Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/compiler.h>
16#include <linux/mm_types.h>
17#include <linux/mmap_lock.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page-flags.h>
27#include <linux/page_ref.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30#include <linux/sched.h>
31#include <linux/pgtable.h>
32#include <linux/kasan.h>
33#include <linux/memremap.h>
34#include <linux/slab.h>
35#include <linux/cacheinfo.h>
36#include <linux/rcuwait.h>
37#include <linux/bitmap.h>
38#include <linux/bitops.h>
39
40struct mempolicy;
41struct anon_vma;
42struct anon_vma_chain;
43struct user_struct;
44struct pt_regs;
45struct folio_batch;
46
47void arch_mm_preinit(void);
48void mm_core_init(void);
49void init_mm_internals(void);
50
51extern atomic_long_t _totalram_pages;
52static inline unsigned long totalram_pages(void)
53{
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55}
56
57static inline void totalram_pages_inc(void)
58{
59 atomic_long_inc(&_totalram_pages);
60}
61
62static inline void totalram_pages_dec(void)
63{
64 atomic_long_dec(&_totalram_pages);
65}
66
67static inline void totalram_pages_add(long count)
68{
69 atomic_long_add(count, &_totalram_pages);
70}
71
72extern void * high_memory;
73
74/*
75 * Convert between pages and MB
76 * 20 is the shift for 1MB (2^20 = 1MB)
77 * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages)
78 * So (20 - PAGE_SHIFT) converts between pages and MB
79 */
80#define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT))
81#define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern int mmap_rnd_bits_max __ro_after_init;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
100#ifndef DIRECT_MAP_PHYSMEM_END
101# ifdef MAX_PHYSMEM_BITS
102# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
103# else
104# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
105# endif
106#endif
107
108#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
109
110#include <asm/page.h>
111#include <asm/processor.h>
112
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 96
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statements if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 96);
158
159 switch (sizeof(struct page)) {
160 case 96:
161 _pp[11] = 0;
162 fallthrough;
163 case 88:
164 _pp[10] = 0;
165 fallthrough;
166 case 80:
167 _pp[9] = 0;
168 fallthrough;
169 case 72:
170 _pp[8] = 0;
171 fallthrough;
172 case 64:
173 _pp[7] = 0;
174 fallthrough;
175 case 56:
176 _pp[6] = 0;
177 _pp[5] = 0;
178 _pp[4] = 0;
179 _pp[3] = 0;
180 _pp[2] = 0;
181 _pp[1] = 0;
182 _pp[0] = 0;
183 }
184}
185#else
186#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
187#endif
188
189/*
190 * Default maximum number of active map areas, this limits the number of vmas
191 * per mm struct. Users can overwrite this number by sysctl but there is a
192 * problem.
193 *
194 * When a program's coredump is generated as ELF format, a section is created
195 * per a vma. In ELF, the number of sections is represented in unsigned short.
196 * This means the number of sections should be smaller than 65535 at coredump.
197 * Because the kernel adds some informative sections to a image of program at
198 * generating coredump, we need some margin. The number of extra sections is
199 * 1-3 now and depends on arch. We use "5" as safe margin, here.
200 *
201 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
202 * not a hard limit any more. Although some userspace tools can be surprised by
203 * that.
204 */
205#define MAPCOUNT_ELF_CORE_MARGIN (5)
206#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
207
208extern int sysctl_max_map_count;
209
210extern unsigned long sysctl_user_reserve_kbytes;
211extern unsigned long sysctl_admin_reserve_kbytes;
212
213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214bool page_range_contiguous(const struct page *page, unsigned long nr_pages);
215#else
216static inline bool page_range_contiguous(const struct page *page,
217 unsigned long nr_pages)
218{
219 return true;
220}
221#endif
222
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231
232/**
233 * folio_page_idx - Return the number of a page in a folio.
234 * @folio: The folio.
235 * @page: The folio page.
236 *
237 * This function expects that the page is actually part of the folio.
238 * The returned number is relative to the start of the folio.
239 */
240static inline unsigned long folio_page_idx(const struct folio *folio,
241 const struct page *page)
242{
243 return page - &folio->page;
244}
245
246static inline struct folio *lru_to_folio(struct list_head *head)
247{
248 return list_entry((head)->prev, struct folio, lru);
249}
250
251void setup_initial_init_mm(void *start_code, void *end_code,
252 void *end_data, void *brk);
253
254/*
255 * Linux kernel virtual memory manager primitives.
256 * The idea being to have a "virtual" mm in the same way
257 * we have a virtual fs - giving a cleaner interface to the
258 * mm details, and allowing different kinds of memory mappings
259 * (from shared memory to executable loading to arbitrary
260 * mmap() functions).
261 */
262
263struct vm_area_struct *vm_area_alloc(struct mm_struct *);
264struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
265void vm_area_free(struct vm_area_struct *);
266
267#ifndef CONFIG_MMU
268extern struct rb_root nommu_region_tree;
269extern struct rw_semaphore nommu_region_sem;
270
271extern unsigned int kobjsize(const void *objp);
272#endif
273
274/*
275 * vm_flags in vm_area_struct, see mm_types.h.
276 * When changing, update also include/trace/events/mmflags.h
277 */
278
279#define VM_NONE 0x00000000
280
281/**
282 * typedef vma_flag_t - specifies an individual VMA flag by bit number.
283 *
284 * This value is made type safe by sparse to avoid passing invalid flag values
285 * around.
286 */
287typedef int __bitwise vma_flag_t;
288
289#define DECLARE_VMA_BIT(name, bitnum) \
290 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum)
291#define DECLARE_VMA_BIT_ALIAS(name, aliased) \
292 VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT)
293enum {
294 DECLARE_VMA_BIT(READ, 0),
295 DECLARE_VMA_BIT(WRITE, 1),
296 DECLARE_VMA_BIT(EXEC, 2),
297 DECLARE_VMA_BIT(SHARED, 3),
298 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
299 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */
300 DECLARE_VMA_BIT(MAYWRITE, 5),
301 DECLARE_VMA_BIT(MAYEXEC, 6),
302 DECLARE_VMA_BIT(MAYSHARE, 7),
303 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */
304#ifdef CONFIG_MMU
305 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */
306#else
307 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
308 DECLARE_VMA_BIT(MAYOVERLAY, 9),
309#endif /* CONFIG_MMU */
310 /* Page-ranges managed without "struct page", just pure PFN */
311 DECLARE_VMA_BIT(PFNMAP, 10),
312 DECLARE_VMA_BIT(MAYBE_GUARD, 11),
313 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */
314 DECLARE_VMA_BIT(LOCKED, 13),
315 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */
316 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */
317 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */
318 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */
319 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */
320 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */
321 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */
322 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */
323 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */
324 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */
325 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */
326 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */
327 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */
328 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */
329 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */
330 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */
331 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */
332 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */
333 /* These bits are reused, we define specific uses below. */
334 DECLARE_VMA_BIT(HIGH_ARCH_0, 32),
335 DECLARE_VMA_BIT(HIGH_ARCH_1, 33),
336 DECLARE_VMA_BIT(HIGH_ARCH_2, 34),
337 DECLARE_VMA_BIT(HIGH_ARCH_3, 35),
338 DECLARE_VMA_BIT(HIGH_ARCH_4, 36),
339 DECLARE_VMA_BIT(HIGH_ARCH_5, 37),
340 DECLARE_VMA_BIT(HIGH_ARCH_6, 38),
341 /*
342 * This flag is used to connect VFIO to arch specific KVM code. It
343 * indicates that the memory under this VMA is safe for use with any
344 * non-cachable memory type inside KVM. Some VFIO devices, on some
345 * platforms, are thought to be unsafe and can cause machine crashes
346 * if KVM does not lock down the memory type.
347 */
348 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39),
349#ifdef CONFIG_PPC32
350 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1),
351#else
352 DECLARE_VMA_BIT(DROPPABLE, 40),
353#endif
354 DECLARE_VMA_BIT(UFFD_MINOR, 41),
355 DECLARE_VMA_BIT(SEALED, 42),
356 /* Flags that reuse flags above. */
357 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0),
358 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1),
359 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2),
360 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3),
361 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4),
362#if defined(CONFIG_X86_USER_SHADOW_STACK)
363 /*
364 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365 * support core mm.
366 *
367 * These VMAs will get a single end guard page. This helps userspace
368 * protect itself from attacks. A single page is enough for current
369 * shadow stack archs (x86). See the comments near alloc_shstk() in
370 * arch/x86/kernel/shstk.c for more details on the guard size.
371 */
372 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5),
373#elif defined(CONFIG_ARM64_GCS)
374 /*
375 * arm64's Guarded Control Stack implements similar functionality and
376 * has similar constraints to shadow stacks.
377 */
378 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6),
379#endif
380 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */
381 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */
382 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */
383 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */
384 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */
385 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */
386 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */
387 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */
388#ifdef CONFIG_STACK_GROWSUP
389 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP),
390 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN),
391#else
392 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN),
393#endif
394};
395#undef DECLARE_VMA_BIT
396#undef DECLARE_VMA_BIT_ALIAS
397
398#define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT)
399#define VM_READ INIT_VM_FLAG(READ)
400#define VM_WRITE INIT_VM_FLAG(WRITE)
401#define VM_EXEC INIT_VM_FLAG(EXEC)
402#define VM_SHARED INIT_VM_FLAG(SHARED)
403#define VM_MAYREAD INIT_VM_FLAG(MAYREAD)
404#define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE)
405#define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC)
406#define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE)
407#define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN)
408#ifdef CONFIG_MMU
409#define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING)
410#else
411#define VM_UFFD_MISSING VM_NONE
412#define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY)
413#endif
414#define VM_PFNMAP INIT_VM_FLAG(PFNMAP)
415#define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD)
416#define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP)
417#define VM_LOCKED INIT_VM_FLAG(LOCKED)
418#define VM_IO INIT_VM_FLAG(IO)
419#define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ)
420#define VM_RAND_READ INIT_VM_FLAG(RAND_READ)
421#define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY)
422#define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND)
423#define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT)
424#define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT)
425#define VM_NORESERVE INIT_VM_FLAG(NORESERVE)
426#define VM_HUGETLB INIT_VM_FLAG(HUGETLB)
427#define VM_SYNC INIT_VM_FLAG(SYNC)
428#define VM_ARCH_1 INIT_VM_FLAG(ARCH_1)
429#define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK)
430#define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP)
431#ifdef CONFIG_MEM_SOFT_DIRTY
432#define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY)
433#else
434#define VM_SOFTDIRTY VM_NONE
435#endif
436#define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP)
437#define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE)
438#define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE)
439#define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE)
440#define VM_STACK INIT_VM_FLAG(STACK)
441#ifdef CONFIG_STACK_GROWSUP
442#define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY)
443#else
444#define VM_STACK_EARLY VM_NONE
445#endif
446#ifdef CONFIG_ARCH_HAS_PKEYS
447#define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT)
448/* Despite the naming, these are FLAGS not bits. */
449#define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0)
450#define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1)
451#define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2)
452#if CONFIG_ARCH_PKEY_BITS > 3
453#define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3)
454#else
455#define VM_PKEY_BIT3 VM_NONE
456#endif /* CONFIG_ARCH_PKEY_BITS > 3 */
457#if CONFIG_ARCH_PKEY_BITS > 4
458#define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4)
459#else
460#define VM_PKEY_BIT4 VM_NONE
461#endif /* CONFIG_ARCH_PKEY_BITS > 4 */
462#endif /* CONFIG_ARCH_HAS_PKEYS */
463#if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS)
464#define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK)
465#else
466#define VM_SHADOW_STACK VM_NONE
467#endif
468#if defined(CONFIG_PPC64)
469#define VM_SAO INIT_VM_FLAG(SAO)
470#elif defined(CONFIG_PARISC)
471#define VM_GROWSUP INIT_VM_FLAG(GROWSUP)
472#elif defined(CONFIG_SPARC64)
473#define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI)
474#define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR)
475#elif defined(CONFIG_ARM64)
476#define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI)
477#define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR)
478#elif !defined(CONFIG_MMU)
479#define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY)
480#endif
481#ifndef VM_GROWSUP
482#define VM_GROWSUP VM_NONE
483#endif
484#ifdef CONFIG_ARM64_MTE
485#define VM_MTE INIT_VM_FLAG(MTE)
486#define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED)
487#else
488#define VM_MTE VM_NONE
489#define VM_MTE_ALLOWED VM_NONE
490#endif
491#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
492#define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR)
493#else
494#define VM_UFFD_MINOR VM_NONE
495#endif
496#ifdef CONFIG_64BIT
497#define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED)
498#define VM_SEALED INIT_VM_FLAG(SEALED)
499#else
500#define VM_ALLOW_ANY_UNCACHED VM_NONE
501#define VM_SEALED VM_NONE
502#endif
503#if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
504#define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE)
505#else
506#define VM_DROPPABLE VM_NONE
507#endif
508
509/* Bits set in the VMA until the stack is in its final location */
510#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
511
512#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
513
514/* Common data flag combinations */
515#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
516 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
517#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
518 VM_MAYWRITE | VM_MAYEXEC)
519#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
520 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
521
522#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
523#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
524#endif
525
526#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
527#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
528#endif
529
530#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
531
532#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
533#define VM_SEALED_SYSMAP VM_SEALED
534#else
535#define VM_SEALED_SYSMAP VM_NONE
536#endif
537
538#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
539
540/* VMA basic access permission flags */
541#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
542
543/*
544 * Special vmas that are non-mergable, non-mlock()able.
545 */
546#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
547
548/*
549 * Physically remapped pages are special. Tell the
550 * rest of the world about it:
551 * VM_IO tells people not to look at these pages
552 * (accesses can have side effects).
553 * VM_PFNMAP tells the core MM that the base pages are just
554 * raw PFN mappings, and do not have a "struct page" associated
555 * with them.
556 * VM_DONTEXPAND
557 * Disable vma merging and expanding with mremap().
558 * VM_DONTDUMP
559 * Omit vma from core dump, even when VM_IO turned off.
560 */
561#define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP)
562
563/* This mask prevents VMA from being scanned with khugepaged */
564#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
565
566/* This mask defines which mm->def_flags a process can inherit its parent */
567#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
568
569/* This mask represents all the VMA flag bits used by mlock */
570#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
571
572/* These flags can be updated atomically via VMA/mmap read lock. */
573#define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD
574
575/* Arch-specific flags to clear when updating VM flags on protection change */
576#ifndef VM_ARCH_CLEAR
577#define VM_ARCH_CLEAR VM_NONE
578#endif
579#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
580
581/*
582 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA
583 * possesses it but the other does not, the merged VMA should nonetheless have
584 * applied to it:
585 *
586 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its
587 * references cleared via /proc/$pid/clear_refs, any merged VMA
588 * should be considered soft-dirty also as it operates at a VMA
589 * granularity.
590 *
591 * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that
592 * mapped page tables may contain metadata not described by the
593 * VMA and thus any merged VMA may also contain this metadata,
594 * and thus we must make this flag sticky.
595 */
596#define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD)
597
598/*
599 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one
600 * of these flags and the other not does not preclude a merge.
601 *
602 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are
603 * 'sticky'. If any sticky flags exist in either VMA, we simply
604 * set all of them on the merged VMA.
605 */
606#define VM_IGNORE_MERGE VM_STICKY
607
608/*
609 * Flags which should result in page tables being copied on fork. These are
610 * flags which indicate that the VMA maps page tables which cannot be
611 * reconsistuted upon page fault, so necessitate page table copying upon fork.
612 *
613 * Note that these flags should be compared with the DESTINATION VMA not the
614 * source, as VM_UFFD_WP may not be propagated to destination, while all other
615 * flags will be.
616 *
617 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be
618 * reasonably reconstructed on page fault.
619 *
620 * VM_UFFD_WP - Encodes metadata about an installed uffd
621 * write protect handler, which cannot be
622 * reconstructed on page fault.
623 *
624 * We always copy pgtables when dst_vma has uffd-wp
625 * enabled even if it's file-backed
626 * (e.g. shmem). Because when uffd-wp is enabled,
627 * pgtable contains uffd-wp protection information,
628 * that's something we can't retrieve from page cache,
629 * and skip copying will lose those info.
630 *
631 * VM_MAYBE_GUARD - Could contain page guard region markers which
632 * by design are a property of the page tables
633 * only and thus cannot be reconstructed on page
634 * fault.
635 */
636#define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD)
637
638/*
639 * mapping from the currently active vm_flags protection bits (the
640 * low four bits) to a page protection mask..
641 */
642
643/*
644 * The default fault flags that should be used by most of the
645 * arch-specific page fault handlers.
646 */
647#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
648 FAULT_FLAG_KILLABLE | \
649 FAULT_FLAG_INTERRUPTIBLE)
650
651/**
652 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
653 * @flags: Fault flags.
654 *
655 * This is mostly used for places where we want to try to avoid taking
656 * the mmap_lock for too long a time when waiting for another condition
657 * to change, in which case we can try to be polite to release the
658 * mmap_lock in the first round to avoid potential starvation of other
659 * processes that would also want the mmap_lock.
660 *
661 * Return: true if the page fault allows retry and this is the first
662 * attempt of the fault handling; false otherwise.
663 */
664static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
665{
666 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
667 (!(flags & FAULT_FLAG_TRIED));
668}
669
670#define FAULT_FLAG_TRACE \
671 { FAULT_FLAG_WRITE, "WRITE" }, \
672 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
673 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
674 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
675 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
676 { FAULT_FLAG_TRIED, "TRIED" }, \
677 { FAULT_FLAG_USER, "USER" }, \
678 { FAULT_FLAG_REMOTE, "REMOTE" }, \
679 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
680 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
681 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
682
683/*
684 * vm_fault is filled by the pagefault handler and passed to the vma's
685 * ->fault function. The vma's ->fault is responsible for returning a bitmask
686 * of VM_FAULT_xxx flags that give details about how the fault was handled.
687 *
688 * MM layer fills up gfp_mask for page allocations but fault handler might
689 * alter it if its implementation requires a different allocation context.
690 *
691 * pgoff should be used in favour of virtual_address, if possible.
692 */
693struct vm_fault {
694 const struct {
695 struct vm_area_struct *vma; /* Target VMA */
696 gfp_t gfp_mask; /* gfp mask to be used for allocations */
697 pgoff_t pgoff; /* Logical page offset based on vma */
698 unsigned long address; /* Faulting virtual address - masked */
699 unsigned long real_address; /* Faulting virtual address - unmasked */
700 };
701 enum fault_flag flags; /* FAULT_FLAG_xxx flags
702 * XXX: should really be 'const' */
703 pmd_t *pmd; /* Pointer to pmd entry matching
704 * the 'address' */
705 pud_t *pud; /* Pointer to pud entry matching
706 * the 'address'
707 */
708 union {
709 pte_t orig_pte; /* Value of PTE at the time of fault */
710 pmd_t orig_pmd; /* Value of PMD at the time of fault,
711 * used by PMD fault only.
712 */
713 };
714
715 struct page *cow_page; /* Page handler may use for COW fault */
716 struct page *page; /* ->fault handlers should return a
717 * page here, unless VM_FAULT_NOPAGE
718 * is set (which is also implied by
719 * VM_FAULT_ERROR).
720 */
721 /* These three entries are valid only while holding ptl lock */
722 pte_t *pte; /* Pointer to pte entry matching
723 * the 'address'. NULL if the page
724 * table hasn't been allocated.
725 */
726 spinlock_t *ptl; /* Page table lock.
727 * Protects pte page table if 'pte'
728 * is not NULL, otherwise pmd.
729 */
730 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
731 * vm_ops->map_pages() sets up a page
732 * table from atomic context.
733 * do_fault_around() pre-allocates
734 * page table to avoid allocation from
735 * atomic context.
736 */
737};
738
739/*
740 * These are the virtual MM functions - opening of an area, closing and
741 * unmapping it (needed to keep files on disk up-to-date etc), pointer
742 * to the functions called when a no-page or a wp-page exception occurs.
743 */
744struct vm_operations_struct {
745 void (*open)(struct vm_area_struct * area);
746 /**
747 * @close: Called when the VMA is being removed from the MM.
748 * Context: User context. May sleep. Caller holds mmap_lock.
749 */
750 void (*close)(struct vm_area_struct * area);
751 /* Called any time before splitting to check if it's allowed */
752 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
753 int (*mremap)(struct vm_area_struct *area);
754 /*
755 * Called by mprotect() to make driver-specific permission
756 * checks before mprotect() is finalised. The VMA must not
757 * be modified. Returns 0 if mprotect() can proceed.
758 */
759 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
760 unsigned long end, unsigned long newflags);
761 vm_fault_t (*fault)(struct vm_fault *vmf);
762 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
763 vm_fault_t (*map_pages)(struct vm_fault *vmf,
764 pgoff_t start_pgoff, pgoff_t end_pgoff);
765 unsigned long (*pagesize)(struct vm_area_struct * area);
766
767 /* notification that a previously read-only page is about to become
768 * writable, if an error is returned it will cause a SIGBUS */
769 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
770
771 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
772 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
773
774 /* called by access_process_vm when get_user_pages() fails, typically
775 * for use by special VMAs. See also generic_access_phys() for a generic
776 * implementation useful for any iomem mapping.
777 */
778 int (*access)(struct vm_area_struct *vma, unsigned long addr,
779 void *buf, int len, int write);
780
781 /* Called by the /proc/PID/maps code to ask the vma whether it
782 * has a special name. Returning non-NULL will also cause this
783 * vma to be dumped unconditionally. */
784 const char *(*name)(struct vm_area_struct *vma);
785
786#ifdef CONFIG_NUMA
787 /*
788 * set_policy() op must add a reference to any non-NULL @new mempolicy
789 * to hold the policy upon return. Caller should pass NULL @new to
790 * remove a policy and fall back to surrounding context--i.e. do not
791 * install a MPOL_DEFAULT policy, nor the task or system default
792 * mempolicy.
793 */
794 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
795
796 /*
797 * get_policy() op must add reference [mpol_get()] to any policy at
798 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
799 * in mm/mempolicy.c will do this automatically.
800 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
801 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
802 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
803 * must return NULL--i.e., do not "fallback" to task or system default
804 * policy.
805 */
806 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
807 unsigned long addr, pgoff_t *ilx);
808#endif
809#ifdef CONFIG_FIND_NORMAL_PAGE
810 /*
811 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
812 * allows for returning a "normal" page from vm_normal_page() even
813 * though the PTE indicates that the "struct page" either does not exist
814 * or should not be touched: "special".
815 *
816 * Do not add new users: this really only works when a "normal" page
817 * was mapped, but then the PTE got changed to something weird (+
818 * marked special) that would not make pte_pfn() identify the originally
819 * inserted page.
820 */
821 struct page *(*find_normal_page)(struct vm_area_struct *vma,
822 unsigned long addr);
823#endif /* CONFIG_FIND_NORMAL_PAGE */
824};
825
826#ifdef CONFIG_NUMA_BALANCING
827static inline void vma_numab_state_init(struct vm_area_struct *vma)
828{
829 vma->numab_state = NULL;
830}
831static inline void vma_numab_state_free(struct vm_area_struct *vma)
832{
833 kfree(vma->numab_state);
834}
835#else
836static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
837static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
838#endif /* CONFIG_NUMA_BALANCING */
839
840/*
841 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
842 * declared in this header.
843 */
844#ifdef CONFIG_PER_VMA_LOCK
845static inline void release_fault_lock(struct vm_fault *vmf)
846{
847 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
848 vma_end_read(vmf->vma);
849 else
850 mmap_read_unlock(vmf->vma->vm_mm);
851}
852
853static inline void assert_fault_locked(const struct vm_fault *vmf)
854{
855 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
856 vma_assert_locked(vmf->vma);
857 else
858 mmap_assert_locked(vmf->vma->vm_mm);
859}
860#else
861static inline void release_fault_lock(struct vm_fault *vmf)
862{
863 mmap_read_unlock(vmf->vma->vm_mm);
864}
865
866static inline void assert_fault_locked(const struct vm_fault *vmf)
867{
868 mmap_assert_locked(vmf->vma->vm_mm);
869}
870#endif /* CONFIG_PER_VMA_LOCK */
871
872static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
873{
874 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
875}
876
877static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm)
878{
879 return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
880}
881
882static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm)
883{
884 return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
885}
886
887static inline void mm_flags_set(int flag, struct mm_struct *mm)
888{
889 set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
890}
891
892static inline void mm_flags_clear(int flag, struct mm_struct *mm)
893{
894 clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
895}
896
897static inline void mm_flags_clear_all(struct mm_struct *mm)
898{
899 bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS);
900}
901
902extern const struct vm_operations_struct vma_dummy_vm_ops;
903
904static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
905{
906 memset(vma, 0, sizeof(*vma));
907 vma->vm_mm = mm;
908 vma->vm_ops = &vma_dummy_vm_ops;
909 INIT_LIST_HEAD(&vma->anon_vma_chain);
910 vma_lock_init(vma, false);
911}
912
913/* Use when VMA is not part of the VMA tree and needs no locking */
914static inline void vm_flags_init(struct vm_area_struct *vma,
915 vm_flags_t flags)
916{
917 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
918 vma_flags_clear_all(&vma->flags);
919 vma_flags_overwrite_word(&vma->flags, flags);
920}
921
922/*
923 * Use when VMA is part of the VMA tree and modifications need coordination
924 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
925 * it should be locked explicitly beforehand.
926 */
927static inline void vm_flags_reset(struct vm_area_struct *vma,
928 vm_flags_t flags)
929{
930 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
931 vma_assert_write_locked(vma);
932 vm_flags_init(vma, flags);
933}
934
935static inline void vm_flags_reset_once(struct vm_area_struct *vma,
936 vm_flags_t flags)
937{
938 vma_assert_write_locked(vma);
939 /*
940 * If VMA flags exist beyond the first system word, also clear these. It
941 * is assumed the write once behaviour is required only for the first
942 * system word.
943 */
944 if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) {
945 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
946
947 bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG);
948 }
949
950 vma_flags_overwrite_word_once(&vma->flags, flags);
951}
952
953static inline void vm_flags_set(struct vm_area_struct *vma,
954 vm_flags_t flags)
955{
956 vma_start_write(vma);
957 vma_flags_set_word(&vma->flags, flags);
958}
959
960static inline void vm_flags_clear(struct vm_area_struct *vma,
961 vm_flags_t flags)
962{
963 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
964 vma_start_write(vma);
965 vma_flags_clear_word(&vma->flags, flags);
966}
967
968/*
969 * Use only if VMA is not part of the VMA tree or has no other users and
970 * therefore needs no locking.
971 */
972static inline void __vm_flags_mod(struct vm_area_struct *vma,
973 vm_flags_t set, vm_flags_t clear)
974{
975 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
976}
977
978/*
979 * Use only when the order of set/clear operations is unimportant, otherwise
980 * use vm_flags_{set|clear} explicitly.
981 */
982static inline void vm_flags_mod(struct vm_area_struct *vma,
983 vm_flags_t set, vm_flags_t clear)
984{
985 vma_start_write(vma);
986 __vm_flags_mod(vma, set, clear);
987}
988
989static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma,
990 vma_flag_t bit)
991{
992 const vm_flags_t mask = BIT((__force int)bit);
993
994 /* Only specific flags are permitted */
995 if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED)))
996 return false;
997
998 return true;
999}
1000
1001/*
1002 * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific
1003 * valid flags are allowed to do this.
1004 */
1005static inline void vma_flag_set_atomic(struct vm_area_struct *vma,
1006 vma_flag_t bit)
1007{
1008 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
1009
1010 /* mmap read lock/VMA read lock must be held. */
1011 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock))
1012 vma_assert_locked(vma);
1013
1014 if (__vma_flag_atomic_valid(vma, bit))
1015 set_bit((__force int)bit, bitmap);
1016}
1017
1018/*
1019 * Test for VMA flag atomically. Requires no locks. Only specific valid flags
1020 * are allowed to do this.
1021 *
1022 * This is necessarily racey, so callers must ensure that serialisation is
1023 * achieved through some other means, or that races are permissible.
1024 */
1025static inline bool vma_flag_test_atomic(struct vm_area_struct *vma,
1026 vma_flag_t bit)
1027{
1028 if (__vma_flag_atomic_valid(vma, bit))
1029 return test_bit((__force int)bit, &vma->vm_flags);
1030
1031 return false;
1032}
1033
1034static inline void vma_set_anonymous(struct vm_area_struct *vma)
1035{
1036 vma->vm_ops = NULL;
1037}
1038
1039static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1040{
1041 return !vma->vm_ops;
1042}
1043
1044/*
1045 * Indicate if the VMA is a heap for the given task; for
1046 * /proc/PID/maps that is the heap of the main task.
1047 */
1048static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1049{
1050 return vma->vm_start < vma->vm_mm->brk &&
1051 vma->vm_end > vma->vm_mm->start_brk;
1052}
1053
1054/*
1055 * Indicate if the VMA is a stack for the given task; for
1056 * /proc/PID/maps that is the stack of the main task.
1057 */
1058static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1059{
1060 /*
1061 * We make no effort to guess what a given thread considers to be
1062 * its "stack". It's not even well-defined for programs written
1063 * languages like Go.
1064 */
1065 return vma->vm_start <= vma->vm_mm->start_stack &&
1066 vma->vm_end >= vma->vm_mm->start_stack;
1067}
1068
1069static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma)
1070{
1071 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1072
1073 if (!maybe_stack)
1074 return false;
1075
1076 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1077 VM_STACK_INCOMPLETE_SETUP)
1078 return true;
1079
1080 return false;
1081}
1082
1083static inline bool vma_is_foreign(const struct vm_area_struct *vma)
1084{
1085 if (!current->mm)
1086 return true;
1087
1088 if (current->mm != vma->vm_mm)
1089 return true;
1090
1091 return false;
1092}
1093
1094static inline bool vma_is_accessible(const struct vm_area_struct *vma)
1095{
1096 return vma->vm_flags & VM_ACCESS_FLAGS;
1097}
1098
1099static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1100{
1101 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1102 (VM_SHARED | VM_MAYWRITE);
1103}
1104
1105static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma)
1106{
1107 return is_shared_maywrite(vma->vm_flags);
1108}
1109
1110static inline
1111struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1112{
1113 return mas_find(&vmi->mas, max - 1);
1114}
1115
1116static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1117{
1118 /*
1119 * Uses mas_find() to get the first VMA when the iterator starts.
1120 * Calling mas_next() could skip the first entry.
1121 */
1122 return mas_find(&vmi->mas, ULONG_MAX);
1123}
1124
1125static inline
1126struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1127{
1128 return mas_next_range(&vmi->mas, ULONG_MAX);
1129}
1130
1131
1132static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1133{
1134 return mas_prev(&vmi->mas, 0);
1135}
1136
1137static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1138 unsigned long start, unsigned long end, gfp_t gfp)
1139{
1140 __mas_set_range(&vmi->mas, start, end - 1);
1141 mas_store_gfp(&vmi->mas, NULL, gfp);
1142 if (unlikely(mas_is_err(&vmi->mas)))
1143 return -ENOMEM;
1144
1145 return 0;
1146}
1147
1148/* Free any unused preallocations */
1149static inline void vma_iter_free(struct vma_iterator *vmi)
1150{
1151 mas_destroy(&vmi->mas);
1152}
1153
1154static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1155 struct vm_area_struct *vma)
1156{
1157 vmi->mas.index = vma->vm_start;
1158 vmi->mas.last = vma->vm_end - 1;
1159 mas_store(&vmi->mas, vma);
1160 if (unlikely(mas_is_err(&vmi->mas)))
1161 return -ENOMEM;
1162
1163 vma_mark_attached(vma);
1164 return 0;
1165}
1166
1167static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1168{
1169 mas_pause(&vmi->mas);
1170}
1171
1172static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1173{
1174 mas_set(&vmi->mas, addr);
1175}
1176
1177#define for_each_vma(__vmi, __vma) \
1178 while (((__vma) = vma_next(&(__vmi))) != NULL)
1179
1180/* The MM code likes to work with exclusive end addresses */
1181#define for_each_vma_range(__vmi, __vma, __end) \
1182 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1183
1184#ifdef CONFIG_SHMEM
1185/*
1186 * The vma_is_shmem is not inline because it is used only by slow
1187 * paths in userfault.
1188 */
1189bool vma_is_shmem(const struct vm_area_struct *vma);
1190bool vma_is_anon_shmem(const struct vm_area_struct *vma);
1191#else
1192static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; }
1193static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; }
1194#endif
1195
1196int vma_is_stack_for_current(const struct vm_area_struct *vma);
1197
1198/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1199#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1200
1201struct mmu_gather;
1202struct inode;
1203
1204extern void prep_compound_page(struct page *page, unsigned int order);
1205
1206static inline unsigned int folio_large_order(const struct folio *folio)
1207{
1208 return folio->_flags_1 & 0xff;
1209}
1210
1211#ifdef NR_PAGES_IN_LARGE_FOLIO
1212static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1213{
1214 return folio->_nr_pages;
1215}
1216#else
1217static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1218{
1219 return 1L << folio_large_order(folio);
1220}
1221#endif
1222
1223/*
1224 * compound_order() can be called without holding a reference, which means
1225 * that niceties like page_folio() don't work. These callers should be
1226 * prepared to handle wild return values. For example, PG_head may be
1227 * set before the order is initialised, or this may be a tail page.
1228 * See compaction.c for some good examples.
1229 */
1230static inline unsigned int compound_order(const struct page *page)
1231{
1232 const struct folio *folio = (struct folio *)page;
1233
1234 if (!test_bit(PG_head, &folio->flags.f))
1235 return 0;
1236 return folio_large_order(folio);
1237}
1238
1239/**
1240 * folio_order - The allocation order of a folio.
1241 * @folio: The folio.
1242 *
1243 * A folio is composed of 2^order pages. See get_order() for the definition
1244 * of order.
1245 *
1246 * Return: The order of the folio.
1247 */
1248static inline unsigned int folio_order(const struct folio *folio)
1249{
1250 if (!folio_test_large(folio))
1251 return 0;
1252 return folio_large_order(folio);
1253}
1254
1255/**
1256 * folio_reset_order - Reset the folio order and derived _nr_pages
1257 * @folio: The folio.
1258 *
1259 * Reset the order and derived _nr_pages to 0. Must only be used in the
1260 * process of splitting large folios.
1261 */
1262static inline void folio_reset_order(struct folio *folio)
1263{
1264 if (WARN_ON_ONCE(!folio_test_large(folio)))
1265 return;
1266 folio->_flags_1 &= ~0xffUL;
1267#ifdef NR_PAGES_IN_LARGE_FOLIO
1268 folio->_nr_pages = 0;
1269#endif
1270}
1271
1272#include <linux/huge_mm.h>
1273
1274/*
1275 * Methods to modify the page usage count.
1276 *
1277 * What counts for a page usage:
1278 * - cache mapping (page->mapping)
1279 * - private data (page->private)
1280 * - page mapped in a task's page tables, each mapping
1281 * is counted separately
1282 *
1283 * Also, many kernel routines increase the page count before a critical
1284 * routine so they can be sure the page doesn't go away from under them.
1285 */
1286
1287/*
1288 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1289 */
1290static inline int put_page_testzero(struct page *page)
1291{
1292 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1293 return page_ref_dec_and_test(page);
1294}
1295
1296static inline int folio_put_testzero(struct folio *folio)
1297{
1298 return put_page_testzero(&folio->page);
1299}
1300
1301/*
1302 * Try to grab a ref unless the page has a refcount of zero, return false if
1303 * that is the case.
1304 * This can be called when MMU is off so it must not access
1305 * any of the virtual mappings.
1306 */
1307static inline bool get_page_unless_zero(struct page *page)
1308{
1309 return page_ref_add_unless(page, 1, 0);
1310}
1311
1312static inline struct folio *folio_get_nontail_page(struct page *page)
1313{
1314 if (unlikely(!get_page_unless_zero(page)))
1315 return NULL;
1316 return (struct folio *)page;
1317}
1318
1319extern int page_is_ram(unsigned long pfn);
1320
1321enum {
1322 REGION_INTERSECTS,
1323 REGION_DISJOINT,
1324 REGION_MIXED,
1325};
1326
1327int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1328 unsigned long desc);
1329
1330/* Support for virtually mapped pages */
1331struct page *vmalloc_to_page(const void *addr);
1332unsigned long vmalloc_to_pfn(const void *addr);
1333
1334/*
1335 * Determine if an address is within the vmalloc range
1336 *
1337 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1338 * is no special casing required.
1339 */
1340#ifdef CONFIG_MMU
1341extern bool is_vmalloc_addr(const void *x);
1342extern int is_vmalloc_or_module_addr(const void *x);
1343#else
1344static inline bool is_vmalloc_addr(const void *x)
1345{
1346 return false;
1347}
1348static inline int is_vmalloc_or_module_addr(const void *x)
1349{
1350 return 0;
1351}
1352#endif
1353
1354/*
1355 * How many times the entire folio is mapped as a single unit (eg by a
1356 * PMD or PUD entry). This is probably not what you want, except for
1357 * debugging purposes or implementation of other core folio_*() primitives.
1358 */
1359static inline int folio_entire_mapcount(const struct folio *folio)
1360{
1361 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1362 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1363 return 0;
1364 return atomic_read(&folio->_entire_mapcount) + 1;
1365}
1366
1367static inline int folio_large_mapcount(const struct folio *folio)
1368{
1369 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1370 return atomic_read(&folio->_large_mapcount) + 1;
1371}
1372
1373/**
1374 * folio_mapcount() - Number of mappings of this folio.
1375 * @folio: The folio.
1376 *
1377 * The folio mapcount corresponds to the number of present user page table
1378 * entries that reference any part of a folio. Each such present user page
1379 * table entry must be paired with exactly on folio reference.
1380 *
1381 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1382 * exactly once.
1383 *
1384 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1385 * references the entire folio counts exactly once, even when such special
1386 * page table entries are comprised of multiple ordinary page table entries.
1387 *
1388 * Will report 0 for pages which cannot be mapped into userspace, such as
1389 * slab, page tables and similar.
1390 *
1391 * Return: The number of times this folio is mapped.
1392 */
1393static inline int folio_mapcount(const struct folio *folio)
1394{
1395 int mapcount;
1396
1397 if (likely(!folio_test_large(folio))) {
1398 mapcount = atomic_read(&folio->_mapcount) + 1;
1399 if (page_mapcount_is_type(mapcount))
1400 mapcount = 0;
1401 return mapcount;
1402 }
1403 return folio_large_mapcount(folio);
1404}
1405
1406/**
1407 * folio_mapped - Is this folio mapped into userspace?
1408 * @folio: The folio.
1409 *
1410 * Return: True if any page in this folio is referenced by user page tables.
1411 */
1412static inline bool folio_mapped(const struct folio *folio)
1413{
1414 return folio_mapcount(folio) >= 1;
1415}
1416
1417/*
1418 * Return true if this page is mapped into pagetables.
1419 * For compound page it returns true if any sub-page of compound page is mapped,
1420 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1421 */
1422static inline bool page_mapped(const struct page *page)
1423{
1424 return folio_mapped(page_folio(page));
1425}
1426
1427static inline struct page *virt_to_head_page(const void *x)
1428{
1429 struct page *page = virt_to_page(x);
1430
1431 return compound_head(page);
1432}
1433
1434static inline struct folio *virt_to_folio(const void *x)
1435{
1436 struct page *page = virt_to_page(x);
1437
1438 return page_folio(page);
1439}
1440
1441void __folio_put(struct folio *folio);
1442
1443void split_page(struct page *page, unsigned int order);
1444void folio_copy(struct folio *dst, struct folio *src);
1445int folio_mc_copy(struct folio *dst, struct folio *src);
1446
1447unsigned long nr_free_buffer_pages(void);
1448
1449/* Returns the number of bytes in this potentially compound page. */
1450static inline unsigned long page_size(const struct page *page)
1451{
1452 return PAGE_SIZE << compound_order(page);
1453}
1454
1455/* Returns the number of bits needed for the number of bytes in a page */
1456static inline unsigned int page_shift(struct page *page)
1457{
1458 return PAGE_SHIFT + compound_order(page);
1459}
1460
1461/**
1462 * thp_order - Order of a transparent huge page.
1463 * @page: Head page of a transparent huge page.
1464 */
1465static inline unsigned int thp_order(struct page *page)
1466{
1467 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1468 return compound_order(page);
1469}
1470
1471/**
1472 * thp_size - Size of a transparent huge page.
1473 * @page: Head page of a transparent huge page.
1474 *
1475 * Return: Number of bytes in this page.
1476 */
1477static inline unsigned long thp_size(struct page *page)
1478{
1479 return PAGE_SIZE << thp_order(page);
1480}
1481
1482#ifdef CONFIG_MMU
1483/*
1484 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1485 * servicing faults for write access. In the normal case, do always want
1486 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1487 * that do not have writing enabled, when used by access_process_vm.
1488 */
1489static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1490{
1491 if (likely(vma->vm_flags & VM_WRITE))
1492 pte = pte_mkwrite(pte, vma);
1493 return pte;
1494}
1495
1496vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1497void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1498 struct page *page, unsigned int nr, unsigned long addr);
1499
1500vm_fault_t finish_fault(struct vm_fault *vmf);
1501#endif
1502
1503/*
1504 * Multiple processes may "see" the same page. E.g. for untouched
1505 * mappings of /dev/null, all processes see the same page full of
1506 * zeroes, and text pages of executables and shared libraries have
1507 * only one copy in memory, at most, normally.
1508 *
1509 * For the non-reserved pages, page_count(page) denotes a reference count.
1510 * page_count() == 0 means the page is free. page->lru is then used for
1511 * freelist management in the buddy allocator.
1512 * page_count() > 0 means the page has been allocated.
1513 *
1514 * Pages are allocated by the slab allocator in order to provide memory
1515 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1516 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1517 * unless a particular usage is carefully commented. (the responsibility of
1518 * freeing the kmalloc memory is the caller's, of course).
1519 *
1520 * A page may be used by anyone else who does a __get_free_page().
1521 * In this case, page_count still tracks the references, and should only
1522 * be used through the normal accessor functions. The top bits of page->flags
1523 * and page->virtual store page management information, but all other fields
1524 * are unused and could be used privately, carefully. The management of this
1525 * page is the responsibility of the one who allocated it, and those who have
1526 * subsequently been given references to it.
1527 *
1528 * The other pages (we may call them "pagecache pages") are completely
1529 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1530 * The following discussion applies only to them.
1531 *
1532 * A pagecache page contains an opaque `private' member, which belongs to the
1533 * page's address_space. Usually, this is the address of a circular list of
1534 * the page's disk buffers. PG_private must be set to tell the VM to call
1535 * into the filesystem to release these pages.
1536 *
1537 * A folio may belong to an inode's memory mapping. In this case,
1538 * folio->mapping points to the inode, and folio->index is the file
1539 * offset of the folio, in units of PAGE_SIZE.
1540 *
1541 * If pagecache pages are not associated with an inode, they are said to be
1542 * anonymous pages. These may become associated with the swapcache, and in that
1543 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1544 *
1545 * In either case (swapcache or inode backed), the pagecache itself holds one
1546 * reference to the page. Setting PG_private should also increment the
1547 * refcount. The each user mapping also has a reference to the page.
1548 *
1549 * The pagecache pages are stored in a per-mapping radix tree, which is
1550 * rooted at mapping->i_pages, and indexed by offset.
1551 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1552 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1553 *
1554 * All pagecache pages may be subject to I/O:
1555 * - inode pages may need to be read from disk,
1556 * - inode pages which have been modified and are MAP_SHARED may need
1557 * to be written back to the inode on disk,
1558 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1559 * modified may need to be swapped out to swap space and (later) to be read
1560 * back into memory.
1561 */
1562
1563/* 127: arbitrary random number, small enough to assemble well */
1564#define folio_ref_zero_or_close_to_overflow(folio) \
1565 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1566
1567/**
1568 * folio_get - Increment the reference count on a folio.
1569 * @folio: The folio.
1570 *
1571 * Context: May be called in any context, as long as you know that
1572 * you have a refcount on the folio. If you do not already have one,
1573 * folio_try_get() may be the right interface for you to use.
1574 */
1575static inline void folio_get(struct folio *folio)
1576{
1577 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1578 folio_ref_inc(folio);
1579}
1580
1581static inline void get_page(struct page *page)
1582{
1583 struct folio *folio = page_folio(page);
1584 if (WARN_ON_ONCE(folio_test_slab(folio)))
1585 return;
1586 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1587 return;
1588 folio_get(folio);
1589}
1590
1591static inline __must_check bool try_get_page(struct page *page)
1592{
1593 page = compound_head(page);
1594 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1595 return false;
1596 page_ref_inc(page);
1597 return true;
1598}
1599
1600/**
1601 * folio_put - Decrement the reference count on a folio.
1602 * @folio: The folio.
1603 *
1604 * If the folio's reference count reaches zero, the memory will be
1605 * released back to the page allocator and may be used by another
1606 * allocation immediately. Do not access the memory or the struct folio
1607 * after calling folio_put() unless you can be sure that it wasn't the
1608 * last reference.
1609 *
1610 * Context: May be called in process or interrupt context, but not in NMI
1611 * context. May be called while holding a spinlock.
1612 */
1613static inline void folio_put(struct folio *folio)
1614{
1615 if (folio_put_testzero(folio))
1616 __folio_put(folio);
1617}
1618
1619/**
1620 * folio_put_refs - Reduce the reference count on a folio.
1621 * @folio: The folio.
1622 * @refs: The amount to subtract from the folio's reference count.
1623 *
1624 * If the folio's reference count reaches zero, the memory will be
1625 * released back to the page allocator and may be used by another
1626 * allocation immediately. Do not access the memory or the struct folio
1627 * after calling folio_put_refs() unless you can be sure that these weren't
1628 * the last references.
1629 *
1630 * Context: May be called in process or interrupt context, but not in NMI
1631 * context. May be called while holding a spinlock.
1632 */
1633static inline void folio_put_refs(struct folio *folio, int refs)
1634{
1635 if (folio_ref_sub_and_test(folio, refs))
1636 __folio_put(folio);
1637}
1638
1639void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1640
1641/*
1642 * union release_pages_arg - an array of pages or folios
1643 *
1644 * release_pages() releases a simple array of multiple pages, and
1645 * accepts various different forms of said page array: either
1646 * a regular old boring array of pages, an array of folios, or
1647 * an array of encoded page pointers.
1648 *
1649 * The transparent union syntax for this kind of "any of these
1650 * argument types" is all kinds of ugly, so look away.
1651 */
1652typedef union {
1653 struct page **pages;
1654 struct folio **folios;
1655 struct encoded_page **encoded_pages;
1656} release_pages_arg __attribute__ ((__transparent_union__));
1657
1658void release_pages(release_pages_arg, int nr);
1659
1660/**
1661 * folios_put - Decrement the reference count on an array of folios.
1662 * @folios: The folios.
1663 *
1664 * Like folio_put(), but for a batch of folios. This is more efficient
1665 * than writing the loop yourself as it will optimise the locks which need
1666 * to be taken if the folios are freed. The folios batch is returned
1667 * empty and ready to be reused for another batch; there is no need to
1668 * reinitialise it.
1669 *
1670 * Context: May be called in process or interrupt context, but not in NMI
1671 * context. May be called while holding a spinlock.
1672 */
1673static inline void folios_put(struct folio_batch *folios)
1674{
1675 folios_put_refs(folios, NULL);
1676}
1677
1678static inline void put_page(struct page *page)
1679{
1680 struct folio *folio = page_folio(page);
1681
1682 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1683 return;
1684
1685 folio_put(folio);
1686}
1687
1688/*
1689 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1690 * the page's refcount so that two separate items are tracked: the original page
1691 * reference count, and also a new count of how many pin_user_pages() calls were
1692 * made against the page. ("gup-pinned" is another term for the latter).
1693 *
1694 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1695 * distinct from normal pages. As such, the unpin_user_page() call (and its
1696 * variants) must be used in order to release gup-pinned pages.
1697 *
1698 * Choice of value:
1699 *
1700 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1701 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1702 * simpler, due to the fact that adding an even power of two to the page
1703 * refcount has the effect of using only the upper N bits, for the code that
1704 * counts up using the bias value. This means that the lower bits are left for
1705 * the exclusive use of the original code that increments and decrements by one
1706 * (or at least, by much smaller values than the bias value).
1707 *
1708 * Of course, once the lower bits overflow into the upper bits (and this is
1709 * OK, because subtraction recovers the original values), then visual inspection
1710 * no longer suffices to directly view the separate counts. However, for normal
1711 * applications that don't have huge page reference counts, this won't be an
1712 * issue.
1713 *
1714 * Locking: the lockless algorithm described in folio_try_get_rcu()
1715 * provides safe operation for get_user_pages(), folio_mkclean() and
1716 * other calls that race to set up page table entries.
1717 */
1718#define GUP_PIN_COUNTING_BIAS (1U << 10)
1719
1720void unpin_user_page(struct page *page);
1721void unpin_folio(struct folio *folio);
1722void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1723 bool make_dirty);
1724void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1725 bool make_dirty);
1726void unpin_user_pages(struct page **pages, unsigned long npages);
1727void unpin_user_folio(struct folio *folio, unsigned long npages);
1728void unpin_folios(struct folio **folios, unsigned long nfolios);
1729
1730static inline bool is_cow_mapping(vm_flags_t flags)
1731{
1732 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1733}
1734
1735#ifndef CONFIG_MMU
1736static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1737{
1738 /*
1739 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1740 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1741 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1742 * underlying memory if ptrace is active, so this is only possible if
1743 * ptrace does not apply. Note that there is no mprotect() to upgrade
1744 * write permissions later.
1745 */
1746 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1747}
1748#endif
1749
1750#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1751#define SECTION_IN_PAGE_FLAGS
1752#endif
1753
1754/*
1755 * The identification function is mainly used by the buddy allocator for
1756 * determining if two pages could be buddies. We are not really identifying
1757 * the zone since we could be using the section number id if we do not have
1758 * node id available in page flags.
1759 * We only guarantee that it will return the same value for two combinable
1760 * pages in a zone.
1761 */
1762static inline int page_zone_id(struct page *page)
1763{
1764 return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK;
1765}
1766
1767#ifdef NODE_NOT_IN_PAGE_FLAGS
1768int memdesc_nid(memdesc_flags_t mdf);
1769#else
1770static inline int memdesc_nid(memdesc_flags_t mdf)
1771{
1772 return (mdf.f >> NODES_PGSHIFT) & NODES_MASK;
1773}
1774#endif
1775
1776static inline int page_to_nid(const struct page *page)
1777{
1778 return memdesc_nid(PF_POISONED_CHECK(page)->flags);
1779}
1780
1781static inline int folio_nid(const struct folio *folio)
1782{
1783 return memdesc_nid(folio->flags);
1784}
1785
1786#ifdef CONFIG_NUMA_BALANCING
1787/* page access time bits needs to hold at least 4 seconds */
1788#define PAGE_ACCESS_TIME_MIN_BITS 12
1789#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1790#define PAGE_ACCESS_TIME_BUCKETS \
1791 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1792#else
1793#define PAGE_ACCESS_TIME_BUCKETS 0
1794#endif
1795
1796#define PAGE_ACCESS_TIME_MASK \
1797 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1798
1799static inline int cpu_pid_to_cpupid(int cpu, int pid)
1800{
1801 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1802}
1803
1804static inline int cpupid_to_pid(int cpupid)
1805{
1806 return cpupid & LAST__PID_MASK;
1807}
1808
1809static inline int cpupid_to_cpu(int cpupid)
1810{
1811 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1812}
1813
1814static inline int cpupid_to_nid(int cpupid)
1815{
1816 return cpu_to_node(cpupid_to_cpu(cpupid));
1817}
1818
1819static inline bool cpupid_pid_unset(int cpupid)
1820{
1821 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1822}
1823
1824static inline bool cpupid_cpu_unset(int cpupid)
1825{
1826 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1827}
1828
1829static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1830{
1831 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1832}
1833
1834#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1835#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1836static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1837{
1838 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1839}
1840
1841static inline int folio_last_cpupid(struct folio *folio)
1842{
1843 return folio->_last_cpupid;
1844}
1845static inline void page_cpupid_reset_last(struct page *page)
1846{
1847 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1848}
1849#else
1850static inline int folio_last_cpupid(struct folio *folio)
1851{
1852 return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1853}
1854
1855int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1856
1857static inline void page_cpupid_reset_last(struct page *page)
1858{
1859 page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1860}
1861#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1862
1863static inline int folio_xchg_access_time(struct folio *folio, int time)
1864{
1865 int last_time;
1866
1867 last_time = folio_xchg_last_cpupid(folio,
1868 time >> PAGE_ACCESS_TIME_BUCKETS);
1869 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1870}
1871
1872static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1873{
1874 unsigned int pid_bit;
1875
1876 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1877 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1878 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1879 }
1880}
1881
1882bool folio_use_access_time(struct folio *folio);
1883#else /* !CONFIG_NUMA_BALANCING */
1884static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1885{
1886 return folio_nid(folio); /* XXX */
1887}
1888
1889static inline int folio_xchg_access_time(struct folio *folio, int time)
1890{
1891 return 0;
1892}
1893
1894static inline int folio_last_cpupid(struct folio *folio)
1895{
1896 return folio_nid(folio); /* XXX */
1897}
1898
1899static inline int cpupid_to_nid(int cpupid)
1900{
1901 return -1;
1902}
1903
1904static inline int cpupid_to_pid(int cpupid)
1905{
1906 return -1;
1907}
1908
1909static inline int cpupid_to_cpu(int cpupid)
1910{
1911 return -1;
1912}
1913
1914static inline int cpu_pid_to_cpupid(int nid, int pid)
1915{
1916 return -1;
1917}
1918
1919static inline bool cpupid_pid_unset(int cpupid)
1920{
1921 return true;
1922}
1923
1924static inline void page_cpupid_reset_last(struct page *page)
1925{
1926}
1927
1928static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1929{
1930 return false;
1931}
1932
1933static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1934{
1935}
1936static inline bool folio_use_access_time(struct folio *folio)
1937{
1938 return false;
1939}
1940#endif /* CONFIG_NUMA_BALANCING */
1941
1942#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1943
1944/*
1945 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1946 * setting tags for all pages to native kernel tag value 0xff, as the default
1947 * value 0x00 maps to 0xff.
1948 */
1949
1950static inline u8 page_kasan_tag(const struct page *page)
1951{
1952 u8 tag = KASAN_TAG_KERNEL;
1953
1954 if (kasan_enabled()) {
1955 tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1956 tag ^= 0xff;
1957 }
1958
1959 return tag;
1960}
1961
1962static inline void page_kasan_tag_set(struct page *page, u8 tag)
1963{
1964 unsigned long old_flags, flags;
1965
1966 if (!kasan_enabled())
1967 return;
1968
1969 tag ^= 0xff;
1970 old_flags = READ_ONCE(page->flags.f);
1971 do {
1972 flags = old_flags;
1973 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1974 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1975 } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags)));
1976}
1977
1978static inline void page_kasan_tag_reset(struct page *page)
1979{
1980 if (kasan_enabled())
1981 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1982}
1983
1984#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1985
1986static inline u8 page_kasan_tag(const struct page *page)
1987{
1988 return 0xff;
1989}
1990
1991static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1992static inline void page_kasan_tag_reset(struct page *page) { }
1993
1994#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1995
1996static inline struct zone *page_zone(const struct page *page)
1997{
1998 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1999}
2000
2001static inline pg_data_t *page_pgdat(const struct page *page)
2002{
2003 return NODE_DATA(page_to_nid(page));
2004}
2005
2006static inline pg_data_t *folio_pgdat(const struct folio *folio)
2007{
2008 return NODE_DATA(folio_nid(folio));
2009}
2010
2011static inline struct zone *folio_zone(const struct folio *folio)
2012{
2013 return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)];
2014}
2015
2016#ifdef SECTION_IN_PAGE_FLAGS
2017static inline void set_page_section(struct page *page, unsigned long section)
2018{
2019 page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
2020 page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
2021}
2022
2023static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2024{
2025 return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
2026}
2027#else /* !SECTION_IN_PAGE_FLAGS */
2028static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2029{
2030 return 0;
2031}
2032#endif /* SECTION_IN_PAGE_FLAGS */
2033
2034/**
2035 * folio_pfn - Return the Page Frame Number of a folio.
2036 * @folio: The folio.
2037 *
2038 * A folio may contain multiple pages. The pages have consecutive
2039 * Page Frame Numbers.
2040 *
2041 * Return: The Page Frame Number of the first page in the folio.
2042 */
2043static inline unsigned long folio_pfn(const struct folio *folio)
2044{
2045 return page_to_pfn(&folio->page);
2046}
2047
2048static inline struct folio *pfn_folio(unsigned long pfn)
2049{
2050 return page_folio(pfn_to_page(pfn));
2051}
2052
2053#ifdef CONFIG_MMU
2054static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot)
2055{
2056 return pfn_pte(page_to_pfn(page), pgprot);
2057}
2058
2059/**
2060 * folio_mk_pte - Create a PTE for this folio
2061 * @folio: The folio to create a PTE for
2062 * @pgprot: The page protection bits to use
2063 *
2064 * Create a page table entry for the first page of this folio.
2065 * This is suitable for passing to set_ptes().
2066 *
2067 * Return: A page table entry suitable for mapping this folio.
2068 */
2069static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot)
2070{
2071 return pfn_pte(folio_pfn(folio), pgprot);
2072}
2073
2074#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2075/**
2076 * folio_mk_pmd - Create a PMD for this folio
2077 * @folio: The folio to create a PMD for
2078 * @pgprot: The page protection bits to use
2079 *
2080 * Create a page table entry for the first page of this folio.
2081 * This is suitable for passing to set_pmd_at().
2082 *
2083 * Return: A page table entry suitable for mapping this folio.
2084 */
2085static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot)
2086{
2087 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
2088}
2089
2090#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2091/**
2092 * folio_mk_pud - Create a PUD for this folio
2093 * @folio: The folio to create a PUD for
2094 * @pgprot: The page protection bits to use
2095 *
2096 * Create a page table entry for the first page of this folio.
2097 * This is suitable for passing to set_pud_at().
2098 *
2099 * Return: A page table entry suitable for mapping this folio.
2100 */
2101static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot)
2102{
2103 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
2104}
2105#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2106#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2107#endif /* CONFIG_MMU */
2108
2109static inline bool folio_has_pincount(const struct folio *folio)
2110{
2111 if (IS_ENABLED(CONFIG_64BIT))
2112 return folio_test_large(folio);
2113 return folio_order(folio) > 1;
2114}
2115
2116/**
2117 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2118 * @folio: The folio.
2119 *
2120 * This function checks if a folio has been pinned via a call to
2121 * a function in the pin_user_pages() family.
2122 *
2123 * For small folios, the return value is partially fuzzy: false is not fuzzy,
2124 * because it means "definitely not pinned for DMA", but true means "probably
2125 * pinned for DMA, but possibly a false positive due to having at least
2126 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2127 *
2128 * False positives are OK, because: a) it's unlikely for a folio to
2129 * get that many refcounts, and b) all the callers of this routine are
2130 * expected to be able to deal gracefully with a false positive.
2131 *
2132 * For most large folios, the result will be exactly correct. That's because
2133 * we have more tracking data available: the _pincount field is used
2134 * instead of the GUP_PIN_COUNTING_BIAS scheme.
2135 *
2136 * For more information, please see Documentation/core-api/pin_user_pages.rst.
2137 *
2138 * Return: True, if it is likely that the folio has been "dma-pinned".
2139 * False, if the folio is definitely not dma-pinned.
2140 */
2141static inline bool folio_maybe_dma_pinned(struct folio *folio)
2142{
2143 if (folio_has_pincount(folio))
2144 return atomic_read(&folio->_pincount) > 0;
2145
2146 /*
2147 * folio_ref_count() is signed. If that refcount overflows, then
2148 * folio_ref_count() returns a negative value, and callers will avoid
2149 * further incrementing the refcount.
2150 *
2151 * Here, for that overflow case, use the sign bit to count a little
2152 * bit higher via unsigned math, and thus still get an accurate result.
2153 */
2154 return ((unsigned int)folio_ref_count(folio)) >=
2155 GUP_PIN_COUNTING_BIAS;
2156}
2157
2158/*
2159 * This should most likely only be called during fork() to see whether we
2160 * should break the cow immediately for an anon page on the src mm.
2161 *
2162 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2163 */
2164static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2165 struct folio *folio)
2166{
2167 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2168
2169 if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))
2170 return false;
2171
2172 return folio_maybe_dma_pinned(folio);
2173}
2174
2175/**
2176 * is_zero_page - Query if a page is a zero page
2177 * @page: The page to query
2178 *
2179 * This returns true if @page is one of the permanent zero pages.
2180 */
2181static inline bool is_zero_page(const struct page *page)
2182{
2183 return is_zero_pfn(page_to_pfn(page));
2184}
2185
2186/**
2187 * is_zero_folio - Query if a folio is a zero page
2188 * @folio: The folio to query
2189 *
2190 * This returns true if @folio is one of the permanent zero pages.
2191 */
2192static inline bool is_zero_folio(const struct folio *folio)
2193{
2194 return is_zero_page(&folio->page);
2195}
2196
2197/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2198#ifdef CONFIG_MIGRATION
2199static inline bool folio_is_longterm_pinnable(struct folio *folio)
2200{
2201#ifdef CONFIG_CMA
2202 int mt = folio_migratetype(folio);
2203
2204 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2205 return false;
2206#endif
2207 /* The zero page can be "pinned" but gets special handling. */
2208 if (is_zero_folio(folio))
2209 return true;
2210
2211 /* Coherent device memory must always allow eviction. */
2212 if (folio_is_device_coherent(folio))
2213 return false;
2214
2215 /*
2216 * Filesystems can only tolerate transient delays to truncate and
2217 * hole-punch operations
2218 */
2219 if (folio_is_fsdax(folio))
2220 return false;
2221
2222 /* Otherwise, non-movable zone folios can be pinned. */
2223 return !folio_is_zone_movable(folio);
2224
2225}
2226#else
2227static inline bool folio_is_longterm_pinnable(struct folio *folio)
2228{
2229 return true;
2230}
2231#endif
2232
2233static inline void set_page_zone(struct page *page, enum zone_type zone)
2234{
2235 page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT);
2236 page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2237}
2238
2239static inline void set_page_node(struct page *page, unsigned long node)
2240{
2241 page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT);
2242 page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT;
2243}
2244
2245static inline void set_page_links(struct page *page, enum zone_type zone,
2246 unsigned long node, unsigned long pfn)
2247{
2248 set_page_zone(page, zone);
2249 set_page_node(page, node);
2250#ifdef SECTION_IN_PAGE_FLAGS
2251 set_page_section(page, pfn_to_section_nr(pfn));
2252#endif
2253}
2254
2255/**
2256 * folio_nr_pages - The number of pages in the folio.
2257 * @folio: The folio.
2258 *
2259 * Return: A positive power of two.
2260 */
2261static inline unsigned long folio_nr_pages(const struct folio *folio)
2262{
2263 if (!folio_test_large(folio))
2264 return 1;
2265 return folio_large_nr_pages(folio);
2266}
2267
2268#if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS)
2269/*
2270 * We don't expect any folios that exceed buddy sizes (and consequently
2271 * memory sections).
2272 */
2273#define MAX_FOLIO_ORDER MAX_PAGE_ORDER
2274#elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
2275/*
2276 * Only pages within a single memory section are guaranteed to be
2277 * contiguous. By limiting folios to a single memory section, all folio
2278 * pages are guaranteed to be contiguous.
2279 */
2280#define MAX_FOLIO_ORDER PFN_SECTION_SHIFT
2281#elif defined(CONFIG_HUGETLB_PAGE)
2282/*
2283 * There is no real limit on the folio size. We limit them to the maximum we
2284 * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect
2285 * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit.
2286 */
2287#define MAX_FOLIO_ORDER get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G)
2288#else
2289/*
2290 * Without hugetlb, gigantic folios that are bigger than a single PUD are
2291 * currently impossible.
2292 */
2293#define MAX_FOLIO_ORDER PUD_ORDER
2294#endif
2295
2296#define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER)
2297
2298/*
2299 * compound_nr() returns the number of pages in this potentially compound
2300 * page. compound_nr() can be called on a tail page, and is defined to
2301 * return 1 in that case.
2302 */
2303static inline unsigned long compound_nr(const struct page *page)
2304{
2305 const struct folio *folio = (struct folio *)page;
2306
2307 if (!test_bit(PG_head, &folio->flags.f))
2308 return 1;
2309 return folio_large_nr_pages(folio);
2310}
2311
2312/**
2313 * folio_next - Move to the next physical folio.
2314 * @folio: The folio we're currently operating on.
2315 *
2316 * If you have physically contiguous memory which may span more than
2317 * one folio (eg a &struct bio_vec), use this function to move from one
2318 * folio to the next. Do not use it if the memory is only virtually
2319 * contiguous as the folios are almost certainly not adjacent to each
2320 * other. This is the folio equivalent to writing ``page++``.
2321 *
2322 * Context: We assume that the folios are refcounted and/or locked at a
2323 * higher level and do not adjust the reference counts.
2324 * Return: The next struct folio.
2325 */
2326static inline struct folio *folio_next(struct folio *folio)
2327{
2328 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2329}
2330
2331/**
2332 * folio_shift - The size of the memory described by this folio.
2333 * @folio: The folio.
2334 *
2335 * A folio represents a number of bytes which is a power-of-two in size.
2336 * This function tells you which power-of-two the folio is. See also
2337 * folio_size() and folio_order().
2338 *
2339 * Context: The caller should have a reference on the folio to prevent
2340 * it from being split. It is not necessary for the folio to be locked.
2341 * Return: The base-2 logarithm of the size of this folio.
2342 */
2343static inline unsigned int folio_shift(const struct folio *folio)
2344{
2345 return PAGE_SHIFT + folio_order(folio);
2346}
2347
2348/**
2349 * folio_size - The number of bytes in a folio.
2350 * @folio: The folio.
2351 *
2352 * Context: The caller should have a reference on the folio to prevent
2353 * it from being split. It is not necessary for the folio to be locked.
2354 * Return: The number of bytes in this folio.
2355 */
2356static inline size_t folio_size(const struct folio *folio)
2357{
2358 return PAGE_SIZE << folio_order(folio);
2359}
2360
2361/**
2362 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2363 * tables of more than one MM
2364 * @folio: The folio.
2365 *
2366 * This function checks if the folio maybe currently mapped into more than one
2367 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2368 * MM ("mapped exclusively").
2369 *
2370 * For KSM folios, this function also returns "mapped shared" when a folio is
2371 * mapped multiple times into the same MM, because the individual page mappings
2372 * are independent.
2373 *
2374 * For small anonymous folios and anonymous hugetlb folios, the return
2375 * value will be exactly correct: non-KSM folios can only be mapped at most once
2376 * into an MM, and they cannot be partially mapped. KSM folios are
2377 * considered shared even if mapped multiple times into the same MM.
2378 *
2379 * For other folios, the result can be fuzzy:
2380 * #. For partially-mappable large folios (THP), the return value can wrongly
2381 * indicate "mapped shared" (false positive) if a folio was mapped by
2382 * more than two MMs at one point in time.
2383 * #. For pagecache folios (including hugetlb), the return value can wrongly
2384 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2385 * cover the same file range.
2386 *
2387 * Further, this function only considers current page table mappings that
2388 * are tracked using the folio mapcount(s).
2389 *
2390 * This function does not consider:
2391 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2392 * pagecache, temporary unmapping for migration).
2393 * #. If the folio is mapped differently (VM_PFNMAP).
2394 * #. If hugetlb page table sharing applies. Callers might want to check
2395 * hugetlb_pmd_shared().
2396 *
2397 * Return: Whether the folio is estimated to be mapped into more than one MM.
2398 */
2399static inline bool folio_maybe_mapped_shared(struct folio *folio)
2400{
2401 int mapcount = folio_mapcount(folio);
2402
2403 /* Only partially-mappable folios require more care. */
2404 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2405 return mapcount > 1;
2406
2407 /*
2408 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2409 * simply assume "mapped shared", nobody should really care
2410 * about this for arbitrary kernel allocations.
2411 */
2412 if (!IS_ENABLED(CONFIG_MM_ID))
2413 return true;
2414
2415 /*
2416 * A single mapping implies "mapped exclusively", even if the
2417 * folio flag says something different: it's easier to handle this
2418 * case here instead of on the RMAP hot path.
2419 */
2420 if (mapcount <= 1)
2421 return false;
2422 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2423}
2424
2425/**
2426 * folio_expected_ref_count - calculate the expected folio refcount
2427 * @folio: the folio
2428 *
2429 * Calculate the expected folio refcount, taking references from the pagecache,
2430 * swapcache, PG_private and page table mappings into account. Useful in
2431 * combination with folio_ref_count() to detect unexpected references (e.g.,
2432 * GUP or other temporary references).
2433 *
2434 * Does currently not consider references from the LRU cache. If the folio
2435 * was isolated from the LRU (which is the case during migration or split),
2436 * the LRU cache does not apply.
2437 *
2438 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2439 * locked will return a stable result.
2440 *
2441 * Calling this function on a mapped folio will not result in a stable result,
2442 * because nothing stops additional page table mappings from coming (e.g.,
2443 * fork()) or going (e.g., munmap()).
2444 *
2445 * Calling this function without the folio lock will also not result in a
2446 * stable result: for example, the folio might get dropped from the swapcache
2447 * concurrently.
2448 *
2449 * However, even when called without the folio lock or on a mapped folio,
2450 * this function can be used to detect unexpected references early (for example,
2451 * if it makes sense to even lock the folio and unmap it).
2452 *
2453 * The caller must add any reference (e.g., from folio_try_get()) it might be
2454 * holding itself to the result.
2455 *
2456 * Returns the expected folio refcount.
2457 */
2458static inline int folio_expected_ref_count(const struct folio *folio)
2459{
2460 const int order = folio_order(folio);
2461 int ref_count = 0;
2462
2463 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2464 return 0;
2465
2466 /* One reference per page from the swapcache. */
2467 ref_count += folio_test_swapcache(folio) << order;
2468
2469 if (!folio_test_anon(folio)) {
2470 /* One reference per page from the pagecache. */
2471 ref_count += !!folio->mapping << order;
2472 /* One reference from PG_private. */
2473 ref_count += folio_test_private(folio);
2474 }
2475
2476 /* One reference per page table mapping. */
2477 return ref_count + folio_mapcount(folio);
2478}
2479
2480#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2481static inline int arch_make_folio_accessible(struct folio *folio)
2482{
2483 return 0;
2484}
2485#endif
2486
2487/*
2488 * Some inline functions in vmstat.h depend on page_zone()
2489 */
2490#include <linux/vmstat.h>
2491
2492#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2493#define HASHED_PAGE_VIRTUAL
2494#endif
2495
2496#if defined(WANT_PAGE_VIRTUAL)
2497static inline void *page_address(const struct page *page)
2498{
2499 return page->virtual;
2500}
2501static inline void set_page_address(struct page *page, void *address)
2502{
2503 page->virtual = address;
2504}
2505#define page_address_init() do { } while(0)
2506#endif
2507
2508#if defined(HASHED_PAGE_VIRTUAL)
2509void *page_address(const struct page *page);
2510void set_page_address(struct page *page, void *virtual);
2511void page_address_init(void);
2512#endif
2513
2514static __always_inline void *lowmem_page_address(const struct page *page)
2515{
2516 return page_to_virt(page);
2517}
2518
2519#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2520#define page_address(page) lowmem_page_address(page)
2521#define set_page_address(page, address) do { } while(0)
2522#define page_address_init() do { } while(0)
2523#endif
2524
2525static inline void *folio_address(const struct folio *folio)
2526{
2527 return page_address(&folio->page);
2528}
2529
2530/*
2531 * Return true only if the page has been allocated with
2532 * ALLOC_NO_WATERMARKS and the low watermark was not
2533 * met implying that the system is under some pressure.
2534 */
2535static inline bool page_is_pfmemalloc(const struct page *page)
2536{
2537 /*
2538 * lru.next has bit 1 set if the page is allocated from the
2539 * pfmemalloc reserves. Callers may simply overwrite it if
2540 * they do not need to preserve that information.
2541 */
2542 return (uintptr_t)page->lru.next & BIT(1);
2543}
2544
2545/*
2546 * Return true only if the folio has been allocated with
2547 * ALLOC_NO_WATERMARKS and the low watermark was not
2548 * met implying that the system is under some pressure.
2549 */
2550static inline bool folio_is_pfmemalloc(const struct folio *folio)
2551{
2552 /*
2553 * lru.next has bit 1 set if the page is allocated from the
2554 * pfmemalloc reserves. Callers may simply overwrite it if
2555 * they do not need to preserve that information.
2556 */
2557 return (uintptr_t)folio->lru.next & BIT(1);
2558}
2559
2560/*
2561 * Only to be called by the page allocator on a freshly allocated
2562 * page.
2563 */
2564static inline void set_page_pfmemalloc(struct page *page)
2565{
2566 page->lru.next = (void *)BIT(1);
2567}
2568
2569static inline void clear_page_pfmemalloc(struct page *page)
2570{
2571 page->lru.next = NULL;
2572}
2573
2574/*
2575 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2576 */
2577extern void pagefault_out_of_memory(void);
2578
2579#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2580#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2581
2582/*
2583 * Parameter block passed down to zap_pte_range in exceptional cases.
2584 */
2585struct zap_details {
2586 struct folio *single_folio; /* Locked folio to be unmapped */
2587 bool even_cows; /* Zap COWed private pages too? */
2588 bool reclaim_pt; /* Need reclaim page tables? */
2589 zap_flags_t zap_flags; /* Extra flags for zapping */
2590};
2591
2592/*
2593 * Whether to drop the pte markers, for example, the uffd-wp information for
2594 * file-backed memory. This should only be specified when we will completely
2595 * drop the page in the mm, either by truncation or unmapping of the vma. By
2596 * default, the flag is not set.
2597 */
2598#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2599/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2600#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2601
2602#ifdef CONFIG_MMU
2603extern bool can_do_mlock(void);
2604#else
2605static inline bool can_do_mlock(void) { return false; }
2606#endif
2607extern int user_shm_lock(size_t, struct ucounts *);
2608extern void user_shm_unlock(size_t, struct ucounts *);
2609
2610struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2611 pte_t pte);
2612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2613 pte_t pte);
2614struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2615 unsigned long addr, pmd_t pmd);
2616struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2617 pmd_t pmd);
2618struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr,
2619 pud_t pud);
2620
2621void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2622 unsigned long size);
2623void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2624 unsigned long size, struct zap_details *details);
2625static inline void zap_vma_pages(struct vm_area_struct *vma)
2626{
2627 zap_page_range_single(vma, vma->vm_start,
2628 vma->vm_end - vma->vm_start, NULL);
2629}
2630void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2631 struct vm_area_struct *start_vma, unsigned long start,
2632 unsigned long end, unsigned long tree_end);
2633
2634struct mmu_notifier_range;
2635
2636void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2637 unsigned long end, unsigned long floor, unsigned long ceiling);
2638int
2639copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2640int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2641 void *buf, int len, int write);
2642
2643struct follow_pfnmap_args {
2644 /**
2645 * Inputs:
2646 * @vma: Pointer to @vm_area_struct struct
2647 * @address: the virtual address to walk
2648 */
2649 struct vm_area_struct *vma;
2650 unsigned long address;
2651 /**
2652 * Internals:
2653 *
2654 * The caller shouldn't touch any of these.
2655 */
2656 spinlock_t *lock;
2657 pte_t *ptep;
2658 /**
2659 * Outputs:
2660 *
2661 * @pfn: the PFN of the address
2662 * @addr_mask: address mask covering pfn
2663 * @pgprot: the pgprot_t of the mapping
2664 * @writable: whether the mapping is writable
2665 * @special: whether the mapping is a special mapping (real PFN maps)
2666 */
2667 unsigned long pfn;
2668 unsigned long addr_mask;
2669 pgprot_t pgprot;
2670 bool writable;
2671 bool special;
2672};
2673int follow_pfnmap_start(struct follow_pfnmap_args *args);
2674void follow_pfnmap_end(struct follow_pfnmap_args *args);
2675
2676extern void truncate_pagecache(struct inode *inode, loff_t new);
2677extern void truncate_setsize(struct inode *inode, loff_t newsize);
2678void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2679void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2680int generic_error_remove_folio(struct address_space *mapping,
2681 struct folio *folio);
2682
2683struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2684 unsigned long address, struct pt_regs *regs);
2685
2686#ifdef CONFIG_MMU
2687extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2688 unsigned long address, unsigned int flags,
2689 struct pt_regs *regs);
2690extern int fixup_user_fault(struct mm_struct *mm,
2691 unsigned long address, unsigned int fault_flags,
2692 bool *unlocked);
2693void unmap_mapping_pages(struct address_space *mapping,
2694 pgoff_t start, pgoff_t nr, bool even_cows);
2695void unmap_mapping_range(struct address_space *mapping,
2696 loff_t const holebegin, loff_t const holelen, int even_cows);
2697#else
2698static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2699 unsigned long address, unsigned int flags,
2700 struct pt_regs *regs)
2701{
2702 /* should never happen if there's no MMU */
2703 BUG();
2704 return VM_FAULT_SIGBUS;
2705}
2706static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2707 unsigned int fault_flags, bool *unlocked)
2708{
2709 /* should never happen if there's no MMU */
2710 BUG();
2711 return -EFAULT;
2712}
2713static inline void unmap_mapping_pages(struct address_space *mapping,
2714 pgoff_t start, pgoff_t nr, bool even_cows) { }
2715static inline void unmap_mapping_range(struct address_space *mapping,
2716 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2717#endif
2718
2719static inline void unmap_shared_mapping_range(struct address_space *mapping,
2720 loff_t const holebegin, loff_t const holelen)
2721{
2722 unmap_mapping_range(mapping, holebegin, holelen, 0);
2723}
2724
2725static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2726 unsigned long addr);
2727
2728extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2729 void *buf, int len, unsigned int gup_flags);
2730extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2731 void *buf, int len, unsigned int gup_flags);
2732
2733#ifdef CONFIG_BPF_SYSCALL
2734extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2735 void *buf, int len, unsigned int gup_flags);
2736#endif
2737
2738long get_user_pages_remote(struct mm_struct *mm,
2739 unsigned long start, unsigned long nr_pages,
2740 unsigned int gup_flags, struct page **pages,
2741 int *locked);
2742long pin_user_pages_remote(struct mm_struct *mm,
2743 unsigned long start, unsigned long nr_pages,
2744 unsigned int gup_flags, struct page **pages,
2745 int *locked);
2746
2747/*
2748 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2749 */
2750static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2751 unsigned long addr,
2752 int gup_flags,
2753 struct vm_area_struct **vmap)
2754{
2755 struct page *page;
2756 struct vm_area_struct *vma;
2757 int got;
2758
2759 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2760 return ERR_PTR(-EINVAL);
2761
2762 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2763
2764 if (got < 0)
2765 return ERR_PTR(got);
2766
2767 vma = vma_lookup(mm, addr);
2768 if (WARN_ON_ONCE(!vma)) {
2769 put_page(page);
2770 return ERR_PTR(-EINVAL);
2771 }
2772
2773 *vmap = vma;
2774 return page;
2775}
2776
2777long get_user_pages(unsigned long start, unsigned long nr_pages,
2778 unsigned int gup_flags, struct page **pages);
2779long pin_user_pages(unsigned long start, unsigned long nr_pages,
2780 unsigned int gup_flags, struct page **pages);
2781long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2782 struct page **pages, unsigned int gup_flags);
2783long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2784 struct page **pages, unsigned int gup_flags);
2785long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2786 struct folio **folios, unsigned int max_folios,
2787 pgoff_t *offset);
2788int folio_add_pins(struct folio *folio, unsigned int pins);
2789
2790int get_user_pages_fast(unsigned long start, int nr_pages,
2791 unsigned int gup_flags, struct page **pages);
2792int pin_user_pages_fast(unsigned long start, int nr_pages,
2793 unsigned int gup_flags, struct page **pages);
2794void folio_add_pin(struct folio *folio);
2795
2796int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2797int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2798 const struct task_struct *task, bool bypass_rlim);
2799
2800struct kvec;
2801struct page *get_dump_page(unsigned long addr, int *locked);
2802
2803bool folio_mark_dirty(struct folio *folio);
2804bool folio_mark_dirty_lock(struct folio *folio);
2805bool set_page_dirty(struct page *page);
2806int set_page_dirty_lock(struct page *page);
2807
2808int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2809
2810/*
2811 * Flags used by change_protection(). For now we make it a bitmap so
2812 * that we can pass in multiple flags just like parameters. However
2813 * for now all the callers are only use one of the flags at the same
2814 * time.
2815 */
2816/*
2817 * Whether we should manually check if we can map individual PTEs writable,
2818 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2819 * PTEs automatically in a writable mapping.
2820 */
2821#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2822/* Whether this protection change is for NUMA hints */
2823#define MM_CP_PROT_NUMA (1UL << 1)
2824/* Whether this change is for write protecting */
2825#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2826#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2827#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2828 MM_CP_UFFD_WP_RESOLVE)
2829
2830bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2831 pte_t pte);
2832extern long change_protection(struct mmu_gather *tlb,
2833 struct vm_area_struct *vma, unsigned long start,
2834 unsigned long end, unsigned long cp_flags);
2835extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2836 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2837 unsigned long start, unsigned long end, vm_flags_t newflags);
2838
2839/*
2840 * doesn't attempt to fault and will return short.
2841 */
2842int get_user_pages_fast_only(unsigned long start, int nr_pages,
2843 unsigned int gup_flags, struct page **pages);
2844
2845static inline bool get_user_page_fast_only(unsigned long addr,
2846 unsigned int gup_flags, struct page **pagep)
2847{
2848 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2849}
2850/*
2851 * per-process(per-mm_struct) statistics.
2852 */
2853static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2854{
2855 return percpu_counter_read_positive(&mm->rss_stat[member]);
2856}
2857
2858static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2859{
2860 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2861}
2862
2863void mm_trace_rss_stat(struct mm_struct *mm, int member);
2864
2865static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2866{
2867 percpu_counter_add(&mm->rss_stat[member], value);
2868
2869 mm_trace_rss_stat(mm, member);
2870}
2871
2872static inline void inc_mm_counter(struct mm_struct *mm, int member)
2873{
2874 percpu_counter_inc(&mm->rss_stat[member]);
2875
2876 mm_trace_rss_stat(mm, member);
2877}
2878
2879static inline void dec_mm_counter(struct mm_struct *mm, int member)
2880{
2881 percpu_counter_dec(&mm->rss_stat[member]);
2882
2883 mm_trace_rss_stat(mm, member);
2884}
2885
2886/* Optimized variant when folio is already known not to be anon */
2887static inline int mm_counter_file(struct folio *folio)
2888{
2889 if (folio_test_swapbacked(folio))
2890 return MM_SHMEMPAGES;
2891 return MM_FILEPAGES;
2892}
2893
2894static inline int mm_counter(struct folio *folio)
2895{
2896 if (folio_test_anon(folio))
2897 return MM_ANONPAGES;
2898 return mm_counter_file(folio);
2899}
2900
2901static inline unsigned long get_mm_rss(struct mm_struct *mm)
2902{
2903 return get_mm_counter(mm, MM_FILEPAGES) +
2904 get_mm_counter(mm, MM_ANONPAGES) +
2905 get_mm_counter(mm, MM_SHMEMPAGES);
2906}
2907
2908static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2909{
2910 return max(mm->hiwater_rss, get_mm_rss(mm));
2911}
2912
2913static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2914{
2915 return max(mm->hiwater_vm, mm->total_vm);
2916}
2917
2918static inline void update_hiwater_rss(struct mm_struct *mm)
2919{
2920 unsigned long _rss = get_mm_rss(mm);
2921
2922 if (data_race(mm->hiwater_rss) < _rss)
2923 data_race(mm->hiwater_rss = _rss);
2924}
2925
2926static inline void update_hiwater_vm(struct mm_struct *mm)
2927{
2928 if (mm->hiwater_vm < mm->total_vm)
2929 mm->hiwater_vm = mm->total_vm;
2930}
2931
2932static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2933{
2934 mm->hiwater_rss = get_mm_rss(mm);
2935}
2936
2937static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2938 struct mm_struct *mm)
2939{
2940 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2941
2942 if (*maxrss < hiwater_rss)
2943 *maxrss = hiwater_rss;
2944}
2945
2946#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2947static inline int pte_special(pte_t pte)
2948{
2949 return 0;
2950}
2951
2952static inline pte_t pte_mkspecial(pte_t pte)
2953{
2954 return pte;
2955}
2956#endif
2957
2958#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2959static inline bool pmd_special(pmd_t pmd)
2960{
2961 return false;
2962}
2963
2964static inline pmd_t pmd_mkspecial(pmd_t pmd)
2965{
2966 return pmd;
2967}
2968#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2969
2970#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2971static inline bool pud_special(pud_t pud)
2972{
2973 return false;
2974}
2975
2976static inline pud_t pud_mkspecial(pud_t pud)
2977{
2978 return pud;
2979}
2980#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2981
2982extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2983 spinlock_t **ptl);
2984static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2985 spinlock_t **ptl)
2986{
2987 pte_t *ptep;
2988 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2989 return ptep;
2990}
2991
2992#ifdef __PAGETABLE_P4D_FOLDED
2993static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2994 unsigned long address)
2995{
2996 return 0;
2997}
2998#else
2999int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
3000#endif
3001
3002#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
3003static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3004 unsigned long address)
3005{
3006 return 0;
3007}
3008static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
3009static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
3010
3011#else
3012int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
3013
3014static inline void mm_inc_nr_puds(struct mm_struct *mm)
3015{
3016 if (mm_pud_folded(mm))
3017 return;
3018 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3019}
3020
3021static inline void mm_dec_nr_puds(struct mm_struct *mm)
3022{
3023 if (mm_pud_folded(mm))
3024 return;
3025 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3026}
3027#endif
3028
3029#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
3030static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
3031 unsigned long address)
3032{
3033 return 0;
3034}
3035
3036static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
3037static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
3038
3039#else
3040int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
3041
3042static inline void mm_inc_nr_pmds(struct mm_struct *mm)
3043{
3044 if (mm_pmd_folded(mm))
3045 return;
3046 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3047}
3048
3049static inline void mm_dec_nr_pmds(struct mm_struct *mm)
3050{
3051 if (mm_pmd_folded(mm))
3052 return;
3053 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3054}
3055#endif
3056
3057#ifdef CONFIG_MMU
3058static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
3059{
3060 atomic_long_set(&mm->pgtables_bytes, 0);
3061}
3062
3063static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3064{
3065 return atomic_long_read(&mm->pgtables_bytes);
3066}
3067
3068static inline void mm_inc_nr_ptes(struct mm_struct *mm)
3069{
3070 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3071}
3072
3073static inline void mm_dec_nr_ptes(struct mm_struct *mm)
3074{
3075 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3076}
3077#else
3078
3079static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
3080static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3081{
3082 return 0;
3083}
3084
3085static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
3086static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
3087#endif
3088
3089int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
3090int __pte_alloc_kernel(pmd_t *pmd);
3091
3092#if defined(CONFIG_MMU)
3093
3094static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
3095 unsigned long address)
3096{
3097 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
3098 NULL : p4d_offset(pgd, address);
3099}
3100
3101static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3102 unsigned long address)
3103{
3104 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
3105 NULL : pud_offset(p4d, address);
3106}
3107
3108static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3109{
3110 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
3111 NULL: pmd_offset(pud, address);
3112}
3113#endif /* CONFIG_MMU */
3114
3115enum pt_flags {
3116 PT_kernel = PG_referenced,
3117 PT_reserved = PG_reserved,
3118 /* High bits are used for zone/node/section */
3119};
3120
3121static inline struct ptdesc *virt_to_ptdesc(const void *x)
3122{
3123 return page_ptdesc(virt_to_page(x));
3124}
3125
3126/**
3127 * ptdesc_address - Virtual address of page table.
3128 * @pt: Page table descriptor.
3129 *
3130 * Return: The first byte of the page table described by @pt.
3131 */
3132static inline void *ptdesc_address(const struct ptdesc *pt)
3133{
3134 return folio_address(ptdesc_folio(pt));
3135}
3136
3137static inline bool pagetable_is_reserved(struct ptdesc *pt)
3138{
3139 return test_bit(PT_reserved, &pt->pt_flags.f);
3140}
3141
3142/**
3143 * ptdesc_set_kernel - Mark a ptdesc used to map the kernel
3144 * @ptdesc: The ptdesc to be marked
3145 *
3146 * Kernel page tables often need special handling. Set a flag so that
3147 * the handling code knows this ptdesc will not be used for userspace.
3148 */
3149static inline void ptdesc_set_kernel(struct ptdesc *ptdesc)
3150{
3151 set_bit(PT_kernel, &ptdesc->pt_flags.f);
3152}
3153
3154/**
3155 * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel
3156 * @ptdesc: The ptdesc to be unmarked
3157 *
3158 * Use when the ptdesc is no longer used to map the kernel and no longer
3159 * needs special handling.
3160 */
3161static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc)
3162{
3163 /*
3164 * Note: the 'PG_referenced' bit does not strictly need to be
3165 * cleared before freeing the page. But this is nice for
3166 * symmetry.
3167 */
3168 clear_bit(PT_kernel, &ptdesc->pt_flags.f);
3169}
3170
3171/**
3172 * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel
3173 * @ptdesc: The ptdesc being tested
3174 *
3175 * Call to tell if the ptdesc used to map the kernel.
3176 */
3177static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc)
3178{
3179 return test_bit(PT_kernel, &ptdesc->pt_flags.f);
3180}
3181
3182/**
3183 * pagetable_alloc - Allocate pagetables
3184 * @gfp: GFP flags
3185 * @order: desired pagetable order
3186 *
3187 * pagetable_alloc allocates memory for page tables as well as a page table
3188 * descriptor to describe that memory.
3189 *
3190 * Return: The ptdesc describing the allocated page tables.
3191 */
3192static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
3193{
3194 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
3195
3196 return page_ptdesc(page);
3197}
3198#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
3199
3200static inline void __pagetable_free(struct ptdesc *pt)
3201{
3202 struct page *page = ptdesc_page(pt);
3203
3204 __free_pages(page, compound_order(page));
3205}
3206
3207#ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE
3208void pagetable_free_kernel(struct ptdesc *pt);
3209#else
3210static inline void pagetable_free_kernel(struct ptdesc *pt)
3211{
3212 __pagetable_free(pt);
3213}
3214#endif
3215/**
3216 * pagetable_free - Free pagetables
3217 * @pt: The page table descriptor
3218 *
3219 * pagetable_free frees the memory of all page tables described by a page
3220 * table descriptor and the memory for the descriptor itself.
3221 */
3222static inline void pagetable_free(struct ptdesc *pt)
3223{
3224 if (ptdesc_test_kernel(pt)) {
3225 ptdesc_clear_kernel(pt);
3226 pagetable_free_kernel(pt);
3227 } else {
3228 __pagetable_free(pt);
3229 }
3230}
3231
3232#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3233#if ALLOC_SPLIT_PTLOCKS
3234void __init ptlock_cache_init(void);
3235bool ptlock_alloc(struct ptdesc *ptdesc);
3236void ptlock_free(struct ptdesc *ptdesc);
3237
3238static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3239{
3240 return ptdesc->ptl;
3241}
3242#else /* ALLOC_SPLIT_PTLOCKS */
3243static inline void ptlock_cache_init(void)
3244{
3245}
3246
3247static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3248{
3249 return true;
3250}
3251
3252static inline void ptlock_free(struct ptdesc *ptdesc)
3253{
3254}
3255
3256static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3257{
3258 return &ptdesc->ptl;
3259}
3260#endif /* ALLOC_SPLIT_PTLOCKS */
3261
3262static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3263{
3264 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3265}
3266
3267static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3268{
3269 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3270 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3271 return ptlock_ptr(virt_to_ptdesc(pte));
3272}
3273
3274static inline bool ptlock_init(struct ptdesc *ptdesc)
3275{
3276 /*
3277 * prep_new_page() initialize page->private (and therefore page->ptl)
3278 * with 0. Make sure nobody took it in use in between.
3279 *
3280 * It can happen if arch try to use slab for page table allocation:
3281 * slab code uses page->slab_cache, which share storage with page->ptl.
3282 */
3283 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3284 if (!ptlock_alloc(ptdesc))
3285 return false;
3286 spin_lock_init(ptlock_ptr(ptdesc));
3287 return true;
3288}
3289
3290#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3291/*
3292 * We use mm->page_table_lock to guard all pagetable pages of the mm.
3293 */
3294static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3295{
3296 return &mm->page_table_lock;
3297}
3298static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3299{
3300 return &mm->page_table_lock;
3301}
3302static inline void ptlock_cache_init(void) {}
3303static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
3304static inline void ptlock_free(struct ptdesc *ptdesc) {}
3305#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3306
3307static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc)
3308{
3309 return compound_nr(ptdesc_page(ptdesc));
3310}
3311
3312static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3313{
3314 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3315
3316 __SetPageTable(ptdesc_page(ptdesc));
3317 mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc));
3318}
3319
3320static inline void pagetable_dtor(struct ptdesc *ptdesc)
3321{
3322 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3323
3324 ptlock_free(ptdesc);
3325 __ClearPageTable(ptdesc_page(ptdesc));
3326 mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc));
3327}
3328
3329static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3330{
3331 pagetable_dtor(ptdesc);
3332 pagetable_free(ptdesc);
3333}
3334
3335static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3336 struct ptdesc *ptdesc)
3337{
3338 if (mm != &init_mm && !ptlock_init(ptdesc))
3339 return false;
3340 __pagetable_ctor(ptdesc);
3341 return true;
3342}
3343
3344pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3345static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3346 pmd_t *pmdvalp)
3347{
3348 pte_t *pte;
3349
3350 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3351 return pte;
3352}
3353static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3354{
3355 return __pte_offset_map(pmd, addr, NULL);
3356}
3357
3358pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3359 unsigned long addr, spinlock_t **ptlp);
3360static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3361 unsigned long addr, spinlock_t **ptlp)
3362{
3363 pte_t *pte;
3364
3365 __cond_lock(RCU, __cond_lock(*ptlp,
3366 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3367 return pte;
3368}
3369
3370pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3371 unsigned long addr, spinlock_t **ptlp);
3372pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3373 unsigned long addr, pmd_t *pmdvalp,
3374 spinlock_t **ptlp);
3375
3376#define pte_unmap_unlock(pte, ptl) do { \
3377 spin_unlock(ptl); \
3378 pte_unmap(pte); \
3379} while (0)
3380
3381#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3382
3383#define pte_alloc_map(mm, pmd, address) \
3384 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3385
3386#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3387 (pte_alloc(mm, pmd) ? \
3388 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3389
3390#define pte_alloc_kernel(pmd, address) \
3391 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3392 NULL: pte_offset_kernel(pmd, address))
3393
3394#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3395
3396static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3397{
3398 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3399 return virt_to_page((void *)((unsigned long) pmd & mask));
3400}
3401
3402static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3403{
3404 return page_ptdesc(pmd_pgtable_page(pmd));
3405}
3406
3407static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3408{
3409 return ptlock_ptr(pmd_ptdesc(pmd));
3410}
3411
3412static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3413{
3414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3415 ptdesc->pmd_huge_pte = NULL;
3416#endif
3417 return ptlock_init(ptdesc);
3418}
3419
3420#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3421
3422#else
3423
3424static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3425{
3426 return &mm->page_table_lock;
3427}
3428
3429static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3430
3431#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3432
3433#endif
3434
3435static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3436{
3437 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3438 spin_lock(ptl);
3439 return ptl;
3440}
3441
3442static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3443 struct ptdesc *ptdesc)
3444{
3445 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3446 return false;
3447 ptdesc_pmd_pts_init(ptdesc);
3448 __pagetable_ctor(ptdesc);
3449 return true;
3450}
3451
3452/*
3453 * No scalability reason to split PUD locks yet, but follow the same pattern
3454 * as the PMD locks to make it easier if we decide to. The VM should not be
3455 * considered ready to switch to split PUD locks yet; there may be places
3456 * which need to be converted from page_table_lock.
3457 */
3458static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3459{
3460 return &mm->page_table_lock;
3461}
3462
3463static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3464{
3465 spinlock_t *ptl = pud_lockptr(mm, pud);
3466
3467 spin_lock(ptl);
3468 return ptl;
3469}
3470
3471static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3472{
3473 __pagetable_ctor(ptdesc);
3474}
3475
3476static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3477{
3478 __pagetable_ctor(ptdesc);
3479}
3480
3481static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3482{
3483 __pagetable_ctor(ptdesc);
3484}
3485
3486extern void __init pagecache_init(void);
3487extern void free_initmem(void);
3488
3489/*
3490 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3491 * into the buddy system. The freed pages will be poisoned with pattern
3492 * "poison" if it's within range [0, UCHAR_MAX].
3493 * Return pages freed into the buddy system.
3494 */
3495extern unsigned long free_reserved_area(void *start, void *end,
3496 int poison, const char *s);
3497
3498extern void adjust_managed_page_count(struct page *page, long count);
3499
3500extern void reserve_bootmem_region(phys_addr_t start,
3501 phys_addr_t end, int nid);
3502
3503/* Free the reserved page into the buddy system, so it gets managed. */
3504void free_reserved_page(struct page *page);
3505
3506static inline void mark_page_reserved(struct page *page)
3507{
3508 SetPageReserved(page);
3509 adjust_managed_page_count(page, -1);
3510}
3511
3512static inline void free_reserved_ptdesc(struct ptdesc *pt)
3513{
3514 free_reserved_page(ptdesc_page(pt));
3515}
3516
3517/*
3518 * Default method to free all the __init memory into the buddy system.
3519 * The freed pages will be poisoned with pattern "poison" if it's within
3520 * range [0, UCHAR_MAX].
3521 * Return pages freed into the buddy system.
3522 */
3523static inline unsigned long free_initmem_default(int poison)
3524{
3525 extern char __init_begin[], __init_end[];
3526
3527 return free_reserved_area(&__init_begin, &__init_end,
3528 poison, "unused kernel image (initmem)");
3529}
3530
3531static inline unsigned long get_num_physpages(void)
3532{
3533 int nid;
3534 unsigned long phys_pages = 0;
3535
3536 for_each_online_node(nid)
3537 phys_pages += node_present_pages(nid);
3538
3539 return phys_pages;
3540}
3541
3542/*
3543 * Using memblock node mappings, an architecture may initialise its
3544 * zones, allocate the backing mem_map and account for memory holes in an
3545 * architecture independent manner.
3546 *
3547 * An architecture is expected to register range of page frames backed by
3548 * physical memory with memblock_add[_node]() before calling
3549 * free_area_init() passing in the PFN each zone ends at. At a basic
3550 * usage, an architecture is expected to do something like
3551 *
3552 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3553 * max_highmem_pfn};
3554 * for_each_valid_physical_page_range()
3555 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3556 * free_area_init(max_zone_pfns);
3557 */
3558void free_area_init(unsigned long *max_zone_pfn);
3559unsigned long node_map_pfn_alignment(void);
3560extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3561 unsigned long end_pfn);
3562extern void get_pfn_range_for_nid(unsigned int nid,
3563 unsigned long *start_pfn, unsigned long *end_pfn);
3564
3565#ifndef CONFIG_NUMA
3566static inline int early_pfn_to_nid(unsigned long pfn)
3567{
3568 return 0;
3569}
3570#else
3571/* please see mm/page_alloc.c */
3572extern int __meminit early_pfn_to_nid(unsigned long pfn);
3573#endif
3574
3575extern void mem_init(void);
3576extern void __init mmap_init(void);
3577
3578extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3579static inline void show_mem(void)
3580{
3581 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3582}
3583extern long si_mem_available(void);
3584extern void si_meminfo(struct sysinfo * val);
3585extern void si_meminfo_node(struct sysinfo *val, int nid);
3586
3587extern __printf(3, 4)
3588void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3589
3590extern void setup_per_cpu_pageset(void);
3591
3592/* nommu.c */
3593extern atomic_long_t mmap_pages_allocated;
3594extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3595
3596/* interval_tree.c */
3597void vma_interval_tree_insert(struct vm_area_struct *node,
3598 struct rb_root_cached *root);
3599void vma_interval_tree_insert_after(struct vm_area_struct *node,
3600 struct vm_area_struct *prev,
3601 struct rb_root_cached *root);
3602void vma_interval_tree_remove(struct vm_area_struct *node,
3603 struct rb_root_cached *root);
3604struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node,
3605 unsigned long start, unsigned long last);
3606struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3607 unsigned long start, unsigned long last);
3608struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3609 unsigned long start, unsigned long last);
3610
3611#define vma_interval_tree_foreach(vma, root, start, last) \
3612 for (vma = vma_interval_tree_iter_first(root, start, last); \
3613 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3614
3615void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3616 struct rb_root_cached *root);
3617void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3618 struct rb_root_cached *root);
3619struct anon_vma_chain *
3620anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3621 unsigned long start, unsigned long last);
3622struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3623 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3624#ifdef CONFIG_DEBUG_VM_RB
3625void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3626#endif
3627
3628#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3629 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3630 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3631
3632/* mmap.c */
3633extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin);
3634extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3635extern void exit_mmap(struct mm_struct *);
3636bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3637 unsigned long addr, bool write);
3638
3639static inline int check_data_rlimit(unsigned long rlim,
3640 unsigned long new,
3641 unsigned long start,
3642 unsigned long end_data,
3643 unsigned long start_data)
3644{
3645 if (rlim < RLIM_INFINITY) {
3646 if (((new - start) + (end_data - start_data)) > rlim)
3647 return -ENOSPC;
3648 }
3649
3650 return 0;
3651}
3652
3653extern int mm_take_all_locks(struct mm_struct *mm);
3654extern void mm_drop_all_locks(struct mm_struct *mm);
3655
3656extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3657extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3658extern struct file *get_mm_exe_file(struct mm_struct *mm);
3659extern struct file *get_task_exe_file(struct task_struct *task);
3660
3661extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3662extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3663
3664extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3665 const struct vm_special_mapping *sm);
3666struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3667 unsigned long addr, unsigned long len,
3668 vm_flags_t vm_flags,
3669 const struct vm_special_mapping *spec);
3670
3671unsigned long randomize_stack_top(unsigned long stack_top);
3672unsigned long randomize_page(unsigned long start, unsigned long range);
3673
3674unsigned long
3675__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3676 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3677
3678static inline unsigned long
3679get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3680 unsigned long pgoff, unsigned long flags)
3681{
3682 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3683}
3684
3685extern unsigned long do_mmap(struct file *file, unsigned long addr,
3686 unsigned long len, unsigned long prot, unsigned long flags,
3687 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3688 struct list_head *uf);
3689extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3690 unsigned long start, size_t len, struct list_head *uf,
3691 bool unlock);
3692int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3693 struct mm_struct *mm, unsigned long start,
3694 unsigned long end, struct list_head *uf, bool unlock);
3695extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3696 struct list_head *uf);
3697extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3698
3699#ifdef CONFIG_MMU
3700extern int __mm_populate(unsigned long addr, unsigned long len,
3701 int ignore_errors);
3702static inline void mm_populate(unsigned long addr, unsigned long len)
3703{
3704 /* Ignore errors */
3705 (void) __mm_populate(addr, len, 1);
3706}
3707#else
3708static inline void mm_populate(unsigned long addr, unsigned long len) {}
3709#endif
3710
3711/* This takes the mm semaphore itself */
3712extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3713extern int vm_munmap(unsigned long, size_t);
3714extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3715 unsigned long, unsigned long,
3716 unsigned long, unsigned long);
3717
3718struct vm_unmapped_area_info {
3719#define VM_UNMAPPED_AREA_TOPDOWN 1
3720 unsigned long flags;
3721 unsigned long length;
3722 unsigned long low_limit;
3723 unsigned long high_limit;
3724 unsigned long align_mask;
3725 unsigned long align_offset;
3726 unsigned long start_gap;
3727};
3728
3729extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3730
3731/* truncate.c */
3732void truncate_inode_pages(struct address_space *mapping, loff_t lstart);
3733void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart,
3734 uoff_t lend);
3735void truncate_inode_pages_final(struct address_space *mapping);
3736
3737/* generic vm_area_ops exported for stackable file systems */
3738extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3739extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3740 pgoff_t start_pgoff, pgoff_t end_pgoff);
3741extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3742
3743extern unsigned long stack_guard_gap;
3744/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3745int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3746struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3747
3748/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3749extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3750extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3751 struct vm_area_struct **pprev);
3752
3753/*
3754 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3755 * NULL if none. Assume start_addr < end_addr.
3756 */
3757struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3758 unsigned long start_addr, unsigned long end_addr);
3759
3760/**
3761 * vma_lookup() - Find a VMA at a specific address
3762 * @mm: The process address space.
3763 * @addr: The user address.
3764 *
3765 * Return: The vm_area_struct at the given address, %NULL otherwise.
3766 */
3767static inline
3768struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3769{
3770 return mtree_load(&mm->mm_mt, addr);
3771}
3772
3773static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma)
3774{
3775 if (vma->vm_flags & VM_GROWSDOWN)
3776 return stack_guard_gap;
3777
3778 /* See reasoning around the VM_SHADOW_STACK definition */
3779 if (vma->vm_flags & VM_SHADOW_STACK)
3780 return PAGE_SIZE;
3781
3782 return 0;
3783}
3784
3785static inline unsigned long vm_start_gap(const struct vm_area_struct *vma)
3786{
3787 unsigned long gap = stack_guard_start_gap(vma);
3788 unsigned long vm_start = vma->vm_start;
3789
3790 vm_start -= gap;
3791 if (vm_start > vma->vm_start)
3792 vm_start = 0;
3793 return vm_start;
3794}
3795
3796static inline unsigned long vm_end_gap(const struct vm_area_struct *vma)
3797{
3798 unsigned long vm_end = vma->vm_end;
3799
3800 if (vma->vm_flags & VM_GROWSUP) {
3801 vm_end += stack_guard_gap;
3802 if (vm_end < vma->vm_end)
3803 vm_end = -PAGE_SIZE;
3804 }
3805 return vm_end;
3806}
3807
3808static inline unsigned long vma_pages(const struct vm_area_struct *vma)
3809{
3810 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3811}
3812
3813static inline unsigned long vma_desc_size(const struct vm_area_desc *desc)
3814{
3815 return desc->end - desc->start;
3816}
3817
3818static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc)
3819{
3820 return vma_desc_size(desc) >> PAGE_SHIFT;
3821}
3822
3823/**
3824 * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN
3825 * remap is required.
3826 * @desc: The VMA descriptor for the VMA requiring remap.
3827 * @start: The virtual address to start the remap from, must be within the VMA.
3828 * @start_pfn: The first PFN in the range to remap.
3829 * @size: The size of the range to remap, in bytes, at most spanning to the end
3830 * of the VMA.
3831 */
3832static inline void mmap_action_remap(struct vm_area_desc *desc,
3833 unsigned long start,
3834 unsigned long start_pfn,
3835 unsigned long size)
3836{
3837 struct mmap_action *action = &desc->action;
3838
3839 /* [start, start + size) must be within the VMA. */
3840 WARN_ON_ONCE(start < desc->start || start >= desc->end);
3841 WARN_ON_ONCE(start + size > desc->end);
3842
3843 action->type = MMAP_REMAP_PFN;
3844 action->remap.start = start;
3845 action->remap.start_pfn = start_pfn;
3846 action->remap.size = size;
3847 action->remap.pgprot = desc->page_prot;
3848}
3849
3850/**
3851 * mmap_action_remap_full - helper for mmap_prepare hook to specify that the
3852 * entirety of a VMA should be PFN remapped.
3853 * @desc: The VMA descriptor for the VMA requiring remap.
3854 * @start_pfn: The first PFN in the range to remap.
3855 */
3856static inline void mmap_action_remap_full(struct vm_area_desc *desc,
3857 unsigned long start_pfn)
3858{
3859 mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc));
3860}
3861
3862/**
3863 * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN
3864 * I/O remap is required.
3865 * @desc: The VMA descriptor for the VMA requiring remap.
3866 * @start: The virtual address to start the remap from, must be within the VMA.
3867 * @start_pfn: The first PFN in the range to remap.
3868 * @size: The size of the range to remap, in bytes, at most spanning to the end
3869 * of the VMA.
3870 */
3871static inline void mmap_action_ioremap(struct vm_area_desc *desc,
3872 unsigned long start,
3873 unsigned long start_pfn,
3874 unsigned long size)
3875{
3876 mmap_action_remap(desc, start, start_pfn, size);
3877 desc->action.type = MMAP_IO_REMAP_PFN;
3878}
3879
3880/**
3881 * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the
3882 * entirety of a VMA should be PFN I/O remapped.
3883 * @desc: The VMA descriptor for the VMA requiring remap.
3884 * @start_pfn: The first PFN in the range to remap.
3885 */
3886static inline void mmap_action_ioremap_full(struct vm_area_desc *desc,
3887 unsigned long start_pfn)
3888{
3889 mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc));
3890}
3891
3892void mmap_action_prepare(struct mmap_action *action,
3893 struct vm_area_desc *desc);
3894int mmap_action_complete(struct mmap_action *action,
3895 struct vm_area_struct *vma);
3896
3897/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3898static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3899 unsigned long vm_start, unsigned long vm_end)
3900{
3901 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3902
3903 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3904 vma = NULL;
3905
3906 return vma;
3907}
3908
3909static inline bool range_in_vma(const struct vm_area_struct *vma,
3910 unsigned long start, unsigned long end)
3911{
3912 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3913}
3914
3915#ifdef CONFIG_MMU
3916pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3917void vma_set_page_prot(struct vm_area_struct *vma);
3918#else
3919static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3920{
3921 return __pgprot(0);
3922}
3923static inline void vma_set_page_prot(struct vm_area_struct *vma)
3924{
3925 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3926}
3927#endif
3928
3929void vma_set_file(struct vm_area_struct *vma, struct file *file);
3930
3931#ifdef CONFIG_NUMA_BALANCING
3932unsigned long change_prot_numa(struct vm_area_struct *vma,
3933 unsigned long start, unsigned long end);
3934#endif
3935
3936struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3937 unsigned long addr);
3938int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3939 unsigned long pfn, unsigned long size, pgprot_t pgprot);
3940
3941int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3942int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3943 struct page **pages, unsigned long *num);
3944int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3945 unsigned long num);
3946int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3947 unsigned long num);
3948vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3949 bool write);
3950vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3951 unsigned long pfn);
3952vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3953 unsigned long pfn, pgprot_t pgprot);
3954vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3955 unsigned long pfn);
3956vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3957 unsigned long addr, unsigned long pfn);
3958int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3959
3960static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3961 unsigned long addr, struct page *page)
3962{
3963 int err = vm_insert_page(vma, addr, page);
3964
3965 if (err == -ENOMEM)
3966 return VM_FAULT_OOM;
3967 if (err < 0 && err != -EBUSY)
3968 return VM_FAULT_SIGBUS;
3969
3970 return VM_FAULT_NOPAGE;
3971}
3972
3973#ifndef io_remap_pfn_range_pfn
3974static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn,
3975 unsigned long size)
3976{
3977 return pfn;
3978}
3979#endif
3980
3981static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3982 unsigned long addr, unsigned long orig_pfn,
3983 unsigned long size, pgprot_t orig_prot)
3984{
3985 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
3986 const pgprot_t prot = pgprot_decrypted(orig_prot);
3987
3988 return remap_pfn_range(vma, addr, pfn, size, prot);
3989}
3990
3991static inline vm_fault_t vmf_error(int err)
3992{
3993 if (err == -ENOMEM)
3994 return VM_FAULT_OOM;
3995 else if (err == -EHWPOISON)
3996 return VM_FAULT_HWPOISON;
3997 return VM_FAULT_SIGBUS;
3998}
3999
4000/*
4001 * Convert errno to return value for ->page_mkwrite() calls.
4002 *
4003 * This should eventually be merged with vmf_error() above, but will need a
4004 * careful audit of all vmf_error() callers.
4005 */
4006static inline vm_fault_t vmf_fs_error(int err)
4007{
4008 if (err == 0)
4009 return VM_FAULT_LOCKED;
4010 if (err == -EFAULT || err == -EAGAIN)
4011 return VM_FAULT_NOPAGE;
4012 if (err == -ENOMEM)
4013 return VM_FAULT_OOM;
4014 /* -ENOSPC, -EDQUOT, -EIO ... */
4015 return VM_FAULT_SIGBUS;
4016}
4017
4018static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
4019{
4020 if (vm_fault & VM_FAULT_OOM)
4021 return -ENOMEM;
4022 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
4023 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
4024 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4025 return -EFAULT;
4026 return 0;
4027}
4028
4029/*
4030 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
4031 * a (NUMA hinting) fault is required.
4032 */
4033static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma,
4034 unsigned int flags)
4035{
4036 /*
4037 * If callers don't want to honor NUMA hinting faults, no need to
4038 * determine if we would actually have to trigger a NUMA hinting fault.
4039 */
4040 if (!(flags & FOLL_HONOR_NUMA_FAULT))
4041 return true;
4042
4043 /*
4044 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
4045 *
4046 * Requiring a fault here even for inaccessible VMAs would mean that
4047 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
4048 * refuses to process NUMA hinting faults in inaccessible VMAs.
4049 */
4050 return !vma_is_accessible(vma);
4051}
4052
4053typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
4054extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
4055 unsigned long size, pte_fn_t fn, void *data);
4056extern int apply_to_existing_page_range(struct mm_struct *mm,
4057 unsigned long address, unsigned long size,
4058 pte_fn_t fn, void *data);
4059
4060#ifdef CONFIG_PAGE_POISONING
4061extern void __kernel_poison_pages(struct page *page, int numpages);
4062extern void __kernel_unpoison_pages(struct page *page, int numpages);
4063extern bool _page_poisoning_enabled_early;
4064DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
4065static inline bool page_poisoning_enabled(void)
4066{
4067 return _page_poisoning_enabled_early;
4068}
4069/*
4070 * For use in fast paths after init_mem_debugging() has run, or when a
4071 * false negative result is not harmful when called too early.
4072 */
4073static inline bool page_poisoning_enabled_static(void)
4074{
4075 return static_branch_unlikely(&_page_poisoning_enabled);
4076}
4077static inline void kernel_poison_pages(struct page *page, int numpages)
4078{
4079 if (page_poisoning_enabled_static())
4080 __kernel_poison_pages(page, numpages);
4081}
4082static inline void kernel_unpoison_pages(struct page *page, int numpages)
4083{
4084 if (page_poisoning_enabled_static())
4085 __kernel_unpoison_pages(page, numpages);
4086}
4087#else
4088static inline bool page_poisoning_enabled(void) { return false; }
4089static inline bool page_poisoning_enabled_static(void) { return false; }
4090static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
4091static inline void kernel_poison_pages(struct page *page, int numpages) { }
4092static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
4093#endif
4094
4095DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
4096static inline bool want_init_on_alloc(gfp_t flags)
4097{
4098 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4099 &init_on_alloc))
4100 return true;
4101 return flags & __GFP_ZERO;
4102}
4103
4104DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
4105static inline bool want_init_on_free(void)
4106{
4107 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
4108 &init_on_free);
4109}
4110
4111extern bool _debug_pagealloc_enabled_early;
4112DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
4113
4114static inline bool debug_pagealloc_enabled(void)
4115{
4116 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
4117 _debug_pagealloc_enabled_early;
4118}
4119
4120/*
4121 * For use in fast paths after mem_debugging_and_hardening_init() has run,
4122 * or when a false negative result is not harmful when called too early.
4123 */
4124static inline bool debug_pagealloc_enabled_static(void)
4125{
4126 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
4127 return false;
4128
4129 return static_branch_unlikely(&_debug_pagealloc_enabled);
4130}
4131
4132/*
4133 * To support DEBUG_PAGEALLOC architecture must ensure that
4134 * __kernel_map_pages() never fails
4135 */
4136extern void __kernel_map_pages(struct page *page, int numpages, int enable);
4137#ifdef CONFIG_DEBUG_PAGEALLOC
4138static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
4139{
4140 if (debug_pagealloc_enabled_static())
4141 __kernel_map_pages(page, numpages, 1);
4142}
4143
4144static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
4145{
4146 if (debug_pagealloc_enabled_static())
4147 __kernel_map_pages(page, numpages, 0);
4148}
4149
4150extern unsigned int _debug_guardpage_minorder;
4151DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
4152
4153static inline unsigned int debug_guardpage_minorder(void)
4154{
4155 return _debug_guardpage_minorder;
4156}
4157
4158static inline bool debug_guardpage_enabled(void)
4159{
4160 return static_branch_unlikely(&_debug_guardpage_enabled);
4161}
4162
4163static inline bool page_is_guard(const struct page *page)
4164{
4165 if (!debug_guardpage_enabled())
4166 return false;
4167
4168 return PageGuard(page);
4169}
4170
4171bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
4172static inline bool set_page_guard(struct zone *zone, struct page *page,
4173 unsigned int order)
4174{
4175 if (!debug_guardpage_enabled())
4176 return false;
4177 return __set_page_guard(zone, page, order);
4178}
4179
4180void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
4181static inline void clear_page_guard(struct zone *zone, struct page *page,
4182 unsigned int order)
4183{
4184 if (!debug_guardpage_enabled())
4185 return;
4186 __clear_page_guard(zone, page, order);
4187}
4188
4189#else /* CONFIG_DEBUG_PAGEALLOC */
4190static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
4191static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
4192static inline unsigned int debug_guardpage_minorder(void) { return 0; }
4193static inline bool debug_guardpage_enabled(void) { return false; }
4194static inline bool page_is_guard(const struct page *page) { return false; }
4195static inline bool set_page_guard(struct zone *zone, struct page *page,
4196 unsigned int order) { return false; }
4197static inline void clear_page_guard(struct zone *zone, struct page *page,
4198 unsigned int order) {}
4199#endif /* CONFIG_DEBUG_PAGEALLOC */
4200
4201#ifdef __HAVE_ARCH_GATE_AREA
4202extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
4203extern int in_gate_area_no_mm(unsigned long addr);
4204extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
4205#else
4206static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4207{
4208 return NULL;
4209}
4210static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
4211static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
4212{
4213 return 0;
4214}
4215#endif /* __HAVE_ARCH_GATE_AREA */
4216
4217bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm);
4218
4219void drop_slab(void);
4220
4221#ifndef CONFIG_MMU
4222#define randomize_va_space 0
4223#else
4224extern int randomize_va_space;
4225#endif
4226
4227const char * arch_vma_name(struct vm_area_struct *vma);
4228#ifdef CONFIG_MMU
4229void print_vma_addr(char *prefix, unsigned long rip);
4230#else
4231static inline void print_vma_addr(char *prefix, unsigned long rip)
4232{
4233}
4234#endif
4235
4236void *sparse_buffer_alloc(unsigned long size);
4237unsigned long section_map_size(void);
4238struct page * __populate_section_memmap(unsigned long pfn,
4239 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
4240 struct dev_pagemap *pgmap);
4241pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
4242p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
4243pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
4244pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
4245pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4246 struct vmem_altmap *altmap, unsigned long ptpfn,
4247 unsigned long flags);
4248void *vmemmap_alloc_block(unsigned long size, int node);
4249struct vmem_altmap;
4250void *vmemmap_alloc_block_buf(unsigned long size, int node,
4251 struct vmem_altmap *altmap);
4252void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
4253void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
4254 unsigned long addr, unsigned long next);
4255int vmemmap_check_pmd(pmd_t *pmd, int node,
4256 unsigned long addr, unsigned long next);
4257int vmemmap_populate_basepages(unsigned long start, unsigned long end,
4258 int node, struct vmem_altmap *altmap);
4259int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
4260 int node, struct vmem_altmap *altmap);
4261int vmemmap_populate(unsigned long start, unsigned long end, int node,
4262 struct vmem_altmap *altmap);
4263int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
4264 unsigned long headsize);
4265int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
4266 unsigned long headsize);
4267void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
4268 unsigned long headsize);
4269void vmemmap_populate_print_last(void);
4270#ifdef CONFIG_MEMORY_HOTPLUG
4271void vmemmap_free(unsigned long start, unsigned long end,
4272 struct vmem_altmap *altmap);
4273#endif
4274
4275#ifdef CONFIG_SPARSEMEM_VMEMMAP
4276static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4277{
4278 /* number of pfns from base where pfn_to_page() is valid */
4279 if (altmap)
4280 return altmap->reserve + altmap->free;
4281 return 0;
4282}
4283
4284static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4285 unsigned long nr_pfns)
4286{
4287 altmap->alloc -= nr_pfns;
4288}
4289#else
4290static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4291{
4292 return 0;
4293}
4294
4295static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4296 unsigned long nr_pfns)
4297{
4298}
4299#endif
4300
4301#define VMEMMAP_RESERVE_NR 2
4302#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
4303static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
4304 struct dev_pagemap *pgmap)
4305{
4306 unsigned long nr_pages;
4307 unsigned long nr_vmemmap_pages;
4308
4309 if (!pgmap || !is_power_of_2(sizeof(struct page)))
4310 return false;
4311
4312 nr_pages = pgmap_vmemmap_nr(pgmap);
4313 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4314 /*
4315 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4316 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4317 */
4318 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4319}
4320/*
4321 * If we don't have an architecture override, use the generic rule
4322 */
4323#ifndef vmemmap_can_optimize
4324#define vmemmap_can_optimize __vmemmap_can_optimize
4325#endif
4326
4327#else
4328static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4329 struct dev_pagemap *pgmap)
4330{
4331 return false;
4332}
4333#endif
4334
4335enum mf_flags {
4336 MF_COUNT_INCREASED = 1 << 0,
4337 MF_ACTION_REQUIRED = 1 << 1,
4338 MF_MUST_KILL = 1 << 2,
4339 MF_SOFT_OFFLINE = 1 << 3,
4340 MF_UNPOISON = 1 << 4,
4341 MF_SW_SIMULATED = 1 << 5,
4342 MF_NO_RETRY = 1 << 6,
4343 MF_MEM_PRE_REMOVE = 1 << 7,
4344};
4345int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4346 unsigned long count, int mf_flags);
4347extern int memory_failure(unsigned long pfn, int flags);
4348extern int unpoison_memory(unsigned long pfn);
4349extern atomic_long_t num_poisoned_pages __read_mostly;
4350extern int soft_offline_page(unsigned long pfn, int flags);
4351#ifdef CONFIG_MEMORY_FAILURE
4352/*
4353 * Sysfs entries for memory failure handling statistics.
4354 */
4355extern const struct attribute_group memory_failure_attr_group;
4356extern void memory_failure_queue(unsigned long pfn, int flags);
4357extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4358 bool *migratable_cleared);
4359void num_poisoned_pages_inc(unsigned long pfn);
4360void num_poisoned_pages_sub(unsigned long pfn, long i);
4361#else
4362static inline void memory_failure_queue(unsigned long pfn, int flags)
4363{
4364}
4365
4366static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4367 bool *migratable_cleared)
4368{
4369 return 0;
4370}
4371
4372static inline void num_poisoned_pages_inc(unsigned long pfn)
4373{
4374}
4375
4376static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4377{
4378}
4379#endif
4380
4381#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4382extern void memblk_nr_poison_inc(unsigned long pfn);
4383extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4384#else
4385static inline void memblk_nr_poison_inc(unsigned long pfn)
4386{
4387}
4388
4389static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4390{
4391}
4392#endif
4393
4394#ifndef arch_memory_failure
4395static inline int arch_memory_failure(unsigned long pfn, int flags)
4396{
4397 return -ENXIO;
4398}
4399#endif
4400
4401#ifndef arch_is_platform_page
4402static inline bool arch_is_platform_page(u64 paddr)
4403{
4404 return false;
4405}
4406#endif
4407
4408/*
4409 * Error handlers for various types of pages.
4410 */
4411enum mf_result {
4412 MF_IGNORED, /* Error: cannot be handled */
4413 MF_FAILED, /* Error: handling failed */
4414 MF_DELAYED, /* Will be handled later */
4415 MF_RECOVERED, /* Successfully recovered */
4416};
4417
4418enum mf_action_page_type {
4419 MF_MSG_KERNEL,
4420 MF_MSG_KERNEL_HIGH_ORDER,
4421 MF_MSG_DIFFERENT_COMPOUND,
4422 MF_MSG_HUGE,
4423 MF_MSG_FREE_HUGE,
4424 MF_MSG_GET_HWPOISON,
4425 MF_MSG_UNMAP_FAILED,
4426 MF_MSG_DIRTY_SWAPCACHE,
4427 MF_MSG_CLEAN_SWAPCACHE,
4428 MF_MSG_DIRTY_MLOCKED_LRU,
4429 MF_MSG_CLEAN_MLOCKED_LRU,
4430 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4431 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4432 MF_MSG_DIRTY_LRU,
4433 MF_MSG_CLEAN_LRU,
4434 MF_MSG_TRUNCATED_LRU,
4435 MF_MSG_BUDDY,
4436 MF_MSG_DAX,
4437 MF_MSG_UNSPLIT_THP,
4438 MF_MSG_ALREADY_POISONED,
4439 MF_MSG_PFN_MAP,
4440 MF_MSG_UNKNOWN,
4441};
4442
4443#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4444void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4445int copy_user_large_folio(struct folio *dst, struct folio *src,
4446 unsigned long addr_hint,
4447 struct vm_area_struct *vma);
4448long copy_folio_from_user(struct folio *dst_folio,
4449 const void __user *usr_src,
4450 bool allow_pagefault);
4451
4452/**
4453 * vma_is_special_huge - Are transhuge page-table entries considered special?
4454 * @vma: Pointer to the struct vm_area_struct to consider
4455 *
4456 * Whether transhuge page-table entries are considered "special" following
4457 * the definition in vm_normal_page().
4458 *
4459 * Return: true if transhuge page-table entries should be considered special,
4460 * false otherwise.
4461 */
4462static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4463{
4464 return vma_is_dax(vma) || (vma->vm_file &&
4465 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4466}
4467
4468#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4469
4470#if MAX_NUMNODES > 1
4471void __init setup_nr_node_ids(void);
4472#else
4473static inline void setup_nr_node_ids(void) {}
4474#endif
4475
4476extern int memcmp_pages(struct page *page1, struct page *page2);
4477
4478static inline int pages_identical(struct page *page1, struct page *page2)
4479{
4480 return !memcmp_pages(page1, page2);
4481}
4482
4483#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4484unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4485 pgoff_t first_index, pgoff_t nr,
4486 pgoff_t bitmap_pgoff,
4487 unsigned long *bitmap,
4488 pgoff_t *start,
4489 pgoff_t *end);
4490
4491unsigned long wp_shared_mapping_range(struct address_space *mapping,
4492 pgoff_t first_index, pgoff_t nr);
4493#endif
4494
4495#ifdef CONFIG_ANON_VMA_NAME
4496int set_anon_vma_name(unsigned long addr, unsigned long size,
4497 const char __user *uname);
4498#else
4499static inline
4500int set_anon_vma_name(unsigned long addr, unsigned long size,
4501 const char __user *uname)
4502{
4503 return -EINVAL;
4504}
4505#endif
4506
4507#ifdef CONFIG_UNACCEPTED_MEMORY
4508
4509bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4510void accept_memory(phys_addr_t start, unsigned long size);
4511
4512#else
4513
4514static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4515 unsigned long size)
4516{
4517 return false;
4518}
4519
4520static inline void accept_memory(phys_addr_t start, unsigned long size)
4521{
4522}
4523
4524#endif
4525
4526static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4527{
4528 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4529}
4530
4531void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4532void vma_pgtable_walk_end(struct vm_area_struct *vma);
4533
4534int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4535int reserve_mem_release_by_name(const char *name);
4536
4537#ifdef CONFIG_64BIT
4538int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4539#else
4540static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4541{
4542 /* noop on 32 bit */
4543 return 0;
4544}
4545#endif
4546
4547/*
4548 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4549 * be zeroed or not.
4550 */
4551static inline bool user_alloc_needs_zeroing(void)
4552{
4553 /*
4554 * for user folios, arch with cache aliasing requires cache flush and
4555 * arc changes folio->flags to make icache coherent with dcache, so
4556 * always return false to make caller use
4557 * clear_user_page()/clear_user_highpage().
4558 */
4559 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4560 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4561 &init_on_alloc);
4562}
4563
4564int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4565int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4566int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4567
4568/*
4569 * DMA mapping IDs for page_pool
4570 *
4571 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4572 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4573 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4574 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4575 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4576 * mistake a valid kernel pointer with any of the values we write into this
4577 * field.
4578 *
4579 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4580 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4581 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4582 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4583 * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is
4584 * known at compile-time.
4585 *
4586 * If the value of PAGE_OFFSET is not known at compile time, or if it is too
4587 * small to leave at least 8 bits available above PP_SIGNATURE, we define the
4588 * number of bits to be 0, which turns off the DMA index tracking altogether
4589 * (see page_pool_register_dma_index()).
4590 */
4591#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4592#if POISON_POINTER_DELTA > 0
4593/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4594 * index to not overlap with that if set
4595 */
4596#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4597#else
4598/* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */
4599#define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8))
4600#define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \
4601 PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \
4602 !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \
4603 MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0)
4604
4605#endif
4606
4607#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4608 PP_DMA_INDEX_SHIFT)
4609
4610/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4611 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4612 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4613 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4614 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4615 */
4616#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4617
4618#ifdef CONFIG_PAGE_POOL
4619static inline bool page_pool_page_is_pp(const struct page *page)
4620{
4621 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4622}
4623#else
4624static inline bool page_pool_page_is_pp(const struct page *page)
4625{
4626 return false;
4627}
4628#endif
4629
4630#define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4631#define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4632#define PAGE_SNAPSHOT_PG_IDLE (1 << 2)
4633
4634struct page_snapshot {
4635 struct folio folio_snapshot;
4636 struct page page_snapshot;
4637 unsigned long pfn;
4638 unsigned long idx;
4639 unsigned long flags;
4640};
4641
4642static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4643{
4644 return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4645}
4646
4647void snapshot_page(struct page_snapshot *ps, const struct page *page);
4648
4649#endif /* _LINUX_MM_H */