at v6.19-rc7 1594 lines 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct folio_batch; 20 21unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24static inline void invalidate_remote_inode(struct inode *inode) 25{ 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29} 30int invalidate_inode_pages2(struct address_space *mapping); 31int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38int write_inode_now(struct inode *, int sync); 39int filemap_fdatawrite(struct address_space *); 40int filemap_flush(struct address_space *); 41int filemap_flush_nr(struct address_space *mapping, long *nr_to_write); 42int filemap_fdatawait_keep_errors(struct address_space *mapping); 43int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 44int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 45 loff_t start_byte, loff_t end_byte); 46int filemap_invalidate_inode(struct inode *inode, bool flush, 47 loff_t start, loff_t end); 48 49static inline int filemap_fdatawait(struct address_space *mapping) 50{ 51 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 52} 53 54bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 55int filemap_write_and_wait_range(struct address_space *mapping, 56 loff_t lstart, loff_t lend); 57int filemap_fdatawrite_range(struct address_space *mapping, 58 loff_t start, loff_t end); 59int filemap_check_errors(struct address_space *mapping); 60void __filemap_set_wb_err(struct address_space *mapping, int err); 61int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 62 63static inline int filemap_write_and_wait(struct address_space *mapping) 64{ 65 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 66} 67 68/** 69 * filemap_set_wb_err - set a writeback error on an address_space 70 * @mapping: mapping in which to set writeback error 71 * @err: error to be set in mapping 72 * 73 * When writeback fails in some way, we must record that error so that 74 * userspace can be informed when fsync and the like are called. We endeavor 75 * to report errors on any file that was open at the time of the error. Some 76 * internal callers also need to know when writeback errors have occurred. 77 * 78 * When a writeback error occurs, most filesystems will want to call 79 * filemap_set_wb_err to record the error in the mapping so that it will be 80 * automatically reported whenever fsync is called on the file. 81 */ 82static inline void filemap_set_wb_err(struct address_space *mapping, int err) 83{ 84 /* Fastpath for common case of no error */ 85 if (unlikely(err)) 86 __filemap_set_wb_err(mapping, err); 87} 88 89/** 90 * filemap_check_wb_err - has an error occurred since the mark was sampled? 91 * @mapping: mapping to check for writeback errors 92 * @since: previously-sampled errseq_t 93 * 94 * Grab the errseq_t value from the mapping, and see if it has changed "since" 95 * the given value was sampled. 96 * 97 * If it has then report the latest error set, otherwise return 0. 98 */ 99static inline int filemap_check_wb_err(struct address_space *mapping, 100 errseq_t since) 101{ 102 return errseq_check(&mapping->wb_err, since); 103} 104 105/** 106 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 107 * @mapping: mapping to be sampled 108 * 109 * Writeback errors are always reported relative to a particular sample point 110 * in the past. This function provides those sample points. 111 */ 112static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 113{ 114 return errseq_sample(&mapping->wb_err); 115} 116 117/** 118 * file_sample_sb_err - sample the current errseq_t to test for later errors 119 * @file: file pointer to be sampled 120 * 121 * Grab the most current superblock-level errseq_t value for the given 122 * struct file. 123 */ 124static inline errseq_t file_sample_sb_err(struct file *file) 125{ 126 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 127} 128 129/* 130 * Flush file data before changing attributes. Caller must hold any locks 131 * required to prevent further writes to this file until we're done setting 132 * flags. 133 */ 134static inline int inode_drain_writes(struct inode *inode) 135{ 136 inode_dio_wait(inode); 137 return filemap_write_and_wait(inode->i_mapping); 138} 139 140static inline bool mapping_empty(const struct address_space *mapping) 141{ 142 return xa_empty(&mapping->i_pages); 143} 144 145/* 146 * mapping_shrinkable - test if page cache state allows inode reclaim 147 * @mapping: the page cache mapping 148 * 149 * This checks the mapping's cache state for the pupose of inode 150 * reclaim and LRU management. 151 * 152 * The caller is expected to hold the i_lock, but is not required to 153 * hold the i_pages lock, which usually protects cache state. That's 154 * because the i_lock and the list_lru lock that protect the inode and 155 * its LRU state don't nest inside the irq-safe i_pages lock. 156 * 157 * Cache deletions are performed under the i_lock, which ensures that 158 * when an inode goes empty, it will reliably get queued on the LRU. 159 * 160 * Cache additions do not acquire the i_lock and may race with this 161 * check, in which case we'll report the inode as shrinkable when it 162 * has cache pages. This is okay: the shrinker also checks the 163 * refcount and the referenced bit, which will be elevated or set in 164 * the process of adding new cache pages to an inode. 165 */ 166static inline bool mapping_shrinkable(const struct address_space *mapping) 167{ 168 void *head; 169 170 /* 171 * On highmem systems, there could be lowmem pressure from the 172 * inodes before there is highmem pressure from the page 173 * cache. Make inodes shrinkable regardless of cache state. 174 */ 175 if (IS_ENABLED(CONFIG_HIGHMEM)) 176 return true; 177 178 /* Cache completely empty? Shrink away. */ 179 head = rcu_access_pointer(mapping->i_pages.xa_head); 180 if (!head) 181 return true; 182 183 /* 184 * The xarray stores single offset-0 entries directly in the 185 * head pointer, which allows non-resident page cache entries 186 * to escape the shadow shrinker's list of xarray nodes. The 187 * inode shrinker needs to pick them up under memory pressure. 188 */ 189 if (!xa_is_node(head) && xa_is_value(head)) 190 return true; 191 192 return false; 193} 194 195/* 196 * Bits in mapping->flags. 197 */ 198enum mapping_flags { 199 AS_EIO = 0, /* IO error on async write */ 200 AS_ENOSPC = 1, /* ENOSPC on async write */ 201 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 202 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 203 AS_EXITING = 4, /* final truncate in progress */ 204 /* writeback related tags are not used */ 205 AS_NO_WRITEBACK_TAGS = 5, 206 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 207 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 208 folio contents */ 209 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 210 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9, 211 AS_KERNEL_FILE = 10, /* mapping for a fake kernel file that shouldn't 212 account usage to user cgroups */ 213 AS_NO_DATA_INTEGRITY = 11, /* no data integrity guarantees */ 214 /* Bits 16-25 are used for FOLIO_ORDER */ 215 AS_FOLIO_ORDER_BITS = 5, 216 AS_FOLIO_ORDER_MIN = 16, 217 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 218}; 219 220#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 221#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 222#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 223#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 224 225/** 226 * mapping_set_error - record a writeback error in the address_space 227 * @mapping: the mapping in which an error should be set 228 * @error: the error to set in the mapping 229 * 230 * When writeback fails in some way, we must record that error so that 231 * userspace can be informed when fsync and the like are called. We endeavor 232 * to report errors on any file that was open at the time of the error. Some 233 * internal callers also need to know when writeback errors have occurred. 234 * 235 * When a writeback error occurs, most filesystems will want to call 236 * mapping_set_error to record the error in the mapping so that it can be 237 * reported when the application calls fsync(2). 238 */ 239static inline void mapping_set_error(struct address_space *mapping, int error) 240{ 241 if (likely(!error)) 242 return; 243 244 /* Record in wb_err for checkers using errseq_t based tracking */ 245 __filemap_set_wb_err(mapping, error); 246 247 /* Record it in superblock */ 248 if (mapping->host) 249 errseq_set(&mapping->host->i_sb->s_wb_err, error); 250 251 /* Record it in flags for now, for legacy callers */ 252 if (error == -ENOSPC) 253 set_bit(AS_ENOSPC, &mapping->flags); 254 else 255 set_bit(AS_EIO, &mapping->flags); 256} 257 258static inline void mapping_set_unevictable(struct address_space *mapping) 259{ 260 set_bit(AS_UNEVICTABLE, &mapping->flags); 261} 262 263static inline void mapping_clear_unevictable(struct address_space *mapping) 264{ 265 clear_bit(AS_UNEVICTABLE, &mapping->flags); 266} 267 268static inline bool mapping_unevictable(const struct address_space *mapping) 269{ 270 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 271} 272 273static inline void mapping_set_exiting(struct address_space *mapping) 274{ 275 set_bit(AS_EXITING, &mapping->flags); 276} 277 278static inline int mapping_exiting(const struct address_space *mapping) 279{ 280 return test_bit(AS_EXITING, &mapping->flags); 281} 282 283static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 284{ 285 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 286} 287 288static inline int mapping_use_writeback_tags(const struct address_space *mapping) 289{ 290 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 291} 292 293static inline bool mapping_release_always(const struct address_space *mapping) 294{ 295 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 296} 297 298static inline void mapping_set_release_always(struct address_space *mapping) 299{ 300 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 301} 302 303static inline void mapping_clear_release_always(struct address_space *mapping) 304{ 305 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 306} 307 308static inline bool mapping_stable_writes(const struct address_space *mapping) 309{ 310 return test_bit(AS_STABLE_WRITES, &mapping->flags); 311} 312 313static inline void mapping_set_stable_writes(struct address_space *mapping) 314{ 315 set_bit(AS_STABLE_WRITES, &mapping->flags); 316} 317 318static inline void mapping_clear_stable_writes(struct address_space *mapping) 319{ 320 clear_bit(AS_STABLE_WRITES, &mapping->flags); 321} 322 323static inline void mapping_set_inaccessible(struct address_space *mapping) 324{ 325 /* 326 * It's expected inaccessible mappings are also unevictable. Compaction 327 * migrate scanner (isolate_migratepages_block()) relies on this to 328 * reduce page locking. 329 */ 330 set_bit(AS_UNEVICTABLE, &mapping->flags); 331 set_bit(AS_INACCESSIBLE, &mapping->flags); 332} 333 334static inline bool mapping_inaccessible(const struct address_space *mapping) 335{ 336 return test_bit(AS_INACCESSIBLE, &mapping->flags); 337} 338 339static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping) 340{ 341 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 342} 343 344static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping) 345{ 346 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 347} 348 349static inline void mapping_set_no_data_integrity(struct address_space *mapping) 350{ 351 set_bit(AS_NO_DATA_INTEGRITY, &mapping->flags); 352} 353 354static inline bool mapping_no_data_integrity(const struct address_space *mapping) 355{ 356 return test_bit(AS_NO_DATA_INTEGRITY, &mapping->flags); 357} 358 359static inline gfp_t mapping_gfp_mask(const struct address_space *mapping) 360{ 361 return mapping->gfp_mask; 362} 363 364/* Restricts the given gfp_mask to what the mapping allows. */ 365static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping, 366 gfp_t gfp_mask) 367{ 368 return mapping_gfp_mask(mapping) & gfp_mask; 369} 370 371/* 372 * This is non-atomic. Only to be used before the mapping is activated. 373 * Probably needs a barrier... 374 */ 375static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 376{ 377 m->gfp_mask = mask; 378} 379 380/* 381 * There are some parts of the kernel which assume that PMD entries 382 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 383 * limit the maximum allocation order to PMD size. I'm not aware of any 384 * assumptions about maximum order if THP are disabled, but 8 seems like 385 * a good order (that's 1MB if you're using 4kB pages) 386 */ 387#ifdef CONFIG_TRANSPARENT_HUGEPAGE 388#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 389#else 390#define PREFERRED_MAX_PAGECACHE_ORDER 8 391#endif 392 393/* 394 * xas_split_alloc() does not support arbitrary orders. This implies no 395 * 512MB THP on ARM64 with 64KB base page size. 396 */ 397#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 398#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 399 400/* 401 * mapping_max_folio_size_supported() - Check the max folio size supported 402 * 403 * The filesystem should call this function at mount time if there is a 404 * requirement on the folio mapping size in the page cache. 405 */ 406static inline size_t mapping_max_folio_size_supported(void) 407{ 408 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 409 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 410 return PAGE_SIZE; 411} 412 413/* 414 * mapping_set_folio_order_range() - Set the orders supported by a file. 415 * @mapping: The address space of the file. 416 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 417 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 418 * 419 * The filesystem should call this function in its inode constructor to 420 * indicate which base size (min) and maximum size (max) of folio the VFS 421 * can use to cache the contents of the file. This should only be used 422 * if the filesystem needs special handling of folio sizes (ie there is 423 * something the core cannot know). 424 * Do not tune it based on, eg, i_size. 425 * 426 * Context: This should not be called while the inode is active as it 427 * is non-atomic. 428 */ 429static inline void mapping_set_folio_order_range(struct address_space *mapping, 430 unsigned int min, 431 unsigned int max) 432{ 433 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 434 return; 435 436 if (min > MAX_PAGECACHE_ORDER) 437 min = MAX_PAGECACHE_ORDER; 438 439 if (max > MAX_PAGECACHE_ORDER) 440 max = MAX_PAGECACHE_ORDER; 441 442 if (max < min) 443 max = min; 444 445 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 446 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 447} 448 449static inline void mapping_set_folio_min_order(struct address_space *mapping, 450 unsigned int min) 451{ 452 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 453} 454 455/** 456 * mapping_set_large_folios() - Indicate the file supports large folios. 457 * @mapping: The address space of the file. 458 * 459 * The filesystem should call this function in its inode constructor to 460 * indicate that the VFS can use large folios to cache the contents of 461 * the file. 462 * 463 * Context: This should not be called while the inode is active as it 464 * is non-atomic. 465 */ 466static inline void mapping_set_large_folios(struct address_space *mapping) 467{ 468 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 469} 470 471static inline unsigned int 472mapping_max_folio_order(const struct address_space *mapping) 473{ 474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 475 return 0; 476 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 477} 478 479static inline unsigned int 480mapping_min_folio_order(const struct address_space *mapping) 481{ 482 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 483 return 0; 484 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 485} 486 487static inline unsigned long 488mapping_min_folio_nrpages(const struct address_space *mapping) 489{ 490 return 1UL << mapping_min_folio_order(mapping); 491} 492 493static inline unsigned long 494mapping_min_folio_nrbytes(const struct address_space *mapping) 495{ 496 return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT; 497} 498 499/** 500 * mapping_align_index() - Align index for this mapping. 501 * @mapping: The address_space. 502 * @index: The page index. 503 * 504 * The index of a folio must be naturally aligned. If you are adding a 505 * new folio to the page cache and need to know what index to give it, 506 * call this function. 507 */ 508static inline pgoff_t mapping_align_index(const struct address_space *mapping, 509 pgoff_t index) 510{ 511 return round_down(index, mapping_min_folio_nrpages(mapping)); 512} 513 514/* 515 * Large folio support currently depends on THP. These dependencies are 516 * being worked on but are not yet fixed. 517 */ 518static inline bool mapping_large_folio_support(const struct address_space *mapping) 519{ 520 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 521 VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON, 522 "Anonymous mapping always supports large folio"); 523 524 return mapping_max_folio_order(mapping) > 0; 525} 526 527/* Return the maximum folio size for this pagecache mapping, in bytes. */ 528static inline size_t mapping_max_folio_size(const struct address_space *mapping) 529{ 530 return PAGE_SIZE << mapping_max_folio_order(mapping); 531} 532 533static inline int filemap_nr_thps(const struct address_space *mapping) 534{ 535#ifdef CONFIG_READ_ONLY_THP_FOR_FS 536 return atomic_read(&mapping->nr_thps); 537#else 538 return 0; 539#endif 540} 541 542static inline void filemap_nr_thps_inc(struct address_space *mapping) 543{ 544#ifdef CONFIG_READ_ONLY_THP_FOR_FS 545 if (!mapping_large_folio_support(mapping)) 546 atomic_inc(&mapping->nr_thps); 547#else 548 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 549#endif 550} 551 552static inline void filemap_nr_thps_dec(struct address_space *mapping) 553{ 554#ifdef CONFIG_READ_ONLY_THP_FOR_FS 555 if (!mapping_large_folio_support(mapping)) 556 atomic_dec(&mapping->nr_thps); 557#else 558 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 559#endif 560} 561 562struct address_space *folio_mapping(const struct folio *folio); 563 564/** 565 * folio_flush_mapping - Find the file mapping this folio belongs to. 566 * @folio: The folio. 567 * 568 * For folios which are in the page cache, return the mapping that this 569 * page belongs to. Anonymous folios return NULL, even if they're in 570 * the swap cache. Other kinds of folio also return NULL. 571 * 572 * This is ONLY used by architecture cache flushing code. If you aren't 573 * writing cache flushing code, you want either folio_mapping() or 574 * folio_file_mapping(). 575 */ 576static inline struct address_space *folio_flush_mapping(struct folio *folio) 577{ 578 if (unlikely(folio_test_swapcache(folio))) 579 return NULL; 580 581 return folio_mapping(folio); 582} 583 584/** 585 * folio_inode - Get the host inode for this folio. 586 * @folio: The folio. 587 * 588 * For folios which are in the page cache, return the inode that this folio 589 * belongs to. 590 * 591 * Do not call this for folios which aren't in the page cache. 592 */ 593static inline struct inode *folio_inode(struct folio *folio) 594{ 595 return folio->mapping->host; 596} 597 598/** 599 * folio_attach_private - Attach private data to a folio. 600 * @folio: Folio to attach data to. 601 * @data: Data to attach to folio. 602 * 603 * Attaching private data to a folio increments the page's reference count. 604 * The data must be detached before the folio will be freed. 605 */ 606static inline void folio_attach_private(struct folio *folio, void *data) 607{ 608 folio_get(folio); 609 folio->private = data; 610 folio_set_private(folio); 611} 612 613/** 614 * folio_change_private - Change private data on a folio. 615 * @folio: Folio to change the data on. 616 * @data: Data to set on the folio. 617 * 618 * Change the private data attached to a folio and return the old 619 * data. The page must previously have had data attached and the data 620 * must be detached before the folio will be freed. 621 * 622 * Return: Data that was previously attached to the folio. 623 */ 624static inline void *folio_change_private(struct folio *folio, void *data) 625{ 626 void *old = folio_get_private(folio); 627 628 folio->private = data; 629 return old; 630} 631 632/** 633 * folio_detach_private - Detach private data from a folio. 634 * @folio: Folio to detach data from. 635 * 636 * Removes the data that was previously attached to the folio and decrements 637 * the refcount on the page. 638 * 639 * Return: Data that was attached to the folio. 640 */ 641static inline void *folio_detach_private(struct folio *folio) 642{ 643 void *data = folio_get_private(folio); 644 645 if (!folio_test_private(folio)) 646 return NULL; 647 folio_clear_private(folio); 648 folio->private = NULL; 649 folio_put(folio); 650 651 return data; 652} 653 654static inline void attach_page_private(struct page *page, void *data) 655{ 656 folio_attach_private(page_folio(page), data); 657} 658 659static inline void *detach_page_private(struct page *page) 660{ 661 return folio_detach_private(page_folio(page)); 662} 663 664#ifdef CONFIG_NUMA 665struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order, 666 struct mempolicy *policy); 667#else 668static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order, 669 struct mempolicy *policy) 670{ 671 return folio_alloc_noprof(gfp, order); 672} 673#endif 674 675#define filemap_alloc_folio(...) \ 676 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 677 678static inline struct page *__page_cache_alloc(gfp_t gfp) 679{ 680 return &filemap_alloc_folio(gfp, 0, NULL)->page; 681} 682 683static inline gfp_t readahead_gfp_mask(struct address_space *x) 684{ 685 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 686} 687 688typedef int filler_t(struct file *, struct folio *); 689 690pgoff_t page_cache_next_miss(struct address_space *mapping, 691 pgoff_t index, unsigned long max_scan); 692pgoff_t page_cache_prev_miss(struct address_space *mapping, 693 pgoff_t index, unsigned long max_scan); 694 695/** 696 * typedef fgf_t - Flags for getting folios from the page cache. 697 * 698 * Most users of the page cache will not need to use these flags; 699 * there are convenience functions such as filemap_get_folio() and 700 * filemap_lock_folio(). For users which need more control over exactly 701 * what is done with the folios, these flags to __filemap_get_folio() 702 * are available. 703 * 704 * * %FGP_ACCESSED - The folio will be marked accessed. 705 * * %FGP_LOCK - The folio is returned locked. 706 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 707 * added to the page cache and the VM's LRU list. The folio is 708 * returned locked. 709 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 710 * folio is already in cache. If the folio was allocated, unlock it 711 * before returning so the caller can do the same dance. 712 * * %FGP_WRITE - The folio will be written to by the caller. 713 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 714 * * %FGP_NOWAIT - Don't block on the folio lock. 715 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 716 * * %FGP_DONTCACHE - Uncached buffered IO 717 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 718 * implementation. 719 */ 720typedef unsigned int __bitwise fgf_t; 721 722#define FGP_ACCESSED ((__force fgf_t)0x00000001) 723#define FGP_LOCK ((__force fgf_t)0x00000002) 724#define FGP_CREAT ((__force fgf_t)0x00000004) 725#define FGP_WRITE ((__force fgf_t)0x00000008) 726#define FGP_NOFS ((__force fgf_t)0x00000010) 727#define FGP_NOWAIT ((__force fgf_t)0x00000020) 728#define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 729#define FGP_STABLE ((__force fgf_t)0x00000080) 730#define FGP_DONTCACHE ((__force fgf_t)0x00000100) 731#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 732 733#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 734 735static inline unsigned int filemap_get_order(size_t size) 736{ 737 unsigned int shift = ilog2(size); 738 739 if (shift <= PAGE_SHIFT) 740 return 0; 741 742 return shift - PAGE_SHIFT; 743} 744 745/** 746 * fgf_set_order - Encode a length in the fgf_t flags. 747 * @size: The suggested size of the folio to create. 748 * 749 * The caller of __filemap_get_folio() can use this to suggest a preferred 750 * size for the folio that is created. If there is already a folio at 751 * the index, it will be returned, no matter what its size. If a folio 752 * is freshly created, it may be of a different size than requested 753 * due to alignment constraints, memory pressure, or the presence of 754 * other folios at nearby indices. 755 */ 756static inline fgf_t fgf_set_order(size_t size) 757{ 758 unsigned int order = filemap_get_order(size); 759 760 if (!order) 761 return 0; 762 return (__force fgf_t)(order << 26); 763} 764 765void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 766struct folio *__filemap_get_folio_mpol(struct address_space *mapping, 767 pgoff_t index, fgf_t fgf_flags, gfp_t gfp, struct mempolicy *policy); 768struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 769 fgf_t fgp_flags, gfp_t gfp); 770 771static inline struct folio *__filemap_get_folio(struct address_space *mapping, 772 pgoff_t index, fgf_t fgf_flags, gfp_t gfp) 773{ 774 return __filemap_get_folio_mpol(mapping, index, fgf_flags, gfp, NULL); 775} 776 777/** 778 * write_begin_get_folio - Get folio for write_begin with flags. 779 * @iocb: The kiocb passed from write_begin (may be NULL). 780 * @mapping: The address space to search. 781 * @index: The page cache index. 782 * @len: Length of data being written. 783 * 784 * This is a helper for filesystem write_begin() implementations. 785 * It wraps __filemap_get_folio(), setting appropriate flags in 786 * the write begin context. 787 * 788 * Return: A folio or an ERR_PTR. 789 */ 790static inline struct folio *write_begin_get_folio(const struct kiocb *iocb, 791 struct address_space *mapping, pgoff_t index, size_t len) 792{ 793 fgf_t fgp_flags = FGP_WRITEBEGIN; 794 795 fgp_flags |= fgf_set_order(len); 796 797 if (iocb && iocb->ki_flags & IOCB_DONTCACHE) 798 fgp_flags |= FGP_DONTCACHE; 799 800 return __filemap_get_folio(mapping, index, fgp_flags, 801 mapping_gfp_mask(mapping)); 802} 803 804/** 805 * filemap_get_folio - Find and get a folio. 806 * @mapping: The address_space to search. 807 * @index: The page index. 808 * 809 * Looks up the page cache entry at @mapping & @index. If a folio is 810 * present, it is returned with an increased refcount. 811 * 812 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 813 * this index. Will not return a shadow, swap or DAX entry. 814 */ 815static inline struct folio *filemap_get_folio(struct address_space *mapping, 816 pgoff_t index) 817{ 818 return __filemap_get_folio(mapping, index, 0, 0); 819} 820 821/** 822 * filemap_lock_folio - Find and lock a folio. 823 * @mapping: The address_space to search. 824 * @index: The page index. 825 * 826 * Looks up the page cache entry at @mapping & @index. If a folio is 827 * present, it is returned locked with an increased refcount. 828 * 829 * Context: May sleep. 830 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 831 * this index. Will not return a shadow, swap or DAX entry. 832 */ 833static inline struct folio *filemap_lock_folio(struct address_space *mapping, 834 pgoff_t index) 835{ 836 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 837} 838 839/** 840 * filemap_grab_folio - grab a folio from the page cache 841 * @mapping: The address space to search 842 * @index: The page index 843 * 844 * Looks up the page cache entry at @mapping & @index. If no folio is found, 845 * a new folio is created. The folio is locked, marked as accessed, and 846 * returned. 847 * 848 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 849 * and failed to create a folio. 850 */ 851static inline struct folio *filemap_grab_folio(struct address_space *mapping, 852 pgoff_t index) 853{ 854 return __filemap_get_folio(mapping, index, 855 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 856 mapping_gfp_mask(mapping)); 857} 858 859/** 860 * find_get_page - find and get a page reference 861 * @mapping: the address_space to search 862 * @offset: the page index 863 * 864 * Looks up the page cache slot at @mapping & @offset. If there is a 865 * page cache page, it is returned with an increased refcount. 866 * 867 * Otherwise, %NULL is returned. 868 */ 869static inline struct page *find_get_page(struct address_space *mapping, 870 pgoff_t offset) 871{ 872 return pagecache_get_page(mapping, offset, 0, 0); 873} 874 875static inline struct page *find_get_page_flags(struct address_space *mapping, 876 pgoff_t offset, fgf_t fgp_flags) 877{ 878 return pagecache_get_page(mapping, offset, fgp_flags, 0); 879} 880 881/** 882 * find_lock_page - locate, pin and lock a pagecache page 883 * @mapping: the address_space to search 884 * @index: the page index 885 * 886 * Looks up the page cache entry at @mapping & @index. If there is a 887 * page cache page, it is returned locked and with an increased 888 * refcount. 889 * 890 * Context: May sleep. 891 * Return: A struct page or %NULL if there is no page in the cache for this 892 * index. 893 */ 894static inline struct page *find_lock_page(struct address_space *mapping, 895 pgoff_t index) 896{ 897 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 898} 899 900/** 901 * find_or_create_page - locate or add a pagecache page 902 * @mapping: the page's address_space 903 * @index: the page's index into the mapping 904 * @gfp_mask: page allocation mode 905 * 906 * Looks up the page cache slot at @mapping & @offset. If there is a 907 * page cache page, it is returned locked and with an increased 908 * refcount. 909 * 910 * If the page is not present, a new page is allocated using @gfp_mask 911 * and added to the page cache and the VM's LRU list. The page is 912 * returned locked and with an increased refcount. 913 * 914 * On memory exhaustion, %NULL is returned. 915 * 916 * find_or_create_page() may sleep, even if @gfp_flags specifies an 917 * atomic allocation! 918 */ 919static inline struct page *find_or_create_page(struct address_space *mapping, 920 pgoff_t index, gfp_t gfp_mask) 921{ 922 return pagecache_get_page(mapping, index, 923 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 924 gfp_mask); 925} 926 927/** 928 * grab_cache_page_nowait - returns locked page at given index in given cache 929 * @mapping: target address_space 930 * @index: the page index 931 * 932 * Returns locked page at given index in given cache, creating it if 933 * needed, but do not wait if the page is locked or to reclaim memory. 934 * This is intended for speculative data generators, where the data can 935 * be regenerated if the page couldn't be grabbed. This routine should 936 * be safe to call while holding the lock for another page. 937 * 938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 939 * and deadlock against the caller's locked page. 940 */ 941static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 942 pgoff_t index) 943{ 944 return pagecache_get_page(mapping, index, 945 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 946 mapping_gfp_mask(mapping)); 947} 948 949/** 950 * folio_next_index - Get the index of the next folio. 951 * @folio: The current folio. 952 * 953 * Return: The index of the folio which follows this folio in the file. 954 */ 955static inline pgoff_t folio_next_index(const struct folio *folio) 956{ 957 return folio->index + folio_nr_pages(folio); 958} 959 960/** 961 * folio_next_pos - Get the file position of the next folio. 962 * @folio: The current folio. 963 * 964 * Return: The position of the folio which follows this folio in the file. 965 */ 966static inline loff_t folio_next_pos(const struct folio *folio) 967{ 968 return (loff_t)folio_next_index(folio) << PAGE_SHIFT; 969} 970 971/** 972 * folio_file_page - The page for a particular index. 973 * @folio: The folio which contains this index. 974 * @index: The index we want to look up. 975 * 976 * Sometimes after looking up a folio in the page cache, we need to 977 * obtain the specific page for an index (eg a page fault). 978 * 979 * Return: The page containing the file data for this index. 980 */ 981static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 982{ 983 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 984} 985 986/** 987 * folio_contains - Does this folio contain this index? 988 * @folio: The folio. 989 * @index: The page index within the file. 990 * 991 * Context: The caller should have the folio locked and ensure 992 * e.g., shmem did not move this folio to the swap cache. 993 * Return: true or false. 994 */ 995static inline bool folio_contains(const struct folio *folio, pgoff_t index) 996{ 997 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); 998 return index - folio->index < folio_nr_pages(folio); 999} 1000 1001unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 1002 pgoff_t end, struct folio_batch *fbatch); 1003unsigned filemap_get_folios_contig(struct address_space *mapping, 1004 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 1005unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 1006 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 1007unsigned filemap_get_folios_dirty(struct address_space *mapping, 1008 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 1009 1010struct folio *read_cache_folio(struct address_space *, pgoff_t index, 1011 filler_t *filler, struct file *file); 1012struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 1013 gfp_t flags); 1014struct page *read_cache_page(struct address_space *, pgoff_t index, 1015 filler_t *filler, struct file *file); 1016extern struct page * read_cache_page_gfp(struct address_space *mapping, 1017 pgoff_t index, gfp_t gfp_mask); 1018 1019static inline struct page *read_mapping_page(struct address_space *mapping, 1020 pgoff_t index, struct file *file) 1021{ 1022 return read_cache_page(mapping, index, NULL, file); 1023} 1024 1025static inline struct folio *read_mapping_folio(struct address_space *mapping, 1026 pgoff_t index, struct file *file) 1027{ 1028 return read_cache_folio(mapping, index, NULL, file); 1029} 1030 1031/** 1032 * page_pgoff - Calculate the logical page offset of this page. 1033 * @folio: The folio containing this page. 1034 * @page: The page which we need the offset of. 1035 * 1036 * For file pages, this is the offset from the beginning of the file 1037 * in units of PAGE_SIZE. For anonymous pages, this is the offset from 1038 * the beginning of the anon_vma in units of PAGE_SIZE. This will 1039 * return nonsense for KSM pages. 1040 * 1041 * Context: Caller must have a reference on the folio or otherwise 1042 * prevent it from being split or freed. 1043 * 1044 * Return: The offset in units of PAGE_SIZE. 1045 */ 1046static inline pgoff_t page_pgoff(const struct folio *folio, 1047 const struct page *page) 1048{ 1049 return folio->index + folio_page_idx(folio, page); 1050} 1051 1052/** 1053 * folio_pos - Returns the byte position of this folio in its file. 1054 * @folio: The folio. 1055 */ 1056static inline loff_t folio_pos(const struct folio *folio) 1057{ 1058 return ((loff_t)folio->index) * PAGE_SIZE; 1059} 1060 1061/* 1062 * Return byte-offset into filesystem object for page. 1063 */ 1064static inline loff_t page_offset(struct page *page) 1065{ 1066 struct folio *folio = page_folio(page); 1067 1068 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE; 1069} 1070 1071/* 1072 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1073 */ 1074static inline pgoff_t folio_pgoff(const struct folio *folio) 1075{ 1076 return folio->index; 1077} 1078 1079static inline pgoff_t linear_page_index(const struct vm_area_struct *vma, 1080 const unsigned long address) 1081{ 1082 pgoff_t pgoff; 1083 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1084 pgoff += vma->vm_pgoff; 1085 return pgoff; 1086} 1087 1088struct wait_page_key { 1089 struct folio *folio; 1090 int bit_nr; 1091 int page_match; 1092}; 1093 1094struct wait_page_queue { 1095 struct folio *folio; 1096 int bit_nr; 1097 wait_queue_entry_t wait; 1098}; 1099 1100static inline bool wake_page_match(struct wait_page_queue *wait_page, 1101 struct wait_page_key *key) 1102{ 1103 if (wait_page->folio != key->folio) 1104 return false; 1105 key->page_match = 1; 1106 1107 if (wait_page->bit_nr != key->bit_nr) 1108 return false; 1109 1110 return true; 1111} 1112 1113void __folio_lock(struct folio *folio); 1114int __folio_lock_killable(struct folio *folio); 1115vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1116void unlock_page(struct page *page); 1117void folio_unlock(struct folio *folio); 1118 1119/** 1120 * folio_trylock() - Attempt to lock a folio. 1121 * @folio: The folio to attempt to lock. 1122 * 1123 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1124 * when the locks are being taken in the wrong order, or if making 1125 * progress through a batch of folios is more important than processing 1126 * them in order). Usually folio_lock() is the correct function to call. 1127 * 1128 * Context: Any context. 1129 * Return: Whether the lock was successfully acquired. 1130 */ 1131static inline bool folio_trylock(struct folio *folio) 1132{ 1133 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1134} 1135 1136/* 1137 * Return true if the page was successfully locked 1138 */ 1139static inline bool trylock_page(struct page *page) 1140{ 1141 return folio_trylock(page_folio(page)); 1142} 1143 1144/** 1145 * folio_lock() - Lock this folio. 1146 * @folio: The folio to lock. 1147 * 1148 * The folio lock protects against many things, probably more than it 1149 * should. It is primarily held while a folio is being brought uptodate, 1150 * either from its backing file or from swap. It is also held while a 1151 * folio is being truncated from its address_space, so holding the lock 1152 * is sufficient to keep folio->mapping stable. 1153 * 1154 * The folio lock is also held while write() is modifying the page to 1155 * provide POSIX atomicity guarantees (as long as the write does not 1156 * cross a page boundary). Other modifications to the data in the folio 1157 * do not hold the folio lock and can race with writes, eg DMA and stores 1158 * to mapped pages. 1159 * 1160 * Context: May sleep. If you need to acquire the locks of two or 1161 * more folios, they must be in order of ascending index, if they are 1162 * in the same address_space. If they are in different address_spaces, 1163 * acquire the lock of the folio which belongs to the address_space which 1164 * has the lowest address in memory first. 1165 */ 1166static inline void folio_lock(struct folio *folio) 1167{ 1168 might_sleep(); 1169 if (!folio_trylock(folio)) 1170 __folio_lock(folio); 1171} 1172 1173/** 1174 * lock_page() - Lock the folio containing this page. 1175 * @page: The page to lock. 1176 * 1177 * See folio_lock() for a description of what the lock protects. 1178 * This is a legacy function and new code should probably use folio_lock() 1179 * instead. 1180 * 1181 * Context: May sleep. Pages in the same folio share a lock, so do not 1182 * attempt to lock two pages which share a folio. 1183 */ 1184static inline void lock_page(struct page *page) 1185{ 1186 struct folio *folio; 1187 might_sleep(); 1188 1189 folio = page_folio(page); 1190 if (!folio_trylock(folio)) 1191 __folio_lock(folio); 1192} 1193 1194/** 1195 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1196 * @folio: The folio to lock. 1197 * 1198 * Attempts to lock the folio, like folio_lock(), except that the sleep 1199 * to acquire the lock is interruptible by a fatal signal. 1200 * 1201 * Context: May sleep; see folio_lock(). 1202 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1203 */ 1204static inline int folio_lock_killable(struct folio *folio) 1205{ 1206 might_sleep(); 1207 if (!folio_trylock(folio)) 1208 return __folio_lock_killable(folio); 1209 return 0; 1210} 1211 1212/* 1213 * folio_lock_or_retry - Lock the folio, unless this would block and the 1214 * caller indicated that it can handle a retry. 1215 * 1216 * Return value and mmap_lock implications depend on flags; see 1217 * __folio_lock_or_retry(). 1218 */ 1219static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1220 struct vm_fault *vmf) 1221{ 1222 might_sleep(); 1223 if (!folio_trylock(folio)) 1224 return __folio_lock_or_retry(folio, vmf); 1225 return 0; 1226} 1227 1228/* 1229 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1230 * and should not be used directly. 1231 */ 1232void folio_wait_bit(struct folio *folio, int bit_nr); 1233int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1234 1235/* 1236 * Wait for a folio to be unlocked. 1237 * 1238 * This must be called with the caller "holding" the folio, 1239 * ie with increased folio reference count so that the folio won't 1240 * go away during the wait. 1241 */ 1242static inline void folio_wait_locked(struct folio *folio) 1243{ 1244 if (folio_test_locked(folio)) 1245 folio_wait_bit(folio, PG_locked); 1246} 1247 1248static inline int folio_wait_locked_killable(struct folio *folio) 1249{ 1250 if (!folio_test_locked(folio)) 1251 return 0; 1252 return folio_wait_bit_killable(folio, PG_locked); 1253} 1254 1255void folio_end_read(struct folio *folio, bool success); 1256void wait_on_page_writeback(struct page *page); 1257void folio_wait_writeback(struct folio *folio); 1258int folio_wait_writeback_killable(struct folio *folio); 1259void end_page_writeback(struct page *page); 1260void folio_end_writeback(struct folio *folio); 1261void folio_end_writeback_no_dropbehind(struct folio *folio); 1262void folio_end_dropbehind(struct folio *folio); 1263void folio_wait_stable(struct folio *folio); 1264void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1265void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1266void __folio_cancel_dirty(struct folio *folio); 1267static inline void folio_cancel_dirty(struct folio *folio) 1268{ 1269 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1270 if (folio_test_dirty(folio)) 1271 __folio_cancel_dirty(folio); 1272} 1273bool folio_clear_dirty_for_io(struct folio *folio); 1274bool clear_page_dirty_for_io(struct page *page); 1275void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1276bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1277 1278#ifdef CONFIG_MIGRATION 1279int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1280 struct folio *src, enum migrate_mode mode); 1281#else 1282#define filemap_migrate_folio NULL 1283#endif 1284void folio_end_private_2(struct folio *folio); 1285void folio_wait_private_2(struct folio *folio); 1286int folio_wait_private_2_killable(struct folio *folio); 1287 1288/* 1289 * Fault in userspace address range. 1290 */ 1291size_t fault_in_writeable(char __user *uaddr, size_t size); 1292size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1293size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1294size_t fault_in_readable(const char __user *uaddr, size_t size); 1295 1296int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1297 pgoff_t index, gfp_t gfp); 1298int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1299 pgoff_t index, gfp_t gfp); 1300void filemap_remove_folio(struct folio *folio); 1301void __filemap_remove_folio(struct folio *folio, void *shadow); 1302void replace_page_cache_folio(struct folio *old, struct folio *new); 1303void delete_from_page_cache_batch(struct address_space *mapping, 1304 struct folio_batch *fbatch); 1305bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1306loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1307 int whence); 1308 1309/* Must be non-static for BPF error injection */ 1310int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1311 pgoff_t index, gfp_t gfp, void **shadowp); 1312 1313bool filemap_range_has_writeback(struct address_space *mapping, 1314 loff_t start_byte, loff_t end_byte); 1315 1316/** 1317 * filemap_range_needs_writeback - check if range potentially needs writeback 1318 * @mapping: address space within which to check 1319 * @start_byte: offset in bytes where the range starts 1320 * @end_byte: offset in bytes where the range ends (inclusive) 1321 * 1322 * Find at least one page in the range supplied, usually used to check if 1323 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1324 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1325 * filemap_write_and_wait_range() before proceeding. 1326 * 1327 * Return: %true if the caller should do filemap_write_and_wait_range() before 1328 * doing O_DIRECT to a page in this range, %false otherwise. 1329 */ 1330static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1331 loff_t start_byte, 1332 loff_t end_byte) 1333{ 1334 if (!mapping->nrpages) 1335 return false; 1336 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1337 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1338 return false; 1339 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1340} 1341 1342/** 1343 * struct readahead_control - Describes a readahead request. 1344 * 1345 * A readahead request is for consecutive pages. Filesystems which 1346 * implement the ->readahead method should call readahead_folio() or 1347 * __readahead_batch() in a loop and attempt to start reads into each 1348 * folio in the request. 1349 * 1350 * Most of the fields in this struct are private and should be accessed 1351 * by the functions below. 1352 * 1353 * @file: The file, used primarily by network filesystems for authentication. 1354 * May be NULL if invoked internally by the filesystem. 1355 * @mapping: Readahead this filesystem object. 1356 * @ra: File readahead state. May be NULL. 1357 */ 1358struct readahead_control { 1359 struct file *file; 1360 struct address_space *mapping; 1361 struct file_ra_state *ra; 1362/* private: use the readahead_* accessors instead */ 1363 pgoff_t _index; 1364 unsigned int _nr_pages; 1365 unsigned int _batch_count; 1366 bool dropbehind; 1367 bool _workingset; 1368 unsigned long _pflags; 1369}; 1370 1371#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1372 struct readahead_control ractl = { \ 1373 .file = f, \ 1374 .mapping = m, \ 1375 .ra = r, \ 1376 ._index = i, \ 1377 } 1378 1379#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1380 1381void page_cache_ra_unbounded(struct readahead_control *, 1382 unsigned long nr_to_read, unsigned long lookahead_count); 1383void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1384void page_cache_async_ra(struct readahead_control *, struct folio *, 1385 unsigned long req_count); 1386void readahead_expand(struct readahead_control *ractl, 1387 loff_t new_start, size_t new_len); 1388 1389/** 1390 * page_cache_sync_readahead - generic file readahead 1391 * @mapping: address_space which holds the pagecache and I/O vectors 1392 * @ra: file_ra_state which holds the readahead state 1393 * @file: Used by the filesystem for authentication. 1394 * @index: Index of first page to be read. 1395 * @req_count: Total number of pages being read by the caller. 1396 * 1397 * page_cache_sync_readahead() should be called when a cache miss happened: 1398 * it will submit the read. The readahead logic may decide to piggyback more 1399 * pages onto the read request if access patterns suggest it will improve 1400 * performance. 1401 */ 1402static inline 1403void page_cache_sync_readahead(struct address_space *mapping, 1404 struct file_ra_state *ra, struct file *file, pgoff_t index, 1405 unsigned long req_count) 1406{ 1407 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1408 page_cache_sync_ra(&ractl, req_count); 1409} 1410 1411/** 1412 * page_cache_async_readahead - file readahead for marked pages 1413 * @mapping: address_space which holds the pagecache and I/O vectors 1414 * @ra: file_ra_state which holds the readahead state 1415 * @file: Used by the filesystem for authentication. 1416 * @folio: The folio which triggered the readahead call. 1417 * @req_count: Total number of pages being read by the caller. 1418 * 1419 * page_cache_async_readahead() should be called when a page is used which 1420 * is marked as PageReadahead; this is a marker to suggest that the application 1421 * has used up enough of the readahead window that we should start pulling in 1422 * more pages. 1423 */ 1424static inline 1425void page_cache_async_readahead(struct address_space *mapping, 1426 struct file_ra_state *ra, struct file *file, 1427 struct folio *folio, unsigned long req_count) 1428{ 1429 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1430 page_cache_async_ra(&ractl, folio, req_count); 1431} 1432 1433static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1434{ 1435 struct folio *folio; 1436 1437 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1438 ractl->_nr_pages -= ractl->_batch_count; 1439 ractl->_index += ractl->_batch_count; 1440 1441 if (!ractl->_nr_pages) { 1442 ractl->_batch_count = 0; 1443 return NULL; 1444 } 1445 1446 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1447 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1448 ractl->_batch_count = folio_nr_pages(folio); 1449 1450 return folio; 1451} 1452 1453/** 1454 * readahead_folio - Get the next folio to read. 1455 * @ractl: The current readahead request. 1456 * 1457 * Context: The folio is locked. The caller should unlock the folio once 1458 * all I/O to that folio has completed. 1459 * Return: A pointer to the next folio, or %NULL if we are done. 1460 */ 1461static inline struct folio *readahead_folio(struct readahead_control *ractl) 1462{ 1463 struct folio *folio = __readahead_folio(ractl); 1464 1465 if (folio) 1466 folio_put(folio); 1467 return folio; 1468} 1469 1470static inline unsigned int __readahead_batch(struct readahead_control *rac, 1471 struct page **array, unsigned int array_sz) 1472{ 1473 unsigned int i = 0; 1474 XA_STATE(xas, &rac->mapping->i_pages, 0); 1475 struct folio *folio; 1476 1477 BUG_ON(rac->_batch_count > rac->_nr_pages); 1478 rac->_nr_pages -= rac->_batch_count; 1479 rac->_index += rac->_batch_count; 1480 rac->_batch_count = 0; 1481 1482 xas_set(&xas, rac->_index); 1483 rcu_read_lock(); 1484 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) { 1485 if (xas_retry(&xas, folio)) 1486 continue; 1487 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1488 array[i++] = folio_page(folio, 0); 1489 rac->_batch_count += folio_nr_pages(folio); 1490 if (i == array_sz) 1491 break; 1492 } 1493 rcu_read_unlock(); 1494 1495 return i; 1496} 1497 1498/** 1499 * readahead_pos - The byte offset into the file of this readahead request. 1500 * @rac: The readahead request. 1501 */ 1502static inline loff_t readahead_pos(const struct readahead_control *rac) 1503{ 1504 return (loff_t)rac->_index * PAGE_SIZE; 1505} 1506 1507/** 1508 * readahead_length - The number of bytes in this readahead request. 1509 * @rac: The readahead request. 1510 */ 1511static inline size_t readahead_length(const struct readahead_control *rac) 1512{ 1513 return rac->_nr_pages * PAGE_SIZE; 1514} 1515 1516/** 1517 * readahead_index - The index of the first page in this readahead request. 1518 * @rac: The readahead request. 1519 */ 1520static inline pgoff_t readahead_index(const struct readahead_control *rac) 1521{ 1522 return rac->_index; 1523} 1524 1525/** 1526 * readahead_count - The number of pages in this readahead request. 1527 * @rac: The readahead request. 1528 */ 1529static inline unsigned int readahead_count(const struct readahead_control *rac) 1530{ 1531 return rac->_nr_pages; 1532} 1533 1534/** 1535 * readahead_batch_length - The number of bytes in the current batch. 1536 * @rac: The readahead request. 1537 */ 1538static inline size_t readahead_batch_length(const struct readahead_control *rac) 1539{ 1540 return rac->_batch_count * PAGE_SIZE; 1541} 1542 1543static inline unsigned long dir_pages(const struct inode *inode) 1544{ 1545 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1546 PAGE_SHIFT; 1547} 1548 1549/** 1550 * folio_mkwrite_check_truncate - check if folio was truncated 1551 * @folio: the folio to check 1552 * @inode: the inode to check the folio against 1553 * 1554 * Return: the number of bytes in the folio up to EOF, 1555 * or -EFAULT if the folio was truncated. 1556 */ 1557static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio, 1558 const struct inode *inode) 1559{ 1560 loff_t size = i_size_read(inode); 1561 pgoff_t index = size >> PAGE_SHIFT; 1562 size_t offset = offset_in_folio(folio, size); 1563 1564 if (!folio->mapping) 1565 return -EFAULT; 1566 1567 /* folio is wholly inside EOF */ 1568 if (folio_next_index(folio) - 1 < index) 1569 return folio_size(folio); 1570 /* folio is wholly past EOF */ 1571 if (folio->index > index || !offset) 1572 return -EFAULT; 1573 /* folio is partially inside EOF */ 1574 return offset; 1575} 1576 1577/** 1578 * i_blocks_per_folio - How many blocks fit in this folio. 1579 * @inode: The inode which contains the blocks. 1580 * @folio: The folio. 1581 * 1582 * If the block size is larger than the size of this folio, return zero. 1583 * 1584 * Context: The caller should hold a refcount on the folio to prevent it 1585 * from being split. 1586 * Return: The number of filesystem blocks covered by this folio. 1587 */ 1588static inline 1589unsigned int i_blocks_per_folio(const struct inode *inode, 1590 const struct folio *folio) 1591{ 1592 return folio_size(folio) >> inode->i_blkbits; 1593} 1594#endif /* _LINUX_PAGEMAP_H */