state *ra;
1362/* private: use the readahead_* accessors instead */
1363 pgoff_t _index;
1364 unsigned int _nr_pages;
1365 unsigned int _batch_count;
1366 bool dropbehind;
1367 bool _workingset;
1368 unsigned long _pflags;
1369};
1370
1371#define DEFINE_READAHEAD(ractl, f, r, m, i) \
1372 struct readahead_control ractl = { \
1373 .file = f, \
1374 .mapping = m, \
1375 .ra = r, \
1376 ._index = i, \
1377 }
1378
1379#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1380
1381void page_cache_ra_unbounded(struct readahead_control *,
1382 unsigned long nr_to_read, unsigned long lookahead_count);
1383void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1384void page_cache_async_ra(struct readahead_control *, struct folio *,
1385 unsigned long req_count);
1386void readahead_expand(struct readahead_control *ractl,
1387 loff_t new_start, size_t new_len);
1388
1389/**
1390 * page_cache_sync_readahead - generic file readahead
1391 * @mapping: address_space which holds the pagecache and I/O vectors
1392 * @ra: file_ra_state which holds the readahead state
1393 * @file: Used by the filesystem for authentication.
1394 * @index: Index of first page to be read.
1395 * @req_count: Total number of pages being read by the caller.
1396 *
1397 * page_cache_sync_readahead() should be called when a cache miss happened:
1398 * it will submit the read. The readahead logic may decide to piggyback more
1399 * pages onto the read request if access patterns suggest it will improve
1400 * performance.
1401 */
1402static inline
1403void page_cache_sync_readahead(struct address_space *mapping,
1404 struct file_ra_state *ra, struct file *file, pgoff_t index,
1405 unsigned long req_count)
1406{
1407 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1408 page_cache_sync_ra(&ractl, req_count);
1409}
1410
1411/**
1412 * page_cache_async_readahead - file readahead for marked pages
1413 * @mapping: address_space which holds the pagecache and I/O vectors
1414 * @ra: file_ra_state which holds the readahead state
1415 * @file: Used by the filesystem for authentication.
1416 * @folio: The folio which triggered the readahead call.
1417 * @req_count: Total number of pages being read by the caller.
1418 *
1419 * page_cache_async_readahead() should be called when a page is used which
1420 * is marked as PageReadahead; this is a marker to suggest that the application
1421 * has used up enough of the readahead window that we should start pulling in
1422 * more pages.
1423 */
1424static inline
1425void page_cache_async_readahead(struct address_space *mapping,
1426 struct file_ra_state *ra, struct file *file,
1427 struct folio *folio, unsigned long req_count)
1428{
1429 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1430 page_cache_async_ra(&ractl, folio, req_count);
1431}
1432
1433static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1434{
1435 struct folio *folio;
1436
1437 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1438 ractl->_nr_pages -= ractl->_batch_count;
1439 ractl->_index += ractl->_batch_count;
1440
1441 if (!ractl->_nr_pages) {
1442 ractl->_batch_count = 0;
1443 return NULL;
1444 }
1445
1446 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1447 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1448 ractl->_batch_count = folio_nr_pages(folio);
1449
1450 return folio;
1451}
1452
1453/**
1454 * readahead_folio - Get the next folio to read.
1455 * @ractl: The current readahead request.
1456 *
1457 * Context: The folio is locked. The caller should unlock the folio once
1458 * all I/O to that folio has completed.
1459 * Return: A pointer to the next folio, or %NULL if we are done.
1460 */
1461static inline struct folio *readahead_folio(struct readahead_control *ractl)
1462{
1463 struct folio *folio = __readahead_folio(ractl);
1464
1465 if (folio)
1466 folio_put(folio);
1467 return folio;
1468}
1469
1470static inline unsigned int __readahead_batch(struct readahead_control *rac,
1471 struct page **array, unsigned int array_sz)
1472{
1473 unsigned int i = 0;
1474 XA_STATE(xas, &rac->mapping->i_pages, 0);
1475 struct folio *folio;
1476
1477 BUG_ON(rac->_batch_count > rac->_nr_pages);
1478 rac->_nr_pages -= rac->_batch_count;
1479 rac->_index += rac->_batch_count;
1480 rac->_batch_count = 0;
1481
1482 xas_set(&xas, rac->_index);
1483 rcu_read_lock();
1484 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1485 if (xas_retry(&xas, folio))
1486 continue;
1487 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1488 array[i++] = folio_page(folio, 0);
1489 rac->_batch_count += folio_nr_pages(folio);
1490 if (i == array_sz)
1491 break;
1492 }
1493 rcu_read_unlock();
1494
1495 return i;
1496}
1497
1498/**
1499 * readahead_pos - The byte offset into the file of this readahead request.
1500 * @rac: The readahead request.
1501 */
1502static inline loff_t readahead_pos(const struct readahead_control *rac)
1503{
1504 return (loff_t)rac->_index * PAGE_SIZE;
1505}
1506
1507/**
1508 * readahead_length - The number of bytes in this readahead request.
1509 * @rac: The readahead request.
1510 */
1511static inline size_t readahead_length(const struct readahead_control *rac)
1512{
1513 return rac->_nr_pages * PAGE_SIZE;
1514}
1515
1516/**
1517 * readahead_index - The index of the first page in this readahead request.
1518 * @rac: The readahead request.
1519 */
1520static inline pgoff_t readahead_index(const struct readahead_control *rac)
1521{
1522 return rac->_index;
1523}
1524
1525/**
1526 * readahead_count - The number of pages in this readahead request.
1527 * @rac: The readahead request.
1528 */
1529static inline unsigned int readahead_count(const struct readahead_control *rac)
1530{
1531 return rac->_nr_pages;
1532}
1533
1534/**
1535 * readahead_batch_length - The number of bytes in the current batch.
1536 * @rac: The readahead request.
1537 */
1538static inline size_t readahead_batch_length(const struct readahead_control *rac)
1539{
1540 return rac->_batch_count * PAGE_SIZE;
1541}
1542
1543static inline unsigned long dir_pages(const struct inode *inode)
1544{
1545 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1546 PAGE_SHIFT;
1547}
1548
1549/**
1550 * folio_mkwrite_check_truncate - check if folio was truncated
1551 * @folio: the folio to check
1552 * @inode: the inode to check the folio against
1553 *
1554 * Return: the number of bytes in the folio up to EOF,
1555 * or -EFAULT if the folio was truncated.
1556 */
1557static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio,
1558 const struct inode *inode)
1559{
1560 loff_t size = i_size_read(inode);
1561 pgoff_t index = size >> PAGE_SHIFT;
1562 size_t offset = offset_in_folio(folio, size);
1563
1564 if (!folio->mapping)
1565 return -EFAULT;
1566
1567 /* folio is wholly inside EOF */
1568 if (folio_next_index(folio) - 1 < index)
1569 return folio_size(folio);
1570 /* folio is wholly past EOF */
1571 if (folio->index > index || !offset)
1572 return -EFAULT;
1573 /* folio is partially inside EOF */
1574 return offset;
1575}
1576
1577/**
1578 * i_blocks_per_folio - How many blocks fit in this folio.
1579 * @inode: The inode which contains the blocks.
1580 * @folio: The folio.
1581 *
1582 * If the block size is larger than the size of this folio, return zero.
1583 *
1584 * Context: The caller should hold a refcount on the folio to prevent it
1585 * from being split.
1586 * Return: The number of filesystem blocks covered by this folio.
1587 */
1588static inline
1589unsigned int i_blocks_per_folio(const struct inode *inode,
1590 const struct folio *folio)
1591{
1592 return folio_size(folio) >> inode->i_blkbits;
1593}
1594#endif /* _LINUX_PAGEMAP_H */