at v6.19-rc6 346 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71#include <linux/uaccess.h> 72#include <linux/bitmap.h> 73#include <linux/capability.h> 74#include <linux/cpu.h> 75#include <linux/types.h> 76#include <linux/kernel.h> 77#include <linux/hash.h> 78#include <linux/slab.h> 79#include <linux/sched.h> 80#include <linux/sched/isolation.h> 81#include <linux/sched/mm.h> 82#include <linux/smpboot.h> 83#include <linux/mutex.h> 84#include <linux/rwsem.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/ethtool_netlink.h> 96#include <linux/skbuff.h> 97#include <linux/kthread.h> 98#include <linux/bpf.h> 99#include <linux/bpf_trace.h> 100#include <net/net_namespace.h> 101#include <net/sock.h> 102#include <net/busy_poll.h> 103#include <linux/rtnetlink.h> 104#include <linux/stat.h> 105#include <net/dsa.h> 106#include <net/dst.h> 107#include <net/dst_metadata.h> 108#include <net/gro.h> 109#include <net/netdev_queues.h> 110#include <net/pkt_sched.h> 111#include <net/pkt_cls.h> 112#include <net/checksum.h> 113#include <net/xfrm.h> 114#include <net/tcx.h> 115#include <linux/highmem.h> 116#include <linux/init.h> 117#include <linux/module.h> 118#include <linux/netpoll.h> 119#include <linux/rcupdate.h> 120#include <linux/delay.h> 121#include <net/iw_handler.h> 122#include <asm/current.h> 123#include <linux/audit.h> 124#include <linux/dmaengine.h> 125#include <linux/err.h> 126#include <linux/ctype.h> 127#include <linux/if_arp.h> 128#include <linux/if_vlan.h> 129#include <linux/ip.h> 130#include <net/ip.h> 131#include <net/mpls.h> 132#include <linux/ipv6.h> 133#include <linux/in.h> 134#include <linux/jhash.h> 135#include <linux/random.h> 136#include <trace/events/napi.h> 137#include <trace/events/net.h> 138#include <trace/events/skb.h> 139#include <trace/events/qdisc.h> 140#include <trace/events/xdp.h> 141#include <linux/inetdevice.h> 142#include <linux/cpu_rmap.h> 143#include <linux/static_key.h> 144#include <linux/hashtable.h> 145#include <linux/vmalloc.h> 146#include <linux/if_macvlan.h> 147#include <linux/errqueue.h> 148#include <linux/hrtimer.h> 149#include <linux/netfilter_netdev.h> 150#include <linux/crash_dump.h> 151#include <linux/sctp.h> 152#include <net/udp_tunnel.h> 153#include <linux/net_namespace.h> 154#include <linux/indirect_call_wrapper.h> 155#include <net/devlink.h> 156#include <linux/pm_runtime.h> 157#include <linux/prandom.h> 158#include <linux/once_lite.h> 159#include <net/netdev_lock.h> 160#include <net/netdev_rx_queue.h> 161#include <net/page_pool/types.h> 162#include <net/page_pool/helpers.h> 163#include <net/page_pool/memory_provider.h> 164#include <net/rps.h> 165#include <linux/phy_link_topology.h> 166 167#include "dev.h" 168#include "devmem.h" 169#include "net-sysfs.h" 170 171static DEFINE_SPINLOCK(ptype_lock); 172struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174static int netif_rx_internal(struct sk_buff *skb); 175static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179static DEFINE_MUTEX(ifalias_mutex); 180 181/* protects napi_hash addition/deletion and napi_gen_id */ 182static DEFINE_SPINLOCK(napi_hash_lock); 183 184static unsigned int napi_gen_id = NR_CPUS; 185static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187static inline void dev_base_seq_inc(struct net *net) 188{ 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192} 193 194static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195{ 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199} 200 201static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202{ 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204} 205 206#ifndef CONFIG_PREEMPT_RT 207 208static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210static int __init setup_backlog_napi_threads(char *arg) 211{ 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214} 215early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217static bool use_backlog_threads(void) 218{ 219 return static_branch_unlikely(&use_backlog_threads_key); 220} 221 222#else 223 224static bool use_backlog_threads(void) 225{ 226 return true; 227} 228 229#endif 230 231static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233{ 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238} 239 240static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241{ 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246} 247 248static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250{ 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255} 256 257static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258{ 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263} 264 265static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267{ 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277} 278 279static struct netdev_name_node * 280netdev_name_node_head_alloc(struct net_device *dev) 281{ 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289} 290 291static void netdev_name_node_free(struct netdev_name_node *name_node) 292{ 293 kfree(name_node); 294} 295 296static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298{ 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301} 302 303static void netdev_name_node_del(struct netdev_name_node *name_node) 304{ 305 hlist_del_rcu(&name_node->hlist); 306} 307 308static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310{ 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318} 319 320static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322{ 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330} 331 332bool netdev_name_in_use(struct net *net, const char *name) 333{ 334 return netdev_name_node_lookup(net, name); 335} 336EXPORT_SYMBOL(netdev_name_in_use); 337 338int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339{ 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354} 355 356static void netdev_name_node_alt_free(struct rcu_head *head) 357{ 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363} 364 365static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366{ 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370} 371 372int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373{ 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388} 389 390static void netdev_name_node_alt_flush(struct net_device *dev) 391{ 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398} 399 400/* Device list insertion */ 401static void list_netdevice(struct net_device *dev) 402{ 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420} 421 422/* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425static void unlist_netdevice(struct net_device *dev) 426{ 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443} 444 445/* 446 * Our notifier list 447 */ 448 449static RAW_NOTIFIER_HEAD(netdev_chain); 450 451/* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458}; 459EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461/* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467}; 468 469#ifdef CONFIG_LOCKDEP 470/* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_CAN, ARPHRD_MCTP, 482 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 483 ARPHRD_RAWHDLC, ARPHRD_RAWIP, 484 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 485 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 486 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 487 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 488 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 489 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 490 ARPHRD_IEEE80211_RADIOTAP, 491 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR, 492 ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 493 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN, 494 ARPHRD_VSOCKMON, 495 ARPHRD_VOID, ARPHRD_NONE}; 496 497static const char *const netdev_lock_name[] = { 498 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 499 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 500 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 501 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 502 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 503 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 504 "_xmit_CAN", "_xmit_MCTP", 505 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 506 "_xmit_RAWHDLC", "_xmit_RAWIP", 507 "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 508 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 509 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 510 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 511 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 512 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 513 "_xmit_IEEE80211_RADIOTAP", 514 "_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR", 515 "_xmit_PHONET", "_xmit_PHONET_PIPE", 516 "_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN", 517 "_xmit_VSOCKMON", 518 "_xmit_VOID", "_xmit_NONE"}; 519 520static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 521static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 522 523static inline unsigned short netdev_lock_pos(unsigned short dev_type) 524{ 525 int i; 526 527 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 528 if (netdev_lock_type[i] == dev_type) 529 return i; 530 /* the last key is used by default */ 531 WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type); 532 return ARRAY_SIZE(netdev_lock_type) - 1; 533} 534 535static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 536 unsigned short dev_type) 537{ 538 int i; 539 540 i = netdev_lock_pos(dev_type); 541 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 542 netdev_lock_name[i]); 543} 544 545static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 546{ 547 int i; 548 549 i = netdev_lock_pos(dev->type); 550 lockdep_set_class_and_name(&dev->addr_list_lock, 551 &netdev_addr_lock_key[i], 552 netdev_lock_name[i]); 553} 554#else 555static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 556 unsigned short dev_type) 557{ 558} 559 560static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 561{ 562} 563#endif 564 565/******************************************************************************* 566 * 567 * Protocol management and registration routines 568 * 569 *******************************************************************************/ 570 571 572/* 573 * Add a protocol ID to the list. Now that the input handler is 574 * smarter we can dispense with all the messy stuff that used to be 575 * here. 576 * 577 * BEWARE!!! Protocol handlers, mangling input packets, 578 * MUST BE last in hash buckets and checking protocol handlers 579 * MUST start from promiscuous ptype_all chain in net_bh. 580 * It is true now, do not change it. 581 * Explanation follows: if protocol handler, mangling packet, will 582 * be the first on list, it is not able to sense, that packet 583 * is cloned and should be copied-on-write, so that it will 584 * change it and subsequent readers will get broken packet. 585 * --ANK (980803) 586 */ 587 588static inline struct list_head *ptype_head(const struct packet_type *pt) 589{ 590 if (pt->type == htons(ETH_P_ALL)) { 591 if (!pt->af_packet_net && !pt->dev) 592 return NULL; 593 594 return pt->dev ? &pt->dev->ptype_all : 595 &pt->af_packet_net->ptype_all; 596 } 597 598 if (pt->dev) 599 return &pt->dev->ptype_specific; 600 601 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 602 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 603} 604 605/** 606 * dev_add_pack - add packet handler 607 * @pt: packet type declaration 608 * 609 * Add a protocol handler to the networking stack. The passed &packet_type 610 * is linked into kernel lists and may not be freed until it has been 611 * removed from the kernel lists. 612 * 613 * This call does not sleep therefore it can not 614 * guarantee all CPU's that are in middle of receiving packets 615 * will see the new packet type (until the next received packet). 616 */ 617 618void dev_add_pack(struct packet_type *pt) 619{ 620 struct list_head *head = ptype_head(pt); 621 622 if (WARN_ON_ONCE(!head)) 623 return; 624 625 spin_lock(&ptype_lock); 626 list_add_rcu(&pt->list, head); 627 spin_unlock(&ptype_lock); 628} 629EXPORT_SYMBOL(dev_add_pack); 630 631/** 632 * __dev_remove_pack - remove packet handler 633 * @pt: packet type declaration 634 * 635 * Remove a protocol handler that was previously added to the kernel 636 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 637 * from the kernel lists and can be freed or reused once this function 638 * returns. 639 * 640 * The packet type might still be in use by receivers 641 * and must not be freed until after all the CPU's have gone 642 * through a quiescent state. 643 */ 644void __dev_remove_pack(struct packet_type *pt) 645{ 646 struct list_head *head = ptype_head(pt); 647 struct packet_type *pt1; 648 649 if (!head) 650 return; 651 652 spin_lock(&ptype_lock); 653 654 list_for_each_entry(pt1, head, list) { 655 if (pt == pt1) { 656 list_del_rcu(&pt->list); 657 goto out; 658 } 659 } 660 661 pr_warn("dev_remove_pack: %p not found\n", pt); 662out: 663 spin_unlock(&ptype_lock); 664} 665EXPORT_SYMBOL(__dev_remove_pack); 666 667/** 668 * dev_remove_pack - remove packet handler 669 * @pt: packet type declaration 670 * 671 * Remove a protocol handler that was previously added to the kernel 672 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 673 * from the kernel lists and can be freed or reused once this function 674 * returns. 675 * 676 * This call sleeps to guarantee that no CPU is looking at the packet 677 * type after return. 678 */ 679void dev_remove_pack(struct packet_type *pt) 680{ 681 __dev_remove_pack(pt); 682 683 synchronize_net(); 684} 685EXPORT_SYMBOL(dev_remove_pack); 686 687 688/******************************************************************************* 689 * 690 * Device Interface Subroutines 691 * 692 *******************************************************************************/ 693 694/** 695 * dev_get_iflink - get 'iflink' value of a interface 696 * @dev: targeted interface 697 * 698 * Indicates the ifindex the interface is linked to. 699 * Physical interfaces have the same 'ifindex' and 'iflink' values. 700 */ 701 702int dev_get_iflink(const struct net_device *dev) 703{ 704 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 705 return dev->netdev_ops->ndo_get_iflink(dev); 706 707 return READ_ONCE(dev->ifindex); 708} 709EXPORT_SYMBOL(dev_get_iflink); 710 711/** 712 * dev_fill_metadata_dst - Retrieve tunnel egress information. 713 * @dev: targeted interface 714 * @skb: The packet. 715 * 716 * For better visibility of tunnel traffic OVS needs to retrieve 717 * egress tunnel information for a packet. Following API allows 718 * user to get this info. 719 */ 720int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 721{ 722 struct ip_tunnel_info *info; 723 724 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 725 return -EINVAL; 726 727 info = skb_tunnel_info_unclone(skb); 728 if (!info) 729 return -ENOMEM; 730 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 731 return -EINVAL; 732 733 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 734} 735EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 736 737static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 738{ 739 int k = stack->num_paths++; 740 741 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 742 return NULL; 743 744 return &stack->path[k]; 745} 746 747int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 748 struct net_device_path_stack *stack) 749{ 750 const struct net_device *last_dev; 751 struct net_device_path_ctx ctx = { 752 .dev = dev, 753 }; 754 struct net_device_path *path; 755 int ret = 0; 756 757 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 758 stack->num_paths = 0; 759 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 760 last_dev = ctx.dev; 761 path = dev_fwd_path(stack); 762 if (!path) 763 return -1; 764 765 memset(path, 0, sizeof(struct net_device_path)); 766 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 767 if (ret < 0) 768 return -1; 769 770 if (WARN_ON_ONCE(last_dev == ctx.dev)) 771 return -1; 772 } 773 774 if (!ctx.dev) 775 return ret; 776 777 path = dev_fwd_path(stack); 778 if (!path) 779 return -1; 780 path->type = DEV_PATH_ETHERNET; 781 path->dev = ctx.dev; 782 783 return ret; 784} 785EXPORT_SYMBOL_GPL(dev_fill_forward_path); 786 787/* must be called under rcu_read_lock(), as we dont take a reference */ 788static struct napi_struct *napi_by_id(unsigned int napi_id) 789{ 790 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 791 struct napi_struct *napi; 792 793 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 794 if (napi->napi_id == napi_id) 795 return napi; 796 797 return NULL; 798} 799 800/* must be called under rcu_read_lock(), as we dont take a reference */ 801static struct napi_struct * 802netdev_napi_by_id(struct net *net, unsigned int napi_id) 803{ 804 struct napi_struct *napi; 805 806 napi = napi_by_id(napi_id); 807 if (!napi) 808 return NULL; 809 810 if (WARN_ON_ONCE(!napi->dev)) 811 return NULL; 812 if (!net_eq(net, dev_net(napi->dev))) 813 return NULL; 814 815 return napi; 816} 817 818/** 819 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 820 * @net: the applicable net namespace 821 * @napi_id: ID of a NAPI of a target device 822 * 823 * Find a NAPI instance with @napi_id. Lock its device. 824 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 825 * netdev_unlock() must be called to release it. 826 * 827 * Return: pointer to NAPI, its device with lock held, NULL if not found. 828 */ 829struct napi_struct * 830netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 831{ 832 struct napi_struct *napi; 833 struct net_device *dev; 834 835 rcu_read_lock(); 836 napi = netdev_napi_by_id(net, napi_id); 837 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 838 rcu_read_unlock(); 839 return NULL; 840 } 841 842 dev = napi->dev; 843 dev_hold(dev); 844 rcu_read_unlock(); 845 846 dev = __netdev_put_lock(dev, net); 847 if (!dev) 848 return NULL; 849 850 rcu_read_lock(); 851 napi = netdev_napi_by_id(net, napi_id); 852 if (napi && napi->dev != dev) 853 napi = NULL; 854 rcu_read_unlock(); 855 856 if (!napi) 857 netdev_unlock(dev); 858 return napi; 859} 860 861/** 862 * __dev_get_by_name - find a device by its name 863 * @net: the applicable net namespace 864 * @name: name to find 865 * 866 * Find an interface by name. Must be called under RTNL semaphore. 867 * If the name is found a pointer to the device is returned. 868 * If the name is not found then %NULL is returned. The 869 * reference counters are not incremented so the caller must be 870 * careful with locks. 871 */ 872 873struct net_device *__dev_get_by_name(struct net *net, const char *name) 874{ 875 struct netdev_name_node *node_name; 876 877 node_name = netdev_name_node_lookup(net, name); 878 return node_name ? node_name->dev : NULL; 879} 880EXPORT_SYMBOL(__dev_get_by_name); 881 882/** 883 * dev_get_by_name_rcu - find a device by its name 884 * @net: the applicable net namespace 885 * @name: name to find 886 * 887 * Find an interface by name. 888 * If the name is found a pointer to the device is returned. 889 * If the name is not found then %NULL is returned. 890 * The reference counters are not incremented so the caller must be 891 * careful with locks. The caller must hold RCU lock. 892 */ 893 894struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 895{ 896 struct netdev_name_node *node_name; 897 898 node_name = netdev_name_node_lookup_rcu(net, name); 899 return node_name ? node_name->dev : NULL; 900} 901EXPORT_SYMBOL(dev_get_by_name_rcu); 902 903/* Deprecated for new users, call netdev_get_by_name() instead */ 904struct net_device *dev_get_by_name(struct net *net, const char *name) 905{ 906 struct net_device *dev; 907 908 rcu_read_lock(); 909 dev = dev_get_by_name_rcu(net, name); 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913} 914EXPORT_SYMBOL(dev_get_by_name); 915 916/** 917 * netdev_get_by_name() - find a device by its name 918 * @net: the applicable net namespace 919 * @name: name to find 920 * @tracker: tracking object for the acquired reference 921 * @gfp: allocation flags for the tracker 922 * 923 * Find an interface by name. This can be called from any 924 * context and does its own locking. The returned handle has 925 * the usage count incremented and the caller must use netdev_put() to 926 * release it when it is no longer needed. %NULL is returned if no 927 * matching device is found. 928 */ 929struct net_device *netdev_get_by_name(struct net *net, const char *name, 930 netdevice_tracker *tracker, gfp_t gfp) 931{ 932 struct net_device *dev; 933 934 dev = dev_get_by_name(net, name); 935 if (dev) 936 netdev_tracker_alloc(dev, tracker, gfp); 937 return dev; 938} 939EXPORT_SYMBOL(netdev_get_by_name); 940 941/** 942 * __dev_get_by_index - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold the RTNL semaphore. 950 */ 951 952struct net_device *__dev_get_by_index(struct net *net, int ifindex) 953{ 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962} 963EXPORT_SYMBOL(__dev_get_by_index); 964 965/** 966 * dev_get_by_index_rcu - find a device by its ifindex 967 * @net: the applicable net namespace 968 * @ifindex: index of device 969 * 970 * Search for an interface by index. Returns %NULL if the device 971 * is not found or a pointer to the device. The device has not 972 * had its reference counter increased so the caller must be careful 973 * about locking. The caller must hold RCU lock. 974 */ 975 976struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 977{ 978 struct net_device *dev; 979 struct hlist_head *head = dev_index_hash(net, ifindex); 980 981 hlist_for_each_entry_rcu(dev, head, index_hlist) 982 if (dev->ifindex == ifindex) 983 return dev; 984 985 return NULL; 986} 987EXPORT_SYMBOL(dev_get_by_index_rcu); 988 989/* Deprecated for new users, call netdev_get_by_index() instead */ 990struct net_device *dev_get_by_index(struct net *net, int ifindex) 991{ 992 struct net_device *dev; 993 994 rcu_read_lock(); 995 dev = dev_get_by_index_rcu(net, ifindex); 996 dev_hold(dev); 997 rcu_read_unlock(); 998 return dev; 999} 1000EXPORT_SYMBOL(dev_get_by_index); 1001 1002/** 1003 * netdev_get_by_index() - find a device by its ifindex 1004 * @net: the applicable net namespace 1005 * @ifindex: index of device 1006 * @tracker: tracking object for the acquired reference 1007 * @gfp: allocation flags for the tracker 1008 * 1009 * Search for an interface by index. Returns NULL if the device 1010 * is not found or a pointer to the device. The device returned has 1011 * had a reference added and the pointer is safe until the user calls 1012 * netdev_put() to indicate they have finished with it. 1013 */ 1014struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1015 netdevice_tracker *tracker, gfp_t gfp) 1016{ 1017 struct net_device *dev; 1018 1019 dev = dev_get_by_index(net, ifindex); 1020 if (dev) 1021 netdev_tracker_alloc(dev, tracker, gfp); 1022 return dev; 1023} 1024EXPORT_SYMBOL(netdev_get_by_index); 1025 1026/** 1027 * dev_get_by_napi_id - find a device by napi_id 1028 * @napi_id: ID of the NAPI struct 1029 * 1030 * Search for an interface by NAPI ID. Returns %NULL if the device 1031 * is not found or a pointer to the device. The device has not had 1032 * its reference counter increased so the caller must be careful 1033 * about locking. The caller must hold RCU lock. 1034 */ 1035struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1036{ 1037 struct napi_struct *napi; 1038 1039 WARN_ON_ONCE(!rcu_read_lock_held()); 1040 1041 if (!napi_id_valid(napi_id)) 1042 return NULL; 1043 1044 napi = napi_by_id(napi_id); 1045 1046 return napi ? napi->dev : NULL; 1047} 1048 1049/* Release the held reference on the net_device, and if the net_device 1050 * is still registered try to lock the instance lock. If device is being 1051 * unregistered NULL will be returned (but the reference has been released, 1052 * either way!) 1053 * 1054 * This helper is intended for locking net_device after it has been looked up 1055 * using a lockless lookup helper. Lock prevents the instance from going away. 1056 */ 1057struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1058{ 1059 netdev_lock(dev); 1060 if (dev->reg_state > NETREG_REGISTERED || 1061 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1062 netdev_unlock(dev); 1063 dev_put(dev); 1064 return NULL; 1065 } 1066 dev_put(dev); 1067 return dev; 1068} 1069 1070static struct net_device * 1071__netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1072{ 1073 netdev_lock_ops_compat(dev); 1074 if (dev->reg_state > NETREG_REGISTERED || 1075 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1076 netdev_unlock_ops_compat(dev); 1077 dev_put(dev); 1078 return NULL; 1079 } 1080 dev_put(dev); 1081 return dev; 1082} 1083 1084/** 1085 * netdev_get_by_index_lock() - find a device by its ifindex 1086 * @net: the applicable net namespace 1087 * @ifindex: index of device 1088 * 1089 * Search for an interface by index. If a valid device 1090 * with @ifindex is found it will be returned with netdev->lock held. 1091 * netdev_unlock() must be called to release it. 1092 * 1093 * Return: pointer to a device with lock held, NULL if not found. 1094 */ 1095struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1096{ 1097 struct net_device *dev; 1098 1099 dev = dev_get_by_index(net, ifindex); 1100 if (!dev) 1101 return NULL; 1102 1103 return __netdev_put_lock(dev, net); 1104} 1105 1106struct net_device * 1107netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1108{ 1109 struct net_device *dev; 1110 1111 dev = dev_get_by_index(net, ifindex); 1112 if (!dev) 1113 return NULL; 1114 1115 return __netdev_put_lock_ops_compat(dev, net); 1116} 1117 1118struct net_device * 1119netdev_xa_find_lock(struct net *net, struct net_device *dev, 1120 unsigned long *index) 1121{ 1122 if (dev) 1123 netdev_unlock(dev); 1124 1125 do { 1126 rcu_read_lock(); 1127 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1128 if (!dev) { 1129 rcu_read_unlock(); 1130 return NULL; 1131 } 1132 dev_hold(dev); 1133 rcu_read_unlock(); 1134 1135 dev = __netdev_put_lock(dev, net); 1136 if (dev) 1137 return dev; 1138 1139 (*index)++; 1140 } while (true); 1141} 1142 1143struct net_device * 1144netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1145 unsigned long *index) 1146{ 1147 if (dev) 1148 netdev_unlock_ops_compat(dev); 1149 1150 do { 1151 rcu_read_lock(); 1152 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1153 if (!dev) { 1154 rcu_read_unlock(); 1155 return NULL; 1156 } 1157 dev_hold(dev); 1158 rcu_read_unlock(); 1159 1160 dev = __netdev_put_lock_ops_compat(dev, net); 1161 if (dev) 1162 return dev; 1163 1164 (*index)++; 1165 } while (true); 1166} 1167 1168static DEFINE_SEQLOCK(netdev_rename_lock); 1169 1170void netdev_copy_name(struct net_device *dev, char *name) 1171{ 1172 unsigned int seq; 1173 1174 do { 1175 seq = read_seqbegin(&netdev_rename_lock); 1176 strscpy(name, dev->name, IFNAMSIZ); 1177 } while (read_seqretry(&netdev_rename_lock, seq)); 1178} 1179EXPORT_IPV6_MOD_GPL(netdev_copy_name); 1180 1181/** 1182 * netdev_get_name - get a netdevice name, knowing its ifindex. 1183 * @net: network namespace 1184 * @name: a pointer to the buffer where the name will be stored. 1185 * @ifindex: the ifindex of the interface to get the name from. 1186 */ 1187int netdev_get_name(struct net *net, char *name, int ifindex) 1188{ 1189 struct net_device *dev; 1190 int ret; 1191 1192 rcu_read_lock(); 1193 1194 dev = dev_get_by_index_rcu(net, ifindex); 1195 if (!dev) { 1196 ret = -ENODEV; 1197 goto out; 1198 } 1199 1200 netdev_copy_name(dev, name); 1201 1202 ret = 0; 1203out: 1204 rcu_read_unlock(); 1205 return ret; 1206} 1207 1208static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1209 const char *ha) 1210{ 1211 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1212} 1213 1214/** 1215 * dev_getbyhwaddr_rcu - find a device by its hardware address 1216 * @net: the applicable net namespace 1217 * @type: media type of device 1218 * @ha: hardware address 1219 * 1220 * Search for an interface by MAC address. Returns NULL if the device 1221 * is not found or a pointer to the device. 1222 * The caller must hold RCU. 1223 * The returned device has not had its ref count increased 1224 * and the caller must therefore be careful about locking 1225 * 1226 */ 1227 1228struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1229 const char *ha) 1230{ 1231 struct net_device *dev; 1232 1233 for_each_netdev_rcu(net, dev) 1234 if (dev_addr_cmp(dev, type, ha)) 1235 return dev; 1236 1237 return NULL; 1238} 1239EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1240 1241/** 1242 * dev_getbyhwaddr() - find a device by its hardware address 1243 * @net: the applicable net namespace 1244 * @type: media type of device 1245 * @ha: hardware address 1246 * 1247 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1248 * rtnl_lock. 1249 * 1250 * Context: rtnl_lock() must be held. 1251 * Return: pointer to the net_device, or NULL if not found 1252 */ 1253struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1254 const char *ha) 1255{ 1256 struct net_device *dev; 1257 1258 ASSERT_RTNL(); 1259 for_each_netdev(net, dev) 1260 if (dev_addr_cmp(dev, type, ha)) 1261 return dev; 1262 1263 return NULL; 1264} 1265EXPORT_SYMBOL(dev_getbyhwaddr); 1266 1267struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1268{ 1269 struct net_device *dev, *ret = NULL; 1270 1271 rcu_read_lock(); 1272 for_each_netdev_rcu(net, dev) 1273 if (dev->type == type) { 1274 dev_hold(dev); 1275 ret = dev; 1276 break; 1277 } 1278 rcu_read_unlock(); 1279 return ret; 1280} 1281EXPORT_SYMBOL(dev_getfirstbyhwtype); 1282 1283/** 1284 * netdev_get_by_flags_rcu - find any device with given flags 1285 * @net: the applicable net namespace 1286 * @tracker: tracking object for the acquired reference 1287 * @if_flags: IFF_* values 1288 * @mask: bitmask of bits in if_flags to check 1289 * 1290 * Search for any interface with the given flags. 1291 * 1292 * Context: rcu_read_lock() must be held. 1293 * Returns: NULL if a device is not found or a pointer to the device. 1294 */ 1295struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1296 unsigned short if_flags, unsigned short mask) 1297{ 1298 struct net_device *dev; 1299 1300 for_each_netdev_rcu(net, dev) { 1301 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1302 netdev_hold(dev, tracker, GFP_ATOMIC); 1303 return dev; 1304 } 1305 } 1306 1307 return NULL; 1308} 1309EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1310 1311/** 1312 * dev_valid_name - check if name is okay for network device 1313 * @name: name string 1314 * 1315 * Network device names need to be valid file names to 1316 * allow sysfs to work. We also disallow any kind of 1317 * whitespace. 1318 */ 1319bool dev_valid_name(const char *name) 1320{ 1321 if (*name == '\0') 1322 return false; 1323 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1324 return false; 1325 if (!strcmp(name, ".") || !strcmp(name, "..")) 1326 return false; 1327 1328 while (*name) { 1329 if (*name == '/' || *name == ':' || isspace(*name)) 1330 return false; 1331 name++; 1332 } 1333 return true; 1334} 1335EXPORT_SYMBOL(dev_valid_name); 1336 1337/** 1338 * __dev_alloc_name - allocate a name for a device 1339 * @net: network namespace to allocate the device name in 1340 * @name: name format string 1341 * @res: result name string 1342 * 1343 * Passed a format string - eg "lt%d" it will try and find a suitable 1344 * id. It scans list of devices to build up a free map, then chooses 1345 * the first empty slot. The caller must hold the dev_base or rtnl lock 1346 * while allocating the name and adding the device in order to avoid 1347 * duplicates. 1348 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1349 * Returns the number of the unit assigned or a negative errno code. 1350 */ 1351 1352static int __dev_alloc_name(struct net *net, const char *name, char *res) 1353{ 1354 int i = 0; 1355 const char *p; 1356 const int max_netdevices = 8*PAGE_SIZE; 1357 unsigned long *inuse; 1358 struct net_device *d; 1359 char buf[IFNAMSIZ]; 1360 1361 /* Verify the string as this thing may have come from the user. 1362 * There must be one "%d" and no other "%" characters. 1363 */ 1364 p = strchr(name, '%'); 1365 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1366 return -EINVAL; 1367 1368 /* Use one page as a bit array of possible slots */ 1369 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1370 if (!inuse) 1371 return -ENOMEM; 1372 1373 for_each_netdev(net, d) { 1374 struct netdev_name_node *name_node; 1375 1376 netdev_for_each_altname(d, name_node) { 1377 if (!sscanf(name_node->name, name, &i)) 1378 continue; 1379 if (i < 0 || i >= max_netdevices) 1380 continue; 1381 1382 /* avoid cases where sscanf is not exact inverse of printf */ 1383 snprintf(buf, IFNAMSIZ, name, i); 1384 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1385 __set_bit(i, inuse); 1386 } 1387 if (!sscanf(d->name, name, &i)) 1388 continue; 1389 if (i < 0 || i >= max_netdevices) 1390 continue; 1391 1392 /* avoid cases where sscanf is not exact inverse of printf */ 1393 snprintf(buf, IFNAMSIZ, name, i); 1394 if (!strncmp(buf, d->name, IFNAMSIZ)) 1395 __set_bit(i, inuse); 1396 } 1397 1398 i = find_first_zero_bit(inuse, max_netdevices); 1399 bitmap_free(inuse); 1400 if (i == max_netdevices) 1401 return -ENFILE; 1402 1403 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1404 strscpy(buf, name, IFNAMSIZ); 1405 snprintf(res, IFNAMSIZ, buf, i); 1406 return i; 1407} 1408 1409/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1410static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1411 const char *want_name, char *out_name, 1412 int dup_errno) 1413{ 1414 if (!dev_valid_name(want_name)) 1415 return -EINVAL; 1416 1417 if (strchr(want_name, '%')) 1418 return __dev_alloc_name(net, want_name, out_name); 1419 1420 if (netdev_name_in_use(net, want_name)) 1421 return -dup_errno; 1422 if (out_name != want_name) 1423 strscpy(out_name, want_name, IFNAMSIZ); 1424 return 0; 1425} 1426 1427/** 1428 * dev_alloc_name - allocate a name for a device 1429 * @dev: device 1430 * @name: name format string 1431 * 1432 * Passed a format string - eg "lt%d" it will try and find a suitable 1433 * id. It scans list of devices to build up a free map, then chooses 1434 * the first empty slot. The caller must hold the dev_base or rtnl lock 1435 * while allocating the name and adding the device in order to avoid 1436 * duplicates. 1437 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1438 * Returns the number of the unit assigned or a negative errno code. 1439 */ 1440 1441int dev_alloc_name(struct net_device *dev, const char *name) 1442{ 1443 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1444} 1445EXPORT_SYMBOL(dev_alloc_name); 1446 1447static int dev_get_valid_name(struct net *net, struct net_device *dev, 1448 const char *name) 1449{ 1450 int ret; 1451 1452 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1453 return ret < 0 ? ret : 0; 1454} 1455 1456int netif_change_name(struct net_device *dev, const char *newname) 1457{ 1458 struct net *net = dev_net(dev); 1459 unsigned char old_assign_type; 1460 char oldname[IFNAMSIZ]; 1461 int err = 0; 1462 int ret; 1463 1464 ASSERT_RTNL_NET(net); 1465 1466 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1467 return 0; 1468 1469 memcpy(oldname, dev->name, IFNAMSIZ); 1470 1471 write_seqlock_bh(&netdev_rename_lock); 1472 err = dev_get_valid_name(net, dev, newname); 1473 write_sequnlock_bh(&netdev_rename_lock); 1474 1475 if (err < 0) 1476 return err; 1477 1478 if (oldname[0] && !strchr(oldname, '%')) 1479 netdev_info(dev, "renamed from %s%s\n", oldname, 1480 dev->flags & IFF_UP ? " (while UP)" : ""); 1481 1482 old_assign_type = dev->name_assign_type; 1483 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1484 1485rollback: 1486 ret = device_rename(&dev->dev, dev->name); 1487 if (ret) { 1488 write_seqlock_bh(&netdev_rename_lock); 1489 memcpy(dev->name, oldname, IFNAMSIZ); 1490 write_sequnlock_bh(&netdev_rename_lock); 1491 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1492 return ret; 1493 } 1494 1495 netdev_adjacent_rename_links(dev, oldname); 1496 1497 netdev_name_node_del(dev->name_node); 1498 1499 synchronize_net(); 1500 1501 netdev_name_node_add(net, dev->name_node); 1502 1503 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1504 ret = notifier_to_errno(ret); 1505 1506 if (ret) { 1507 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1508 if (err >= 0) { 1509 err = ret; 1510 write_seqlock_bh(&netdev_rename_lock); 1511 memcpy(dev->name, oldname, IFNAMSIZ); 1512 write_sequnlock_bh(&netdev_rename_lock); 1513 memcpy(oldname, newname, IFNAMSIZ); 1514 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1515 old_assign_type = NET_NAME_RENAMED; 1516 goto rollback; 1517 } else { 1518 netdev_err(dev, "name change rollback failed: %d\n", 1519 ret); 1520 } 1521 } 1522 1523 return err; 1524} 1525 1526int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1527{ 1528 struct dev_ifalias *new_alias = NULL; 1529 1530 if (len >= IFALIASZ) 1531 return -EINVAL; 1532 1533 if (len) { 1534 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1535 if (!new_alias) 1536 return -ENOMEM; 1537 1538 memcpy(new_alias->ifalias, alias, len); 1539 new_alias->ifalias[len] = 0; 1540 } 1541 1542 mutex_lock(&ifalias_mutex); 1543 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1544 mutex_is_locked(&ifalias_mutex)); 1545 mutex_unlock(&ifalias_mutex); 1546 1547 if (new_alias) 1548 kfree_rcu(new_alias, rcuhead); 1549 1550 return len; 1551} 1552 1553/** 1554 * dev_get_alias - get ifalias of a device 1555 * @dev: device 1556 * @name: buffer to store name of ifalias 1557 * @len: size of buffer 1558 * 1559 * get ifalias for a device. Caller must make sure dev cannot go 1560 * away, e.g. rcu read lock or own a reference count to device. 1561 */ 1562int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1563{ 1564 const struct dev_ifalias *alias; 1565 int ret = 0; 1566 1567 rcu_read_lock(); 1568 alias = rcu_dereference(dev->ifalias); 1569 if (alias) 1570 ret = snprintf(name, len, "%s", alias->ifalias); 1571 rcu_read_unlock(); 1572 1573 return ret; 1574} 1575 1576/** 1577 * netdev_features_change - device changes features 1578 * @dev: device to cause notification 1579 * 1580 * Called to indicate a device has changed features. 1581 */ 1582void netdev_features_change(struct net_device *dev) 1583{ 1584 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1585} 1586EXPORT_SYMBOL(netdev_features_change); 1587 1588void netif_state_change(struct net_device *dev) 1589{ 1590 netdev_ops_assert_locked_or_invisible(dev); 1591 1592 if (dev->flags & IFF_UP) { 1593 struct netdev_notifier_change_info change_info = { 1594 .info.dev = dev, 1595 }; 1596 1597 call_netdevice_notifiers_info(NETDEV_CHANGE, 1598 &change_info.info); 1599 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1600 } 1601} 1602 1603/** 1604 * __netdev_notify_peers - notify network peers about existence of @dev, 1605 * to be called when rtnl lock is already held. 1606 * @dev: network device 1607 * 1608 * Generate traffic such that interested network peers are aware of 1609 * @dev, such as by generating a gratuitous ARP. This may be used when 1610 * a device wants to inform the rest of the network about some sort of 1611 * reconfiguration such as a failover event or virtual machine 1612 * migration. 1613 */ 1614void __netdev_notify_peers(struct net_device *dev) 1615{ 1616 ASSERT_RTNL(); 1617 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1618 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1619} 1620EXPORT_SYMBOL(__netdev_notify_peers); 1621 1622/** 1623 * netdev_notify_peers - notify network peers about existence of @dev 1624 * @dev: network device 1625 * 1626 * Generate traffic such that interested network peers are aware of 1627 * @dev, such as by generating a gratuitous ARP. This may be used when 1628 * a device wants to inform the rest of the network about some sort of 1629 * reconfiguration such as a failover event or virtual machine 1630 * migration. 1631 */ 1632void netdev_notify_peers(struct net_device *dev) 1633{ 1634 rtnl_lock(); 1635 __netdev_notify_peers(dev); 1636 rtnl_unlock(); 1637} 1638EXPORT_SYMBOL(netdev_notify_peers); 1639 1640static int napi_threaded_poll(void *data); 1641 1642static int napi_kthread_create(struct napi_struct *n) 1643{ 1644 int err = 0; 1645 1646 /* Create and wake up the kthread once to put it in 1647 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1648 * warning and work with loadavg. 1649 */ 1650 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1651 n->dev->name, n->napi_id); 1652 if (IS_ERR(n->thread)) { 1653 err = PTR_ERR(n->thread); 1654 pr_err("kthread_run failed with err %d\n", err); 1655 n->thread = NULL; 1656 } 1657 1658 return err; 1659} 1660 1661static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1662{ 1663 const struct net_device_ops *ops = dev->netdev_ops; 1664 int ret; 1665 1666 ASSERT_RTNL(); 1667 dev_addr_check(dev); 1668 1669 if (!netif_device_present(dev)) { 1670 /* may be detached because parent is runtime-suspended */ 1671 if (dev->dev.parent) 1672 pm_runtime_resume(dev->dev.parent); 1673 if (!netif_device_present(dev)) 1674 return -ENODEV; 1675 } 1676 1677 /* Block netpoll from trying to do any rx path servicing. 1678 * If we don't do this there is a chance ndo_poll_controller 1679 * or ndo_poll may be running while we open the device 1680 */ 1681 netpoll_poll_disable(dev); 1682 1683 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1684 ret = notifier_to_errno(ret); 1685 if (ret) 1686 return ret; 1687 1688 set_bit(__LINK_STATE_START, &dev->state); 1689 1690 netdev_ops_assert_locked(dev); 1691 1692 if (ops->ndo_validate_addr) 1693 ret = ops->ndo_validate_addr(dev); 1694 1695 if (!ret && ops->ndo_open) 1696 ret = ops->ndo_open(dev); 1697 1698 netpoll_poll_enable(dev); 1699 1700 if (ret) 1701 clear_bit(__LINK_STATE_START, &dev->state); 1702 else { 1703 netif_set_up(dev, true); 1704 dev_set_rx_mode(dev); 1705 dev_activate(dev); 1706 add_device_randomness(dev->dev_addr, dev->addr_len); 1707 } 1708 1709 return ret; 1710} 1711 1712int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1713{ 1714 int ret; 1715 1716 if (dev->flags & IFF_UP) 1717 return 0; 1718 1719 ret = __dev_open(dev, extack); 1720 if (ret < 0) 1721 return ret; 1722 1723 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1724 call_netdevice_notifiers(NETDEV_UP, dev); 1725 1726 return ret; 1727} 1728 1729static void __dev_close_many(struct list_head *head) 1730{ 1731 struct net_device *dev; 1732 1733 ASSERT_RTNL(); 1734 might_sleep(); 1735 1736 list_for_each_entry(dev, head, close_list) { 1737 /* Temporarily disable netpoll until the interface is down */ 1738 netpoll_poll_disable(dev); 1739 1740 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1741 1742 clear_bit(__LINK_STATE_START, &dev->state); 1743 1744 /* Synchronize to scheduled poll. We cannot touch poll list, it 1745 * can be even on different cpu. So just clear netif_running(). 1746 * 1747 * dev->stop() will invoke napi_disable() on all of it's 1748 * napi_struct instances on this device. 1749 */ 1750 smp_mb__after_atomic(); /* Commit netif_running(). */ 1751 } 1752 1753 dev_deactivate_many(head); 1754 1755 list_for_each_entry(dev, head, close_list) { 1756 const struct net_device_ops *ops = dev->netdev_ops; 1757 1758 /* 1759 * Call the device specific close. This cannot fail. 1760 * Only if device is UP 1761 * 1762 * We allow it to be called even after a DETACH hot-plug 1763 * event. 1764 */ 1765 1766 netdev_ops_assert_locked(dev); 1767 1768 if (ops->ndo_stop) 1769 ops->ndo_stop(dev); 1770 1771 netif_set_up(dev, false); 1772 netpoll_poll_enable(dev); 1773 } 1774} 1775 1776static void __dev_close(struct net_device *dev) 1777{ 1778 LIST_HEAD(single); 1779 1780 list_add(&dev->close_list, &single); 1781 __dev_close_many(&single); 1782 list_del(&single); 1783} 1784 1785void netif_close_many(struct list_head *head, bool unlink) 1786{ 1787 struct net_device *dev, *tmp; 1788 1789 /* Remove the devices that don't need to be closed */ 1790 list_for_each_entry_safe(dev, tmp, head, close_list) 1791 if (!(dev->flags & IFF_UP)) 1792 list_del_init(&dev->close_list); 1793 1794 __dev_close_many(head); 1795 1796 list_for_each_entry_safe(dev, tmp, head, close_list) { 1797 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1798 call_netdevice_notifiers(NETDEV_DOWN, dev); 1799 if (unlink) 1800 list_del_init(&dev->close_list); 1801 } 1802} 1803EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1804 1805void netif_close(struct net_device *dev) 1806{ 1807 if (dev->flags & IFF_UP) { 1808 LIST_HEAD(single); 1809 1810 list_add(&dev->close_list, &single); 1811 netif_close_many(&single, true); 1812 list_del(&single); 1813 } 1814} 1815EXPORT_SYMBOL(netif_close); 1816 1817void netif_disable_lro(struct net_device *dev) 1818{ 1819 struct net_device *lower_dev; 1820 struct list_head *iter; 1821 1822 dev->wanted_features &= ~NETIF_F_LRO; 1823 netdev_update_features(dev); 1824 1825 if (unlikely(dev->features & NETIF_F_LRO)) 1826 netdev_WARN(dev, "failed to disable LRO!\n"); 1827 1828 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1829 netdev_lock_ops(lower_dev); 1830 netif_disable_lro(lower_dev); 1831 netdev_unlock_ops(lower_dev); 1832 } 1833} 1834EXPORT_IPV6_MOD(netif_disable_lro); 1835 1836/** 1837 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1838 * @dev: device 1839 * 1840 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1841 * called under RTNL. This is needed if Generic XDP is installed on 1842 * the device. 1843 */ 1844static void dev_disable_gro_hw(struct net_device *dev) 1845{ 1846 dev->wanted_features &= ~NETIF_F_GRO_HW; 1847 netdev_update_features(dev); 1848 1849 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1850 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1851} 1852 1853const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1854{ 1855#define N(val) \ 1856 case NETDEV_##val: \ 1857 return "NETDEV_" __stringify(val); 1858 switch (cmd) { 1859 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1860 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1861 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1862 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1863 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1864 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1865 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1866 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1867 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1868 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1869 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1870 N(XDP_FEAT_CHANGE) 1871 } 1872#undef N 1873 return "UNKNOWN_NETDEV_EVENT"; 1874} 1875EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1876 1877static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1878 struct net_device *dev) 1879{ 1880 struct netdev_notifier_info info = { 1881 .dev = dev, 1882 }; 1883 1884 return nb->notifier_call(nb, val, &info); 1885} 1886 1887static int call_netdevice_register_notifiers(struct notifier_block *nb, 1888 struct net_device *dev) 1889{ 1890 int err; 1891 1892 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1893 err = notifier_to_errno(err); 1894 if (err) 1895 return err; 1896 1897 if (!(dev->flags & IFF_UP)) 1898 return 0; 1899 1900 call_netdevice_notifier(nb, NETDEV_UP, dev); 1901 return 0; 1902} 1903 1904static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1905 struct net_device *dev) 1906{ 1907 if (dev->flags & IFF_UP) { 1908 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1909 dev); 1910 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1911 } 1912 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1913} 1914 1915static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1916 struct net *net) 1917{ 1918 struct net_device *dev; 1919 int err; 1920 1921 for_each_netdev(net, dev) { 1922 netdev_lock_ops(dev); 1923 err = call_netdevice_register_notifiers(nb, dev); 1924 netdev_unlock_ops(dev); 1925 if (err) 1926 goto rollback; 1927 } 1928 return 0; 1929 1930rollback: 1931 for_each_netdev_continue_reverse(net, dev) 1932 call_netdevice_unregister_notifiers(nb, dev); 1933 return err; 1934} 1935 1936static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1937 struct net *net) 1938{ 1939 struct net_device *dev; 1940 1941 for_each_netdev(net, dev) 1942 call_netdevice_unregister_notifiers(nb, dev); 1943} 1944 1945static int dev_boot_phase = 1; 1946 1947/** 1948 * register_netdevice_notifier - register a network notifier block 1949 * @nb: notifier 1950 * 1951 * Register a notifier to be called when network device events occur. 1952 * The notifier passed is linked into the kernel structures and must 1953 * not be reused until it has been unregistered. A negative errno code 1954 * is returned on a failure. 1955 * 1956 * When registered all registration and up events are replayed 1957 * to the new notifier to allow device to have a race free 1958 * view of the network device list. 1959 */ 1960 1961int register_netdevice_notifier(struct notifier_block *nb) 1962{ 1963 struct net *net; 1964 int err; 1965 1966 /* Close race with setup_net() and cleanup_net() */ 1967 down_write(&pernet_ops_rwsem); 1968 1969 /* When RTNL is removed, we need protection for netdev_chain. */ 1970 rtnl_lock(); 1971 1972 err = raw_notifier_chain_register(&netdev_chain, nb); 1973 if (err) 1974 goto unlock; 1975 if (dev_boot_phase) 1976 goto unlock; 1977 for_each_net(net) { 1978 __rtnl_net_lock(net); 1979 err = call_netdevice_register_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 if (err) 1982 goto rollback; 1983 } 1984 1985unlock: 1986 rtnl_unlock(); 1987 up_write(&pernet_ops_rwsem); 1988 return err; 1989 1990rollback: 1991 for_each_net_continue_reverse(net) { 1992 __rtnl_net_lock(net); 1993 call_netdevice_unregister_net_notifiers(nb, net); 1994 __rtnl_net_unlock(net); 1995 } 1996 1997 raw_notifier_chain_unregister(&netdev_chain, nb); 1998 goto unlock; 1999} 2000EXPORT_SYMBOL(register_netdevice_notifier); 2001 2002/** 2003 * unregister_netdevice_notifier - unregister a network notifier block 2004 * @nb: notifier 2005 * 2006 * Unregister a notifier previously registered by 2007 * register_netdevice_notifier(). The notifier is unlinked into the 2008 * kernel structures and may then be reused. A negative errno code 2009 * is returned on a failure. 2010 * 2011 * After unregistering unregister and down device events are synthesized 2012 * for all devices on the device list to the removed notifier to remove 2013 * the need for special case cleanup code. 2014 */ 2015 2016int unregister_netdevice_notifier(struct notifier_block *nb) 2017{ 2018 struct net *net; 2019 int err; 2020 2021 /* Close race with setup_net() and cleanup_net() */ 2022 down_write(&pernet_ops_rwsem); 2023 rtnl_lock(); 2024 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2025 if (err) 2026 goto unlock; 2027 2028 for_each_net(net) { 2029 __rtnl_net_lock(net); 2030 call_netdevice_unregister_net_notifiers(nb, net); 2031 __rtnl_net_unlock(net); 2032 } 2033 2034unlock: 2035 rtnl_unlock(); 2036 up_write(&pernet_ops_rwsem); 2037 return err; 2038} 2039EXPORT_SYMBOL(unregister_netdevice_notifier); 2040 2041static int __register_netdevice_notifier_net(struct net *net, 2042 struct notifier_block *nb, 2043 bool ignore_call_fail) 2044{ 2045 int err; 2046 2047 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2048 if (err) 2049 return err; 2050 if (dev_boot_phase) 2051 return 0; 2052 2053 err = call_netdevice_register_net_notifiers(nb, net); 2054 if (err && !ignore_call_fail) 2055 goto chain_unregister; 2056 2057 return 0; 2058 2059chain_unregister: 2060 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2061 return err; 2062} 2063 2064static int __unregister_netdevice_notifier_net(struct net *net, 2065 struct notifier_block *nb) 2066{ 2067 int err; 2068 2069 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2070 if (err) 2071 return err; 2072 2073 call_netdevice_unregister_net_notifiers(nb, net); 2074 return 0; 2075} 2076 2077/** 2078 * register_netdevice_notifier_net - register a per-netns network notifier block 2079 * @net: network namespace 2080 * @nb: notifier 2081 * 2082 * Register a notifier to be called when network device events occur. 2083 * The notifier passed is linked into the kernel structures and must 2084 * not be reused until it has been unregistered. A negative errno code 2085 * is returned on a failure. 2086 * 2087 * When registered all registration and up events are replayed 2088 * to the new notifier to allow device to have a race free 2089 * view of the network device list. 2090 */ 2091 2092int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2093{ 2094 int err; 2095 2096 rtnl_net_lock(net); 2097 err = __register_netdevice_notifier_net(net, nb, false); 2098 rtnl_net_unlock(net); 2099 2100 return err; 2101} 2102EXPORT_SYMBOL(register_netdevice_notifier_net); 2103 2104/** 2105 * unregister_netdevice_notifier_net - unregister a per-netns 2106 * network notifier block 2107 * @net: network namespace 2108 * @nb: notifier 2109 * 2110 * Unregister a notifier previously registered by 2111 * register_netdevice_notifier_net(). The notifier is unlinked from the 2112 * kernel structures and may then be reused. A negative errno code 2113 * is returned on a failure. 2114 * 2115 * After unregistering unregister and down device events are synthesized 2116 * for all devices on the device list to the removed notifier to remove 2117 * the need for special case cleanup code. 2118 */ 2119 2120int unregister_netdevice_notifier_net(struct net *net, 2121 struct notifier_block *nb) 2122{ 2123 int err; 2124 2125 rtnl_net_lock(net); 2126 err = __unregister_netdevice_notifier_net(net, nb); 2127 rtnl_net_unlock(net); 2128 2129 return err; 2130} 2131EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2132 2133static void __move_netdevice_notifier_net(struct net *src_net, 2134 struct net *dst_net, 2135 struct notifier_block *nb) 2136{ 2137 __unregister_netdevice_notifier_net(src_net, nb); 2138 __register_netdevice_notifier_net(dst_net, nb, true); 2139} 2140 2141static void rtnl_net_dev_lock(struct net_device *dev) 2142{ 2143 bool again; 2144 2145 do { 2146 struct net *net; 2147 2148 again = false; 2149 2150 /* netns might be being dismantled. */ 2151 rcu_read_lock(); 2152 net = dev_net_rcu(dev); 2153 net_passive_inc(net); 2154 rcu_read_unlock(); 2155 2156 rtnl_net_lock(net); 2157 2158#ifdef CONFIG_NET_NS 2159 /* dev might have been moved to another netns. */ 2160 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2161 rtnl_net_unlock(net); 2162 net_passive_dec(net); 2163 again = true; 2164 } 2165#endif 2166 } while (again); 2167} 2168 2169static void rtnl_net_dev_unlock(struct net_device *dev) 2170{ 2171 struct net *net = dev_net(dev); 2172 2173 rtnl_net_unlock(net); 2174 net_passive_dec(net); 2175} 2176 2177int register_netdevice_notifier_dev_net(struct net_device *dev, 2178 struct notifier_block *nb, 2179 struct netdev_net_notifier *nn) 2180{ 2181 int err; 2182 2183 rtnl_net_dev_lock(dev); 2184 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2185 if (!err) { 2186 nn->nb = nb; 2187 list_add(&nn->list, &dev->net_notifier_list); 2188 } 2189 rtnl_net_dev_unlock(dev); 2190 2191 return err; 2192} 2193EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2194 2195int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2196 struct notifier_block *nb, 2197 struct netdev_net_notifier *nn) 2198{ 2199 int err; 2200 2201 rtnl_net_dev_lock(dev); 2202 list_del(&nn->list); 2203 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2204 rtnl_net_dev_unlock(dev); 2205 2206 return err; 2207} 2208EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2209 2210static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2211 struct net *net) 2212{ 2213 struct netdev_net_notifier *nn; 2214 2215 list_for_each_entry(nn, &dev->net_notifier_list, list) 2216 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2217} 2218 2219/** 2220 * call_netdevice_notifiers_info - call all network notifier blocks 2221 * @val: value passed unmodified to notifier function 2222 * @info: notifier information data 2223 * 2224 * Call all network notifier blocks. Parameters and return value 2225 * are as for raw_notifier_call_chain(). 2226 */ 2227 2228int call_netdevice_notifiers_info(unsigned long val, 2229 struct netdev_notifier_info *info) 2230{ 2231 struct net *net = dev_net(info->dev); 2232 int ret; 2233 2234 ASSERT_RTNL(); 2235 2236 /* Run per-netns notifier block chain first, then run the global one. 2237 * Hopefully, one day, the global one is going to be removed after 2238 * all notifier block registrators get converted to be per-netns. 2239 */ 2240 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2241 if (ret & NOTIFY_STOP_MASK) 2242 return ret; 2243 return raw_notifier_call_chain(&netdev_chain, val, info); 2244} 2245 2246/** 2247 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2248 * for and rollback on error 2249 * @val_up: value passed unmodified to notifier function 2250 * @val_down: value passed unmodified to the notifier function when 2251 * recovering from an error on @val_up 2252 * @info: notifier information data 2253 * 2254 * Call all per-netns network notifier blocks, but not notifier blocks on 2255 * the global notifier chain. Parameters and return value are as for 2256 * raw_notifier_call_chain_robust(). 2257 */ 2258 2259static int 2260call_netdevice_notifiers_info_robust(unsigned long val_up, 2261 unsigned long val_down, 2262 struct netdev_notifier_info *info) 2263{ 2264 struct net *net = dev_net(info->dev); 2265 2266 ASSERT_RTNL(); 2267 2268 return raw_notifier_call_chain_robust(&net->netdev_chain, 2269 val_up, val_down, info); 2270} 2271 2272static int call_netdevice_notifiers_extack(unsigned long val, 2273 struct net_device *dev, 2274 struct netlink_ext_ack *extack) 2275{ 2276 struct netdev_notifier_info info = { 2277 .dev = dev, 2278 .extack = extack, 2279 }; 2280 2281 return call_netdevice_notifiers_info(val, &info); 2282} 2283 2284/** 2285 * call_netdevice_notifiers - call all network notifier blocks 2286 * @val: value passed unmodified to notifier function 2287 * @dev: net_device pointer passed unmodified to notifier function 2288 * 2289 * Call all network notifier blocks. Parameters and return value 2290 * are as for raw_notifier_call_chain(). 2291 */ 2292 2293int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2294{ 2295 return call_netdevice_notifiers_extack(val, dev, NULL); 2296} 2297EXPORT_SYMBOL(call_netdevice_notifiers); 2298 2299/** 2300 * call_netdevice_notifiers_mtu - call all network notifier blocks 2301 * @val: value passed unmodified to notifier function 2302 * @dev: net_device pointer passed unmodified to notifier function 2303 * @arg: additional u32 argument passed to the notifier function 2304 * 2305 * Call all network notifier blocks. Parameters and return value 2306 * are as for raw_notifier_call_chain(). 2307 */ 2308static int call_netdevice_notifiers_mtu(unsigned long val, 2309 struct net_device *dev, u32 arg) 2310{ 2311 struct netdev_notifier_info_ext info = { 2312 .info.dev = dev, 2313 .ext.mtu = arg, 2314 }; 2315 2316 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2317 2318 return call_netdevice_notifiers_info(val, &info.info); 2319} 2320 2321#ifdef CONFIG_NET_INGRESS 2322static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2323 2324void net_inc_ingress_queue(void) 2325{ 2326 static_branch_inc(&ingress_needed_key); 2327} 2328EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2329 2330void net_dec_ingress_queue(void) 2331{ 2332 static_branch_dec(&ingress_needed_key); 2333} 2334EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2335#endif 2336 2337#ifdef CONFIG_NET_EGRESS 2338static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2339 2340void net_inc_egress_queue(void) 2341{ 2342 static_branch_inc(&egress_needed_key); 2343} 2344EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2345 2346void net_dec_egress_queue(void) 2347{ 2348 static_branch_dec(&egress_needed_key); 2349} 2350EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2351#endif 2352 2353#ifdef CONFIG_NET_CLS_ACT 2354DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2355EXPORT_SYMBOL(tcf_sw_enabled_key); 2356#endif 2357 2358DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2359EXPORT_SYMBOL(netstamp_needed_key); 2360#ifdef CONFIG_JUMP_LABEL 2361static atomic_t netstamp_needed_deferred; 2362static atomic_t netstamp_wanted; 2363static void netstamp_clear(struct work_struct *work) 2364{ 2365 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2366 int wanted; 2367 2368 wanted = atomic_add_return(deferred, &netstamp_wanted); 2369 if (wanted > 0) 2370 static_branch_enable(&netstamp_needed_key); 2371 else 2372 static_branch_disable(&netstamp_needed_key); 2373} 2374static DECLARE_WORK(netstamp_work, netstamp_clear); 2375#endif 2376 2377void net_enable_timestamp(void) 2378{ 2379#ifdef CONFIG_JUMP_LABEL 2380 int wanted = atomic_read(&netstamp_wanted); 2381 2382 while (wanted > 0) { 2383 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2384 return; 2385 } 2386 atomic_inc(&netstamp_needed_deferred); 2387 schedule_work(&netstamp_work); 2388#else 2389 static_branch_inc(&netstamp_needed_key); 2390#endif 2391} 2392EXPORT_SYMBOL(net_enable_timestamp); 2393 2394void net_disable_timestamp(void) 2395{ 2396#ifdef CONFIG_JUMP_LABEL 2397 int wanted = atomic_read(&netstamp_wanted); 2398 2399 while (wanted > 1) { 2400 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2401 return; 2402 } 2403 atomic_dec(&netstamp_needed_deferred); 2404 schedule_work(&netstamp_work); 2405#else 2406 static_branch_dec(&netstamp_needed_key); 2407#endif 2408} 2409EXPORT_SYMBOL(net_disable_timestamp); 2410 2411static inline void net_timestamp_set(struct sk_buff *skb) 2412{ 2413 skb->tstamp = 0; 2414 skb->tstamp_type = SKB_CLOCK_REALTIME; 2415 if (static_branch_unlikely(&netstamp_needed_key)) 2416 skb->tstamp = ktime_get_real(); 2417} 2418 2419#define net_timestamp_check(COND, SKB) \ 2420 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2421 if ((COND) && !(SKB)->tstamp) \ 2422 (SKB)->tstamp = ktime_get_real(); \ 2423 } \ 2424 2425bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2426{ 2427 return __is_skb_forwardable(dev, skb, true); 2428} 2429EXPORT_SYMBOL_GPL(is_skb_forwardable); 2430 2431static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2432 bool check_mtu) 2433{ 2434 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2435 2436 if (likely(!ret)) { 2437 skb->protocol = eth_type_trans(skb, dev); 2438 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2439 } 2440 2441 return ret; 2442} 2443 2444int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2445{ 2446 return __dev_forward_skb2(dev, skb, true); 2447} 2448EXPORT_SYMBOL_GPL(__dev_forward_skb); 2449 2450/** 2451 * dev_forward_skb - loopback an skb to another netif 2452 * 2453 * @dev: destination network device 2454 * @skb: buffer to forward 2455 * 2456 * return values: 2457 * NET_RX_SUCCESS (no congestion) 2458 * NET_RX_DROP (packet was dropped, but freed) 2459 * 2460 * dev_forward_skb can be used for injecting an skb from the 2461 * start_xmit function of one device into the receive queue 2462 * of another device. 2463 * 2464 * The receiving device may be in another namespace, so 2465 * we have to clear all information in the skb that could 2466 * impact namespace isolation. 2467 */ 2468int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2469{ 2470 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2471} 2472EXPORT_SYMBOL_GPL(dev_forward_skb); 2473 2474int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2475{ 2476 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2477} 2478 2479static int deliver_skb(struct sk_buff *skb, 2480 struct packet_type *pt_prev, 2481 struct net_device *orig_dev) 2482{ 2483 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2484 return -ENOMEM; 2485 refcount_inc(&skb->users); 2486 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2487} 2488 2489static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2490 struct packet_type **pt, 2491 struct net_device *orig_dev, 2492 __be16 type, 2493 struct list_head *ptype_list) 2494{ 2495 struct packet_type *ptype, *pt_prev = *pt; 2496 2497 list_for_each_entry_rcu(ptype, ptype_list, list) { 2498 if (ptype->type != type) 2499 continue; 2500 if (unlikely(pt_prev)) 2501 deliver_skb(skb, pt_prev, orig_dev); 2502 pt_prev = ptype; 2503 } 2504 *pt = pt_prev; 2505} 2506 2507static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2508{ 2509 if (!ptype->af_packet_priv || !skb->sk) 2510 return false; 2511 2512 if (ptype->id_match) 2513 return ptype->id_match(ptype, skb->sk); 2514 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2515 return true; 2516 2517 return false; 2518} 2519 2520/** 2521 * dev_nit_active_rcu - return true if any network interface taps are in use 2522 * 2523 * The caller must hold the RCU lock 2524 * 2525 * @dev: network device to check for the presence of taps 2526 */ 2527bool dev_nit_active_rcu(const struct net_device *dev) 2528{ 2529 /* Callers may hold either RCU or RCU BH lock */ 2530 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2531 2532 return !list_empty(&dev_net(dev)->ptype_all) || 2533 !list_empty(&dev->ptype_all); 2534} 2535EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2536 2537/* 2538 * Support routine. Sends outgoing frames to any network 2539 * taps currently in use. 2540 */ 2541 2542void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2543{ 2544 struct packet_type *ptype, *pt_prev = NULL; 2545 struct list_head *ptype_list; 2546 struct sk_buff *skb2 = NULL; 2547 2548 rcu_read_lock(); 2549 ptype_list = &dev_net_rcu(dev)->ptype_all; 2550again: 2551 list_for_each_entry_rcu(ptype, ptype_list, list) { 2552 if (READ_ONCE(ptype->ignore_outgoing)) 2553 continue; 2554 2555 /* Never send packets back to the socket 2556 * they originated from - MvS (miquels@drinkel.ow.org) 2557 */ 2558 if (skb_loop_sk(ptype, skb)) 2559 continue; 2560 2561 if (unlikely(pt_prev)) { 2562 deliver_skb(skb2, pt_prev, skb->dev); 2563 pt_prev = ptype; 2564 continue; 2565 } 2566 2567 /* need to clone skb, done only once */ 2568 skb2 = skb_clone(skb, GFP_ATOMIC); 2569 if (!skb2) 2570 goto out_unlock; 2571 2572 net_timestamp_set(skb2); 2573 2574 /* skb->nh should be correctly 2575 * set by sender, so that the second statement is 2576 * just protection against buggy protocols. 2577 */ 2578 skb_reset_mac_header(skb2); 2579 2580 if (skb_network_header(skb2) < skb2->data || 2581 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2582 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2583 ntohs(skb2->protocol), 2584 dev->name); 2585 skb_reset_network_header(skb2); 2586 } 2587 2588 skb2->transport_header = skb2->network_header; 2589 skb2->pkt_type = PACKET_OUTGOING; 2590 pt_prev = ptype; 2591 } 2592 2593 if (ptype_list != &dev->ptype_all) { 2594 ptype_list = &dev->ptype_all; 2595 goto again; 2596 } 2597out_unlock: 2598 if (pt_prev) { 2599 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2600 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2601 else 2602 kfree_skb(skb2); 2603 } 2604 rcu_read_unlock(); 2605} 2606EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2607 2608/** 2609 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2610 * @dev: Network device 2611 * @txq: number of queues available 2612 * 2613 * If real_num_tx_queues is changed the tc mappings may no longer be 2614 * valid. To resolve this verify the tc mapping remains valid and if 2615 * not NULL the mapping. With no priorities mapping to this 2616 * offset/count pair it will no longer be used. In the worst case TC0 2617 * is invalid nothing can be done so disable priority mappings. If is 2618 * expected that drivers will fix this mapping if they can before 2619 * calling netif_set_real_num_tx_queues. 2620 */ 2621static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2622{ 2623 int i; 2624 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2625 2626 /* If TC0 is invalidated disable TC mapping */ 2627 if (tc->offset + tc->count > txq) { 2628 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2629 dev->num_tc = 0; 2630 return; 2631 } 2632 2633 /* Invalidated prio to tc mappings set to TC0 */ 2634 for (i = 1; i < TC_BITMASK + 1; i++) { 2635 int q = netdev_get_prio_tc_map(dev, i); 2636 2637 tc = &dev->tc_to_txq[q]; 2638 if (tc->offset + tc->count > txq) { 2639 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2640 i, q); 2641 netdev_set_prio_tc_map(dev, i, 0); 2642 } 2643 } 2644} 2645 2646int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2647{ 2648 if (dev->num_tc) { 2649 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2650 int i; 2651 2652 /* walk through the TCs and see if it falls into any of them */ 2653 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2654 if ((txq - tc->offset) < tc->count) 2655 return i; 2656 } 2657 2658 /* didn't find it, just return -1 to indicate no match */ 2659 return -1; 2660 } 2661 2662 return 0; 2663} 2664EXPORT_SYMBOL(netdev_txq_to_tc); 2665 2666#ifdef CONFIG_XPS 2667static struct static_key xps_needed __read_mostly; 2668static struct static_key xps_rxqs_needed __read_mostly; 2669static DEFINE_MUTEX(xps_map_mutex); 2670#define xmap_dereference(P) \ 2671 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2672 2673static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2674 struct xps_dev_maps *old_maps, int tci, u16 index) 2675{ 2676 struct xps_map *map = NULL; 2677 int pos; 2678 2679 map = xmap_dereference(dev_maps->attr_map[tci]); 2680 if (!map) 2681 return false; 2682 2683 for (pos = map->len; pos--;) { 2684 if (map->queues[pos] != index) 2685 continue; 2686 2687 if (map->len > 1) { 2688 map->queues[pos] = map->queues[--map->len]; 2689 break; 2690 } 2691 2692 if (old_maps) 2693 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2694 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2695 kfree_rcu(map, rcu); 2696 return false; 2697 } 2698 2699 return true; 2700} 2701 2702static bool remove_xps_queue_cpu(struct net_device *dev, 2703 struct xps_dev_maps *dev_maps, 2704 int cpu, u16 offset, u16 count) 2705{ 2706 int num_tc = dev_maps->num_tc; 2707 bool active = false; 2708 int tci; 2709 2710 for (tci = cpu * num_tc; num_tc--; tci++) { 2711 int i, j; 2712 2713 for (i = count, j = offset; i--; j++) { 2714 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2715 break; 2716 } 2717 2718 active |= i < 0; 2719 } 2720 2721 return active; 2722} 2723 2724static void reset_xps_maps(struct net_device *dev, 2725 struct xps_dev_maps *dev_maps, 2726 enum xps_map_type type) 2727{ 2728 static_key_slow_dec_cpuslocked(&xps_needed); 2729 if (type == XPS_RXQS) 2730 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2731 2732 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2733 2734 kfree_rcu(dev_maps, rcu); 2735} 2736 2737static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2738 u16 offset, u16 count) 2739{ 2740 struct xps_dev_maps *dev_maps; 2741 bool active = false; 2742 int i, j; 2743 2744 dev_maps = xmap_dereference(dev->xps_maps[type]); 2745 if (!dev_maps) 2746 return; 2747 2748 for (j = 0; j < dev_maps->nr_ids; j++) 2749 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2750 if (!active) 2751 reset_xps_maps(dev, dev_maps, type); 2752 2753 if (type == XPS_CPUS) { 2754 for (i = offset + (count - 1); count--; i--) 2755 netdev_queue_numa_node_write( 2756 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2757 } 2758} 2759 2760static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2761 u16 count) 2762{ 2763 if (!static_key_false(&xps_needed)) 2764 return; 2765 2766 cpus_read_lock(); 2767 mutex_lock(&xps_map_mutex); 2768 2769 if (static_key_false(&xps_rxqs_needed)) 2770 clean_xps_maps(dev, XPS_RXQS, offset, count); 2771 2772 clean_xps_maps(dev, XPS_CPUS, offset, count); 2773 2774 mutex_unlock(&xps_map_mutex); 2775 cpus_read_unlock(); 2776} 2777 2778static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2779{ 2780 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2781} 2782 2783static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2784 u16 index, bool is_rxqs_map) 2785{ 2786 struct xps_map *new_map; 2787 int alloc_len = XPS_MIN_MAP_ALLOC; 2788 int i, pos; 2789 2790 for (pos = 0; map && pos < map->len; pos++) { 2791 if (map->queues[pos] != index) 2792 continue; 2793 return map; 2794 } 2795 2796 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2797 if (map) { 2798 if (pos < map->alloc_len) 2799 return map; 2800 2801 alloc_len = map->alloc_len * 2; 2802 } 2803 2804 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2805 * map 2806 */ 2807 if (is_rxqs_map) 2808 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2809 else 2810 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2811 cpu_to_node(attr_index)); 2812 if (!new_map) 2813 return NULL; 2814 2815 for (i = 0; i < pos; i++) 2816 new_map->queues[i] = map->queues[i]; 2817 new_map->alloc_len = alloc_len; 2818 new_map->len = pos; 2819 2820 return new_map; 2821} 2822 2823/* Copy xps maps at a given index */ 2824static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2825 struct xps_dev_maps *new_dev_maps, int index, 2826 int tc, bool skip_tc) 2827{ 2828 int i, tci = index * dev_maps->num_tc; 2829 struct xps_map *map; 2830 2831 /* copy maps belonging to foreign traffic classes */ 2832 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2833 if (i == tc && skip_tc) 2834 continue; 2835 2836 /* fill in the new device map from the old device map */ 2837 map = xmap_dereference(dev_maps->attr_map[tci]); 2838 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2839 } 2840} 2841 2842/* Must be called under cpus_read_lock */ 2843int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2844 u16 index, enum xps_map_type type) 2845{ 2846 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2847 const unsigned long *online_mask = NULL; 2848 bool active = false, copy = false; 2849 int i, j, tci, numa_node_id = -2; 2850 int maps_sz, num_tc = 1, tc = 0; 2851 struct xps_map *map, *new_map; 2852 unsigned int nr_ids; 2853 2854 WARN_ON_ONCE(index >= dev->num_tx_queues); 2855 2856 if (dev->num_tc) { 2857 /* Do not allow XPS on subordinate device directly */ 2858 num_tc = dev->num_tc; 2859 if (num_tc < 0) 2860 return -EINVAL; 2861 2862 /* If queue belongs to subordinate dev use its map */ 2863 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2864 2865 tc = netdev_txq_to_tc(dev, index); 2866 if (tc < 0) 2867 return -EINVAL; 2868 } 2869 2870 mutex_lock(&xps_map_mutex); 2871 2872 dev_maps = xmap_dereference(dev->xps_maps[type]); 2873 if (type == XPS_RXQS) { 2874 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2875 nr_ids = dev->num_rx_queues; 2876 } else { 2877 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2878 if (num_possible_cpus() > 1) 2879 online_mask = cpumask_bits(cpu_online_mask); 2880 nr_ids = nr_cpu_ids; 2881 } 2882 2883 if (maps_sz < L1_CACHE_BYTES) 2884 maps_sz = L1_CACHE_BYTES; 2885 2886 /* The old dev_maps could be larger or smaller than the one we're 2887 * setting up now, as dev->num_tc or nr_ids could have been updated in 2888 * between. We could try to be smart, but let's be safe instead and only 2889 * copy foreign traffic classes if the two map sizes match. 2890 */ 2891 if (dev_maps && 2892 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2893 copy = true; 2894 2895 /* allocate memory for queue storage */ 2896 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2897 j < nr_ids;) { 2898 if (!new_dev_maps) { 2899 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2900 if (!new_dev_maps) { 2901 mutex_unlock(&xps_map_mutex); 2902 return -ENOMEM; 2903 } 2904 2905 new_dev_maps->nr_ids = nr_ids; 2906 new_dev_maps->num_tc = num_tc; 2907 } 2908 2909 tci = j * num_tc + tc; 2910 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2911 2912 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2913 if (!map) 2914 goto error; 2915 2916 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2917 } 2918 2919 if (!new_dev_maps) 2920 goto out_no_new_maps; 2921 2922 if (!dev_maps) { 2923 /* Increment static keys at most once per type */ 2924 static_key_slow_inc_cpuslocked(&xps_needed); 2925 if (type == XPS_RXQS) 2926 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2927 } 2928 2929 for (j = 0; j < nr_ids; j++) { 2930 bool skip_tc = false; 2931 2932 tci = j * num_tc + tc; 2933 if (netif_attr_test_mask(j, mask, nr_ids) && 2934 netif_attr_test_online(j, online_mask, nr_ids)) { 2935 /* add tx-queue to CPU/rx-queue maps */ 2936 int pos = 0; 2937 2938 skip_tc = true; 2939 2940 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2941 while ((pos < map->len) && (map->queues[pos] != index)) 2942 pos++; 2943 2944 if (pos == map->len) 2945 map->queues[map->len++] = index; 2946#ifdef CONFIG_NUMA 2947 if (type == XPS_CPUS) { 2948 if (numa_node_id == -2) 2949 numa_node_id = cpu_to_node(j); 2950 else if (numa_node_id != cpu_to_node(j)) 2951 numa_node_id = -1; 2952 } 2953#endif 2954 } 2955 2956 if (copy) 2957 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2958 skip_tc); 2959 } 2960 2961 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2962 2963 /* Cleanup old maps */ 2964 if (!dev_maps) 2965 goto out_no_old_maps; 2966 2967 for (j = 0; j < dev_maps->nr_ids; j++) { 2968 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2969 map = xmap_dereference(dev_maps->attr_map[tci]); 2970 if (!map) 2971 continue; 2972 2973 if (copy) { 2974 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2975 if (map == new_map) 2976 continue; 2977 } 2978 2979 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2980 kfree_rcu(map, rcu); 2981 } 2982 } 2983 2984 old_dev_maps = dev_maps; 2985 2986out_no_old_maps: 2987 dev_maps = new_dev_maps; 2988 active = true; 2989 2990out_no_new_maps: 2991 if (type == XPS_CPUS) 2992 /* update Tx queue numa node */ 2993 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2994 (numa_node_id >= 0) ? 2995 numa_node_id : NUMA_NO_NODE); 2996 2997 if (!dev_maps) 2998 goto out_no_maps; 2999 3000 /* removes tx-queue from unused CPUs/rx-queues */ 3001 for (j = 0; j < dev_maps->nr_ids; j++) { 3002 tci = j * dev_maps->num_tc; 3003 3004 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 3005 if (i == tc && 3006 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 3007 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 3008 continue; 3009 3010 active |= remove_xps_queue(dev_maps, 3011 copy ? old_dev_maps : NULL, 3012 tci, index); 3013 } 3014 } 3015 3016 if (old_dev_maps) 3017 kfree_rcu(old_dev_maps, rcu); 3018 3019 /* free map if not active */ 3020 if (!active) 3021 reset_xps_maps(dev, dev_maps, type); 3022 3023out_no_maps: 3024 mutex_unlock(&xps_map_mutex); 3025 3026 return 0; 3027error: 3028 /* remove any maps that we added */ 3029 for (j = 0; j < nr_ids; j++) { 3030 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3031 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3032 map = copy ? 3033 xmap_dereference(dev_maps->attr_map[tci]) : 3034 NULL; 3035 if (new_map && new_map != map) 3036 kfree(new_map); 3037 } 3038 } 3039 3040 mutex_unlock(&xps_map_mutex); 3041 3042 kfree(new_dev_maps); 3043 return -ENOMEM; 3044} 3045EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3046 3047int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3048 u16 index) 3049{ 3050 int ret; 3051 3052 cpus_read_lock(); 3053 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3054 cpus_read_unlock(); 3055 3056 return ret; 3057} 3058EXPORT_SYMBOL(netif_set_xps_queue); 3059 3060#endif 3061static void netdev_unbind_all_sb_channels(struct net_device *dev) 3062{ 3063 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3064 3065 /* Unbind any subordinate channels */ 3066 while (txq-- != &dev->_tx[0]) { 3067 if (txq->sb_dev) 3068 netdev_unbind_sb_channel(dev, txq->sb_dev); 3069 } 3070} 3071 3072void netdev_reset_tc(struct net_device *dev) 3073{ 3074#ifdef CONFIG_XPS 3075 netif_reset_xps_queues_gt(dev, 0); 3076#endif 3077 netdev_unbind_all_sb_channels(dev); 3078 3079 /* Reset TC configuration of device */ 3080 dev->num_tc = 0; 3081 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3082 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3083} 3084EXPORT_SYMBOL(netdev_reset_tc); 3085 3086int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3087{ 3088 if (tc >= dev->num_tc) 3089 return -EINVAL; 3090 3091#ifdef CONFIG_XPS 3092 netif_reset_xps_queues(dev, offset, count); 3093#endif 3094 dev->tc_to_txq[tc].count = count; 3095 dev->tc_to_txq[tc].offset = offset; 3096 return 0; 3097} 3098EXPORT_SYMBOL(netdev_set_tc_queue); 3099 3100int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3101{ 3102 if (num_tc > TC_MAX_QUEUE) 3103 return -EINVAL; 3104 3105#ifdef CONFIG_XPS 3106 netif_reset_xps_queues_gt(dev, 0); 3107#endif 3108 netdev_unbind_all_sb_channels(dev); 3109 3110 dev->num_tc = num_tc; 3111 return 0; 3112} 3113EXPORT_SYMBOL(netdev_set_num_tc); 3114 3115void netdev_unbind_sb_channel(struct net_device *dev, 3116 struct net_device *sb_dev) 3117{ 3118 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3119 3120#ifdef CONFIG_XPS 3121 netif_reset_xps_queues_gt(sb_dev, 0); 3122#endif 3123 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3124 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3125 3126 while (txq-- != &dev->_tx[0]) { 3127 if (txq->sb_dev == sb_dev) 3128 txq->sb_dev = NULL; 3129 } 3130} 3131EXPORT_SYMBOL(netdev_unbind_sb_channel); 3132 3133int netdev_bind_sb_channel_queue(struct net_device *dev, 3134 struct net_device *sb_dev, 3135 u8 tc, u16 count, u16 offset) 3136{ 3137 /* Make certain the sb_dev and dev are already configured */ 3138 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3139 return -EINVAL; 3140 3141 /* We cannot hand out queues we don't have */ 3142 if ((offset + count) > dev->real_num_tx_queues) 3143 return -EINVAL; 3144 3145 /* Record the mapping */ 3146 sb_dev->tc_to_txq[tc].count = count; 3147 sb_dev->tc_to_txq[tc].offset = offset; 3148 3149 /* Provide a way for Tx queue to find the tc_to_txq map or 3150 * XPS map for itself. 3151 */ 3152 while (count--) 3153 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3154 3155 return 0; 3156} 3157EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3158 3159int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3160{ 3161 /* Do not use a multiqueue device to represent a subordinate channel */ 3162 if (netif_is_multiqueue(dev)) 3163 return -ENODEV; 3164 3165 /* We allow channels 1 - 32767 to be used for subordinate channels. 3166 * Channel 0 is meant to be "native" mode and used only to represent 3167 * the main root device. We allow writing 0 to reset the device back 3168 * to normal mode after being used as a subordinate channel. 3169 */ 3170 if (channel > S16_MAX) 3171 return -EINVAL; 3172 3173 dev->num_tc = -channel; 3174 3175 return 0; 3176} 3177EXPORT_SYMBOL(netdev_set_sb_channel); 3178 3179/* 3180 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3181 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3182 */ 3183int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3184{ 3185 bool disabling; 3186 int rc; 3187 3188 disabling = txq < dev->real_num_tx_queues; 3189 3190 if (txq < 1 || txq > dev->num_tx_queues) 3191 return -EINVAL; 3192 3193 if (dev->reg_state == NETREG_REGISTERED || 3194 dev->reg_state == NETREG_UNREGISTERING) { 3195 netdev_ops_assert_locked(dev); 3196 3197 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3198 txq); 3199 if (rc) 3200 return rc; 3201 3202 if (dev->num_tc) 3203 netif_setup_tc(dev, txq); 3204 3205 net_shaper_set_real_num_tx_queues(dev, txq); 3206 3207 dev_qdisc_change_real_num_tx(dev, txq); 3208 3209 dev->real_num_tx_queues = txq; 3210 3211 if (disabling) { 3212 synchronize_net(); 3213 qdisc_reset_all_tx_gt(dev, txq); 3214#ifdef CONFIG_XPS 3215 netif_reset_xps_queues_gt(dev, txq); 3216#endif 3217 } 3218 } else { 3219 dev->real_num_tx_queues = txq; 3220 } 3221 3222 return 0; 3223} 3224EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3225 3226/** 3227 * netif_set_real_num_rx_queues - set actual number of RX queues used 3228 * @dev: Network device 3229 * @rxq: Actual number of RX queues 3230 * 3231 * This must be called either with the rtnl_lock held or before 3232 * registration of the net device. Returns 0 on success, or a 3233 * negative error code. If called before registration, it always 3234 * succeeds. 3235 */ 3236int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3237{ 3238 int rc; 3239 3240 if (rxq < 1 || rxq > dev->num_rx_queues) 3241 return -EINVAL; 3242 3243 if (dev->reg_state == NETREG_REGISTERED) { 3244 netdev_ops_assert_locked(dev); 3245 3246 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3247 rxq); 3248 if (rc) 3249 return rc; 3250 } 3251 3252 dev->real_num_rx_queues = rxq; 3253 return 0; 3254} 3255EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3256 3257/** 3258 * netif_set_real_num_queues - set actual number of RX and TX queues used 3259 * @dev: Network device 3260 * @txq: Actual number of TX queues 3261 * @rxq: Actual number of RX queues 3262 * 3263 * Set the real number of both TX and RX queues. 3264 * Does nothing if the number of queues is already correct. 3265 */ 3266int netif_set_real_num_queues(struct net_device *dev, 3267 unsigned int txq, unsigned int rxq) 3268{ 3269 unsigned int old_rxq = dev->real_num_rx_queues; 3270 int err; 3271 3272 if (txq < 1 || txq > dev->num_tx_queues || 3273 rxq < 1 || rxq > dev->num_rx_queues) 3274 return -EINVAL; 3275 3276 /* Start from increases, so the error path only does decreases - 3277 * decreases can't fail. 3278 */ 3279 if (rxq > dev->real_num_rx_queues) { 3280 err = netif_set_real_num_rx_queues(dev, rxq); 3281 if (err) 3282 return err; 3283 } 3284 if (txq > dev->real_num_tx_queues) { 3285 err = netif_set_real_num_tx_queues(dev, txq); 3286 if (err) 3287 goto undo_rx; 3288 } 3289 if (rxq < dev->real_num_rx_queues) 3290 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3291 if (txq < dev->real_num_tx_queues) 3292 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3293 3294 return 0; 3295undo_rx: 3296 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3297 return err; 3298} 3299EXPORT_SYMBOL(netif_set_real_num_queues); 3300 3301/** 3302 * netif_set_tso_max_size() - set the max size of TSO frames supported 3303 * @dev: netdev to update 3304 * @size: max skb->len of a TSO frame 3305 * 3306 * Set the limit on the size of TSO super-frames the device can handle. 3307 * Unless explicitly set the stack will assume the value of 3308 * %GSO_LEGACY_MAX_SIZE. 3309 */ 3310void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3311{ 3312 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3313 if (size < READ_ONCE(dev->gso_max_size)) 3314 netif_set_gso_max_size(dev, size); 3315 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3316 netif_set_gso_ipv4_max_size(dev, size); 3317} 3318EXPORT_SYMBOL(netif_set_tso_max_size); 3319 3320/** 3321 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3322 * @dev: netdev to update 3323 * @segs: max number of TCP segments 3324 * 3325 * Set the limit on the number of TCP segments the device can generate from 3326 * a single TSO super-frame. 3327 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3328 */ 3329void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3330{ 3331 dev->tso_max_segs = segs; 3332 if (segs < READ_ONCE(dev->gso_max_segs)) 3333 netif_set_gso_max_segs(dev, segs); 3334} 3335EXPORT_SYMBOL(netif_set_tso_max_segs); 3336 3337/** 3338 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3339 * @to: netdev to update 3340 * @from: netdev from which to copy the limits 3341 */ 3342void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3343{ 3344 netif_set_tso_max_size(to, from->tso_max_size); 3345 netif_set_tso_max_segs(to, from->tso_max_segs); 3346} 3347EXPORT_SYMBOL(netif_inherit_tso_max); 3348 3349/** 3350 * netif_get_num_default_rss_queues - default number of RSS queues 3351 * 3352 * Default value is the number of physical cores if there are only 1 or 2, or 3353 * divided by 2 if there are more. 3354 */ 3355int netif_get_num_default_rss_queues(void) 3356{ 3357 cpumask_var_t cpus; 3358 int cpu, count = 0; 3359 3360 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3361 return 1; 3362 3363 cpumask_copy(cpus, cpu_online_mask); 3364 for_each_cpu(cpu, cpus) { 3365 ++count; 3366 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3367 } 3368 free_cpumask_var(cpus); 3369 3370 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3371} 3372EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3373 3374static void __netif_reschedule(struct Qdisc *q) 3375{ 3376 struct softnet_data *sd; 3377 unsigned long flags; 3378 3379 local_irq_save(flags); 3380 sd = this_cpu_ptr(&softnet_data); 3381 q->next_sched = NULL; 3382 *sd->output_queue_tailp = q; 3383 sd->output_queue_tailp = &q->next_sched; 3384 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3385 local_irq_restore(flags); 3386} 3387 3388void __netif_schedule(struct Qdisc *q) 3389{ 3390 /* If q->defer_list is not empty, at least one thread is 3391 * in __dev_xmit_skb() before llist_del_all(&q->defer_list). 3392 * This thread will attempt to run the queue. 3393 */ 3394 if (!llist_empty(&q->defer_list)) 3395 return; 3396 3397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3398 __netif_reschedule(q); 3399} 3400EXPORT_SYMBOL(__netif_schedule); 3401 3402struct dev_kfree_skb_cb { 3403 enum skb_drop_reason reason; 3404}; 3405 3406static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3407{ 3408 return (struct dev_kfree_skb_cb *)skb->cb; 3409} 3410 3411void netif_schedule_queue(struct netdev_queue *txq) 3412{ 3413 rcu_read_lock(); 3414 if (!netif_xmit_stopped(txq)) { 3415 struct Qdisc *q = rcu_dereference(txq->qdisc); 3416 3417 __netif_schedule(q); 3418 } 3419 rcu_read_unlock(); 3420} 3421EXPORT_SYMBOL(netif_schedule_queue); 3422 3423void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3424{ 3425 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3426 struct Qdisc *q; 3427 3428 rcu_read_lock(); 3429 q = rcu_dereference(dev_queue->qdisc); 3430 __netif_schedule(q); 3431 rcu_read_unlock(); 3432 } 3433} 3434EXPORT_SYMBOL(netif_tx_wake_queue); 3435 3436void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3437{ 3438 unsigned long flags; 3439 3440 if (unlikely(!skb)) 3441 return; 3442 3443 if (likely(refcount_read(&skb->users) == 1)) { 3444 smp_rmb(); 3445 refcount_set(&skb->users, 0); 3446 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3447 return; 3448 } 3449 get_kfree_skb_cb(skb)->reason = reason; 3450 local_irq_save(flags); 3451 skb->next = __this_cpu_read(softnet_data.completion_queue); 3452 __this_cpu_write(softnet_data.completion_queue, skb); 3453 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3454 local_irq_restore(flags); 3455} 3456EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3457 3458void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3459{ 3460 if (in_hardirq() || irqs_disabled()) 3461 dev_kfree_skb_irq_reason(skb, reason); 3462 else 3463 kfree_skb_reason(skb, reason); 3464} 3465EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3466 3467 3468/** 3469 * netif_device_detach - mark device as removed 3470 * @dev: network device 3471 * 3472 * Mark device as removed from system and therefore no longer available. 3473 */ 3474void netif_device_detach(struct net_device *dev) 3475{ 3476 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3477 netif_running(dev)) { 3478 netif_tx_stop_all_queues(dev); 3479 } 3480} 3481EXPORT_SYMBOL(netif_device_detach); 3482 3483/** 3484 * netif_device_attach - mark device as attached 3485 * @dev: network device 3486 * 3487 * Mark device as attached from system and restart if needed. 3488 */ 3489void netif_device_attach(struct net_device *dev) 3490{ 3491 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3492 netif_running(dev)) { 3493 netif_tx_wake_all_queues(dev); 3494 netdev_watchdog_up(dev); 3495 } 3496} 3497EXPORT_SYMBOL(netif_device_attach); 3498 3499/* 3500 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3501 * to be used as a distribution range. 3502 */ 3503static u16 skb_tx_hash(const struct net_device *dev, 3504 const struct net_device *sb_dev, 3505 struct sk_buff *skb) 3506{ 3507 u32 hash; 3508 u16 qoffset = 0; 3509 u16 qcount = dev->real_num_tx_queues; 3510 3511 if (dev->num_tc) { 3512 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3513 3514 qoffset = sb_dev->tc_to_txq[tc].offset; 3515 qcount = sb_dev->tc_to_txq[tc].count; 3516 if (unlikely(!qcount)) { 3517 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3518 sb_dev->name, qoffset, tc); 3519 qoffset = 0; 3520 qcount = dev->real_num_tx_queues; 3521 } 3522 } 3523 3524 if (skb_rx_queue_recorded(skb)) { 3525 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3526 hash = skb_get_rx_queue(skb); 3527 if (hash >= qoffset) 3528 hash -= qoffset; 3529 while (unlikely(hash >= qcount)) 3530 hash -= qcount; 3531 return hash + qoffset; 3532 } 3533 3534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3535} 3536 3537void skb_warn_bad_offload(const struct sk_buff *skb) 3538{ 3539 static const netdev_features_t null_features; 3540 struct net_device *dev = skb->dev; 3541 const char *name = ""; 3542 3543 if (!net_ratelimit()) 3544 return; 3545 3546 if (dev) { 3547 if (dev->dev.parent) 3548 name = dev_driver_string(dev->dev.parent); 3549 else 3550 name = netdev_name(dev); 3551 } 3552 skb_dump(KERN_WARNING, skb, false); 3553 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3554 name, dev ? &dev->features : &null_features, 3555 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3556} 3557 3558/* 3559 * Invalidate hardware checksum when packet is to be mangled, and 3560 * complete checksum manually on outgoing path. 3561 */ 3562int skb_checksum_help(struct sk_buff *skb) 3563{ 3564 __wsum csum; 3565 int ret = 0, offset; 3566 3567 if (skb->ip_summed == CHECKSUM_COMPLETE) 3568 goto out_set_summed; 3569 3570 if (unlikely(skb_is_gso(skb))) { 3571 skb_warn_bad_offload(skb); 3572 return -EINVAL; 3573 } 3574 3575 if (!skb_frags_readable(skb)) { 3576 return -EFAULT; 3577 } 3578 3579 /* Before computing a checksum, we should make sure no frag could 3580 * be modified by an external entity : checksum could be wrong. 3581 */ 3582 if (skb_has_shared_frag(skb)) { 3583 ret = __skb_linearize(skb); 3584 if (ret) 3585 goto out; 3586 } 3587 3588 offset = skb_checksum_start_offset(skb); 3589 ret = -EINVAL; 3590 if (unlikely(offset >= skb_headlen(skb))) { 3591 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3592 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3593 offset, skb_headlen(skb)); 3594 goto out; 3595 } 3596 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3597 3598 offset += skb->csum_offset; 3599 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3600 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3601 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3602 offset + sizeof(__sum16), skb_headlen(skb)); 3603 goto out; 3604 } 3605 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3606 if (ret) 3607 goto out; 3608 3609 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3610out_set_summed: 3611 skb->ip_summed = CHECKSUM_NONE; 3612out: 3613 return ret; 3614} 3615EXPORT_SYMBOL(skb_checksum_help); 3616 3617#ifdef CONFIG_NET_CRC32C 3618int skb_crc32c_csum_help(struct sk_buff *skb) 3619{ 3620 u32 crc; 3621 int ret = 0, offset, start; 3622 3623 if (skb->ip_summed != CHECKSUM_PARTIAL) 3624 goto out; 3625 3626 if (unlikely(skb_is_gso(skb))) 3627 goto out; 3628 3629 /* Before computing a checksum, we should make sure no frag could 3630 * be modified by an external entity : checksum could be wrong. 3631 */ 3632 if (unlikely(skb_has_shared_frag(skb))) { 3633 ret = __skb_linearize(skb); 3634 if (ret) 3635 goto out; 3636 } 3637 start = skb_checksum_start_offset(skb); 3638 offset = start + offsetof(struct sctphdr, checksum); 3639 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3640 ret = -EINVAL; 3641 goto out; 3642 } 3643 3644 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3645 if (ret) 3646 goto out; 3647 3648 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3649 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3650 skb_reset_csum_not_inet(skb); 3651out: 3652 return ret; 3653} 3654EXPORT_SYMBOL(skb_crc32c_csum_help); 3655#endif /* CONFIG_NET_CRC32C */ 3656 3657__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3658{ 3659 __be16 type = skb->protocol; 3660 3661 /* Tunnel gso handlers can set protocol to ethernet. */ 3662 if (type == htons(ETH_P_TEB)) { 3663 struct ethhdr *eth; 3664 3665 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3666 return 0; 3667 3668 eth = (struct ethhdr *)skb->data; 3669 type = eth->h_proto; 3670 } 3671 3672 return vlan_get_protocol_and_depth(skb, type, depth); 3673} 3674 3675 3676/* Take action when hardware reception checksum errors are detected. */ 3677#ifdef CONFIG_BUG 3678static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3679{ 3680 netdev_err(dev, "hw csum failure\n"); 3681 skb_dump(KERN_ERR, skb, true); 3682 dump_stack(); 3683} 3684 3685void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3686{ 3687 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3688} 3689EXPORT_SYMBOL(netdev_rx_csum_fault); 3690#endif 3691 3692/* XXX: check that highmem exists at all on the given machine. */ 3693static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3694{ 3695#ifdef CONFIG_HIGHMEM 3696 int i; 3697 3698 if (!(dev->features & NETIF_F_HIGHDMA)) { 3699 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3700 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3701 struct page *page = skb_frag_page(frag); 3702 3703 if (page && PageHighMem(page)) 3704 return 1; 3705 } 3706 } 3707#endif 3708 return 0; 3709} 3710 3711/* If MPLS offload request, verify we are testing hardware MPLS features 3712 * instead of standard features for the netdev. 3713 */ 3714#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3715static netdev_features_t net_mpls_features(struct sk_buff *skb, 3716 netdev_features_t features, 3717 __be16 type) 3718{ 3719 if (eth_p_mpls(type)) 3720 features &= skb->dev->mpls_features; 3721 3722 return features; 3723} 3724#else 3725static netdev_features_t net_mpls_features(struct sk_buff *skb, 3726 netdev_features_t features, 3727 __be16 type) 3728{ 3729 return features; 3730} 3731#endif 3732 3733static netdev_features_t harmonize_features(struct sk_buff *skb, 3734 netdev_features_t features) 3735{ 3736 __be16 type; 3737 3738 type = skb_network_protocol(skb, NULL); 3739 features = net_mpls_features(skb, features, type); 3740 3741 if (skb->ip_summed != CHECKSUM_NONE && 3742 !can_checksum_protocol(features, type)) { 3743 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3744 } 3745 if (illegal_highdma(skb->dev, skb)) 3746 features &= ~NETIF_F_SG; 3747 3748 return features; 3749} 3750 3751netdev_features_t passthru_features_check(struct sk_buff *skb, 3752 struct net_device *dev, 3753 netdev_features_t features) 3754{ 3755 return features; 3756} 3757EXPORT_SYMBOL(passthru_features_check); 3758 3759static netdev_features_t dflt_features_check(struct sk_buff *skb, 3760 struct net_device *dev, 3761 netdev_features_t features) 3762{ 3763 return vlan_features_check(skb, features); 3764} 3765 3766static netdev_features_t gso_features_check(const struct sk_buff *skb, 3767 struct net_device *dev, 3768 netdev_features_t features) 3769{ 3770 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3771 3772 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3773 return features & ~NETIF_F_GSO_MASK; 3774 3775 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3776 return features & ~NETIF_F_GSO_MASK; 3777 3778 if (!skb_shinfo(skb)->gso_type) { 3779 skb_warn_bad_offload(skb); 3780 return features & ~NETIF_F_GSO_MASK; 3781 } 3782 3783 /* Support for GSO partial features requires software 3784 * intervention before we can actually process the packets 3785 * so we need to strip support for any partial features now 3786 * and we can pull them back in after we have partially 3787 * segmented the frame. 3788 */ 3789 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3790 features &= ~dev->gso_partial_features; 3791 3792 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3793 * has the potential to be fragmented so that TSO does not generate 3794 * segments with the same ID. For encapsulated packets, the ID mangling 3795 * feature is guaranteed not to use the same ID for the outer IPv4 3796 * headers of the generated segments if the headers have the potential 3797 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3798 * feature (see the section about NETIF_F_TSO_MANGLEID in 3799 * segmentation-offloads.rst). 3800 */ 3801 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3802 struct iphdr *iph = skb->encapsulation ? 3803 inner_ip_hdr(skb) : ip_hdr(skb); 3804 3805 if (!(iph->frag_off & htons(IP_DF))) 3806 features &= ~NETIF_F_TSO_MANGLEID; 3807 } 3808 3809 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3810 * so neither does TSO that depends on it. 3811 */ 3812 if (features & NETIF_F_IPV6_CSUM && 3813 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3814 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3815 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3816 skb_transport_header_was_set(skb) && 3817 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3818 !ipv6_has_hopopt_jumbo(skb)) 3819 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3820 3821 return features; 3822} 3823 3824netdev_features_t netif_skb_features(struct sk_buff *skb) 3825{ 3826 struct net_device *dev = skb->dev; 3827 netdev_features_t features = dev->features; 3828 3829 if (skb_is_gso(skb)) 3830 features = gso_features_check(skb, dev, features); 3831 3832 /* If encapsulation offload request, verify we are testing 3833 * hardware encapsulation features instead of standard 3834 * features for the netdev 3835 */ 3836 if (skb->encapsulation) 3837 features &= dev->hw_enc_features; 3838 3839 if (skb_vlan_tagged(skb)) 3840 features = netdev_intersect_features(features, 3841 dev->vlan_features | 3842 NETIF_F_HW_VLAN_CTAG_TX | 3843 NETIF_F_HW_VLAN_STAG_TX); 3844 3845 if (dev->netdev_ops->ndo_features_check) 3846 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3847 features); 3848 else 3849 features &= dflt_features_check(skb, dev, features); 3850 3851 return harmonize_features(skb, features); 3852} 3853EXPORT_SYMBOL(netif_skb_features); 3854 3855static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3856 struct netdev_queue *txq, bool more) 3857{ 3858 unsigned int len; 3859 int rc; 3860 3861 if (dev_nit_active_rcu(dev)) 3862 dev_queue_xmit_nit(skb, dev); 3863 3864 len = skb->len; 3865 trace_net_dev_start_xmit(skb, dev); 3866 rc = netdev_start_xmit(skb, dev, txq, more); 3867 trace_net_dev_xmit(skb, rc, dev, len); 3868 3869 return rc; 3870} 3871 3872struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3873 struct netdev_queue *txq, int *ret) 3874{ 3875 struct sk_buff *skb = first; 3876 int rc = NETDEV_TX_OK; 3877 3878 while (skb) { 3879 struct sk_buff *next = skb->next; 3880 3881 skb_mark_not_on_list(skb); 3882 rc = xmit_one(skb, dev, txq, next != NULL); 3883 if (unlikely(!dev_xmit_complete(rc))) { 3884 skb->next = next; 3885 goto out; 3886 } 3887 3888 skb = next; 3889 if (netif_tx_queue_stopped(txq) && skb) { 3890 rc = NETDEV_TX_BUSY; 3891 break; 3892 } 3893 } 3894 3895out: 3896 *ret = rc; 3897 return skb; 3898} 3899 3900static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3901 netdev_features_t features) 3902{ 3903 if (skb_vlan_tag_present(skb) && 3904 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3905 skb = __vlan_hwaccel_push_inside(skb); 3906 return skb; 3907} 3908 3909int skb_csum_hwoffload_help(struct sk_buff *skb, 3910 const netdev_features_t features) 3911{ 3912 if (unlikely(skb_csum_is_sctp(skb))) 3913 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3914 skb_crc32c_csum_help(skb); 3915 3916 if (features & NETIF_F_HW_CSUM) 3917 return 0; 3918 3919 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3920 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3921 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3922 !ipv6_has_hopopt_jumbo(skb)) 3923 goto sw_checksum; 3924 3925 switch (skb->csum_offset) { 3926 case offsetof(struct tcphdr, check): 3927 case offsetof(struct udphdr, check): 3928 return 0; 3929 } 3930 } 3931 3932sw_checksum: 3933 return skb_checksum_help(skb); 3934} 3935EXPORT_SYMBOL(skb_csum_hwoffload_help); 3936 3937/* Checks if this SKB belongs to an HW offloaded socket 3938 * and whether any SW fallbacks are required based on dev. 3939 * Check decrypted mark in case skb_orphan() cleared socket. 3940 */ 3941static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3942 struct net_device *dev) 3943{ 3944#ifdef CONFIG_SOCK_VALIDATE_XMIT 3945 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3946 struct sk_buff *skb); 3947 struct sock *sk = skb->sk; 3948 3949 sk_validate = NULL; 3950 if (sk) { 3951 if (sk_fullsock(sk)) 3952 sk_validate = sk->sk_validate_xmit_skb; 3953 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3954 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3955 } 3956 3957 if (sk_validate) { 3958 skb = sk_validate(sk, dev, skb); 3959 } else if (unlikely(skb_is_decrypted(skb))) { 3960 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3961 kfree_skb(skb); 3962 skb = NULL; 3963 } 3964#endif 3965 3966 return skb; 3967} 3968 3969static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3970 struct net_device *dev) 3971{ 3972 struct skb_shared_info *shinfo; 3973 struct net_iov *niov; 3974 3975 if (likely(skb_frags_readable(skb))) 3976 goto out; 3977 3978 if (!dev->netmem_tx) 3979 goto out_free; 3980 3981 shinfo = skb_shinfo(skb); 3982 3983 if (shinfo->nr_frags > 0) { 3984 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3985 if (net_is_devmem_iov(niov) && 3986 net_devmem_iov_binding(niov)->dev != dev) 3987 goto out_free; 3988 } 3989 3990out: 3991 return skb; 3992 3993out_free: 3994 kfree_skb(skb); 3995 return NULL; 3996} 3997 3998static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3999{ 4000 netdev_features_t features; 4001 4002 skb = validate_xmit_unreadable_skb(skb, dev); 4003 if (unlikely(!skb)) 4004 goto out_null; 4005 4006 features = netif_skb_features(skb); 4007 skb = validate_xmit_vlan(skb, features); 4008 if (unlikely(!skb)) 4009 goto out_null; 4010 4011 skb = sk_validate_xmit_skb(skb, dev); 4012 if (unlikely(!skb)) 4013 goto out_null; 4014 4015 if (netif_needs_gso(skb, features)) { 4016 struct sk_buff *segs; 4017 4018 segs = skb_gso_segment(skb, features); 4019 if (IS_ERR(segs)) { 4020 goto out_kfree_skb; 4021 } else if (segs) { 4022 consume_skb(skb); 4023 skb = segs; 4024 } 4025 } else { 4026 if (skb_needs_linearize(skb, features) && 4027 __skb_linearize(skb)) 4028 goto out_kfree_skb; 4029 4030 /* If packet is not checksummed and device does not 4031 * support checksumming for this protocol, complete 4032 * checksumming here. 4033 */ 4034 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4035 if (skb->encapsulation) 4036 skb_set_inner_transport_header(skb, 4037 skb_checksum_start_offset(skb)); 4038 else 4039 skb_set_transport_header(skb, 4040 skb_checksum_start_offset(skb)); 4041 if (skb_csum_hwoffload_help(skb, features)) 4042 goto out_kfree_skb; 4043 } 4044 } 4045 4046 skb = validate_xmit_xfrm(skb, features, again); 4047 4048 return skb; 4049 4050out_kfree_skb: 4051 kfree_skb(skb); 4052out_null: 4053 dev_core_stats_tx_dropped_inc(dev); 4054 return NULL; 4055} 4056 4057struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4058{ 4059 struct sk_buff *next, *head = NULL, *tail; 4060 4061 for (; skb != NULL; skb = next) { 4062 next = skb->next; 4063 skb_mark_not_on_list(skb); 4064 4065 /* in case skb won't be segmented, point to itself */ 4066 skb->prev = skb; 4067 4068 skb = validate_xmit_skb(skb, dev, again); 4069 if (!skb) 4070 continue; 4071 4072 if (!head) 4073 head = skb; 4074 else 4075 tail->next = skb; 4076 /* If skb was segmented, skb->prev points to 4077 * the last segment. If not, it still contains skb. 4078 */ 4079 tail = skb->prev; 4080 } 4081 return head; 4082} 4083EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4084 4085static void qdisc_pkt_len_segs_init(struct sk_buff *skb) 4086{ 4087 struct skb_shared_info *shinfo = skb_shinfo(skb); 4088 u16 gso_segs; 4089 4090 qdisc_skb_cb(skb)->pkt_len = skb->len; 4091 if (!shinfo->gso_size) { 4092 qdisc_skb_cb(skb)->pkt_segs = 1; 4093 return; 4094 } 4095 4096 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs; 4097 4098 /* To get more precise estimation of bytes sent on wire, 4099 * we add to pkt_len the headers size of all segments 4100 */ 4101 if (skb_transport_header_was_set(skb)) { 4102 unsigned int hdr_len; 4103 4104 /* mac layer + network layer */ 4105 if (!skb->encapsulation) 4106 hdr_len = skb_transport_offset(skb); 4107 else 4108 hdr_len = skb_inner_transport_offset(skb); 4109 4110 /* + transport layer */ 4111 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4112 const struct tcphdr *th; 4113 struct tcphdr _tcphdr; 4114 4115 th = skb_header_pointer(skb, hdr_len, 4116 sizeof(_tcphdr), &_tcphdr); 4117 if (likely(th)) 4118 hdr_len += __tcp_hdrlen(th); 4119 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4120 struct udphdr _udphdr; 4121 4122 if (skb_header_pointer(skb, hdr_len, 4123 sizeof(_udphdr), &_udphdr)) 4124 hdr_len += sizeof(struct udphdr); 4125 } 4126 4127 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4128 int payload = skb->len - hdr_len; 4129 4130 /* Malicious packet. */ 4131 if (payload <= 0) 4132 return; 4133 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4134 shinfo->gso_segs = gso_segs; 4135 qdisc_skb_cb(skb)->pkt_segs = gso_segs; 4136 } 4137 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4138 } 4139} 4140 4141static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4142 struct sk_buff **to_free, 4143 struct netdev_queue *txq) 4144{ 4145 int rc; 4146 4147 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4148 if (rc == NET_XMIT_SUCCESS) 4149 trace_qdisc_enqueue(q, txq, skb); 4150 return rc; 4151} 4152 4153static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4154 struct net_device *dev, 4155 struct netdev_queue *txq) 4156{ 4157 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL; 4158 spinlock_t *root_lock = qdisc_lock(q); 4159 struct llist_node *ll_list, *first_n; 4160 unsigned long defer_count = 0; 4161 int rc; 4162 4163 qdisc_calculate_pkt_len(skb, q); 4164 4165 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4166 4167 if (q->flags & TCQ_F_NOLOCK) { 4168 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4169 qdisc_run_begin(q)) { 4170 /* Retest nolock_qdisc_is_empty() within the protection 4171 * of q->seqlock to protect from racing with requeuing. 4172 */ 4173 if (unlikely(!nolock_qdisc_is_empty(q))) { 4174 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4175 __qdisc_run(q); 4176 to_free2 = qdisc_run_end(q); 4177 4178 goto free_skbs; 4179 } 4180 4181 qdisc_bstats_cpu_update(q, skb); 4182 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4183 !nolock_qdisc_is_empty(q)) 4184 __qdisc_run(q); 4185 4186 to_free2 = qdisc_run_end(q); 4187 rc = NET_XMIT_SUCCESS; 4188 goto free_skbs; 4189 } 4190 4191 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4192 to_free2 = qdisc_run(q); 4193 goto free_skbs; 4194 } 4195 4196 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit. 4197 * In the try_cmpxchg() loop, we want to increment q->defer_count 4198 * at most once to limit the number of skbs in defer_list. 4199 * We perform the defer_count increment only if the list is not empty, 4200 * because some arches have slow atomic_long_inc_return(). 4201 */ 4202 first_n = READ_ONCE(q->defer_list.first); 4203 do { 4204 if (first_n && !defer_count) { 4205 defer_count = atomic_long_inc_return(&q->defer_count); 4206 if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) { 4207 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP); 4208 return NET_XMIT_DROP; 4209 } 4210 } 4211 skb->ll_node.next = first_n; 4212 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node)); 4213 4214 /* If defer_list was not empty, we know the cpu which queued 4215 * the first skb will process the whole list for us. 4216 */ 4217 if (first_n) 4218 return NET_XMIT_SUCCESS; 4219 4220 spin_lock(root_lock); 4221 4222 ll_list = llist_del_all(&q->defer_list); 4223 /* There is a small race because we clear defer_count not atomically 4224 * with the prior llist_del_all(). This means defer_list could grow 4225 * over qdisc_max_burst. 4226 */ 4227 atomic_long_set(&q->defer_count, 0); 4228 4229 ll_list = llist_reverse_order(ll_list); 4230 4231 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4232 llist_for_each_entry_safe(skb, next, ll_list, ll_node) 4233 __qdisc_drop(skb, &to_free); 4234 rc = NET_XMIT_DROP; 4235 goto unlock; 4236 } 4237 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4238 !llist_next(ll_list) && qdisc_run_begin(q)) { 4239 /* 4240 * This is a work-conserving queue; there are no old skbs 4241 * waiting to be sent out; and the qdisc is not running - 4242 * xmit the skb directly. 4243 */ 4244 4245 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list, 4246 struct sk_buff, 4247 ll_node)); 4248 qdisc_bstats_update(q, skb); 4249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) 4250 __qdisc_run(q); 4251 to_free2 = qdisc_run_end(q); 4252 rc = NET_XMIT_SUCCESS; 4253 } else { 4254 int count = 0; 4255 4256 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 4257 if (next) { 4258 prefetch(next); 4259 prefetch(&next->priority); 4260 skb_mark_not_on_list(skb); 4261 } 4262 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4263 count++; 4264 } 4265 to_free2 = qdisc_run(q); 4266 if (count != 1) 4267 rc = NET_XMIT_SUCCESS; 4268 } 4269unlock: 4270 spin_unlock(root_lock); 4271 4272free_skbs: 4273 tcf_kfree_skb_list(to_free); 4274 tcf_kfree_skb_list(to_free2); 4275 return rc; 4276} 4277 4278#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4279static void skb_update_prio(struct sk_buff *skb) 4280{ 4281 const struct netprio_map *map; 4282 const struct sock *sk; 4283 unsigned int prioidx; 4284 4285 if (skb->priority) 4286 return; 4287 map = rcu_dereference_bh(skb->dev->priomap); 4288 if (!map) 4289 return; 4290 sk = skb_to_full_sk(skb); 4291 if (!sk) 4292 return; 4293 4294 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4295 4296 if (prioidx < map->priomap_len) 4297 skb->priority = map->priomap[prioidx]; 4298} 4299#else 4300#define skb_update_prio(skb) 4301#endif 4302 4303/** 4304 * dev_loopback_xmit - loop back @skb 4305 * @net: network namespace this loopback is happening in 4306 * @sk: sk needed to be a netfilter okfn 4307 * @skb: buffer to transmit 4308 */ 4309int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4310{ 4311 skb_reset_mac_header(skb); 4312 __skb_pull(skb, skb_network_offset(skb)); 4313 skb->pkt_type = PACKET_LOOPBACK; 4314 if (skb->ip_summed == CHECKSUM_NONE) 4315 skb->ip_summed = CHECKSUM_UNNECESSARY; 4316 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4317 skb_dst_force(skb); 4318 netif_rx(skb); 4319 return 0; 4320} 4321EXPORT_SYMBOL(dev_loopback_xmit); 4322 4323#ifdef CONFIG_NET_EGRESS 4324static struct netdev_queue * 4325netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4326{ 4327 int qm = skb_get_queue_mapping(skb); 4328 4329 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4330} 4331 4332#ifndef CONFIG_PREEMPT_RT 4333static bool netdev_xmit_txqueue_skipped(void) 4334{ 4335 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4336} 4337 4338void netdev_xmit_skip_txqueue(bool skip) 4339{ 4340 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4341} 4342EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4343 4344#else 4345static bool netdev_xmit_txqueue_skipped(void) 4346{ 4347 return current->net_xmit.skip_txqueue; 4348} 4349 4350void netdev_xmit_skip_txqueue(bool skip) 4351{ 4352 current->net_xmit.skip_txqueue = skip; 4353} 4354EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4355#endif 4356#endif /* CONFIG_NET_EGRESS */ 4357 4358#ifdef CONFIG_NET_XGRESS 4359static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4360 enum skb_drop_reason *drop_reason) 4361{ 4362 int ret = TC_ACT_UNSPEC; 4363#ifdef CONFIG_NET_CLS_ACT 4364 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4365 struct tcf_result res; 4366 4367 if (!miniq) 4368 return ret; 4369 4370 /* Global bypass */ 4371 if (!static_branch_likely(&tcf_sw_enabled_key)) 4372 return ret; 4373 4374 /* Block-wise bypass */ 4375 if (tcf_block_bypass_sw(miniq->block)) 4376 return ret; 4377 4378 tc_skb_cb(skb)->mru = 0; 4379 qdisc_skb_cb(skb)->post_ct = false; 4380 tcf_set_drop_reason(skb, *drop_reason); 4381 4382 mini_qdisc_bstats_cpu_update(miniq, skb); 4383 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4384 /* Only tcf related quirks below. */ 4385 switch (ret) { 4386 case TC_ACT_SHOT: 4387 *drop_reason = tcf_get_drop_reason(skb); 4388 mini_qdisc_qstats_cpu_drop(miniq); 4389 break; 4390 case TC_ACT_OK: 4391 case TC_ACT_RECLASSIFY: 4392 skb->tc_index = TC_H_MIN(res.classid); 4393 break; 4394 } 4395#endif /* CONFIG_NET_CLS_ACT */ 4396 return ret; 4397} 4398 4399static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4400 4401void tcx_inc(void) 4402{ 4403 static_branch_inc(&tcx_needed_key); 4404} 4405 4406void tcx_dec(void) 4407{ 4408 static_branch_dec(&tcx_needed_key); 4409} 4410 4411static __always_inline enum tcx_action_base 4412tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4413 const bool needs_mac) 4414{ 4415 const struct bpf_mprog_fp *fp; 4416 const struct bpf_prog *prog; 4417 int ret = TCX_NEXT; 4418 4419 if (needs_mac) 4420 __skb_push(skb, skb->mac_len); 4421 bpf_mprog_foreach_prog(entry, fp, prog) { 4422 bpf_compute_data_pointers(skb); 4423 ret = bpf_prog_run(prog, skb); 4424 if (ret != TCX_NEXT) 4425 break; 4426 } 4427 if (needs_mac) 4428 __skb_pull(skb, skb->mac_len); 4429 return tcx_action_code(skb, ret); 4430} 4431 4432static __always_inline struct sk_buff * 4433sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4434 struct net_device *orig_dev, bool *another) 4435{ 4436 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4437 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4438 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4439 int sch_ret; 4440 4441 if (!entry) 4442 return skb; 4443 4444 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4445 if (unlikely(*pt_prev)) { 4446 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4447 *pt_prev = NULL; 4448 } 4449 4450 qdisc_pkt_len_segs_init(skb); 4451 tcx_set_ingress(skb, true); 4452 4453 if (static_branch_unlikely(&tcx_needed_key)) { 4454 sch_ret = tcx_run(entry, skb, true); 4455 if (sch_ret != TC_ACT_UNSPEC) 4456 goto ingress_verdict; 4457 } 4458 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4459ingress_verdict: 4460 switch (sch_ret) { 4461 case TC_ACT_REDIRECT: 4462 /* skb_mac_header check was done by BPF, so we can safely 4463 * push the L2 header back before redirecting to another 4464 * netdev. 4465 */ 4466 __skb_push(skb, skb->mac_len); 4467 if (skb_do_redirect(skb) == -EAGAIN) { 4468 __skb_pull(skb, skb->mac_len); 4469 *another = true; 4470 break; 4471 } 4472 *ret = NET_RX_SUCCESS; 4473 bpf_net_ctx_clear(bpf_net_ctx); 4474 return NULL; 4475 case TC_ACT_SHOT: 4476 kfree_skb_reason(skb, drop_reason); 4477 *ret = NET_RX_DROP; 4478 bpf_net_ctx_clear(bpf_net_ctx); 4479 return NULL; 4480 /* used by tc_run */ 4481 case TC_ACT_STOLEN: 4482 case TC_ACT_QUEUED: 4483 case TC_ACT_TRAP: 4484 consume_skb(skb); 4485 fallthrough; 4486 case TC_ACT_CONSUMED: 4487 *ret = NET_RX_SUCCESS; 4488 bpf_net_ctx_clear(bpf_net_ctx); 4489 return NULL; 4490 } 4491 bpf_net_ctx_clear(bpf_net_ctx); 4492 4493 return skb; 4494} 4495 4496static __always_inline struct sk_buff * 4497sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4498{ 4499 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4500 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4501 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4502 int sch_ret; 4503 4504 if (!entry) 4505 return skb; 4506 4507 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4508 4509 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4510 * already set by the caller. 4511 */ 4512 if (static_branch_unlikely(&tcx_needed_key)) { 4513 sch_ret = tcx_run(entry, skb, false); 4514 if (sch_ret != TC_ACT_UNSPEC) 4515 goto egress_verdict; 4516 } 4517 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4518egress_verdict: 4519 switch (sch_ret) { 4520 case TC_ACT_REDIRECT: 4521 /* No need to push/pop skb's mac_header here on egress! */ 4522 skb_do_redirect(skb); 4523 *ret = NET_XMIT_SUCCESS; 4524 bpf_net_ctx_clear(bpf_net_ctx); 4525 return NULL; 4526 case TC_ACT_SHOT: 4527 kfree_skb_reason(skb, drop_reason); 4528 *ret = NET_XMIT_DROP; 4529 bpf_net_ctx_clear(bpf_net_ctx); 4530 return NULL; 4531 /* used by tc_run */ 4532 case TC_ACT_STOLEN: 4533 case TC_ACT_QUEUED: 4534 case TC_ACT_TRAP: 4535 consume_skb(skb); 4536 fallthrough; 4537 case TC_ACT_CONSUMED: 4538 *ret = NET_XMIT_SUCCESS; 4539 bpf_net_ctx_clear(bpf_net_ctx); 4540 return NULL; 4541 } 4542 bpf_net_ctx_clear(bpf_net_ctx); 4543 4544 return skb; 4545} 4546#else 4547static __always_inline struct sk_buff * 4548sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4549 struct net_device *orig_dev, bool *another) 4550{ 4551 return skb; 4552} 4553 4554static __always_inline struct sk_buff * 4555sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4556{ 4557 return skb; 4558} 4559#endif /* CONFIG_NET_XGRESS */ 4560 4561#ifdef CONFIG_XPS 4562static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4563 struct xps_dev_maps *dev_maps, unsigned int tci) 4564{ 4565 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4566 struct xps_map *map; 4567 int queue_index = -1; 4568 4569 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4570 return queue_index; 4571 4572 tci *= dev_maps->num_tc; 4573 tci += tc; 4574 4575 map = rcu_dereference(dev_maps->attr_map[tci]); 4576 if (map) { 4577 if (map->len == 1) 4578 queue_index = map->queues[0]; 4579 else 4580 queue_index = map->queues[reciprocal_scale( 4581 skb_get_hash(skb), map->len)]; 4582 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4583 queue_index = -1; 4584 } 4585 return queue_index; 4586} 4587#endif 4588 4589static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4590 struct sk_buff *skb) 4591{ 4592#ifdef CONFIG_XPS 4593 struct xps_dev_maps *dev_maps; 4594 struct sock *sk = skb->sk; 4595 int queue_index = -1; 4596 4597 if (!static_key_false(&xps_needed)) 4598 return -1; 4599 4600 rcu_read_lock(); 4601 if (!static_key_false(&xps_rxqs_needed)) 4602 goto get_cpus_map; 4603 4604 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4605 if (dev_maps) { 4606 int tci = sk_rx_queue_get(sk); 4607 4608 if (tci >= 0) 4609 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4610 tci); 4611 } 4612 4613get_cpus_map: 4614 if (queue_index < 0) { 4615 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4616 if (dev_maps) { 4617 unsigned int tci = skb->sender_cpu - 1; 4618 4619 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4620 tci); 4621 } 4622 } 4623 rcu_read_unlock(); 4624 4625 return queue_index; 4626#else 4627 return -1; 4628#endif 4629} 4630 4631u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4632 struct net_device *sb_dev) 4633{ 4634 return 0; 4635} 4636EXPORT_SYMBOL(dev_pick_tx_zero); 4637 4638int sk_tx_queue_get(const struct sock *sk) 4639{ 4640 int resel, val; 4641 4642 if (!sk) 4643 return -1; 4644 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 4645 * and sk_tx_queue_set(). 4646 */ 4647 val = READ_ONCE(sk->sk_tx_queue_mapping); 4648 4649 if (val == NO_QUEUE_MAPPING) 4650 return -1; 4651 4652 if (!sk_fullsock(sk)) 4653 return val; 4654 4655 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); 4656 if (resel && time_is_before_jiffies( 4657 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) 4658 return -1; 4659 4660 return val; 4661} 4662EXPORT_SYMBOL(sk_tx_queue_get); 4663 4664u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4665 struct net_device *sb_dev) 4666{ 4667 struct sock *sk = skb->sk; 4668 int queue_index = sk_tx_queue_get(sk); 4669 4670 sb_dev = sb_dev ? : dev; 4671 4672 if (queue_index < 0 || skb->ooo_okay || 4673 queue_index >= dev->real_num_tx_queues) { 4674 int new_index = get_xps_queue(dev, sb_dev, skb); 4675 4676 if (new_index < 0) 4677 new_index = skb_tx_hash(dev, sb_dev, skb); 4678 4679 if (sk && sk_fullsock(sk) && 4680 rcu_access_pointer(sk->sk_dst_cache)) 4681 sk_tx_queue_set(sk, new_index); 4682 4683 queue_index = new_index; 4684 } 4685 4686 return queue_index; 4687} 4688EXPORT_SYMBOL(netdev_pick_tx); 4689 4690struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4691 struct sk_buff *skb, 4692 struct net_device *sb_dev) 4693{ 4694 int queue_index = 0; 4695 4696#ifdef CONFIG_XPS 4697 u32 sender_cpu = skb->sender_cpu - 1; 4698 4699 if (sender_cpu >= (u32)NR_CPUS) 4700 skb->sender_cpu = raw_smp_processor_id() + 1; 4701#endif 4702 4703 if (dev->real_num_tx_queues != 1) { 4704 const struct net_device_ops *ops = dev->netdev_ops; 4705 4706 if (ops->ndo_select_queue) 4707 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4708 else 4709 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4710 4711 queue_index = netdev_cap_txqueue(dev, queue_index); 4712 } 4713 4714 skb_set_queue_mapping(skb, queue_index); 4715 return netdev_get_tx_queue(dev, queue_index); 4716} 4717 4718/** 4719 * __dev_queue_xmit() - transmit a buffer 4720 * @skb: buffer to transmit 4721 * @sb_dev: suboordinate device used for L2 forwarding offload 4722 * 4723 * Queue a buffer for transmission to a network device. The caller must 4724 * have set the device and priority and built the buffer before calling 4725 * this function. The function can be called from an interrupt. 4726 * 4727 * When calling this method, interrupts MUST be enabled. This is because 4728 * the BH enable code must have IRQs enabled so that it will not deadlock. 4729 * 4730 * Regardless of the return value, the skb is consumed, so it is currently 4731 * difficult to retry a send to this method. (You can bump the ref count 4732 * before sending to hold a reference for retry if you are careful.) 4733 * 4734 * Return: 4735 * * 0 - buffer successfully transmitted 4736 * * positive qdisc return code - NET_XMIT_DROP etc. 4737 * * negative errno - other errors 4738 */ 4739int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4740{ 4741 struct net_device *dev = skb->dev; 4742 struct netdev_queue *txq = NULL; 4743 struct Qdisc *q; 4744 int rc = -ENOMEM; 4745 bool again = false; 4746 4747 skb_reset_mac_header(skb); 4748 skb_assert_len(skb); 4749 4750 if (unlikely(skb_shinfo(skb)->tx_flags & 4751 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4752 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4753 4754 /* Disable soft irqs for various locks below. Also 4755 * stops preemption for RCU. 4756 */ 4757 rcu_read_lock_bh(); 4758 4759 skb_update_prio(skb); 4760 4761 qdisc_pkt_len_segs_init(skb); 4762 tcx_set_ingress(skb, false); 4763#ifdef CONFIG_NET_EGRESS 4764 if (static_branch_unlikely(&egress_needed_key)) { 4765 if (nf_hook_egress_active()) { 4766 skb = nf_hook_egress(skb, &rc, dev); 4767 if (!skb) 4768 goto out; 4769 } 4770 4771 netdev_xmit_skip_txqueue(false); 4772 4773 nf_skip_egress(skb, true); 4774 skb = sch_handle_egress(skb, &rc, dev); 4775 if (!skb) 4776 goto out; 4777 nf_skip_egress(skb, false); 4778 4779 if (netdev_xmit_txqueue_skipped()) 4780 txq = netdev_tx_queue_mapping(dev, skb); 4781 } 4782#endif 4783 /* If device/qdisc don't need skb->dst, release it right now while 4784 * its hot in this cpu cache. 4785 */ 4786 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4787 skb_dst_drop(skb); 4788 else 4789 skb_dst_force(skb); 4790 4791 if (!txq) 4792 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4793 4794 q = rcu_dereference_bh(txq->qdisc); 4795 4796 trace_net_dev_queue(skb); 4797 if (q->enqueue) { 4798 rc = __dev_xmit_skb(skb, q, dev, txq); 4799 goto out; 4800 } 4801 4802 /* The device has no queue. Common case for software devices: 4803 * loopback, all the sorts of tunnels... 4804 4805 * Really, it is unlikely that netif_tx_lock protection is necessary 4806 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4807 * counters.) 4808 * However, it is possible, that they rely on protection 4809 * made by us here. 4810 4811 * Check this and shot the lock. It is not prone from deadlocks. 4812 *Either shot noqueue qdisc, it is even simpler 8) 4813 */ 4814 if (dev->flags & IFF_UP) { 4815 int cpu = smp_processor_id(); /* ok because BHs are off */ 4816 4817 /* Other cpus might concurrently change txq->xmit_lock_owner 4818 * to -1 or to their cpu id, but not to our id. 4819 */ 4820 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4821 if (dev_xmit_recursion()) 4822 goto recursion_alert; 4823 4824 skb = validate_xmit_skb(skb, dev, &again); 4825 if (!skb) 4826 goto out; 4827 4828 HARD_TX_LOCK(dev, txq, cpu); 4829 4830 if (!netif_xmit_stopped(txq)) { 4831 dev_xmit_recursion_inc(); 4832 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4833 dev_xmit_recursion_dec(); 4834 if (dev_xmit_complete(rc)) { 4835 HARD_TX_UNLOCK(dev, txq); 4836 goto out; 4837 } 4838 } 4839 HARD_TX_UNLOCK(dev, txq); 4840 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4841 dev->name); 4842 } else { 4843 /* Recursion is detected! It is possible, 4844 * unfortunately 4845 */ 4846recursion_alert: 4847 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4848 dev->name); 4849 } 4850 } 4851 4852 rc = -ENETDOWN; 4853 rcu_read_unlock_bh(); 4854 4855 dev_core_stats_tx_dropped_inc(dev); 4856 kfree_skb_list(skb); 4857 return rc; 4858out: 4859 rcu_read_unlock_bh(); 4860 return rc; 4861} 4862EXPORT_SYMBOL(__dev_queue_xmit); 4863 4864int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4865{ 4866 struct net_device *dev = skb->dev; 4867 struct sk_buff *orig_skb = skb; 4868 struct netdev_queue *txq; 4869 int ret = NETDEV_TX_BUSY; 4870 bool again = false; 4871 4872 if (unlikely(!netif_running(dev) || 4873 !netif_carrier_ok(dev))) 4874 goto drop; 4875 4876 skb = validate_xmit_skb_list(skb, dev, &again); 4877 if (skb != orig_skb) 4878 goto drop; 4879 4880 skb_set_queue_mapping(skb, queue_id); 4881 txq = skb_get_tx_queue(dev, skb); 4882 4883 local_bh_disable(); 4884 4885 dev_xmit_recursion_inc(); 4886 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4887 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4888 ret = netdev_start_xmit(skb, dev, txq, false); 4889 HARD_TX_UNLOCK(dev, txq); 4890 dev_xmit_recursion_dec(); 4891 4892 local_bh_enable(); 4893 return ret; 4894drop: 4895 dev_core_stats_tx_dropped_inc(dev); 4896 kfree_skb_list(skb); 4897 return NET_XMIT_DROP; 4898} 4899EXPORT_SYMBOL(__dev_direct_xmit); 4900 4901/************************************************************************* 4902 * Receiver routines 4903 *************************************************************************/ 4904static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4905 4906int weight_p __read_mostly = 64; /* old backlog weight */ 4907int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4908int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4909 4910/* Called with irq disabled */ 4911static inline void ____napi_schedule(struct softnet_data *sd, 4912 struct napi_struct *napi) 4913{ 4914 struct task_struct *thread; 4915 4916 lockdep_assert_irqs_disabled(); 4917 4918 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4919 /* Paired with smp_mb__before_atomic() in 4920 * napi_enable()/netif_set_threaded(). 4921 * Use READ_ONCE() to guarantee a complete 4922 * read on napi->thread. Only call 4923 * wake_up_process() when it's not NULL. 4924 */ 4925 thread = READ_ONCE(napi->thread); 4926 if (thread) { 4927 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4928 goto use_local_napi; 4929 4930 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4931 wake_up_process(thread); 4932 return; 4933 } 4934 } 4935 4936use_local_napi: 4937 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4938 list_add_tail(&napi->poll_list, &sd->poll_list); 4939 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4940 /* If not called from net_rx_action() 4941 * we have to raise NET_RX_SOFTIRQ. 4942 */ 4943 if (!sd->in_net_rx_action) 4944 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4945} 4946 4947#ifdef CONFIG_RPS 4948 4949struct static_key_false rps_needed __read_mostly; 4950EXPORT_SYMBOL(rps_needed); 4951struct static_key_false rfs_needed __read_mostly; 4952EXPORT_SYMBOL(rfs_needed); 4953 4954static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4955{ 4956 return hash_32(hash, flow_table->log); 4957} 4958 4959#ifdef CONFIG_RFS_ACCEL 4960/** 4961 * rps_flow_is_active - check whether the flow is recently active. 4962 * @rflow: Specific flow to check activity. 4963 * @flow_table: per-queue flowtable that @rflow belongs to. 4964 * @cpu: CPU saved in @rflow. 4965 * 4966 * If the CPU has processed many packets since the flow's last activity 4967 * (beyond 10 times the table size), the flow is considered stale. 4968 * 4969 * Return: true if flow was recently active. 4970 */ 4971static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4972 struct rps_dev_flow_table *flow_table, 4973 unsigned int cpu) 4974{ 4975 unsigned int flow_last_active; 4976 unsigned int sd_input_head; 4977 4978 if (cpu >= nr_cpu_ids) 4979 return false; 4980 4981 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4982 flow_last_active = READ_ONCE(rflow->last_qtail); 4983 4984 return (int)(sd_input_head - flow_last_active) < 4985 (int)(10 << flow_table->log); 4986} 4987#endif 4988 4989static struct rps_dev_flow * 4990set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4991 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4992 u32 flow_id) 4993{ 4994 if (next_cpu < nr_cpu_ids) { 4995 u32 head; 4996#ifdef CONFIG_RFS_ACCEL 4997 struct netdev_rx_queue *rxqueue; 4998 struct rps_dev_flow_table *flow_table; 4999 struct rps_dev_flow *old_rflow; 5000 struct rps_dev_flow *tmp_rflow; 5001 unsigned int tmp_cpu; 5002 u16 rxq_index; 5003 int rc; 5004 5005 /* Should we steer this flow to a different hardware queue? */ 5006 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 5007 !(dev->features & NETIF_F_NTUPLE)) 5008 goto out; 5009 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 5010 if (rxq_index == skb_get_rx_queue(skb)) 5011 goto out; 5012 5013 rxqueue = dev->_rx + rxq_index; 5014 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5015 if (!flow_table) 5016 goto out; 5017 5018 tmp_rflow = &flow_table->flows[flow_id]; 5019 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 5020 5021 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 5022 if (rps_flow_is_active(tmp_rflow, flow_table, 5023 tmp_cpu)) { 5024 if (hash != READ_ONCE(tmp_rflow->hash) || 5025 next_cpu == tmp_cpu) 5026 goto out; 5027 } 5028 } 5029 5030 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 5031 rxq_index, flow_id); 5032 if (rc < 0) 5033 goto out; 5034 5035 old_rflow = rflow; 5036 rflow = tmp_rflow; 5037 WRITE_ONCE(rflow->filter, rc); 5038 WRITE_ONCE(rflow->hash, hash); 5039 5040 if (old_rflow->filter == rc) 5041 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 5042 out: 5043#endif 5044 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 5045 rps_input_queue_tail_save(&rflow->last_qtail, head); 5046 } 5047 5048 WRITE_ONCE(rflow->cpu, next_cpu); 5049 return rflow; 5050} 5051 5052/* 5053 * get_rps_cpu is called from netif_receive_skb and returns the target 5054 * CPU from the RPS map of the receiving queue for a given skb. 5055 * rcu_read_lock must be held on entry. 5056 */ 5057static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 5058 struct rps_dev_flow **rflowp) 5059{ 5060 const struct rps_sock_flow_table *sock_flow_table; 5061 struct netdev_rx_queue *rxqueue = dev->_rx; 5062 struct rps_dev_flow_table *flow_table; 5063 struct rps_map *map; 5064 int cpu = -1; 5065 u32 flow_id; 5066 u32 tcpu; 5067 u32 hash; 5068 5069 if (skb_rx_queue_recorded(skb)) { 5070 u16 index = skb_get_rx_queue(skb); 5071 5072 if (unlikely(index >= dev->real_num_rx_queues)) { 5073 WARN_ONCE(dev->real_num_rx_queues > 1, 5074 "%s received packet on queue %u, but number " 5075 "of RX queues is %u\n", 5076 dev->name, index, dev->real_num_rx_queues); 5077 goto done; 5078 } 5079 rxqueue += index; 5080 } 5081 5082 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5083 5084 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5085 map = rcu_dereference(rxqueue->rps_map); 5086 if (!flow_table && !map) 5087 goto done; 5088 5089 skb_reset_network_header(skb); 5090 hash = skb_get_hash(skb); 5091 if (!hash) 5092 goto done; 5093 5094 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5095 if (flow_table && sock_flow_table) { 5096 struct rps_dev_flow *rflow; 5097 u32 next_cpu; 5098 u32 ident; 5099 5100 /* First check into global flow table if there is a match. 5101 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5102 */ 5103 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5104 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5105 goto try_rps; 5106 5107 next_cpu = ident & net_hotdata.rps_cpu_mask; 5108 5109 /* OK, now we know there is a match, 5110 * we can look at the local (per receive queue) flow table 5111 */ 5112 flow_id = rfs_slot(hash, flow_table); 5113 rflow = &flow_table->flows[flow_id]; 5114 tcpu = rflow->cpu; 5115 5116 /* 5117 * If the desired CPU (where last recvmsg was done) is 5118 * different from current CPU (one in the rx-queue flow 5119 * table entry), switch if one of the following holds: 5120 * - Current CPU is unset (>= nr_cpu_ids). 5121 * - Current CPU is offline. 5122 * - The current CPU's queue tail has advanced beyond the 5123 * last packet that was enqueued using this table entry. 5124 * This guarantees that all previous packets for the flow 5125 * have been dequeued, thus preserving in order delivery. 5126 */ 5127 if (unlikely(tcpu != next_cpu) && 5128 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5129 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5130 rflow->last_qtail)) >= 0)) { 5131 tcpu = next_cpu; 5132 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5133 flow_id); 5134 } 5135 5136 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5137 *rflowp = rflow; 5138 cpu = tcpu; 5139 goto done; 5140 } 5141 } 5142 5143try_rps: 5144 5145 if (map) { 5146 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5147 if (cpu_online(tcpu)) { 5148 cpu = tcpu; 5149 goto done; 5150 } 5151 } 5152 5153done: 5154 return cpu; 5155} 5156 5157#ifdef CONFIG_RFS_ACCEL 5158 5159/** 5160 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5161 * @dev: Device on which the filter was set 5162 * @rxq_index: RX queue index 5163 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5164 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5165 * 5166 * Drivers that implement ndo_rx_flow_steer() should periodically call 5167 * this function for each installed filter and remove the filters for 5168 * which it returns %true. 5169 */ 5170bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5171 u32 flow_id, u16 filter_id) 5172{ 5173 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5174 struct rps_dev_flow_table *flow_table; 5175 struct rps_dev_flow *rflow; 5176 bool expire = true; 5177 5178 rcu_read_lock(); 5179 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5180 if (flow_table && flow_id < (1UL << flow_table->log)) { 5181 unsigned int cpu; 5182 5183 rflow = &flow_table->flows[flow_id]; 5184 cpu = READ_ONCE(rflow->cpu); 5185 if (READ_ONCE(rflow->filter) == filter_id && 5186 rps_flow_is_active(rflow, flow_table, cpu)) 5187 expire = false; 5188 } 5189 rcu_read_unlock(); 5190 return expire; 5191} 5192EXPORT_SYMBOL(rps_may_expire_flow); 5193 5194#endif /* CONFIG_RFS_ACCEL */ 5195 5196/* Called from hardirq (IPI) context */ 5197static void rps_trigger_softirq(void *data) 5198{ 5199 struct softnet_data *sd = data; 5200 5201 ____napi_schedule(sd, &sd->backlog); 5202 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5203 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5204} 5205 5206#endif /* CONFIG_RPS */ 5207 5208/* Called from hardirq (IPI) context */ 5209static void trigger_rx_softirq(void *data) 5210{ 5211 struct softnet_data *sd = data; 5212 5213 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5214 smp_store_release(&sd->defer_ipi_scheduled, 0); 5215} 5216 5217/* 5218 * After we queued a packet into sd->input_pkt_queue, 5219 * we need to make sure this queue is serviced soon. 5220 * 5221 * - If this is another cpu queue, link it to our rps_ipi_list, 5222 * and make sure we will process rps_ipi_list from net_rx_action(). 5223 * 5224 * - If this is our own queue, NAPI schedule our backlog. 5225 * Note that this also raises NET_RX_SOFTIRQ. 5226 */ 5227static void napi_schedule_rps(struct softnet_data *sd) 5228{ 5229 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5230 5231#ifdef CONFIG_RPS 5232 if (sd != mysd) { 5233 if (use_backlog_threads()) { 5234 __napi_schedule_irqoff(&sd->backlog); 5235 return; 5236 } 5237 5238 sd->rps_ipi_next = mysd->rps_ipi_list; 5239 mysd->rps_ipi_list = sd; 5240 5241 /* If not called from net_rx_action() or napi_threaded_poll() 5242 * we have to raise NET_RX_SOFTIRQ. 5243 */ 5244 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5245 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5246 return; 5247 } 5248#endif /* CONFIG_RPS */ 5249 __napi_schedule_irqoff(&mysd->backlog); 5250} 5251 5252void kick_defer_list_purge(unsigned int cpu) 5253{ 5254 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5255 unsigned long flags; 5256 5257 if (use_backlog_threads()) { 5258 backlog_lock_irq_save(sd, &flags); 5259 5260 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5261 __napi_schedule_irqoff(&sd->backlog); 5262 5263 backlog_unlock_irq_restore(sd, &flags); 5264 5265 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5266 smp_call_function_single_async(cpu, &sd->defer_csd); 5267 } 5268} 5269 5270#ifdef CONFIG_NET_FLOW_LIMIT 5271int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5272#endif 5273 5274static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen, 5275 int max_backlog) 5276{ 5277#ifdef CONFIG_NET_FLOW_LIMIT 5278 unsigned int old_flow, new_flow; 5279 const struct softnet_data *sd; 5280 struct sd_flow_limit *fl; 5281 5282 if (likely(qlen < (max_backlog >> 1))) 5283 return false; 5284 5285 sd = this_cpu_ptr(&softnet_data); 5286 5287 rcu_read_lock(); 5288 fl = rcu_dereference(sd->flow_limit); 5289 if (fl) { 5290 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5291 old_flow = fl->history[fl->history_head]; 5292 fl->history[fl->history_head] = new_flow; 5293 5294 fl->history_head++; 5295 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5296 5297 if (likely(fl->buckets[old_flow])) 5298 fl->buckets[old_flow]--; 5299 5300 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5301 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5302 WRITE_ONCE(fl->count, fl->count + 1); 5303 rcu_read_unlock(); 5304 return true; 5305 } 5306 } 5307 rcu_read_unlock(); 5308#endif 5309 return false; 5310} 5311 5312/* 5313 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5314 * queue (may be a remote CPU queue). 5315 */ 5316static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5317 unsigned int *qtail) 5318{ 5319 enum skb_drop_reason reason; 5320 struct softnet_data *sd; 5321 unsigned long flags; 5322 unsigned int qlen; 5323 int max_backlog; 5324 u32 tail; 5325 5326 reason = SKB_DROP_REASON_DEV_READY; 5327 if (unlikely(!netif_running(skb->dev))) 5328 goto bad_dev; 5329 5330 sd = &per_cpu(softnet_data, cpu); 5331 5332 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5333 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5334 if (unlikely(qlen > max_backlog) || 5335 skb_flow_limit(skb, qlen, max_backlog)) 5336 goto cpu_backlog_drop; 5337 backlog_lock_irq_save(sd, &flags); 5338 qlen = skb_queue_len(&sd->input_pkt_queue); 5339 if (likely(qlen <= max_backlog)) { 5340 if (!qlen) { 5341 /* Schedule NAPI for backlog device. We can use 5342 * non atomic operation as we own the queue lock. 5343 */ 5344 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5345 &sd->backlog.state)) 5346 napi_schedule_rps(sd); 5347 } 5348 __skb_queue_tail(&sd->input_pkt_queue, skb); 5349 tail = rps_input_queue_tail_incr(sd); 5350 backlog_unlock_irq_restore(sd, &flags); 5351 5352 /* save the tail outside of the critical section */ 5353 rps_input_queue_tail_save(qtail, tail); 5354 return NET_RX_SUCCESS; 5355 } 5356 5357 backlog_unlock_irq_restore(sd, &flags); 5358 5359cpu_backlog_drop: 5360 reason = SKB_DROP_REASON_CPU_BACKLOG; 5361 numa_drop_add(&sd->drop_counters, 1); 5362bad_dev: 5363 dev_core_stats_rx_dropped_inc(skb->dev); 5364 kfree_skb_reason(skb, reason); 5365 return NET_RX_DROP; 5366} 5367 5368static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5369{ 5370 struct net_device *dev = skb->dev; 5371 struct netdev_rx_queue *rxqueue; 5372 5373 rxqueue = dev->_rx; 5374 5375 if (skb_rx_queue_recorded(skb)) { 5376 u16 index = skb_get_rx_queue(skb); 5377 5378 if (unlikely(index >= dev->real_num_rx_queues)) { 5379 WARN_ONCE(dev->real_num_rx_queues > 1, 5380 "%s received packet on queue %u, but number " 5381 "of RX queues is %u\n", 5382 dev->name, index, dev->real_num_rx_queues); 5383 5384 return rxqueue; /* Return first rxqueue */ 5385 } 5386 rxqueue += index; 5387 } 5388 return rxqueue; 5389} 5390 5391u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5392 const struct bpf_prog *xdp_prog) 5393{ 5394 void *orig_data, *orig_data_end, *hard_start; 5395 struct netdev_rx_queue *rxqueue; 5396 bool orig_bcast, orig_host; 5397 u32 mac_len, frame_sz; 5398 __be16 orig_eth_type; 5399 struct ethhdr *eth; 5400 u32 metalen, act; 5401 int off; 5402 5403 /* The XDP program wants to see the packet starting at the MAC 5404 * header. 5405 */ 5406 mac_len = skb->data - skb_mac_header(skb); 5407 hard_start = skb->data - skb_headroom(skb); 5408 5409 /* SKB "head" area always have tailroom for skb_shared_info */ 5410 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5411 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5412 5413 rxqueue = netif_get_rxqueue(skb); 5414 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5415 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5416 skb_headlen(skb) + mac_len, true); 5417 if (skb_is_nonlinear(skb)) { 5418 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5419 xdp_buff_set_frags_flag(xdp); 5420 } else { 5421 xdp_buff_clear_frags_flag(xdp); 5422 } 5423 5424 orig_data_end = xdp->data_end; 5425 orig_data = xdp->data; 5426 eth = (struct ethhdr *)xdp->data; 5427 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5428 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5429 orig_eth_type = eth->h_proto; 5430 5431 act = bpf_prog_run_xdp(xdp_prog, xdp); 5432 5433 /* check if bpf_xdp_adjust_head was used */ 5434 off = xdp->data - orig_data; 5435 if (off) { 5436 if (off > 0) 5437 __skb_pull(skb, off); 5438 else if (off < 0) 5439 __skb_push(skb, -off); 5440 5441 skb->mac_header += off; 5442 skb_reset_network_header(skb); 5443 } 5444 5445 /* check if bpf_xdp_adjust_tail was used */ 5446 off = xdp->data_end - orig_data_end; 5447 if (off != 0) { 5448 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5449 skb->len += off; /* positive on grow, negative on shrink */ 5450 } 5451 5452 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5453 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5454 */ 5455 if (xdp_buff_has_frags(xdp)) 5456 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5457 else 5458 skb->data_len = 0; 5459 5460 /* check if XDP changed eth hdr such SKB needs update */ 5461 eth = (struct ethhdr *)xdp->data; 5462 if ((orig_eth_type != eth->h_proto) || 5463 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5464 skb->dev->dev_addr)) || 5465 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5466 __skb_push(skb, ETH_HLEN); 5467 skb->pkt_type = PACKET_HOST; 5468 skb->protocol = eth_type_trans(skb, skb->dev); 5469 } 5470 5471 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5472 * before calling us again on redirect path. We do not call do_redirect 5473 * as we leave that up to the caller. 5474 * 5475 * Caller is responsible for managing lifetime of skb (i.e. calling 5476 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5477 */ 5478 switch (act) { 5479 case XDP_REDIRECT: 5480 case XDP_TX: 5481 __skb_push(skb, mac_len); 5482 break; 5483 case XDP_PASS: 5484 metalen = xdp->data - xdp->data_meta; 5485 if (metalen) 5486 skb_metadata_set(skb, metalen); 5487 break; 5488 } 5489 5490 return act; 5491} 5492 5493static int 5494netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5495{ 5496 struct sk_buff *skb = *pskb; 5497 int err, hroom, troom; 5498 5499 local_lock_nested_bh(&system_page_pool.bh_lock); 5500 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5501 local_unlock_nested_bh(&system_page_pool.bh_lock); 5502 if (!err) 5503 return 0; 5504 5505 /* In case we have to go down the path and also linearize, 5506 * then lets do the pskb_expand_head() work just once here. 5507 */ 5508 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5509 troom = skb->tail + skb->data_len - skb->end; 5510 err = pskb_expand_head(skb, 5511 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5512 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5513 if (err) 5514 return err; 5515 5516 return skb_linearize(skb); 5517} 5518 5519static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5520 struct xdp_buff *xdp, 5521 const struct bpf_prog *xdp_prog) 5522{ 5523 struct sk_buff *skb = *pskb; 5524 u32 mac_len, act = XDP_DROP; 5525 5526 /* Reinjected packets coming from act_mirred or similar should 5527 * not get XDP generic processing. 5528 */ 5529 if (skb_is_redirected(skb)) 5530 return XDP_PASS; 5531 5532 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5533 * bytes. This is the guarantee that also native XDP provides, 5534 * thus we need to do it here as well. 5535 */ 5536 mac_len = skb->data - skb_mac_header(skb); 5537 __skb_push(skb, mac_len); 5538 5539 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5540 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5541 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5542 goto do_drop; 5543 } 5544 5545 __skb_pull(*pskb, mac_len); 5546 5547 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5548 switch (act) { 5549 case XDP_REDIRECT: 5550 case XDP_TX: 5551 case XDP_PASS: 5552 break; 5553 default: 5554 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5555 fallthrough; 5556 case XDP_ABORTED: 5557 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5558 fallthrough; 5559 case XDP_DROP: 5560 do_drop: 5561 kfree_skb(*pskb); 5562 break; 5563 } 5564 5565 return act; 5566} 5567 5568/* When doing generic XDP we have to bypass the qdisc layer and the 5569 * network taps in order to match in-driver-XDP behavior. This also means 5570 * that XDP packets are able to starve other packets going through a qdisc, 5571 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5572 * queues, so they do not have this starvation issue. 5573 */ 5574void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5575{ 5576 struct net_device *dev = skb->dev; 5577 struct netdev_queue *txq; 5578 bool free_skb = true; 5579 int cpu, rc; 5580 5581 txq = netdev_core_pick_tx(dev, skb, NULL); 5582 cpu = smp_processor_id(); 5583 HARD_TX_LOCK(dev, txq, cpu); 5584 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5585 rc = netdev_start_xmit(skb, dev, txq, 0); 5586 if (dev_xmit_complete(rc)) 5587 free_skb = false; 5588 } 5589 HARD_TX_UNLOCK(dev, txq); 5590 if (free_skb) { 5591 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5592 dev_core_stats_tx_dropped_inc(dev); 5593 kfree_skb(skb); 5594 } 5595} 5596 5597static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5598 5599int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5600{ 5601 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5602 5603 if (xdp_prog) { 5604 struct xdp_buff xdp; 5605 u32 act; 5606 int err; 5607 5608 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5609 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5610 if (act != XDP_PASS) { 5611 switch (act) { 5612 case XDP_REDIRECT: 5613 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5614 &xdp, xdp_prog); 5615 if (err) 5616 goto out_redir; 5617 break; 5618 case XDP_TX: 5619 generic_xdp_tx(*pskb, xdp_prog); 5620 break; 5621 } 5622 bpf_net_ctx_clear(bpf_net_ctx); 5623 return XDP_DROP; 5624 } 5625 bpf_net_ctx_clear(bpf_net_ctx); 5626 } 5627 return XDP_PASS; 5628out_redir: 5629 bpf_net_ctx_clear(bpf_net_ctx); 5630 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5631 return XDP_DROP; 5632} 5633EXPORT_SYMBOL_GPL(do_xdp_generic); 5634 5635static int netif_rx_internal(struct sk_buff *skb) 5636{ 5637 int ret; 5638 5639 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5640 5641 trace_netif_rx(skb); 5642 5643#ifdef CONFIG_RPS 5644 if (static_branch_unlikely(&rps_needed)) { 5645 struct rps_dev_flow voidflow, *rflow = &voidflow; 5646 int cpu; 5647 5648 rcu_read_lock(); 5649 5650 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5651 if (cpu < 0) 5652 cpu = smp_processor_id(); 5653 5654 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5655 5656 rcu_read_unlock(); 5657 } else 5658#endif 5659 { 5660 unsigned int qtail; 5661 5662 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5663 } 5664 return ret; 5665} 5666 5667/** 5668 * __netif_rx - Slightly optimized version of netif_rx 5669 * @skb: buffer to post 5670 * 5671 * This behaves as netif_rx except that it does not disable bottom halves. 5672 * As a result this function may only be invoked from the interrupt context 5673 * (either hard or soft interrupt). 5674 */ 5675int __netif_rx(struct sk_buff *skb) 5676{ 5677 int ret; 5678 5679 lockdep_assert_once(hardirq_count() | softirq_count()); 5680 5681 trace_netif_rx_entry(skb); 5682 ret = netif_rx_internal(skb); 5683 trace_netif_rx_exit(ret); 5684 return ret; 5685} 5686EXPORT_SYMBOL(__netif_rx); 5687 5688/** 5689 * netif_rx - post buffer to the network code 5690 * @skb: buffer to post 5691 * 5692 * This function receives a packet from a device driver and queues it for 5693 * the upper (protocol) levels to process via the backlog NAPI device. It 5694 * always succeeds. The buffer may be dropped during processing for 5695 * congestion control or by the protocol layers. 5696 * The network buffer is passed via the backlog NAPI device. Modern NIC 5697 * driver should use NAPI and GRO. 5698 * This function can used from interrupt and from process context. The 5699 * caller from process context must not disable interrupts before invoking 5700 * this function. 5701 * 5702 * return values: 5703 * NET_RX_SUCCESS (no congestion) 5704 * NET_RX_DROP (packet was dropped) 5705 * 5706 */ 5707int netif_rx(struct sk_buff *skb) 5708{ 5709 bool need_bh_off = !(hardirq_count() | softirq_count()); 5710 int ret; 5711 5712 if (need_bh_off) 5713 local_bh_disable(); 5714 trace_netif_rx_entry(skb); 5715 ret = netif_rx_internal(skb); 5716 trace_netif_rx_exit(ret); 5717 if (need_bh_off) 5718 local_bh_enable(); 5719 return ret; 5720} 5721EXPORT_SYMBOL(netif_rx); 5722 5723static __latent_entropy void net_tx_action(void) 5724{ 5725 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5726 5727 if (sd->completion_queue) { 5728 struct sk_buff *clist; 5729 5730 local_irq_disable(); 5731 clist = sd->completion_queue; 5732 sd->completion_queue = NULL; 5733 local_irq_enable(); 5734 5735 while (clist) { 5736 struct sk_buff *skb = clist; 5737 5738 clist = clist->next; 5739 5740 WARN_ON(refcount_read(&skb->users)); 5741 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5742 trace_consume_skb(skb, net_tx_action); 5743 else 5744 trace_kfree_skb(skb, net_tx_action, 5745 get_kfree_skb_cb(skb)->reason, NULL); 5746 5747 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5748 __kfree_skb(skb); 5749 else 5750 __napi_kfree_skb(skb, 5751 get_kfree_skb_cb(skb)->reason); 5752 } 5753 } 5754 5755 if (sd->output_queue) { 5756 struct Qdisc *head; 5757 5758 local_irq_disable(); 5759 head = sd->output_queue; 5760 sd->output_queue = NULL; 5761 sd->output_queue_tailp = &sd->output_queue; 5762 local_irq_enable(); 5763 5764 rcu_read_lock(); 5765 5766 while (head) { 5767 spinlock_t *root_lock = NULL; 5768 struct sk_buff *to_free; 5769 struct Qdisc *q = head; 5770 5771 head = head->next_sched; 5772 5773 /* We need to make sure head->next_sched is read 5774 * before clearing __QDISC_STATE_SCHED 5775 */ 5776 smp_mb__before_atomic(); 5777 5778 if (!(q->flags & TCQ_F_NOLOCK)) { 5779 root_lock = qdisc_lock(q); 5780 spin_lock(root_lock); 5781 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5782 &q->state))) { 5783 /* There is a synchronize_net() between 5784 * STATE_DEACTIVATED flag being set and 5785 * qdisc_reset()/some_qdisc_is_busy() in 5786 * dev_deactivate(), so we can safely bail out 5787 * early here to avoid data race between 5788 * qdisc_deactivate() and some_qdisc_is_busy() 5789 * for lockless qdisc. 5790 */ 5791 clear_bit(__QDISC_STATE_SCHED, &q->state); 5792 continue; 5793 } 5794 5795 clear_bit(__QDISC_STATE_SCHED, &q->state); 5796 to_free = qdisc_run(q); 5797 if (root_lock) 5798 spin_unlock(root_lock); 5799 tcf_kfree_skb_list(to_free); 5800 } 5801 5802 rcu_read_unlock(); 5803 } 5804 5805 xfrm_dev_backlog(sd); 5806} 5807 5808#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5809/* This hook is defined here for ATM LANE */ 5810int (*br_fdb_test_addr_hook)(struct net_device *dev, 5811 unsigned char *addr) __read_mostly; 5812EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5813#endif 5814 5815/** 5816 * netdev_is_rx_handler_busy - check if receive handler is registered 5817 * @dev: device to check 5818 * 5819 * Check if a receive handler is already registered for a given device. 5820 * Return true if there one. 5821 * 5822 * The caller must hold the rtnl_mutex. 5823 */ 5824bool netdev_is_rx_handler_busy(struct net_device *dev) 5825{ 5826 ASSERT_RTNL(); 5827 return dev && rtnl_dereference(dev->rx_handler); 5828} 5829EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5830 5831/** 5832 * netdev_rx_handler_register - register receive handler 5833 * @dev: device to register a handler for 5834 * @rx_handler: receive handler to register 5835 * @rx_handler_data: data pointer that is used by rx handler 5836 * 5837 * Register a receive handler for a device. This handler will then be 5838 * called from __netif_receive_skb. A negative errno code is returned 5839 * on a failure. 5840 * 5841 * The caller must hold the rtnl_mutex. 5842 * 5843 * For a general description of rx_handler, see enum rx_handler_result. 5844 */ 5845int netdev_rx_handler_register(struct net_device *dev, 5846 rx_handler_func_t *rx_handler, 5847 void *rx_handler_data) 5848{ 5849 if (netdev_is_rx_handler_busy(dev)) 5850 return -EBUSY; 5851 5852 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5853 return -EINVAL; 5854 5855 /* Note: rx_handler_data must be set before rx_handler */ 5856 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5857 rcu_assign_pointer(dev->rx_handler, rx_handler); 5858 5859 return 0; 5860} 5861EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5862 5863/** 5864 * netdev_rx_handler_unregister - unregister receive handler 5865 * @dev: device to unregister a handler from 5866 * 5867 * Unregister a receive handler from a device. 5868 * 5869 * The caller must hold the rtnl_mutex. 5870 */ 5871void netdev_rx_handler_unregister(struct net_device *dev) 5872{ 5873 5874 ASSERT_RTNL(); 5875 RCU_INIT_POINTER(dev->rx_handler, NULL); 5876 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5877 * section has a guarantee to see a non NULL rx_handler_data 5878 * as well. 5879 */ 5880 synchronize_net(); 5881 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5882} 5883EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5884 5885/* 5886 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5887 * the special handling of PFMEMALLOC skbs. 5888 */ 5889static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5890{ 5891 switch (skb->protocol) { 5892 case htons(ETH_P_ARP): 5893 case htons(ETH_P_IP): 5894 case htons(ETH_P_IPV6): 5895 case htons(ETH_P_8021Q): 5896 case htons(ETH_P_8021AD): 5897 return true; 5898 default: 5899 return false; 5900 } 5901} 5902 5903static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5904 int *ret, struct net_device *orig_dev) 5905{ 5906 if (nf_hook_ingress_active(skb)) { 5907 int ingress_retval; 5908 5909 if (unlikely(*pt_prev)) { 5910 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5911 *pt_prev = NULL; 5912 } 5913 5914 rcu_read_lock(); 5915 ingress_retval = nf_hook_ingress(skb); 5916 rcu_read_unlock(); 5917 return ingress_retval; 5918 } 5919 return 0; 5920} 5921 5922static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5923 struct packet_type **ppt_prev) 5924{ 5925 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5926 struct packet_type *ptype, *pt_prev; 5927 rx_handler_func_t *rx_handler; 5928 struct sk_buff *skb = *pskb; 5929 struct net_device *orig_dev; 5930 bool deliver_exact = false; 5931 int ret = NET_RX_DROP; 5932 __be16 type; 5933 5934 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5935 5936 trace_netif_receive_skb(skb); 5937 5938 orig_dev = skb->dev; 5939 5940 skb_reset_network_header(skb); 5941#if !defined(CONFIG_DEBUG_NET) 5942 /* We plan to no longer reset the transport header here. 5943 * Give some time to fuzzers and dev build to catch bugs 5944 * in network stacks. 5945 */ 5946 if (!skb_transport_header_was_set(skb)) 5947 skb_reset_transport_header(skb); 5948#endif 5949 skb_reset_mac_len(skb); 5950 5951 pt_prev = NULL; 5952 5953another_round: 5954 skb->skb_iif = skb->dev->ifindex; 5955 5956 __this_cpu_inc(softnet_data.processed); 5957 5958 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5959 int ret2; 5960 5961 migrate_disable(); 5962 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5963 &skb); 5964 migrate_enable(); 5965 5966 if (ret2 != XDP_PASS) { 5967 ret = NET_RX_DROP; 5968 goto out; 5969 } 5970 } 5971 5972 if (eth_type_vlan(skb->protocol)) { 5973 skb = skb_vlan_untag(skb); 5974 if (unlikely(!skb)) 5975 goto out; 5976 } 5977 5978 if (skb_skip_tc_classify(skb)) 5979 goto skip_classify; 5980 5981 if (pfmemalloc) 5982 goto skip_taps; 5983 5984 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5985 list) { 5986 if (unlikely(pt_prev)) 5987 ret = deliver_skb(skb, pt_prev, orig_dev); 5988 pt_prev = ptype; 5989 } 5990 5991 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5992 if (unlikely(pt_prev)) 5993 ret = deliver_skb(skb, pt_prev, orig_dev); 5994 pt_prev = ptype; 5995 } 5996 5997skip_taps: 5998#ifdef CONFIG_NET_INGRESS 5999 if (static_branch_unlikely(&ingress_needed_key)) { 6000 bool another = false; 6001 6002 nf_skip_egress(skb, true); 6003 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 6004 &another); 6005 if (another) 6006 goto another_round; 6007 if (!skb) 6008 goto out; 6009 6010 nf_skip_egress(skb, false); 6011 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 6012 goto out; 6013 } 6014#endif 6015 skb_reset_redirect(skb); 6016skip_classify: 6017 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 6018 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 6019 goto drop; 6020 } 6021 6022 if (skb_vlan_tag_present(skb)) { 6023 if (unlikely(pt_prev)) { 6024 ret = deliver_skb(skb, pt_prev, orig_dev); 6025 pt_prev = NULL; 6026 } 6027 if (vlan_do_receive(&skb)) 6028 goto another_round; 6029 else if (unlikely(!skb)) 6030 goto out; 6031 } 6032 6033 rx_handler = rcu_dereference(skb->dev->rx_handler); 6034 if (rx_handler) { 6035 if (unlikely(pt_prev)) { 6036 ret = deliver_skb(skb, pt_prev, orig_dev); 6037 pt_prev = NULL; 6038 } 6039 switch (rx_handler(&skb)) { 6040 case RX_HANDLER_CONSUMED: 6041 ret = NET_RX_SUCCESS; 6042 goto out; 6043 case RX_HANDLER_ANOTHER: 6044 goto another_round; 6045 case RX_HANDLER_EXACT: 6046 deliver_exact = true; 6047 break; 6048 case RX_HANDLER_PASS: 6049 break; 6050 default: 6051 BUG(); 6052 } 6053 } 6054 6055 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 6056check_vlan_id: 6057 if (skb_vlan_tag_get_id(skb)) { 6058 /* Vlan id is non 0 and vlan_do_receive() above couldn't 6059 * find vlan device. 6060 */ 6061 skb->pkt_type = PACKET_OTHERHOST; 6062 } else if (eth_type_vlan(skb->protocol)) { 6063 /* Outer header is 802.1P with vlan 0, inner header is 6064 * 802.1Q or 802.1AD and vlan_do_receive() above could 6065 * not find vlan dev for vlan id 0. 6066 */ 6067 __vlan_hwaccel_clear_tag(skb); 6068 skb = skb_vlan_untag(skb); 6069 if (unlikely(!skb)) 6070 goto out; 6071 if (vlan_do_receive(&skb)) 6072 /* After stripping off 802.1P header with vlan 0 6073 * vlan dev is found for inner header. 6074 */ 6075 goto another_round; 6076 else if (unlikely(!skb)) 6077 goto out; 6078 else 6079 /* We have stripped outer 802.1P vlan 0 header. 6080 * But could not find vlan dev. 6081 * check again for vlan id to set OTHERHOST. 6082 */ 6083 goto check_vlan_id; 6084 } 6085 /* Note: we might in the future use prio bits 6086 * and set skb->priority like in vlan_do_receive() 6087 * For the time being, just ignore Priority Code Point 6088 */ 6089 __vlan_hwaccel_clear_tag(skb); 6090 } 6091 6092 type = skb->protocol; 6093 6094 /* deliver only exact match when indicated */ 6095 if (likely(!deliver_exact)) { 6096 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6097 &ptype_base[ntohs(type) & 6098 PTYPE_HASH_MASK]); 6099 6100 /* orig_dev and skb->dev could belong to different netns; 6101 * Even in such case we need to traverse only the list 6102 * coming from skb->dev, as the ptype owner (packet socket) 6103 * will use dev_net(skb->dev) to do namespace filtering. 6104 */ 6105 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6106 &dev_net_rcu(skb->dev)->ptype_specific); 6107 } 6108 6109 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6110 &orig_dev->ptype_specific); 6111 6112 if (unlikely(skb->dev != orig_dev)) { 6113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6114 &skb->dev->ptype_specific); 6115 } 6116 6117 if (pt_prev) { 6118 *ppt_prev = pt_prev; 6119 } else { 6120drop: 6121 if (!deliver_exact) 6122 dev_core_stats_rx_dropped_inc(skb->dev); 6123 else 6124 dev_core_stats_rx_nohandler_inc(skb->dev); 6125 6126 kfree_skb_reason(skb, drop_reason); 6127 /* Jamal, now you will not able to escape explaining 6128 * me how you were going to use this. :-) 6129 */ 6130 ret = NET_RX_DROP; 6131 } 6132 6133out: 6134 /* The invariant here is that if *ppt_prev is not NULL 6135 * then skb should also be non-NULL. 6136 * 6137 * Apparently *ppt_prev assignment above holds this invariant due to 6138 * skb dereferencing near it. 6139 */ 6140 *pskb = skb; 6141 return ret; 6142} 6143 6144static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6145{ 6146 struct net_device *orig_dev = skb->dev; 6147 struct packet_type *pt_prev = NULL; 6148 int ret; 6149 6150 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6151 if (pt_prev) 6152 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6153 skb->dev, pt_prev, orig_dev); 6154 return ret; 6155} 6156 6157/** 6158 * netif_receive_skb_core - special purpose version of netif_receive_skb 6159 * @skb: buffer to process 6160 * 6161 * More direct receive version of netif_receive_skb(). It should 6162 * only be used by callers that have a need to skip RPS and Generic XDP. 6163 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6164 * 6165 * This function may only be called from softirq context and interrupts 6166 * should be enabled. 6167 * 6168 * Return values (usually ignored): 6169 * NET_RX_SUCCESS: no congestion 6170 * NET_RX_DROP: packet was dropped 6171 */ 6172int netif_receive_skb_core(struct sk_buff *skb) 6173{ 6174 int ret; 6175 6176 rcu_read_lock(); 6177 ret = __netif_receive_skb_one_core(skb, false); 6178 rcu_read_unlock(); 6179 6180 return ret; 6181} 6182EXPORT_SYMBOL(netif_receive_skb_core); 6183 6184static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6185 struct packet_type *pt_prev, 6186 struct net_device *orig_dev) 6187{ 6188 struct sk_buff *skb, *next; 6189 6190 if (!pt_prev) 6191 return; 6192 if (list_empty(head)) 6193 return; 6194 if (pt_prev->list_func != NULL) 6195 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6196 ip_list_rcv, head, pt_prev, orig_dev); 6197 else 6198 list_for_each_entry_safe(skb, next, head, list) { 6199 skb_list_del_init(skb); 6200 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6201 } 6202} 6203 6204static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6205{ 6206 /* Fast-path assumptions: 6207 * - There is no RX handler. 6208 * - Only one packet_type matches. 6209 * If either of these fails, we will end up doing some per-packet 6210 * processing in-line, then handling the 'last ptype' for the whole 6211 * sublist. This can't cause out-of-order delivery to any single ptype, 6212 * because the 'last ptype' must be constant across the sublist, and all 6213 * other ptypes are handled per-packet. 6214 */ 6215 /* Current (common) ptype of sublist */ 6216 struct packet_type *pt_curr = NULL; 6217 /* Current (common) orig_dev of sublist */ 6218 struct net_device *od_curr = NULL; 6219 struct sk_buff *skb, *next; 6220 LIST_HEAD(sublist); 6221 6222 list_for_each_entry_safe(skb, next, head, list) { 6223 struct net_device *orig_dev = skb->dev; 6224 struct packet_type *pt_prev = NULL; 6225 6226 skb_list_del_init(skb); 6227 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6228 if (!pt_prev) 6229 continue; 6230 if (pt_curr != pt_prev || od_curr != orig_dev) { 6231 /* dispatch old sublist */ 6232 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6233 /* start new sublist */ 6234 INIT_LIST_HEAD(&sublist); 6235 pt_curr = pt_prev; 6236 od_curr = orig_dev; 6237 } 6238 list_add_tail(&skb->list, &sublist); 6239 } 6240 6241 /* dispatch final sublist */ 6242 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6243} 6244 6245static int __netif_receive_skb(struct sk_buff *skb) 6246{ 6247 int ret; 6248 6249 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6250 unsigned int noreclaim_flag; 6251 6252 /* 6253 * PFMEMALLOC skbs are special, they should 6254 * - be delivered to SOCK_MEMALLOC sockets only 6255 * - stay away from userspace 6256 * - have bounded memory usage 6257 * 6258 * Use PF_MEMALLOC as this saves us from propagating the allocation 6259 * context down to all allocation sites. 6260 */ 6261 noreclaim_flag = memalloc_noreclaim_save(); 6262 ret = __netif_receive_skb_one_core(skb, true); 6263 memalloc_noreclaim_restore(noreclaim_flag); 6264 } else 6265 ret = __netif_receive_skb_one_core(skb, false); 6266 6267 return ret; 6268} 6269 6270static void __netif_receive_skb_list(struct list_head *head) 6271{ 6272 unsigned long noreclaim_flag = 0; 6273 struct sk_buff *skb, *next; 6274 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6275 6276 list_for_each_entry_safe(skb, next, head, list) { 6277 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6278 struct list_head sublist; 6279 6280 /* Handle the previous sublist */ 6281 list_cut_before(&sublist, head, &skb->list); 6282 if (!list_empty(&sublist)) 6283 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6284 pfmemalloc = !pfmemalloc; 6285 /* See comments in __netif_receive_skb */ 6286 if (pfmemalloc) 6287 noreclaim_flag = memalloc_noreclaim_save(); 6288 else 6289 memalloc_noreclaim_restore(noreclaim_flag); 6290 } 6291 } 6292 /* Handle the remaining sublist */ 6293 if (!list_empty(head)) 6294 __netif_receive_skb_list_core(head, pfmemalloc); 6295 /* Restore pflags */ 6296 if (pfmemalloc) 6297 memalloc_noreclaim_restore(noreclaim_flag); 6298} 6299 6300static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6301{ 6302 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6303 struct bpf_prog *new = xdp->prog; 6304 int ret = 0; 6305 6306 switch (xdp->command) { 6307 case XDP_SETUP_PROG: 6308 rcu_assign_pointer(dev->xdp_prog, new); 6309 if (old) 6310 bpf_prog_put(old); 6311 6312 if (old && !new) { 6313 static_branch_dec(&generic_xdp_needed_key); 6314 } else if (new && !old) { 6315 static_branch_inc(&generic_xdp_needed_key); 6316 netif_disable_lro(dev); 6317 dev_disable_gro_hw(dev); 6318 } 6319 break; 6320 6321 default: 6322 ret = -EINVAL; 6323 break; 6324 } 6325 6326 return ret; 6327} 6328 6329static int netif_receive_skb_internal(struct sk_buff *skb) 6330{ 6331 int ret; 6332 6333 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6334 6335 if (skb_defer_rx_timestamp(skb)) 6336 return NET_RX_SUCCESS; 6337 6338 rcu_read_lock(); 6339#ifdef CONFIG_RPS 6340 if (static_branch_unlikely(&rps_needed)) { 6341 struct rps_dev_flow voidflow, *rflow = &voidflow; 6342 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6343 6344 if (cpu >= 0) { 6345 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6346 rcu_read_unlock(); 6347 return ret; 6348 } 6349 } 6350#endif 6351 ret = __netif_receive_skb(skb); 6352 rcu_read_unlock(); 6353 return ret; 6354} 6355 6356void netif_receive_skb_list_internal(struct list_head *head) 6357{ 6358 struct sk_buff *skb, *next; 6359 LIST_HEAD(sublist); 6360 6361 list_for_each_entry_safe(skb, next, head, list) { 6362 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6363 skb); 6364 skb_list_del_init(skb); 6365 if (!skb_defer_rx_timestamp(skb)) 6366 list_add_tail(&skb->list, &sublist); 6367 } 6368 list_splice_init(&sublist, head); 6369 6370 rcu_read_lock(); 6371#ifdef CONFIG_RPS 6372 if (static_branch_unlikely(&rps_needed)) { 6373 list_for_each_entry_safe(skb, next, head, list) { 6374 struct rps_dev_flow voidflow, *rflow = &voidflow; 6375 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6376 6377 if (cpu >= 0) { 6378 /* Will be handled, remove from list */ 6379 skb_list_del_init(skb); 6380 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6381 } 6382 } 6383 } 6384#endif 6385 __netif_receive_skb_list(head); 6386 rcu_read_unlock(); 6387} 6388 6389/** 6390 * netif_receive_skb - process receive buffer from network 6391 * @skb: buffer to process 6392 * 6393 * netif_receive_skb() is the main receive data processing function. 6394 * It always succeeds. The buffer may be dropped during processing 6395 * for congestion control or by the protocol layers. 6396 * 6397 * This function may only be called from softirq context and interrupts 6398 * should be enabled. 6399 * 6400 * Return values (usually ignored): 6401 * NET_RX_SUCCESS: no congestion 6402 * NET_RX_DROP: packet was dropped 6403 */ 6404int netif_receive_skb(struct sk_buff *skb) 6405{ 6406 int ret; 6407 6408 trace_netif_receive_skb_entry(skb); 6409 6410 ret = netif_receive_skb_internal(skb); 6411 trace_netif_receive_skb_exit(ret); 6412 6413 return ret; 6414} 6415EXPORT_SYMBOL(netif_receive_skb); 6416 6417/** 6418 * netif_receive_skb_list - process many receive buffers from network 6419 * @head: list of skbs to process. 6420 * 6421 * Since return value of netif_receive_skb() is normally ignored, and 6422 * wouldn't be meaningful for a list, this function returns void. 6423 * 6424 * This function may only be called from softirq context and interrupts 6425 * should be enabled. 6426 */ 6427void netif_receive_skb_list(struct list_head *head) 6428{ 6429 struct sk_buff *skb; 6430 6431 if (list_empty(head)) 6432 return; 6433 if (trace_netif_receive_skb_list_entry_enabled()) { 6434 list_for_each_entry(skb, head, list) 6435 trace_netif_receive_skb_list_entry(skb); 6436 } 6437 netif_receive_skb_list_internal(head); 6438 trace_netif_receive_skb_list_exit(0); 6439} 6440EXPORT_SYMBOL(netif_receive_skb_list); 6441 6442/* Network device is going away, flush any packets still pending */ 6443static void flush_backlog(struct work_struct *work) 6444{ 6445 struct sk_buff *skb, *tmp; 6446 struct sk_buff_head list; 6447 struct softnet_data *sd; 6448 6449 __skb_queue_head_init(&list); 6450 local_bh_disable(); 6451 sd = this_cpu_ptr(&softnet_data); 6452 6453 backlog_lock_irq_disable(sd); 6454 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6455 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6456 __skb_unlink(skb, &sd->input_pkt_queue); 6457 __skb_queue_tail(&list, skb); 6458 rps_input_queue_head_incr(sd); 6459 } 6460 } 6461 backlog_unlock_irq_enable(sd); 6462 6463 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6464 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6465 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6466 __skb_unlink(skb, &sd->process_queue); 6467 __skb_queue_tail(&list, skb); 6468 rps_input_queue_head_incr(sd); 6469 } 6470 } 6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6472 local_bh_enable(); 6473 6474 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6475} 6476 6477static bool flush_required(int cpu) 6478{ 6479#if IS_ENABLED(CONFIG_RPS) 6480 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6481 bool do_flush; 6482 6483 backlog_lock_irq_disable(sd); 6484 6485 /* as insertion into process_queue happens with the rps lock held, 6486 * process_queue access may race only with dequeue 6487 */ 6488 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6489 !skb_queue_empty_lockless(&sd->process_queue); 6490 backlog_unlock_irq_enable(sd); 6491 6492 return do_flush; 6493#endif 6494 /* without RPS we can't safely check input_pkt_queue: during a 6495 * concurrent remote skb_queue_splice() we can detect as empty both 6496 * input_pkt_queue and process_queue even if the latter could end-up 6497 * containing a lot of packets. 6498 */ 6499 return true; 6500} 6501 6502struct flush_backlogs { 6503 cpumask_t flush_cpus; 6504 struct work_struct w[]; 6505}; 6506 6507static struct flush_backlogs *flush_backlogs_alloc(void) 6508{ 6509 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6510 GFP_KERNEL); 6511} 6512 6513static struct flush_backlogs *flush_backlogs_fallback; 6514static DEFINE_MUTEX(flush_backlogs_mutex); 6515 6516static void flush_all_backlogs(void) 6517{ 6518 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6519 unsigned int cpu; 6520 6521 if (!ptr) { 6522 mutex_lock(&flush_backlogs_mutex); 6523 ptr = flush_backlogs_fallback; 6524 } 6525 cpumask_clear(&ptr->flush_cpus); 6526 6527 cpus_read_lock(); 6528 6529 for_each_online_cpu(cpu) { 6530 if (flush_required(cpu)) { 6531 INIT_WORK(&ptr->w[cpu], flush_backlog); 6532 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6533 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6534 } 6535 } 6536 6537 /* we can have in flight packet[s] on the cpus we are not flushing, 6538 * synchronize_net() in unregister_netdevice_many() will take care of 6539 * them. 6540 */ 6541 for_each_cpu(cpu, &ptr->flush_cpus) 6542 flush_work(&ptr->w[cpu]); 6543 6544 cpus_read_unlock(); 6545 6546 if (ptr != flush_backlogs_fallback) 6547 kfree(ptr); 6548 else 6549 mutex_unlock(&flush_backlogs_mutex); 6550} 6551 6552static void net_rps_send_ipi(struct softnet_data *remsd) 6553{ 6554#ifdef CONFIG_RPS 6555 while (remsd) { 6556 struct softnet_data *next = remsd->rps_ipi_next; 6557 6558 if (cpu_online(remsd->cpu)) 6559 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6560 remsd = next; 6561 } 6562#endif 6563} 6564 6565/* 6566 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6567 * Note: called with local irq disabled, but exits with local irq enabled. 6568 */ 6569static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6570{ 6571#ifdef CONFIG_RPS 6572 struct softnet_data *remsd = sd->rps_ipi_list; 6573 6574 if (!use_backlog_threads() && remsd) { 6575 sd->rps_ipi_list = NULL; 6576 6577 local_irq_enable(); 6578 6579 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6580 net_rps_send_ipi(remsd); 6581 } else 6582#endif 6583 local_irq_enable(); 6584} 6585 6586static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6587{ 6588#ifdef CONFIG_RPS 6589 return !use_backlog_threads() && sd->rps_ipi_list; 6590#else 6591 return false; 6592#endif 6593} 6594 6595static int process_backlog(struct napi_struct *napi, int quota) 6596{ 6597 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6598 bool again = true; 6599 int work = 0; 6600 6601 /* Check if we have pending ipi, its better to send them now, 6602 * not waiting net_rx_action() end. 6603 */ 6604 if (sd_has_rps_ipi_waiting(sd)) { 6605 local_irq_disable(); 6606 net_rps_action_and_irq_enable(sd); 6607 } 6608 6609 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6610 while (again) { 6611 struct sk_buff *skb; 6612 6613 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6614 while ((skb = __skb_dequeue(&sd->process_queue))) { 6615 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6616 rcu_read_lock(); 6617 __netif_receive_skb(skb); 6618 rcu_read_unlock(); 6619 if (++work >= quota) { 6620 rps_input_queue_head_add(sd, work); 6621 return work; 6622 } 6623 6624 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6625 } 6626 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6627 6628 backlog_lock_irq_disable(sd); 6629 if (skb_queue_empty(&sd->input_pkt_queue)) { 6630 /* 6631 * Inline a custom version of __napi_complete(). 6632 * only current cpu owns and manipulates this napi, 6633 * and NAPI_STATE_SCHED is the only possible flag set 6634 * on backlog. 6635 * We can use a plain write instead of clear_bit(), 6636 * and we dont need an smp_mb() memory barrier. 6637 */ 6638 napi->state &= NAPIF_STATE_THREADED; 6639 again = false; 6640 } else { 6641 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6642 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6643 &sd->process_queue); 6644 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6645 } 6646 backlog_unlock_irq_enable(sd); 6647 } 6648 6649 if (work) 6650 rps_input_queue_head_add(sd, work); 6651 return work; 6652} 6653 6654/** 6655 * __napi_schedule - schedule for receive 6656 * @n: entry to schedule 6657 * 6658 * The entry's receive function will be scheduled to run. 6659 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6660 */ 6661void __napi_schedule(struct napi_struct *n) 6662{ 6663 unsigned long flags; 6664 6665 local_irq_save(flags); 6666 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6667 local_irq_restore(flags); 6668} 6669EXPORT_SYMBOL(__napi_schedule); 6670 6671/** 6672 * napi_schedule_prep - check if napi can be scheduled 6673 * @n: napi context 6674 * 6675 * Test if NAPI routine is already running, and if not mark 6676 * it as running. This is used as a condition variable to 6677 * insure only one NAPI poll instance runs. We also make 6678 * sure there is no pending NAPI disable. 6679 */ 6680bool napi_schedule_prep(struct napi_struct *n) 6681{ 6682 unsigned long new, val = READ_ONCE(n->state); 6683 6684 do { 6685 if (unlikely(val & NAPIF_STATE_DISABLE)) 6686 return false; 6687 new = val | NAPIF_STATE_SCHED; 6688 6689 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6690 * This was suggested by Alexander Duyck, as compiler 6691 * emits better code than : 6692 * if (val & NAPIF_STATE_SCHED) 6693 * new |= NAPIF_STATE_MISSED; 6694 */ 6695 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6696 NAPIF_STATE_MISSED; 6697 } while (!try_cmpxchg(&n->state, &val, new)); 6698 6699 return !(val & NAPIF_STATE_SCHED); 6700} 6701EXPORT_SYMBOL(napi_schedule_prep); 6702 6703/** 6704 * __napi_schedule_irqoff - schedule for receive 6705 * @n: entry to schedule 6706 * 6707 * Variant of __napi_schedule() assuming hard irqs are masked. 6708 * 6709 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6710 * because the interrupt disabled assumption might not be true 6711 * due to force-threaded interrupts and spinlock substitution. 6712 */ 6713void __napi_schedule_irqoff(struct napi_struct *n) 6714{ 6715 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6716 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6717 else 6718 __napi_schedule(n); 6719} 6720EXPORT_SYMBOL(__napi_schedule_irqoff); 6721 6722bool napi_complete_done(struct napi_struct *n, int work_done) 6723{ 6724 unsigned long flags, val, new, timeout = 0; 6725 bool ret = true; 6726 6727 /* 6728 * 1) Don't let napi dequeue from the cpu poll list 6729 * just in case its running on a different cpu. 6730 * 2) If we are busy polling, do nothing here, we have 6731 * the guarantee we will be called later. 6732 */ 6733 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6734 NAPIF_STATE_IN_BUSY_POLL))) 6735 return false; 6736 6737 if (work_done) { 6738 if (n->gro.bitmask) 6739 timeout = napi_get_gro_flush_timeout(n); 6740 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6741 } 6742 if (n->defer_hard_irqs_count > 0) { 6743 n->defer_hard_irqs_count--; 6744 timeout = napi_get_gro_flush_timeout(n); 6745 if (timeout) 6746 ret = false; 6747 } 6748 6749 /* 6750 * When the NAPI instance uses a timeout and keeps postponing 6751 * it, we need to bound somehow the time packets are kept in 6752 * the GRO layer. 6753 */ 6754 gro_flush_normal(&n->gro, !!timeout); 6755 6756 if (unlikely(!list_empty(&n->poll_list))) { 6757 /* If n->poll_list is not empty, we need to mask irqs */ 6758 local_irq_save(flags); 6759 list_del_init(&n->poll_list); 6760 local_irq_restore(flags); 6761 } 6762 WRITE_ONCE(n->list_owner, -1); 6763 6764 val = READ_ONCE(n->state); 6765 do { 6766 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6767 6768 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6769 NAPIF_STATE_SCHED_THREADED | 6770 NAPIF_STATE_PREFER_BUSY_POLL); 6771 6772 /* If STATE_MISSED was set, leave STATE_SCHED set, 6773 * because we will call napi->poll() one more time. 6774 * This C code was suggested by Alexander Duyck to help gcc. 6775 */ 6776 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6777 NAPIF_STATE_SCHED; 6778 } while (!try_cmpxchg(&n->state, &val, new)); 6779 6780 if (unlikely(val & NAPIF_STATE_MISSED)) { 6781 __napi_schedule(n); 6782 return false; 6783 } 6784 6785 if (timeout) 6786 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6787 HRTIMER_MODE_REL_PINNED); 6788 return ret; 6789} 6790EXPORT_SYMBOL(napi_complete_done); 6791 6792static void skb_defer_free_flush(void) 6793{ 6794 struct llist_node *free_list; 6795 struct sk_buff *skb, *next; 6796 struct skb_defer_node *sdn; 6797 int node; 6798 6799 for_each_node(node) { 6800 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; 6801 6802 if (llist_empty(&sdn->defer_list)) 6803 continue; 6804 atomic_long_set(&sdn->defer_count, 0); 6805 free_list = llist_del_all(&sdn->defer_list); 6806 6807 llist_for_each_entry_safe(skb, next, free_list, ll_node) { 6808 prefetch(next); 6809 napi_consume_skb(skb, 1); 6810 } 6811 } 6812} 6813 6814#if defined(CONFIG_NET_RX_BUSY_POLL) 6815 6816static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6817{ 6818 if (!skip_schedule) { 6819 gro_normal_list(&napi->gro); 6820 __napi_schedule(napi); 6821 return; 6822 } 6823 6824 /* Flush too old packets. If HZ < 1000, flush all packets */ 6825 gro_flush_normal(&napi->gro, HZ >= 1000); 6826 6827 clear_bit(NAPI_STATE_SCHED, &napi->state); 6828} 6829 6830enum { 6831 NAPI_F_PREFER_BUSY_POLL = 1, 6832 NAPI_F_END_ON_RESCHED = 2, 6833}; 6834 6835static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6836 unsigned flags, u16 budget) 6837{ 6838 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6839 bool skip_schedule = false; 6840 unsigned long timeout; 6841 int rc; 6842 6843 /* Busy polling means there is a high chance device driver hard irq 6844 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6845 * set in napi_schedule_prep(). 6846 * Since we are about to call napi->poll() once more, we can safely 6847 * clear NAPI_STATE_MISSED. 6848 * 6849 * Note: x86 could use a single "lock and ..." instruction 6850 * to perform these two clear_bit() 6851 */ 6852 clear_bit(NAPI_STATE_MISSED, &napi->state); 6853 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6854 6855 local_bh_disable(); 6856 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6857 6858 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6859 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6860 timeout = napi_get_gro_flush_timeout(napi); 6861 if (napi->defer_hard_irqs_count && timeout) { 6862 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6863 skip_schedule = true; 6864 } 6865 } 6866 6867 /* All we really want here is to re-enable device interrupts. 6868 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6869 */ 6870 rc = napi->poll(napi, budget); 6871 /* We can't gro_normal_list() here, because napi->poll() might have 6872 * rearmed the napi (napi_complete_done()) in which case it could 6873 * already be running on another CPU. 6874 */ 6875 trace_napi_poll(napi, rc, budget); 6876 netpoll_poll_unlock(have_poll_lock); 6877 if (rc == budget) 6878 __busy_poll_stop(napi, skip_schedule); 6879 bpf_net_ctx_clear(bpf_net_ctx); 6880 local_bh_enable(); 6881} 6882 6883static void __napi_busy_loop(unsigned int napi_id, 6884 bool (*loop_end)(void *, unsigned long), 6885 void *loop_end_arg, unsigned flags, u16 budget) 6886{ 6887 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6888 int (*napi_poll)(struct napi_struct *napi, int budget); 6889 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6890 void *have_poll_lock = NULL; 6891 struct napi_struct *napi; 6892 6893 WARN_ON_ONCE(!rcu_read_lock_held()); 6894 6895restart: 6896 napi_poll = NULL; 6897 6898 napi = napi_by_id(napi_id); 6899 if (!napi) 6900 return; 6901 6902 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6903 preempt_disable(); 6904 for (;;) { 6905 int work = 0; 6906 6907 local_bh_disable(); 6908 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6909 if (!napi_poll) { 6910 unsigned long val = READ_ONCE(napi->state); 6911 6912 /* If multiple threads are competing for this napi, 6913 * we avoid dirtying napi->state as much as we can. 6914 */ 6915 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6916 NAPIF_STATE_IN_BUSY_POLL)) { 6917 if (flags & NAPI_F_PREFER_BUSY_POLL) 6918 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6919 goto count; 6920 } 6921 if (cmpxchg(&napi->state, val, 6922 val | NAPIF_STATE_IN_BUSY_POLL | 6923 NAPIF_STATE_SCHED) != val) { 6924 if (flags & NAPI_F_PREFER_BUSY_POLL) 6925 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6926 goto count; 6927 } 6928 have_poll_lock = netpoll_poll_lock(napi); 6929 napi_poll = napi->poll; 6930 } 6931 work = napi_poll(napi, budget); 6932 trace_napi_poll(napi, work, budget); 6933 gro_normal_list(&napi->gro); 6934count: 6935 if (work > 0) 6936 __NET_ADD_STATS(dev_net(napi->dev), 6937 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6938 skb_defer_free_flush(); 6939 bpf_net_ctx_clear(bpf_net_ctx); 6940 local_bh_enable(); 6941 6942 if (!loop_end || loop_end(loop_end_arg, start_time)) 6943 break; 6944 6945 if (unlikely(need_resched())) { 6946 if (flags & NAPI_F_END_ON_RESCHED) 6947 break; 6948 if (napi_poll) 6949 busy_poll_stop(napi, have_poll_lock, flags, budget); 6950 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6951 preempt_enable(); 6952 rcu_read_unlock(); 6953 cond_resched(); 6954 rcu_read_lock(); 6955 if (loop_end(loop_end_arg, start_time)) 6956 return; 6957 goto restart; 6958 } 6959 cpu_relax(); 6960 } 6961 if (napi_poll) 6962 busy_poll_stop(napi, have_poll_lock, flags, budget); 6963 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6964 preempt_enable(); 6965} 6966 6967void napi_busy_loop_rcu(unsigned int napi_id, 6968 bool (*loop_end)(void *, unsigned long), 6969 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6970{ 6971 unsigned flags = NAPI_F_END_ON_RESCHED; 6972 6973 if (prefer_busy_poll) 6974 flags |= NAPI_F_PREFER_BUSY_POLL; 6975 6976 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6977} 6978 6979void napi_busy_loop(unsigned int napi_id, 6980 bool (*loop_end)(void *, unsigned long), 6981 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6982{ 6983 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6984 6985 rcu_read_lock(); 6986 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6987 rcu_read_unlock(); 6988} 6989EXPORT_SYMBOL(napi_busy_loop); 6990 6991void napi_suspend_irqs(unsigned int napi_id) 6992{ 6993 struct napi_struct *napi; 6994 6995 rcu_read_lock(); 6996 napi = napi_by_id(napi_id); 6997 if (napi) { 6998 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6999 7000 if (timeout) 7001 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 7002 HRTIMER_MODE_REL_PINNED); 7003 } 7004 rcu_read_unlock(); 7005} 7006 7007void napi_resume_irqs(unsigned int napi_id) 7008{ 7009 struct napi_struct *napi; 7010 7011 rcu_read_lock(); 7012 napi = napi_by_id(napi_id); 7013 if (napi) { 7014 /* If irq_suspend_timeout is set to 0 between the call to 7015 * napi_suspend_irqs and now, the original value still 7016 * determines the safety timeout as intended and napi_watchdog 7017 * will resume irq processing. 7018 */ 7019 if (napi_get_irq_suspend_timeout(napi)) { 7020 local_bh_disable(); 7021 napi_schedule(napi); 7022 local_bh_enable(); 7023 } 7024 } 7025 rcu_read_unlock(); 7026} 7027 7028#endif /* CONFIG_NET_RX_BUSY_POLL */ 7029 7030static void __napi_hash_add_with_id(struct napi_struct *napi, 7031 unsigned int napi_id) 7032{ 7033 napi->gro.cached_napi_id = napi_id; 7034 7035 WRITE_ONCE(napi->napi_id, napi_id); 7036 hlist_add_head_rcu(&napi->napi_hash_node, 7037 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 7038} 7039 7040static void napi_hash_add_with_id(struct napi_struct *napi, 7041 unsigned int napi_id) 7042{ 7043 unsigned long flags; 7044 7045 spin_lock_irqsave(&napi_hash_lock, flags); 7046 WARN_ON_ONCE(napi_by_id(napi_id)); 7047 __napi_hash_add_with_id(napi, napi_id); 7048 spin_unlock_irqrestore(&napi_hash_lock, flags); 7049} 7050 7051static void napi_hash_add(struct napi_struct *napi) 7052{ 7053 unsigned long flags; 7054 7055 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 7056 return; 7057 7058 spin_lock_irqsave(&napi_hash_lock, flags); 7059 7060 /* 0..NR_CPUS range is reserved for sender_cpu use */ 7061 do { 7062 if (unlikely(!napi_id_valid(++napi_gen_id))) 7063 napi_gen_id = MIN_NAPI_ID; 7064 } while (napi_by_id(napi_gen_id)); 7065 7066 __napi_hash_add_with_id(napi, napi_gen_id); 7067 7068 spin_unlock_irqrestore(&napi_hash_lock, flags); 7069} 7070 7071/* Warning : caller is responsible to make sure rcu grace period 7072 * is respected before freeing memory containing @napi 7073 */ 7074static void napi_hash_del(struct napi_struct *napi) 7075{ 7076 unsigned long flags; 7077 7078 spin_lock_irqsave(&napi_hash_lock, flags); 7079 7080 hlist_del_init_rcu(&napi->napi_hash_node); 7081 7082 spin_unlock_irqrestore(&napi_hash_lock, flags); 7083} 7084 7085static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7086{ 7087 struct napi_struct *napi; 7088 7089 napi = container_of(timer, struct napi_struct, timer); 7090 7091 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7092 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7093 */ 7094 if (!napi_disable_pending(napi) && 7095 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7096 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7097 __napi_schedule_irqoff(napi); 7098 } 7099 7100 return HRTIMER_NORESTART; 7101} 7102 7103static void napi_stop_kthread(struct napi_struct *napi) 7104{ 7105 unsigned long val, new; 7106 7107 /* Wait until the napi STATE_THREADED is unset. */ 7108 while (true) { 7109 val = READ_ONCE(napi->state); 7110 7111 /* If napi kthread own this napi or the napi is idle, 7112 * STATE_THREADED can be unset here. 7113 */ 7114 if ((val & NAPIF_STATE_SCHED_THREADED) || 7115 !(val & NAPIF_STATE_SCHED)) { 7116 new = val & (~(NAPIF_STATE_THREADED | 7117 NAPIF_STATE_THREADED_BUSY_POLL)); 7118 } else { 7119 msleep(20); 7120 continue; 7121 } 7122 7123 if (try_cmpxchg(&napi->state, &val, new)) 7124 break; 7125 } 7126 7127 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7128 * the kthread. 7129 */ 7130 while (true) { 7131 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7132 break; 7133 7134 msleep(20); 7135 } 7136 7137 kthread_stop(napi->thread); 7138 napi->thread = NULL; 7139} 7140 7141static void napi_set_threaded_state(struct napi_struct *napi, 7142 enum netdev_napi_threaded threaded_mode) 7143{ 7144 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED; 7145 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL; 7146 7147 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7148 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll); 7149} 7150 7151int napi_set_threaded(struct napi_struct *napi, 7152 enum netdev_napi_threaded threaded) 7153{ 7154 if (threaded) { 7155 if (!napi->thread) { 7156 int err = napi_kthread_create(napi); 7157 7158 if (err) 7159 return err; 7160 } 7161 } 7162 7163 if (napi->config) 7164 napi->config->threaded = threaded; 7165 7166 /* Setting/unsetting threaded mode on a napi might not immediately 7167 * take effect, if the current napi instance is actively being 7168 * polled. In this case, the switch between threaded mode and 7169 * softirq mode will happen in the next round of napi_schedule(). 7170 * This should not cause hiccups/stalls to the live traffic. 7171 */ 7172 if (!threaded && napi->thread) { 7173 napi_stop_kthread(napi); 7174 } else { 7175 /* Make sure kthread is created before THREADED bit is set. */ 7176 smp_mb__before_atomic(); 7177 napi_set_threaded_state(napi, threaded); 7178 } 7179 7180 return 0; 7181} 7182 7183int netif_set_threaded(struct net_device *dev, 7184 enum netdev_napi_threaded threaded) 7185{ 7186 struct napi_struct *napi; 7187 int i, err = 0; 7188 7189 netdev_assert_locked_or_invisible(dev); 7190 7191 if (threaded) { 7192 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7193 if (!napi->thread) { 7194 err = napi_kthread_create(napi); 7195 if (err) { 7196 threaded = NETDEV_NAPI_THREADED_DISABLED; 7197 break; 7198 } 7199 } 7200 } 7201 } 7202 7203 WRITE_ONCE(dev->threaded, threaded); 7204 7205 /* The error should not occur as the kthreads are already created. */ 7206 list_for_each_entry(napi, &dev->napi_list, dev_list) 7207 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7208 7209 /* Override the config for all NAPIs even if currently not listed */ 7210 for (i = 0; i < dev->num_napi_configs; i++) 7211 dev->napi_config[i].threaded = threaded; 7212 7213 return err; 7214} 7215 7216/** 7217 * netif_threaded_enable() - enable threaded NAPIs 7218 * @dev: net_device instance 7219 * 7220 * Enable threaded mode for the NAPI instances of the device. This may be useful 7221 * for devices where multiple NAPI instances get scheduled by a single 7222 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7223 * than the core where IRQ is mapped. 7224 * 7225 * This function should be called before @dev is registered. 7226 */ 7227void netif_threaded_enable(struct net_device *dev) 7228{ 7229 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7230} 7231EXPORT_SYMBOL(netif_threaded_enable); 7232 7233/** 7234 * netif_queue_set_napi - Associate queue with the napi 7235 * @dev: device to which NAPI and queue belong 7236 * @queue_index: Index of queue 7237 * @type: queue type as RX or TX 7238 * @napi: NAPI context, pass NULL to clear previously set NAPI 7239 * 7240 * Set queue with its corresponding napi context. This should be done after 7241 * registering the NAPI handler for the queue-vector and the queues have been 7242 * mapped to the corresponding interrupt vector. 7243 */ 7244void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7245 enum netdev_queue_type type, struct napi_struct *napi) 7246{ 7247 struct netdev_rx_queue *rxq; 7248 struct netdev_queue *txq; 7249 7250 if (WARN_ON_ONCE(napi && !napi->dev)) 7251 return; 7252 netdev_ops_assert_locked_or_invisible(dev); 7253 7254 switch (type) { 7255 case NETDEV_QUEUE_TYPE_RX: 7256 rxq = __netif_get_rx_queue(dev, queue_index); 7257 rxq->napi = napi; 7258 return; 7259 case NETDEV_QUEUE_TYPE_TX: 7260 txq = netdev_get_tx_queue(dev, queue_index); 7261 txq->napi = napi; 7262 return; 7263 default: 7264 return; 7265 } 7266} 7267EXPORT_SYMBOL(netif_queue_set_napi); 7268 7269static void 7270netif_napi_irq_notify(struct irq_affinity_notify *notify, 7271 const cpumask_t *mask) 7272{ 7273 struct napi_struct *napi = 7274 container_of(notify, struct napi_struct, notify); 7275#ifdef CONFIG_RFS_ACCEL 7276 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7277 int err; 7278#endif 7279 7280 if (napi->config && napi->dev->irq_affinity_auto) 7281 cpumask_copy(&napi->config->affinity_mask, mask); 7282 7283#ifdef CONFIG_RFS_ACCEL 7284 if (napi->dev->rx_cpu_rmap_auto) { 7285 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7286 if (err) 7287 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7288 err); 7289 } 7290#endif 7291} 7292 7293#ifdef CONFIG_RFS_ACCEL 7294static void netif_napi_affinity_release(struct kref *ref) 7295{ 7296 struct napi_struct *napi = 7297 container_of(ref, struct napi_struct, notify.kref); 7298 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7299 7300 netdev_assert_locked(napi->dev); 7301 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7302 &napi->state)); 7303 7304 if (!napi->dev->rx_cpu_rmap_auto) 7305 return; 7306 rmap->obj[napi->napi_rmap_idx] = NULL; 7307 napi->napi_rmap_idx = -1; 7308 cpu_rmap_put(rmap); 7309} 7310 7311int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7312{ 7313 if (dev->rx_cpu_rmap_auto) 7314 return 0; 7315 7316 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7317 if (!dev->rx_cpu_rmap) 7318 return -ENOMEM; 7319 7320 dev->rx_cpu_rmap_auto = true; 7321 return 0; 7322} 7323EXPORT_SYMBOL(netif_enable_cpu_rmap); 7324 7325static void netif_del_cpu_rmap(struct net_device *dev) 7326{ 7327 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7328 7329 if (!dev->rx_cpu_rmap_auto) 7330 return; 7331 7332 /* Free the rmap */ 7333 cpu_rmap_put(rmap); 7334 dev->rx_cpu_rmap = NULL; 7335 dev->rx_cpu_rmap_auto = false; 7336} 7337 7338#else 7339static void netif_napi_affinity_release(struct kref *ref) 7340{ 7341} 7342 7343int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7344{ 7345 return 0; 7346} 7347EXPORT_SYMBOL(netif_enable_cpu_rmap); 7348 7349static void netif_del_cpu_rmap(struct net_device *dev) 7350{ 7351} 7352#endif 7353 7354void netif_set_affinity_auto(struct net_device *dev) 7355{ 7356 unsigned int i, maxqs, numa; 7357 7358 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7359 numa = dev_to_node(&dev->dev); 7360 7361 for (i = 0; i < maxqs; i++) 7362 cpumask_set_cpu(cpumask_local_spread(i, numa), 7363 &dev->napi_config[i].affinity_mask); 7364 7365 dev->irq_affinity_auto = true; 7366} 7367EXPORT_SYMBOL(netif_set_affinity_auto); 7368 7369void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7370{ 7371 int rc; 7372 7373 netdev_assert_locked_or_invisible(napi->dev); 7374 7375 if (napi->irq == irq) 7376 return; 7377 7378 /* Remove existing resources */ 7379 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7380 irq_set_affinity_notifier(napi->irq, NULL); 7381 7382 napi->irq = irq; 7383 if (irq < 0 || 7384 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7385 return; 7386 7387 /* Abort for buggy drivers */ 7388 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7389 return; 7390 7391#ifdef CONFIG_RFS_ACCEL 7392 if (napi->dev->rx_cpu_rmap_auto) { 7393 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7394 if (rc < 0) 7395 return; 7396 7397 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7398 napi->napi_rmap_idx = rc; 7399 } 7400#endif 7401 7402 /* Use core IRQ notifier */ 7403 napi->notify.notify = netif_napi_irq_notify; 7404 napi->notify.release = netif_napi_affinity_release; 7405 rc = irq_set_affinity_notifier(irq, &napi->notify); 7406 if (rc) { 7407 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7408 rc); 7409 goto put_rmap; 7410 } 7411 7412 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7413 return; 7414 7415put_rmap: 7416#ifdef CONFIG_RFS_ACCEL 7417 if (napi->dev->rx_cpu_rmap_auto) { 7418 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7419 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7420 napi->napi_rmap_idx = -1; 7421 } 7422#endif 7423 napi->notify.notify = NULL; 7424 napi->notify.release = NULL; 7425} 7426EXPORT_SYMBOL(netif_napi_set_irq_locked); 7427 7428static void napi_restore_config(struct napi_struct *n) 7429{ 7430 n->defer_hard_irqs = n->config->defer_hard_irqs; 7431 n->gro_flush_timeout = n->config->gro_flush_timeout; 7432 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7433 7434 if (n->dev->irq_affinity_auto && 7435 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7436 irq_set_affinity(n->irq, &n->config->affinity_mask); 7437 7438 /* a NAPI ID might be stored in the config, if so use it. if not, use 7439 * napi_hash_add to generate one for us. 7440 */ 7441 if (n->config->napi_id) { 7442 napi_hash_add_with_id(n, n->config->napi_id); 7443 } else { 7444 napi_hash_add(n); 7445 n->config->napi_id = n->napi_id; 7446 } 7447 7448 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7449} 7450 7451static void napi_save_config(struct napi_struct *n) 7452{ 7453 n->config->defer_hard_irqs = n->defer_hard_irqs; 7454 n->config->gro_flush_timeout = n->gro_flush_timeout; 7455 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7456 napi_hash_del(n); 7457} 7458 7459/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7460 * inherit an existing ID try to insert it at the right position. 7461 */ 7462static void 7463netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7464{ 7465 unsigned int new_id, pos_id; 7466 struct list_head *higher; 7467 struct napi_struct *pos; 7468 7469 new_id = UINT_MAX; 7470 if (napi->config && napi->config->napi_id) 7471 new_id = napi->config->napi_id; 7472 7473 higher = &dev->napi_list; 7474 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7475 if (napi_id_valid(pos->napi_id)) 7476 pos_id = pos->napi_id; 7477 else if (pos->config) 7478 pos_id = pos->config->napi_id; 7479 else 7480 pos_id = UINT_MAX; 7481 7482 if (pos_id <= new_id) 7483 break; 7484 higher = &pos->dev_list; 7485 } 7486 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7487} 7488 7489/* Double check that napi_get_frags() allocates skbs with 7490 * skb->head being backed by slab, not a page fragment. 7491 * This is to make sure bug fixed in 3226b158e67c 7492 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7493 * does not accidentally come back. 7494 */ 7495static void napi_get_frags_check(struct napi_struct *napi) 7496{ 7497 struct sk_buff *skb; 7498 7499 local_bh_disable(); 7500 skb = napi_get_frags(napi); 7501 WARN_ON_ONCE(skb && skb->head_frag); 7502 napi_free_frags(napi); 7503 local_bh_enable(); 7504} 7505 7506void netif_napi_add_weight_locked(struct net_device *dev, 7507 struct napi_struct *napi, 7508 int (*poll)(struct napi_struct *, int), 7509 int weight) 7510{ 7511 netdev_assert_locked(dev); 7512 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7513 return; 7514 7515 INIT_LIST_HEAD(&napi->poll_list); 7516 INIT_HLIST_NODE(&napi->napi_hash_node); 7517 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7518 gro_init(&napi->gro); 7519 napi->skb = NULL; 7520 napi->poll = poll; 7521 if (weight > NAPI_POLL_WEIGHT) 7522 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7523 weight); 7524 napi->weight = weight; 7525 napi->dev = dev; 7526#ifdef CONFIG_NETPOLL 7527 napi->poll_owner = -1; 7528#endif 7529 napi->list_owner = -1; 7530 set_bit(NAPI_STATE_SCHED, &napi->state); 7531 set_bit(NAPI_STATE_NPSVC, &napi->state); 7532 netif_napi_dev_list_add(dev, napi); 7533 7534 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7535 * configuration will be loaded in napi_enable 7536 */ 7537 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7538 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7539 7540 napi_get_frags_check(napi); 7541 /* Create kthread for this napi if dev->threaded is set. 7542 * Clear dev->threaded if kthread creation failed so that 7543 * threaded mode will not be enabled in napi_enable(). 7544 */ 7545 if (napi_get_threaded_config(dev, napi)) 7546 if (napi_kthread_create(napi)) 7547 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7548 netif_napi_set_irq_locked(napi, -1); 7549} 7550EXPORT_SYMBOL(netif_napi_add_weight_locked); 7551 7552void napi_disable_locked(struct napi_struct *n) 7553{ 7554 unsigned long val, new; 7555 7556 might_sleep(); 7557 netdev_assert_locked(n->dev); 7558 7559 set_bit(NAPI_STATE_DISABLE, &n->state); 7560 7561 val = READ_ONCE(n->state); 7562 do { 7563 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7564 usleep_range(20, 200); 7565 val = READ_ONCE(n->state); 7566 } 7567 7568 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7569 new &= ~(NAPIF_STATE_THREADED | 7570 NAPIF_STATE_THREADED_BUSY_POLL | 7571 NAPIF_STATE_PREFER_BUSY_POLL); 7572 } while (!try_cmpxchg(&n->state, &val, new)); 7573 7574 hrtimer_cancel(&n->timer); 7575 7576 if (n->config) 7577 napi_save_config(n); 7578 else 7579 napi_hash_del(n); 7580 7581 clear_bit(NAPI_STATE_DISABLE, &n->state); 7582} 7583EXPORT_SYMBOL(napi_disable_locked); 7584 7585/** 7586 * napi_disable() - prevent NAPI from scheduling 7587 * @n: NAPI context 7588 * 7589 * Stop NAPI from being scheduled on this context. 7590 * Waits till any outstanding processing completes. 7591 * Takes netdev_lock() for associated net_device. 7592 */ 7593void napi_disable(struct napi_struct *n) 7594{ 7595 netdev_lock(n->dev); 7596 napi_disable_locked(n); 7597 netdev_unlock(n->dev); 7598} 7599EXPORT_SYMBOL(napi_disable); 7600 7601void napi_enable_locked(struct napi_struct *n) 7602{ 7603 unsigned long new, val = READ_ONCE(n->state); 7604 7605 if (n->config) 7606 napi_restore_config(n); 7607 else 7608 napi_hash_add(n); 7609 7610 do { 7611 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7612 7613 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7614 if (n->dev->threaded && n->thread) 7615 new |= NAPIF_STATE_THREADED; 7616 } while (!try_cmpxchg(&n->state, &val, new)); 7617} 7618EXPORT_SYMBOL(napi_enable_locked); 7619 7620/** 7621 * napi_enable() - enable NAPI scheduling 7622 * @n: NAPI context 7623 * 7624 * Enable scheduling of a NAPI instance. 7625 * Must be paired with napi_disable(). 7626 * Takes netdev_lock() for associated net_device. 7627 */ 7628void napi_enable(struct napi_struct *n) 7629{ 7630 netdev_lock(n->dev); 7631 napi_enable_locked(n); 7632 netdev_unlock(n->dev); 7633} 7634EXPORT_SYMBOL(napi_enable); 7635 7636/* Must be called in process context */ 7637void __netif_napi_del_locked(struct napi_struct *napi) 7638{ 7639 netdev_assert_locked(napi->dev); 7640 7641 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7642 return; 7643 7644 /* Make sure NAPI is disabled (or was never enabled). */ 7645 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7646 7647 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7648 irq_set_affinity_notifier(napi->irq, NULL); 7649 7650 if (napi->config) { 7651 napi->index = -1; 7652 napi->config = NULL; 7653 } 7654 7655 list_del_rcu(&napi->dev_list); 7656 napi_free_frags(napi); 7657 7658 gro_cleanup(&napi->gro); 7659 7660 if (napi->thread) { 7661 kthread_stop(napi->thread); 7662 napi->thread = NULL; 7663 } 7664} 7665EXPORT_SYMBOL(__netif_napi_del_locked); 7666 7667static int __napi_poll(struct napi_struct *n, bool *repoll) 7668{ 7669 int work, weight; 7670 7671 weight = n->weight; 7672 7673 /* This NAPI_STATE_SCHED test is for avoiding a race 7674 * with netpoll's poll_napi(). Only the entity which 7675 * obtains the lock and sees NAPI_STATE_SCHED set will 7676 * actually make the ->poll() call. Therefore we avoid 7677 * accidentally calling ->poll() when NAPI is not scheduled. 7678 */ 7679 work = 0; 7680 if (napi_is_scheduled(n)) { 7681 work = n->poll(n, weight); 7682 trace_napi_poll(n, work, weight); 7683 7684 xdp_do_check_flushed(n); 7685 } 7686 7687 if (unlikely(work > weight)) 7688 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7689 n->poll, work, weight); 7690 7691 if (likely(work < weight)) 7692 return work; 7693 7694 /* Drivers must not modify the NAPI state if they 7695 * consume the entire weight. In such cases this code 7696 * still "owns" the NAPI instance and therefore can 7697 * move the instance around on the list at-will. 7698 */ 7699 if (unlikely(napi_disable_pending(n))) { 7700 napi_complete(n); 7701 return work; 7702 } 7703 7704 /* The NAPI context has more processing work, but busy-polling 7705 * is preferred. Exit early. 7706 */ 7707 if (napi_prefer_busy_poll(n)) { 7708 if (napi_complete_done(n, work)) { 7709 /* If timeout is not set, we need to make sure 7710 * that the NAPI is re-scheduled. 7711 */ 7712 napi_schedule(n); 7713 } 7714 return work; 7715 } 7716 7717 /* Flush too old packets. If HZ < 1000, flush all packets */ 7718 gro_flush_normal(&n->gro, HZ >= 1000); 7719 7720 /* Some drivers may have called napi_schedule 7721 * prior to exhausting their budget. 7722 */ 7723 if (unlikely(!list_empty(&n->poll_list))) { 7724 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7725 n->dev ? n->dev->name : "backlog"); 7726 return work; 7727 } 7728 7729 *repoll = true; 7730 7731 return work; 7732} 7733 7734static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7735{ 7736 bool do_repoll = false; 7737 void *have; 7738 int work; 7739 7740 list_del_init(&n->poll_list); 7741 7742 have = netpoll_poll_lock(n); 7743 7744 work = __napi_poll(n, &do_repoll); 7745 7746 if (do_repoll) { 7747#if defined(CONFIG_DEBUG_NET) 7748 if (unlikely(!napi_is_scheduled(n))) 7749 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7750 n->dev->name, n->poll); 7751#endif 7752 list_add_tail(&n->poll_list, repoll); 7753 } 7754 netpoll_poll_unlock(have); 7755 7756 return work; 7757} 7758 7759static int napi_thread_wait(struct napi_struct *napi) 7760{ 7761 set_current_state(TASK_INTERRUPTIBLE); 7762 7763 while (!kthread_should_stop()) { 7764 /* Testing SCHED_THREADED bit here to make sure the current 7765 * kthread owns this napi and could poll on this napi. 7766 * Testing SCHED bit is not enough because SCHED bit might be 7767 * set by some other busy poll thread or by napi_disable(). 7768 */ 7769 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7770 WARN_ON(!list_empty(&napi->poll_list)); 7771 __set_current_state(TASK_RUNNING); 7772 return 0; 7773 } 7774 7775 schedule(); 7776 set_current_state(TASK_INTERRUPTIBLE); 7777 } 7778 __set_current_state(TASK_RUNNING); 7779 7780 return -1; 7781} 7782 7783static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll) 7784{ 7785 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7786 struct softnet_data *sd; 7787 unsigned long last_qs = jiffies; 7788 7789 for (;;) { 7790 bool repoll = false; 7791 void *have; 7792 7793 local_bh_disable(); 7794 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7795 7796 sd = this_cpu_ptr(&softnet_data); 7797 sd->in_napi_threaded_poll = true; 7798 7799 have = netpoll_poll_lock(napi); 7800 __napi_poll(napi, &repoll); 7801 netpoll_poll_unlock(have); 7802 7803 sd->in_napi_threaded_poll = false; 7804 barrier(); 7805 7806 if (sd_has_rps_ipi_waiting(sd)) { 7807 local_irq_disable(); 7808 net_rps_action_and_irq_enable(sd); 7809 } 7810 skb_defer_free_flush(); 7811 bpf_net_ctx_clear(bpf_net_ctx); 7812 7813 /* When busy poll is enabled, the old packets are not flushed in 7814 * napi_complete_done. So flush them here. 7815 */ 7816 if (busy_poll) 7817 gro_flush_normal(&napi->gro, HZ >= 1000); 7818 local_bh_enable(); 7819 7820 /* Call cond_resched here to avoid watchdog warnings. */ 7821 if (repoll || busy_poll) { 7822 rcu_softirq_qs_periodic(last_qs); 7823 cond_resched(); 7824 } 7825 7826 if (!repoll) 7827 break; 7828 } 7829} 7830 7831static int napi_threaded_poll(void *data) 7832{ 7833 struct napi_struct *napi = data; 7834 bool want_busy_poll; 7835 bool in_busy_poll; 7836 unsigned long val; 7837 7838 while (!napi_thread_wait(napi)) { 7839 val = READ_ONCE(napi->state); 7840 7841 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL; 7842 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL; 7843 7844 if (unlikely(val & NAPIF_STATE_DISABLE)) 7845 want_busy_poll = false; 7846 7847 if (want_busy_poll != in_busy_poll) 7848 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state, 7849 want_busy_poll); 7850 7851 napi_threaded_poll_loop(napi, want_busy_poll); 7852 } 7853 7854 return 0; 7855} 7856 7857static __latent_entropy void net_rx_action(void) 7858{ 7859 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7860 unsigned long time_limit = jiffies + 7861 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7862 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7863 int budget = READ_ONCE(net_hotdata.netdev_budget); 7864 LIST_HEAD(list); 7865 LIST_HEAD(repoll); 7866 7867 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7868start: 7869 sd->in_net_rx_action = true; 7870 local_irq_disable(); 7871 list_splice_init(&sd->poll_list, &list); 7872 local_irq_enable(); 7873 7874 for (;;) { 7875 struct napi_struct *n; 7876 7877 skb_defer_free_flush(); 7878 7879 if (list_empty(&list)) { 7880 if (list_empty(&repoll)) { 7881 sd->in_net_rx_action = false; 7882 barrier(); 7883 /* We need to check if ____napi_schedule() 7884 * had refilled poll_list while 7885 * sd->in_net_rx_action was true. 7886 */ 7887 if (!list_empty(&sd->poll_list)) 7888 goto start; 7889 if (!sd_has_rps_ipi_waiting(sd)) 7890 goto end; 7891 } 7892 break; 7893 } 7894 7895 n = list_first_entry(&list, struct napi_struct, poll_list); 7896 budget -= napi_poll(n, &repoll); 7897 7898 /* If softirq window is exhausted then punt. 7899 * Allow this to run for 2 jiffies since which will allow 7900 * an average latency of 1.5/HZ. 7901 */ 7902 if (unlikely(budget <= 0 || 7903 time_after_eq(jiffies, time_limit))) { 7904 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7905 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7906 break; 7907 } 7908 } 7909 7910 local_irq_disable(); 7911 7912 list_splice_tail_init(&sd->poll_list, &list); 7913 list_splice_tail(&repoll, &list); 7914 list_splice(&list, &sd->poll_list); 7915 if (!list_empty(&sd->poll_list)) 7916 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7917 else 7918 sd->in_net_rx_action = false; 7919 7920 net_rps_action_and_irq_enable(sd); 7921end: 7922 bpf_net_ctx_clear(bpf_net_ctx); 7923} 7924 7925struct netdev_adjacent { 7926 struct net_device *dev; 7927 netdevice_tracker dev_tracker; 7928 7929 /* upper master flag, there can only be one master device per list */ 7930 bool master; 7931 7932 /* lookup ignore flag */ 7933 bool ignore; 7934 7935 /* counter for the number of times this device was added to us */ 7936 u16 ref_nr; 7937 7938 /* private field for the users */ 7939 void *private; 7940 7941 struct list_head list; 7942 struct rcu_head rcu; 7943}; 7944 7945static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7946 struct list_head *adj_list) 7947{ 7948 struct netdev_adjacent *adj; 7949 7950 list_for_each_entry(adj, adj_list, list) { 7951 if (adj->dev == adj_dev) 7952 return adj; 7953 } 7954 return NULL; 7955} 7956 7957static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7958 struct netdev_nested_priv *priv) 7959{ 7960 struct net_device *dev = (struct net_device *)priv->data; 7961 7962 return upper_dev == dev; 7963} 7964 7965/** 7966 * netdev_has_upper_dev - Check if device is linked to an upper device 7967 * @dev: device 7968 * @upper_dev: upper device to check 7969 * 7970 * Find out if a device is linked to specified upper device and return true 7971 * in case it is. Note that this checks only immediate upper device, 7972 * not through a complete stack of devices. The caller must hold the RTNL lock. 7973 */ 7974bool netdev_has_upper_dev(struct net_device *dev, 7975 struct net_device *upper_dev) 7976{ 7977 struct netdev_nested_priv priv = { 7978 .data = (void *)upper_dev, 7979 }; 7980 7981 ASSERT_RTNL(); 7982 7983 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7984 &priv); 7985} 7986EXPORT_SYMBOL(netdev_has_upper_dev); 7987 7988/** 7989 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7990 * @dev: device 7991 * @upper_dev: upper device to check 7992 * 7993 * Find out if a device is linked to specified upper device and return true 7994 * in case it is. Note that this checks the entire upper device chain. 7995 * The caller must hold rcu lock. 7996 */ 7997 7998bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7999 struct net_device *upper_dev) 8000{ 8001 struct netdev_nested_priv priv = { 8002 .data = (void *)upper_dev, 8003 }; 8004 8005 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 8006 &priv); 8007} 8008EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 8009 8010/** 8011 * netdev_has_any_upper_dev - Check if device is linked to some device 8012 * @dev: device 8013 * 8014 * Find out if a device is linked to an upper device and return true in case 8015 * it is. The caller must hold the RTNL lock. 8016 */ 8017bool netdev_has_any_upper_dev(struct net_device *dev) 8018{ 8019 ASSERT_RTNL(); 8020 8021 return !list_empty(&dev->adj_list.upper); 8022} 8023EXPORT_SYMBOL(netdev_has_any_upper_dev); 8024 8025/** 8026 * netdev_master_upper_dev_get - Get master upper device 8027 * @dev: device 8028 * 8029 * Find a master upper device and return pointer to it or NULL in case 8030 * it's not there. The caller must hold the RTNL lock. 8031 */ 8032struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 8033{ 8034 struct netdev_adjacent *upper; 8035 8036 ASSERT_RTNL(); 8037 8038 if (list_empty(&dev->adj_list.upper)) 8039 return NULL; 8040 8041 upper = list_first_entry(&dev->adj_list.upper, 8042 struct netdev_adjacent, list); 8043 if (likely(upper->master)) 8044 return upper->dev; 8045 return NULL; 8046} 8047EXPORT_SYMBOL(netdev_master_upper_dev_get); 8048 8049static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 8050{ 8051 struct netdev_adjacent *upper; 8052 8053 ASSERT_RTNL(); 8054 8055 if (list_empty(&dev->adj_list.upper)) 8056 return NULL; 8057 8058 upper = list_first_entry(&dev->adj_list.upper, 8059 struct netdev_adjacent, list); 8060 if (likely(upper->master) && !upper->ignore) 8061 return upper->dev; 8062 return NULL; 8063} 8064 8065/** 8066 * netdev_has_any_lower_dev - Check if device is linked to some device 8067 * @dev: device 8068 * 8069 * Find out if a device is linked to a lower device and return true in case 8070 * it is. The caller must hold the RTNL lock. 8071 */ 8072static bool netdev_has_any_lower_dev(struct net_device *dev) 8073{ 8074 ASSERT_RTNL(); 8075 8076 return !list_empty(&dev->adj_list.lower); 8077} 8078 8079void *netdev_adjacent_get_private(struct list_head *adj_list) 8080{ 8081 struct netdev_adjacent *adj; 8082 8083 adj = list_entry(adj_list, struct netdev_adjacent, list); 8084 8085 return adj->private; 8086} 8087EXPORT_SYMBOL(netdev_adjacent_get_private); 8088 8089/** 8090 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 8091 * @dev: device 8092 * @iter: list_head ** of the current position 8093 * 8094 * Gets the next device from the dev's upper list, starting from iter 8095 * position. The caller must hold RCU read lock. 8096 */ 8097struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 8098 struct list_head **iter) 8099{ 8100 struct netdev_adjacent *upper; 8101 8102 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8103 8104 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8105 8106 if (&upper->list == &dev->adj_list.upper) 8107 return NULL; 8108 8109 *iter = &upper->list; 8110 8111 return upper->dev; 8112} 8113EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8114 8115static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8116 struct list_head **iter, 8117 bool *ignore) 8118{ 8119 struct netdev_adjacent *upper; 8120 8121 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8122 8123 if (&upper->list == &dev->adj_list.upper) 8124 return NULL; 8125 8126 *iter = &upper->list; 8127 *ignore = upper->ignore; 8128 8129 return upper->dev; 8130} 8131 8132static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8133 struct list_head **iter) 8134{ 8135 struct netdev_adjacent *upper; 8136 8137 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8138 8139 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8140 8141 if (&upper->list == &dev->adj_list.upper) 8142 return NULL; 8143 8144 *iter = &upper->list; 8145 8146 return upper->dev; 8147} 8148 8149static int __netdev_walk_all_upper_dev(struct net_device *dev, 8150 int (*fn)(struct net_device *dev, 8151 struct netdev_nested_priv *priv), 8152 struct netdev_nested_priv *priv) 8153{ 8154 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8155 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8156 int ret, cur = 0; 8157 bool ignore; 8158 8159 now = dev; 8160 iter = &dev->adj_list.upper; 8161 8162 while (1) { 8163 if (now != dev) { 8164 ret = fn(now, priv); 8165 if (ret) 8166 return ret; 8167 } 8168 8169 next = NULL; 8170 while (1) { 8171 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8172 if (!udev) 8173 break; 8174 if (ignore) 8175 continue; 8176 8177 next = udev; 8178 niter = &udev->adj_list.upper; 8179 dev_stack[cur] = now; 8180 iter_stack[cur++] = iter; 8181 break; 8182 } 8183 8184 if (!next) { 8185 if (!cur) 8186 return 0; 8187 next = dev_stack[--cur]; 8188 niter = iter_stack[cur]; 8189 } 8190 8191 now = next; 8192 iter = niter; 8193 } 8194 8195 return 0; 8196} 8197 8198int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8199 int (*fn)(struct net_device *dev, 8200 struct netdev_nested_priv *priv), 8201 struct netdev_nested_priv *priv) 8202{ 8203 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8204 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8205 int ret, cur = 0; 8206 8207 now = dev; 8208 iter = &dev->adj_list.upper; 8209 8210 while (1) { 8211 if (now != dev) { 8212 ret = fn(now, priv); 8213 if (ret) 8214 return ret; 8215 } 8216 8217 next = NULL; 8218 while (1) { 8219 udev = netdev_next_upper_dev_rcu(now, &iter); 8220 if (!udev) 8221 break; 8222 8223 next = udev; 8224 niter = &udev->adj_list.upper; 8225 dev_stack[cur] = now; 8226 iter_stack[cur++] = iter; 8227 break; 8228 } 8229 8230 if (!next) { 8231 if (!cur) 8232 return 0; 8233 next = dev_stack[--cur]; 8234 niter = iter_stack[cur]; 8235 } 8236 8237 now = next; 8238 iter = niter; 8239 } 8240 8241 return 0; 8242} 8243EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8244 8245static bool __netdev_has_upper_dev(struct net_device *dev, 8246 struct net_device *upper_dev) 8247{ 8248 struct netdev_nested_priv priv = { 8249 .flags = 0, 8250 .data = (void *)upper_dev, 8251 }; 8252 8253 ASSERT_RTNL(); 8254 8255 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8256 &priv); 8257} 8258 8259/** 8260 * netdev_lower_get_next_private - Get the next ->private from the 8261 * lower neighbour list 8262 * @dev: device 8263 * @iter: list_head ** of the current position 8264 * 8265 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8266 * list, starting from iter position. The caller must hold either hold the 8267 * RTNL lock or its own locking that guarantees that the neighbour lower 8268 * list will remain unchanged. 8269 */ 8270void *netdev_lower_get_next_private(struct net_device *dev, 8271 struct list_head **iter) 8272{ 8273 struct netdev_adjacent *lower; 8274 8275 lower = list_entry(*iter, struct netdev_adjacent, list); 8276 8277 if (&lower->list == &dev->adj_list.lower) 8278 return NULL; 8279 8280 *iter = lower->list.next; 8281 8282 return lower->private; 8283} 8284EXPORT_SYMBOL(netdev_lower_get_next_private); 8285 8286/** 8287 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8288 * lower neighbour list, RCU 8289 * variant 8290 * @dev: device 8291 * @iter: list_head ** of the current position 8292 * 8293 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8294 * list, starting from iter position. The caller must hold RCU read lock. 8295 */ 8296void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8297 struct list_head **iter) 8298{ 8299 struct netdev_adjacent *lower; 8300 8301 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8302 8303 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8304 8305 if (&lower->list == &dev->adj_list.lower) 8306 return NULL; 8307 8308 *iter = &lower->list; 8309 8310 return lower->private; 8311} 8312EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8313 8314/** 8315 * netdev_lower_get_next - Get the next device from the lower neighbour 8316 * list 8317 * @dev: device 8318 * @iter: list_head ** of the current position 8319 * 8320 * Gets the next netdev_adjacent from the dev's lower neighbour 8321 * list, starting from iter position. The caller must hold RTNL lock or 8322 * its own locking that guarantees that the neighbour lower 8323 * list will remain unchanged. 8324 */ 8325void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8326{ 8327 struct netdev_adjacent *lower; 8328 8329 lower = list_entry(*iter, struct netdev_adjacent, list); 8330 8331 if (&lower->list == &dev->adj_list.lower) 8332 return NULL; 8333 8334 *iter = lower->list.next; 8335 8336 return lower->dev; 8337} 8338EXPORT_SYMBOL(netdev_lower_get_next); 8339 8340static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8341 struct list_head **iter) 8342{ 8343 struct netdev_adjacent *lower; 8344 8345 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8346 8347 if (&lower->list == &dev->adj_list.lower) 8348 return NULL; 8349 8350 *iter = &lower->list; 8351 8352 return lower->dev; 8353} 8354 8355static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8356 struct list_head **iter, 8357 bool *ignore) 8358{ 8359 struct netdev_adjacent *lower; 8360 8361 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8362 8363 if (&lower->list == &dev->adj_list.lower) 8364 return NULL; 8365 8366 *iter = &lower->list; 8367 *ignore = lower->ignore; 8368 8369 return lower->dev; 8370} 8371 8372int netdev_walk_all_lower_dev(struct net_device *dev, 8373 int (*fn)(struct net_device *dev, 8374 struct netdev_nested_priv *priv), 8375 struct netdev_nested_priv *priv) 8376{ 8377 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8378 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8379 int ret, cur = 0; 8380 8381 now = dev; 8382 iter = &dev->adj_list.lower; 8383 8384 while (1) { 8385 if (now != dev) { 8386 ret = fn(now, priv); 8387 if (ret) 8388 return ret; 8389 } 8390 8391 next = NULL; 8392 while (1) { 8393 ldev = netdev_next_lower_dev(now, &iter); 8394 if (!ldev) 8395 break; 8396 8397 next = ldev; 8398 niter = &ldev->adj_list.lower; 8399 dev_stack[cur] = now; 8400 iter_stack[cur++] = iter; 8401 break; 8402 } 8403 8404 if (!next) { 8405 if (!cur) 8406 return 0; 8407 next = dev_stack[--cur]; 8408 niter = iter_stack[cur]; 8409 } 8410 8411 now = next; 8412 iter = niter; 8413 } 8414 8415 return 0; 8416} 8417EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8418 8419static int __netdev_walk_all_lower_dev(struct net_device *dev, 8420 int (*fn)(struct net_device *dev, 8421 struct netdev_nested_priv *priv), 8422 struct netdev_nested_priv *priv) 8423{ 8424 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8425 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8426 int ret, cur = 0; 8427 bool ignore; 8428 8429 now = dev; 8430 iter = &dev->adj_list.lower; 8431 8432 while (1) { 8433 if (now != dev) { 8434 ret = fn(now, priv); 8435 if (ret) 8436 return ret; 8437 } 8438 8439 next = NULL; 8440 while (1) { 8441 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8442 if (!ldev) 8443 break; 8444 if (ignore) 8445 continue; 8446 8447 next = ldev; 8448 niter = &ldev->adj_list.lower; 8449 dev_stack[cur] = now; 8450 iter_stack[cur++] = iter; 8451 break; 8452 } 8453 8454 if (!next) { 8455 if (!cur) 8456 return 0; 8457 next = dev_stack[--cur]; 8458 niter = iter_stack[cur]; 8459 } 8460 8461 now = next; 8462 iter = niter; 8463 } 8464 8465 return 0; 8466} 8467 8468struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8469 struct list_head **iter) 8470{ 8471 struct netdev_adjacent *lower; 8472 8473 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8474 if (&lower->list == &dev->adj_list.lower) 8475 return NULL; 8476 8477 *iter = &lower->list; 8478 8479 return lower->dev; 8480} 8481EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8482 8483static u8 __netdev_upper_depth(struct net_device *dev) 8484{ 8485 struct net_device *udev; 8486 struct list_head *iter; 8487 u8 max_depth = 0; 8488 bool ignore; 8489 8490 for (iter = &dev->adj_list.upper, 8491 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8492 udev; 8493 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8494 if (ignore) 8495 continue; 8496 if (max_depth < udev->upper_level) 8497 max_depth = udev->upper_level; 8498 } 8499 8500 return max_depth; 8501} 8502 8503static u8 __netdev_lower_depth(struct net_device *dev) 8504{ 8505 struct net_device *ldev; 8506 struct list_head *iter; 8507 u8 max_depth = 0; 8508 bool ignore; 8509 8510 for (iter = &dev->adj_list.lower, 8511 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8512 ldev; 8513 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8514 if (ignore) 8515 continue; 8516 if (max_depth < ldev->lower_level) 8517 max_depth = ldev->lower_level; 8518 } 8519 8520 return max_depth; 8521} 8522 8523static int __netdev_update_upper_level(struct net_device *dev, 8524 struct netdev_nested_priv *__unused) 8525{ 8526 dev->upper_level = __netdev_upper_depth(dev) + 1; 8527 return 0; 8528} 8529 8530#ifdef CONFIG_LOCKDEP 8531static LIST_HEAD(net_unlink_list); 8532 8533static void net_unlink_todo(struct net_device *dev) 8534{ 8535 if (list_empty(&dev->unlink_list)) 8536 list_add_tail(&dev->unlink_list, &net_unlink_list); 8537} 8538#endif 8539 8540static int __netdev_update_lower_level(struct net_device *dev, 8541 struct netdev_nested_priv *priv) 8542{ 8543 dev->lower_level = __netdev_lower_depth(dev) + 1; 8544 8545#ifdef CONFIG_LOCKDEP 8546 if (!priv) 8547 return 0; 8548 8549 if (priv->flags & NESTED_SYNC_IMM) 8550 dev->nested_level = dev->lower_level - 1; 8551 if (priv->flags & NESTED_SYNC_TODO) 8552 net_unlink_todo(dev); 8553#endif 8554 return 0; 8555} 8556 8557int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8558 int (*fn)(struct net_device *dev, 8559 struct netdev_nested_priv *priv), 8560 struct netdev_nested_priv *priv) 8561{ 8562 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8563 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8564 int ret, cur = 0; 8565 8566 now = dev; 8567 iter = &dev->adj_list.lower; 8568 8569 while (1) { 8570 if (now != dev) { 8571 ret = fn(now, priv); 8572 if (ret) 8573 return ret; 8574 } 8575 8576 next = NULL; 8577 while (1) { 8578 ldev = netdev_next_lower_dev_rcu(now, &iter); 8579 if (!ldev) 8580 break; 8581 8582 next = ldev; 8583 niter = &ldev->adj_list.lower; 8584 dev_stack[cur] = now; 8585 iter_stack[cur++] = iter; 8586 break; 8587 } 8588 8589 if (!next) { 8590 if (!cur) 8591 return 0; 8592 next = dev_stack[--cur]; 8593 niter = iter_stack[cur]; 8594 } 8595 8596 now = next; 8597 iter = niter; 8598 } 8599 8600 return 0; 8601} 8602EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8603 8604/** 8605 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8606 * lower neighbour list, RCU 8607 * variant 8608 * @dev: device 8609 * 8610 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8611 * list. The caller must hold RCU read lock. 8612 */ 8613void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8614{ 8615 struct netdev_adjacent *lower; 8616 8617 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8618 struct netdev_adjacent, list); 8619 if (lower) 8620 return lower->private; 8621 return NULL; 8622} 8623EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8624 8625/** 8626 * netdev_master_upper_dev_get_rcu - Get master upper device 8627 * @dev: device 8628 * 8629 * Find a master upper device and return pointer to it or NULL in case 8630 * it's not there. The caller must hold the RCU read lock. 8631 */ 8632struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8633{ 8634 struct netdev_adjacent *upper; 8635 8636 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8637 struct netdev_adjacent, list); 8638 if (upper && likely(upper->master)) 8639 return upper->dev; 8640 return NULL; 8641} 8642EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8643 8644static int netdev_adjacent_sysfs_add(struct net_device *dev, 8645 struct net_device *adj_dev, 8646 struct list_head *dev_list) 8647{ 8648 char linkname[IFNAMSIZ+7]; 8649 8650 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8651 "upper_%s" : "lower_%s", adj_dev->name); 8652 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8653 linkname); 8654} 8655static void netdev_adjacent_sysfs_del(struct net_device *dev, 8656 char *name, 8657 struct list_head *dev_list) 8658{ 8659 char linkname[IFNAMSIZ+7]; 8660 8661 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8662 "upper_%s" : "lower_%s", name); 8663 sysfs_remove_link(&(dev->dev.kobj), linkname); 8664} 8665 8666static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8667 struct net_device *adj_dev, 8668 struct list_head *dev_list) 8669{ 8670 return (dev_list == &dev->adj_list.upper || 8671 dev_list == &dev->adj_list.lower) && 8672 net_eq(dev_net(dev), dev_net(adj_dev)); 8673} 8674 8675static int __netdev_adjacent_dev_insert(struct net_device *dev, 8676 struct net_device *adj_dev, 8677 struct list_head *dev_list, 8678 void *private, bool master) 8679{ 8680 struct netdev_adjacent *adj; 8681 int ret; 8682 8683 adj = __netdev_find_adj(adj_dev, dev_list); 8684 8685 if (adj) { 8686 adj->ref_nr += 1; 8687 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8688 dev->name, adj_dev->name, adj->ref_nr); 8689 8690 return 0; 8691 } 8692 8693 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8694 if (!adj) 8695 return -ENOMEM; 8696 8697 adj->dev = adj_dev; 8698 adj->master = master; 8699 adj->ref_nr = 1; 8700 adj->private = private; 8701 adj->ignore = false; 8702 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8703 8704 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8705 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8706 8707 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8708 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8709 if (ret) 8710 goto free_adj; 8711 } 8712 8713 /* Ensure that master link is always the first item in list. */ 8714 if (master) { 8715 ret = sysfs_create_link(&(dev->dev.kobj), 8716 &(adj_dev->dev.kobj), "master"); 8717 if (ret) 8718 goto remove_symlinks; 8719 8720 list_add_rcu(&adj->list, dev_list); 8721 } else { 8722 list_add_tail_rcu(&adj->list, dev_list); 8723 } 8724 8725 return 0; 8726 8727remove_symlinks: 8728 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8729 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8730free_adj: 8731 netdev_put(adj_dev, &adj->dev_tracker); 8732 kfree(adj); 8733 8734 return ret; 8735} 8736 8737static void __netdev_adjacent_dev_remove(struct net_device *dev, 8738 struct net_device *adj_dev, 8739 u16 ref_nr, 8740 struct list_head *dev_list) 8741{ 8742 struct netdev_adjacent *adj; 8743 8744 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8745 dev->name, adj_dev->name, ref_nr); 8746 8747 adj = __netdev_find_adj(adj_dev, dev_list); 8748 8749 if (!adj) { 8750 pr_err("Adjacency does not exist for device %s from %s\n", 8751 dev->name, adj_dev->name); 8752 WARN_ON(1); 8753 return; 8754 } 8755 8756 if (adj->ref_nr > ref_nr) { 8757 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8758 dev->name, adj_dev->name, ref_nr, 8759 adj->ref_nr - ref_nr); 8760 adj->ref_nr -= ref_nr; 8761 return; 8762 } 8763 8764 if (adj->master) 8765 sysfs_remove_link(&(dev->dev.kobj), "master"); 8766 8767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8768 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8769 8770 list_del_rcu(&adj->list); 8771 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8772 adj_dev->name, dev->name, adj_dev->name); 8773 netdev_put(adj_dev, &adj->dev_tracker); 8774 kfree_rcu(adj, rcu); 8775} 8776 8777static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8778 struct net_device *upper_dev, 8779 struct list_head *up_list, 8780 struct list_head *down_list, 8781 void *private, bool master) 8782{ 8783 int ret; 8784 8785 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8786 private, master); 8787 if (ret) 8788 return ret; 8789 8790 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8791 private, false); 8792 if (ret) { 8793 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8794 return ret; 8795 } 8796 8797 return 0; 8798} 8799 8800static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8801 struct net_device *upper_dev, 8802 u16 ref_nr, 8803 struct list_head *up_list, 8804 struct list_head *down_list) 8805{ 8806 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8807 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8808} 8809 8810static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8811 struct net_device *upper_dev, 8812 void *private, bool master) 8813{ 8814 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8815 &dev->adj_list.upper, 8816 &upper_dev->adj_list.lower, 8817 private, master); 8818} 8819 8820static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8821 struct net_device *upper_dev) 8822{ 8823 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8824 &dev->adj_list.upper, 8825 &upper_dev->adj_list.lower); 8826} 8827 8828static int __netdev_upper_dev_link(struct net_device *dev, 8829 struct net_device *upper_dev, bool master, 8830 void *upper_priv, void *upper_info, 8831 struct netdev_nested_priv *priv, 8832 struct netlink_ext_ack *extack) 8833{ 8834 struct netdev_notifier_changeupper_info changeupper_info = { 8835 .info = { 8836 .dev = dev, 8837 .extack = extack, 8838 }, 8839 .upper_dev = upper_dev, 8840 .master = master, 8841 .linking = true, 8842 .upper_info = upper_info, 8843 }; 8844 struct net_device *master_dev; 8845 int ret = 0; 8846 8847 ASSERT_RTNL(); 8848 8849 if (dev == upper_dev) 8850 return -EBUSY; 8851 8852 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8853 if (__netdev_has_upper_dev(upper_dev, dev)) 8854 return -EBUSY; 8855 8856 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8857 return -EMLINK; 8858 8859 if (!master) { 8860 if (__netdev_has_upper_dev(dev, upper_dev)) 8861 return -EEXIST; 8862 } else { 8863 master_dev = __netdev_master_upper_dev_get(dev); 8864 if (master_dev) 8865 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8866 } 8867 8868 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8869 &changeupper_info.info); 8870 ret = notifier_to_errno(ret); 8871 if (ret) 8872 return ret; 8873 8874 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8875 master); 8876 if (ret) 8877 return ret; 8878 8879 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8880 &changeupper_info.info); 8881 ret = notifier_to_errno(ret); 8882 if (ret) 8883 goto rollback; 8884 8885 __netdev_update_upper_level(dev, NULL); 8886 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8887 8888 __netdev_update_lower_level(upper_dev, priv); 8889 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8890 priv); 8891 8892 return 0; 8893 8894rollback: 8895 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8896 8897 return ret; 8898} 8899 8900/** 8901 * netdev_upper_dev_link - Add a link to the upper device 8902 * @dev: device 8903 * @upper_dev: new upper device 8904 * @extack: netlink extended ack 8905 * 8906 * Adds a link to device which is upper to this one. The caller must hold 8907 * the RTNL lock. On a failure a negative errno code is returned. 8908 * On success the reference counts are adjusted and the function 8909 * returns zero. 8910 */ 8911int netdev_upper_dev_link(struct net_device *dev, 8912 struct net_device *upper_dev, 8913 struct netlink_ext_ack *extack) 8914{ 8915 struct netdev_nested_priv priv = { 8916 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8917 .data = NULL, 8918 }; 8919 8920 return __netdev_upper_dev_link(dev, upper_dev, false, 8921 NULL, NULL, &priv, extack); 8922} 8923EXPORT_SYMBOL(netdev_upper_dev_link); 8924 8925/** 8926 * netdev_master_upper_dev_link - Add a master link to the upper device 8927 * @dev: device 8928 * @upper_dev: new upper device 8929 * @upper_priv: upper device private 8930 * @upper_info: upper info to be passed down via notifier 8931 * @extack: netlink extended ack 8932 * 8933 * Adds a link to device which is upper to this one. In this case, only 8934 * one master upper device can be linked, although other non-master devices 8935 * might be linked as well. The caller must hold the RTNL lock. 8936 * On a failure a negative errno code is returned. On success the reference 8937 * counts are adjusted and the function returns zero. 8938 */ 8939int netdev_master_upper_dev_link(struct net_device *dev, 8940 struct net_device *upper_dev, 8941 void *upper_priv, void *upper_info, 8942 struct netlink_ext_ack *extack) 8943{ 8944 struct netdev_nested_priv priv = { 8945 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8946 .data = NULL, 8947 }; 8948 8949 return __netdev_upper_dev_link(dev, upper_dev, true, 8950 upper_priv, upper_info, &priv, extack); 8951} 8952EXPORT_SYMBOL(netdev_master_upper_dev_link); 8953 8954static void __netdev_upper_dev_unlink(struct net_device *dev, 8955 struct net_device *upper_dev, 8956 struct netdev_nested_priv *priv) 8957{ 8958 struct netdev_notifier_changeupper_info changeupper_info = { 8959 .info = { 8960 .dev = dev, 8961 }, 8962 .upper_dev = upper_dev, 8963 .linking = false, 8964 }; 8965 8966 ASSERT_RTNL(); 8967 8968 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8969 8970 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8971 &changeupper_info.info); 8972 8973 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8974 8975 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8976 &changeupper_info.info); 8977 8978 __netdev_update_upper_level(dev, NULL); 8979 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8980 8981 __netdev_update_lower_level(upper_dev, priv); 8982 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8983 priv); 8984} 8985 8986/** 8987 * netdev_upper_dev_unlink - Removes a link to upper device 8988 * @dev: device 8989 * @upper_dev: new upper device 8990 * 8991 * Removes a link to device which is upper to this one. The caller must hold 8992 * the RTNL lock. 8993 */ 8994void netdev_upper_dev_unlink(struct net_device *dev, 8995 struct net_device *upper_dev) 8996{ 8997 struct netdev_nested_priv priv = { 8998 .flags = NESTED_SYNC_TODO, 8999 .data = NULL, 9000 }; 9001 9002 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 9003} 9004EXPORT_SYMBOL(netdev_upper_dev_unlink); 9005 9006static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 9007 struct net_device *lower_dev, 9008 bool val) 9009{ 9010 struct netdev_adjacent *adj; 9011 9012 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 9013 if (adj) 9014 adj->ignore = val; 9015 9016 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 9017 if (adj) 9018 adj->ignore = val; 9019} 9020 9021static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 9022 struct net_device *lower_dev) 9023{ 9024 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 9025} 9026 9027static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 9028 struct net_device *lower_dev) 9029{ 9030 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 9031} 9032 9033int netdev_adjacent_change_prepare(struct net_device *old_dev, 9034 struct net_device *new_dev, 9035 struct net_device *dev, 9036 struct netlink_ext_ack *extack) 9037{ 9038 struct netdev_nested_priv priv = { 9039 .flags = 0, 9040 .data = NULL, 9041 }; 9042 int err; 9043 9044 if (!new_dev) 9045 return 0; 9046 9047 if (old_dev && new_dev != old_dev) 9048 netdev_adjacent_dev_disable(dev, old_dev); 9049 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 9050 extack); 9051 if (err) { 9052 if (old_dev && new_dev != old_dev) 9053 netdev_adjacent_dev_enable(dev, old_dev); 9054 return err; 9055 } 9056 9057 return 0; 9058} 9059EXPORT_SYMBOL(netdev_adjacent_change_prepare); 9060 9061void netdev_adjacent_change_commit(struct net_device *old_dev, 9062 struct net_device *new_dev, 9063 struct net_device *dev) 9064{ 9065 struct netdev_nested_priv priv = { 9066 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 9067 .data = NULL, 9068 }; 9069 9070 if (!new_dev || !old_dev) 9071 return; 9072 9073 if (new_dev == old_dev) 9074 return; 9075 9076 netdev_adjacent_dev_enable(dev, old_dev); 9077 __netdev_upper_dev_unlink(old_dev, dev, &priv); 9078} 9079EXPORT_SYMBOL(netdev_adjacent_change_commit); 9080 9081void netdev_adjacent_change_abort(struct net_device *old_dev, 9082 struct net_device *new_dev, 9083 struct net_device *dev) 9084{ 9085 struct netdev_nested_priv priv = { 9086 .flags = 0, 9087 .data = NULL, 9088 }; 9089 9090 if (!new_dev) 9091 return; 9092 9093 if (old_dev && new_dev != old_dev) 9094 netdev_adjacent_dev_enable(dev, old_dev); 9095 9096 __netdev_upper_dev_unlink(new_dev, dev, &priv); 9097} 9098EXPORT_SYMBOL(netdev_adjacent_change_abort); 9099 9100/** 9101 * netdev_bonding_info_change - Dispatch event about slave change 9102 * @dev: device 9103 * @bonding_info: info to dispatch 9104 * 9105 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 9106 * The caller must hold the RTNL lock. 9107 */ 9108void netdev_bonding_info_change(struct net_device *dev, 9109 struct netdev_bonding_info *bonding_info) 9110{ 9111 struct netdev_notifier_bonding_info info = { 9112 .info.dev = dev, 9113 }; 9114 9115 memcpy(&info.bonding_info, bonding_info, 9116 sizeof(struct netdev_bonding_info)); 9117 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9118 &info.info); 9119} 9120EXPORT_SYMBOL(netdev_bonding_info_change); 9121 9122static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9123 struct netlink_ext_ack *extack) 9124{ 9125 struct netdev_notifier_offload_xstats_info info = { 9126 .info.dev = dev, 9127 .info.extack = extack, 9128 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9129 }; 9130 int err; 9131 int rc; 9132 9133 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9134 GFP_KERNEL); 9135 if (!dev->offload_xstats_l3) 9136 return -ENOMEM; 9137 9138 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9139 NETDEV_OFFLOAD_XSTATS_DISABLE, 9140 &info.info); 9141 err = notifier_to_errno(rc); 9142 if (err) 9143 goto free_stats; 9144 9145 return 0; 9146 9147free_stats: 9148 kfree(dev->offload_xstats_l3); 9149 dev->offload_xstats_l3 = NULL; 9150 return err; 9151} 9152 9153int netdev_offload_xstats_enable(struct net_device *dev, 9154 enum netdev_offload_xstats_type type, 9155 struct netlink_ext_ack *extack) 9156{ 9157 ASSERT_RTNL(); 9158 9159 if (netdev_offload_xstats_enabled(dev, type)) 9160 return -EALREADY; 9161 9162 switch (type) { 9163 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9164 return netdev_offload_xstats_enable_l3(dev, extack); 9165 } 9166 9167 WARN_ON(1); 9168 return -EINVAL; 9169} 9170EXPORT_SYMBOL(netdev_offload_xstats_enable); 9171 9172static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9173{ 9174 struct netdev_notifier_offload_xstats_info info = { 9175 .info.dev = dev, 9176 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9177 }; 9178 9179 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9180 &info.info); 9181 kfree(dev->offload_xstats_l3); 9182 dev->offload_xstats_l3 = NULL; 9183} 9184 9185int netdev_offload_xstats_disable(struct net_device *dev, 9186 enum netdev_offload_xstats_type type) 9187{ 9188 ASSERT_RTNL(); 9189 9190 if (!netdev_offload_xstats_enabled(dev, type)) 9191 return -EALREADY; 9192 9193 switch (type) { 9194 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9195 netdev_offload_xstats_disable_l3(dev); 9196 return 0; 9197 } 9198 9199 WARN_ON(1); 9200 return -EINVAL; 9201} 9202EXPORT_SYMBOL(netdev_offload_xstats_disable); 9203 9204static void netdev_offload_xstats_disable_all(struct net_device *dev) 9205{ 9206 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9207} 9208 9209static struct rtnl_hw_stats64 * 9210netdev_offload_xstats_get_ptr(const struct net_device *dev, 9211 enum netdev_offload_xstats_type type) 9212{ 9213 switch (type) { 9214 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9215 return dev->offload_xstats_l3; 9216 } 9217 9218 WARN_ON(1); 9219 return NULL; 9220} 9221 9222bool netdev_offload_xstats_enabled(const struct net_device *dev, 9223 enum netdev_offload_xstats_type type) 9224{ 9225 ASSERT_RTNL(); 9226 9227 return netdev_offload_xstats_get_ptr(dev, type); 9228} 9229EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9230 9231struct netdev_notifier_offload_xstats_ru { 9232 bool used; 9233}; 9234 9235struct netdev_notifier_offload_xstats_rd { 9236 struct rtnl_hw_stats64 stats; 9237 bool used; 9238}; 9239 9240static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9241 const struct rtnl_hw_stats64 *src) 9242{ 9243 dest->rx_packets += src->rx_packets; 9244 dest->tx_packets += src->tx_packets; 9245 dest->rx_bytes += src->rx_bytes; 9246 dest->tx_bytes += src->tx_bytes; 9247 dest->rx_errors += src->rx_errors; 9248 dest->tx_errors += src->tx_errors; 9249 dest->rx_dropped += src->rx_dropped; 9250 dest->tx_dropped += src->tx_dropped; 9251 dest->multicast += src->multicast; 9252} 9253 9254static int netdev_offload_xstats_get_used(struct net_device *dev, 9255 enum netdev_offload_xstats_type type, 9256 bool *p_used, 9257 struct netlink_ext_ack *extack) 9258{ 9259 struct netdev_notifier_offload_xstats_ru report_used = {}; 9260 struct netdev_notifier_offload_xstats_info info = { 9261 .info.dev = dev, 9262 .info.extack = extack, 9263 .type = type, 9264 .report_used = &report_used, 9265 }; 9266 int rc; 9267 9268 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9269 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9270 &info.info); 9271 *p_used = report_used.used; 9272 return notifier_to_errno(rc); 9273} 9274 9275static int netdev_offload_xstats_get_stats(struct net_device *dev, 9276 enum netdev_offload_xstats_type type, 9277 struct rtnl_hw_stats64 *p_stats, 9278 bool *p_used, 9279 struct netlink_ext_ack *extack) 9280{ 9281 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9282 struct netdev_notifier_offload_xstats_info info = { 9283 .info.dev = dev, 9284 .info.extack = extack, 9285 .type = type, 9286 .report_delta = &report_delta, 9287 }; 9288 struct rtnl_hw_stats64 *stats; 9289 int rc; 9290 9291 stats = netdev_offload_xstats_get_ptr(dev, type); 9292 if (WARN_ON(!stats)) 9293 return -EINVAL; 9294 9295 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9296 &info.info); 9297 9298 /* Cache whatever we got, even if there was an error, otherwise the 9299 * successful stats retrievals would get lost. 9300 */ 9301 netdev_hw_stats64_add(stats, &report_delta.stats); 9302 9303 if (p_stats) 9304 *p_stats = *stats; 9305 *p_used = report_delta.used; 9306 9307 return notifier_to_errno(rc); 9308} 9309 9310int netdev_offload_xstats_get(struct net_device *dev, 9311 enum netdev_offload_xstats_type type, 9312 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9313 struct netlink_ext_ack *extack) 9314{ 9315 ASSERT_RTNL(); 9316 9317 if (p_stats) 9318 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9319 p_used, extack); 9320 else 9321 return netdev_offload_xstats_get_used(dev, type, p_used, 9322 extack); 9323} 9324EXPORT_SYMBOL(netdev_offload_xstats_get); 9325 9326void 9327netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9328 const struct rtnl_hw_stats64 *stats) 9329{ 9330 report_delta->used = true; 9331 netdev_hw_stats64_add(&report_delta->stats, stats); 9332} 9333EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9334 9335void 9336netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9337{ 9338 report_used->used = true; 9339} 9340EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9341 9342void netdev_offload_xstats_push_delta(struct net_device *dev, 9343 enum netdev_offload_xstats_type type, 9344 const struct rtnl_hw_stats64 *p_stats) 9345{ 9346 struct rtnl_hw_stats64 *stats; 9347 9348 ASSERT_RTNL(); 9349 9350 stats = netdev_offload_xstats_get_ptr(dev, type); 9351 if (WARN_ON(!stats)) 9352 return; 9353 9354 netdev_hw_stats64_add(stats, p_stats); 9355} 9356EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9357 9358/** 9359 * netdev_get_xmit_slave - Get the xmit slave of master device 9360 * @dev: device 9361 * @skb: The packet 9362 * @all_slaves: assume all the slaves are active 9363 * 9364 * The reference counters are not incremented so the caller must be 9365 * careful with locks. The caller must hold RCU lock. 9366 * %NULL is returned if no slave is found. 9367 */ 9368 9369struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9370 struct sk_buff *skb, 9371 bool all_slaves) 9372{ 9373 const struct net_device_ops *ops = dev->netdev_ops; 9374 9375 if (!ops->ndo_get_xmit_slave) 9376 return NULL; 9377 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9378} 9379EXPORT_SYMBOL(netdev_get_xmit_slave); 9380 9381static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9382 struct sock *sk) 9383{ 9384 const struct net_device_ops *ops = dev->netdev_ops; 9385 9386 if (!ops->ndo_sk_get_lower_dev) 9387 return NULL; 9388 return ops->ndo_sk_get_lower_dev(dev, sk); 9389} 9390 9391/** 9392 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9393 * @dev: device 9394 * @sk: the socket 9395 * 9396 * %NULL is returned if no lower device is found. 9397 */ 9398 9399struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9400 struct sock *sk) 9401{ 9402 struct net_device *lower; 9403 9404 lower = netdev_sk_get_lower_dev(dev, sk); 9405 while (lower) { 9406 dev = lower; 9407 lower = netdev_sk_get_lower_dev(dev, sk); 9408 } 9409 9410 return dev; 9411} 9412EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9413 9414static void netdev_adjacent_add_links(struct net_device *dev) 9415{ 9416 struct netdev_adjacent *iter; 9417 9418 struct net *net = dev_net(dev); 9419 9420 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9421 if (!net_eq(net, dev_net(iter->dev))) 9422 continue; 9423 netdev_adjacent_sysfs_add(iter->dev, dev, 9424 &iter->dev->adj_list.lower); 9425 netdev_adjacent_sysfs_add(dev, iter->dev, 9426 &dev->adj_list.upper); 9427 } 9428 9429 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9430 if (!net_eq(net, dev_net(iter->dev))) 9431 continue; 9432 netdev_adjacent_sysfs_add(iter->dev, dev, 9433 &iter->dev->adj_list.upper); 9434 netdev_adjacent_sysfs_add(dev, iter->dev, 9435 &dev->adj_list.lower); 9436 } 9437} 9438 9439static void netdev_adjacent_del_links(struct net_device *dev) 9440{ 9441 struct netdev_adjacent *iter; 9442 9443 struct net *net = dev_net(dev); 9444 9445 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9446 if (!net_eq(net, dev_net(iter->dev))) 9447 continue; 9448 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9449 &iter->dev->adj_list.lower); 9450 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9451 &dev->adj_list.upper); 9452 } 9453 9454 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9455 if (!net_eq(net, dev_net(iter->dev))) 9456 continue; 9457 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9458 &iter->dev->adj_list.upper); 9459 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9460 &dev->adj_list.lower); 9461 } 9462} 9463 9464void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9465{ 9466 struct netdev_adjacent *iter; 9467 9468 struct net *net = dev_net(dev); 9469 9470 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9471 if (!net_eq(net, dev_net(iter->dev))) 9472 continue; 9473 netdev_adjacent_sysfs_del(iter->dev, oldname, 9474 &iter->dev->adj_list.lower); 9475 netdev_adjacent_sysfs_add(iter->dev, dev, 9476 &iter->dev->adj_list.lower); 9477 } 9478 9479 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9480 if (!net_eq(net, dev_net(iter->dev))) 9481 continue; 9482 netdev_adjacent_sysfs_del(iter->dev, oldname, 9483 &iter->dev->adj_list.upper); 9484 netdev_adjacent_sysfs_add(iter->dev, dev, 9485 &iter->dev->adj_list.upper); 9486 } 9487} 9488 9489void *netdev_lower_dev_get_private(struct net_device *dev, 9490 struct net_device *lower_dev) 9491{ 9492 struct netdev_adjacent *lower; 9493 9494 if (!lower_dev) 9495 return NULL; 9496 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9497 if (!lower) 9498 return NULL; 9499 9500 return lower->private; 9501} 9502EXPORT_SYMBOL(netdev_lower_dev_get_private); 9503 9504 9505/** 9506 * netdev_lower_state_changed - Dispatch event about lower device state change 9507 * @lower_dev: device 9508 * @lower_state_info: state to dispatch 9509 * 9510 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9511 * The caller must hold the RTNL lock. 9512 */ 9513void netdev_lower_state_changed(struct net_device *lower_dev, 9514 void *lower_state_info) 9515{ 9516 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9517 .info.dev = lower_dev, 9518 }; 9519 9520 ASSERT_RTNL(); 9521 changelowerstate_info.lower_state_info = lower_state_info; 9522 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9523 &changelowerstate_info.info); 9524} 9525EXPORT_SYMBOL(netdev_lower_state_changed); 9526 9527static void dev_change_rx_flags(struct net_device *dev, int flags) 9528{ 9529 const struct net_device_ops *ops = dev->netdev_ops; 9530 9531 if (ops->ndo_change_rx_flags) 9532 ops->ndo_change_rx_flags(dev, flags); 9533} 9534 9535static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9536{ 9537 unsigned int old_flags = dev->flags; 9538 unsigned int promiscuity, flags; 9539 kuid_t uid; 9540 kgid_t gid; 9541 9542 ASSERT_RTNL(); 9543 9544 promiscuity = dev->promiscuity + inc; 9545 if (promiscuity == 0) { 9546 /* 9547 * Avoid overflow. 9548 * If inc causes overflow, untouch promisc and return error. 9549 */ 9550 if (unlikely(inc > 0)) { 9551 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9552 return -EOVERFLOW; 9553 } 9554 flags = old_flags & ~IFF_PROMISC; 9555 } else { 9556 flags = old_flags | IFF_PROMISC; 9557 } 9558 WRITE_ONCE(dev->promiscuity, promiscuity); 9559 if (flags != old_flags) { 9560 WRITE_ONCE(dev->flags, flags); 9561 netdev_info(dev, "%s promiscuous mode\n", 9562 dev->flags & IFF_PROMISC ? "entered" : "left"); 9563 if (audit_enabled) { 9564 current_uid_gid(&uid, &gid); 9565 audit_log(audit_context(), GFP_ATOMIC, 9566 AUDIT_ANOM_PROMISCUOUS, 9567 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9568 dev->name, (dev->flags & IFF_PROMISC), 9569 (old_flags & IFF_PROMISC), 9570 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9571 from_kuid(&init_user_ns, uid), 9572 from_kgid(&init_user_ns, gid), 9573 audit_get_sessionid(current)); 9574 } 9575 9576 dev_change_rx_flags(dev, IFF_PROMISC); 9577 } 9578 if (notify) { 9579 /* The ops lock is only required to ensure consistent locking 9580 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9581 * called without the lock, even for devices that are ops 9582 * locked, such as in `dev_uc_sync_multiple` when using 9583 * bonding or teaming. 9584 */ 9585 netdev_ops_assert_locked(dev); 9586 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9587 } 9588 return 0; 9589} 9590 9591int netif_set_promiscuity(struct net_device *dev, int inc) 9592{ 9593 unsigned int old_flags = dev->flags; 9594 int err; 9595 9596 err = __dev_set_promiscuity(dev, inc, true); 9597 if (err < 0) 9598 return err; 9599 if (dev->flags != old_flags) 9600 dev_set_rx_mode(dev); 9601 return err; 9602} 9603 9604int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9605{ 9606 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9607 unsigned int allmulti, flags; 9608 9609 ASSERT_RTNL(); 9610 9611 allmulti = dev->allmulti + inc; 9612 if (allmulti == 0) { 9613 /* 9614 * Avoid overflow. 9615 * If inc causes overflow, untouch allmulti and return error. 9616 */ 9617 if (unlikely(inc > 0)) { 9618 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9619 return -EOVERFLOW; 9620 } 9621 flags = old_flags & ~IFF_ALLMULTI; 9622 } else { 9623 flags = old_flags | IFF_ALLMULTI; 9624 } 9625 WRITE_ONCE(dev->allmulti, allmulti); 9626 if (flags != old_flags) { 9627 WRITE_ONCE(dev->flags, flags); 9628 netdev_info(dev, "%s allmulticast mode\n", 9629 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9630 dev_change_rx_flags(dev, IFF_ALLMULTI); 9631 dev_set_rx_mode(dev); 9632 if (notify) 9633 __dev_notify_flags(dev, old_flags, 9634 dev->gflags ^ old_gflags, 0, NULL); 9635 } 9636 return 0; 9637} 9638 9639/* 9640 * Upload unicast and multicast address lists to device and 9641 * configure RX filtering. When the device doesn't support unicast 9642 * filtering it is put in promiscuous mode while unicast addresses 9643 * are present. 9644 */ 9645void __dev_set_rx_mode(struct net_device *dev) 9646{ 9647 const struct net_device_ops *ops = dev->netdev_ops; 9648 9649 /* dev_open will call this function so the list will stay sane. */ 9650 if (!(dev->flags&IFF_UP)) 9651 return; 9652 9653 if (!netif_device_present(dev)) 9654 return; 9655 9656 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9657 /* Unicast addresses changes may only happen under the rtnl, 9658 * therefore calling __dev_set_promiscuity here is safe. 9659 */ 9660 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9661 __dev_set_promiscuity(dev, 1, false); 9662 dev->uc_promisc = true; 9663 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9664 __dev_set_promiscuity(dev, -1, false); 9665 dev->uc_promisc = false; 9666 } 9667 } 9668 9669 if (ops->ndo_set_rx_mode) 9670 ops->ndo_set_rx_mode(dev); 9671} 9672 9673void dev_set_rx_mode(struct net_device *dev) 9674{ 9675 netif_addr_lock_bh(dev); 9676 __dev_set_rx_mode(dev); 9677 netif_addr_unlock_bh(dev); 9678} 9679 9680/** 9681 * netif_get_flags() - get flags reported to userspace 9682 * @dev: device 9683 * 9684 * Get the combination of flag bits exported through APIs to userspace. 9685 */ 9686unsigned int netif_get_flags(const struct net_device *dev) 9687{ 9688 unsigned int flags; 9689 9690 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9691 IFF_ALLMULTI | 9692 IFF_RUNNING | 9693 IFF_LOWER_UP | 9694 IFF_DORMANT)) | 9695 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9696 IFF_ALLMULTI)); 9697 9698 if (netif_running(dev)) { 9699 if (netif_oper_up(dev)) 9700 flags |= IFF_RUNNING; 9701 if (netif_carrier_ok(dev)) 9702 flags |= IFF_LOWER_UP; 9703 if (netif_dormant(dev)) 9704 flags |= IFF_DORMANT; 9705 } 9706 9707 return flags; 9708} 9709EXPORT_SYMBOL(netif_get_flags); 9710 9711int __dev_change_flags(struct net_device *dev, unsigned int flags, 9712 struct netlink_ext_ack *extack) 9713{ 9714 unsigned int old_flags = dev->flags; 9715 int ret; 9716 9717 ASSERT_RTNL(); 9718 9719 /* 9720 * Set the flags on our device. 9721 */ 9722 9723 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9724 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9725 IFF_AUTOMEDIA)) | 9726 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9727 IFF_ALLMULTI)); 9728 9729 /* 9730 * Load in the correct multicast list now the flags have changed. 9731 */ 9732 9733 if ((old_flags ^ flags) & IFF_MULTICAST) 9734 dev_change_rx_flags(dev, IFF_MULTICAST); 9735 9736 dev_set_rx_mode(dev); 9737 9738 /* 9739 * Have we downed the interface. We handle IFF_UP ourselves 9740 * according to user attempts to set it, rather than blindly 9741 * setting it. 9742 */ 9743 9744 ret = 0; 9745 if ((old_flags ^ flags) & IFF_UP) { 9746 if (old_flags & IFF_UP) 9747 __dev_close(dev); 9748 else 9749 ret = __dev_open(dev, extack); 9750 } 9751 9752 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9753 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9754 old_flags = dev->flags; 9755 9756 dev->gflags ^= IFF_PROMISC; 9757 9758 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9759 if (dev->flags != old_flags) 9760 dev_set_rx_mode(dev); 9761 } 9762 9763 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9764 * is important. Some (broken) drivers set IFF_PROMISC, when 9765 * IFF_ALLMULTI is requested not asking us and not reporting. 9766 */ 9767 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9768 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9769 9770 dev->gflags ^= IFF_ALLMULTI; 9771 netif_set_allmulti(dev, inc, false); 9772 } 9773 9774 return ret; 9775} 9776 9777void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9778 unsigned int gchanges, u32 portid, 9779 const struct nlmsghdr *nlh) 9780{ 9781 unsigned int changes = dev->flags ^ old_flags; 9782 9783 if (gchanges) 9784 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9785 9786 if (changes & IFF_UP) { 9787 if (dev->flags & IFF_UP) 9788 call_netdevice_notifiers(NETDEV_UP, dev); 9789 else 9790 call_netdevice_notifiers(NETDEV_DOWN, dev); 9791 } 9792 9793 if (dev->flags & IFF_UP && 9794 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9795 struct netdev_notifier_change_info change_info = { 9796 .info = { 9797 .dev = dev, 9798 }, 9799 .flags_changed = changes, 9800 }; 9801 9802 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9803 } 9804} 9805 9806int netif_change_flags(struct net_device *dev, unsigned int flags, 9807 struct netlink_ext_ack *extack) 9808{ 9809 int ret; 9810 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9811 9812 ret = __dev_change_flags(dev, flags, extack); 9813 if (ret < 0) 9814 return ret; 9815 9816 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9817 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9818 return ret; 9819} 9820 9821int __netif_set_mtu(struct net_device *dev, int new_mtu) 9822{ 9823 const struct net_device_ops *ops = dev->netdev_ops; 9824 9825 if (ops->ndo_change_mtu) 9826 return ops->ndo_change_mtu(dev, new_mtu); 9827 9828 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9829 WRITE_ONCE(dev->mtu, new_mtu); 9830 return 0; 9831} 9832EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9833 9834int dev_validate_mtu(struct net_device *dev, int new_mtu, 9835 struct netlink_ext_ack *extack) 9836{ 9837 /* MTU must be positive, and in range */ 9838 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9839 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9840 return -EINVAL; 9841 } 9842 9843 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9844 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9845 return -EINVAL; 9846 } 9847 return 0; 9848} 9849 9850/** 9851 * netif_set_mtu_ext() - Change maximum transfer unit 9852 * @dev: device 9853 * @new_mtu: new transfer unit 9854 * @extack: netlink extended ack 9855 * 9856 * Change the maximum transfer size of the network device. 9857 * 9858 * Return: 0 on success, -errno on failure. 9859 */ 9860int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9861 struct netlink_ext_ack *extack) 9862{ 9863 int err, orig_mtu; 9864 9865 netdev_ops_assert_locked(dev); 9866 9867 if (new_mtu == dev->mtu) 9868 return 0; 9869 9870 err = dev_validate_mtu(dev, new_mtu, extack); 9871 if (err) 9872 return err; 9873 9874 if (!netif_device_present(dev)) 9875 return -ENODEV; 9876 9877 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9878 err = notifier_to_errno(err); 9879 if (err) 9880 return err; 9881 9882 orig_mtu = dev->mtu; 9883 err = __netif_set_mtu(dev, new_mtu); 9884 9885 if (!err) { 9886 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9887 orig_mtu); 9888 err = notifier_to_errno(err); 9889 if (err) { 9890 /* setting mtu back and notifying everyone again, 9891 * so that they have a chance to revert changes. 9892 */ 9893 __netif_set_mtu(dev, orig_mtu); 9894 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9895 new_mtu); 9896 } 9897 } 9898 return err; 9899} 9900 9901int netif_set_mtu(struct net_device *dev, int new_mtu) 9902{ 9903 struct netlink_ext_ack extack; 9904 int err; 9905 9906 memset(&extack, 0, sizeof(extack)); 9907 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9908 if (err && extack._msg) 9909 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9910 return err; 9911} 9912EXPORT_SYMBOL(netif_set_mtu); 9913 9914int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9915{ 9916 unsigned int orig_len = dev->tx_queue_len; 9917 int res; 9918 9919 if (new_len != (unsigned int)new_len) 9920 return -ERANGE; 9921 9922 if (new_len != orig_len) { 9923 WRITE_ONCE(dev->tx_queue_len, new_len); 9924 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9925 res = notifier_to_errno(res); 9926 if (res) 9927 goto err_rollback; 9928 res = dev_qdisc_change_tx_queue_len(dev); 9929 if (res) 9930 goto err_rollback; 9931 } 9932 9933 return 0; 9934 9935err_rollback: 9936 netdev_err(dev, "refused to change device tx_queue_len\n"); 9937 WRITE_ONCE(dev->tx_queue_len, orig_len); 9938 return res; 9939} 9940 9941void netif_set_group(struct net_device *dev, int new_group) 9942{ 9943 dev->group = new_group; 9944} 9945 9946/** 9947 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9948 * @dev: device 9949 * @addr: new address 9950 * @extack: netlink extended ack 9951 * 9952 * Return: 0 on success, -errno on failure. 9953 */ 9954int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9955 struct netlink_ext_ack *extack) 9956{ 9957 struct netdev_notifier_pre_changeaddr_info info = { 9958 .info.dev = dev, 9959 .info.extack = extack, 9960 .dev_addr = addr, 9961 }; 9962 int rc; 9963 9964 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9965 return notifier_to_errno(rc); 9966} 9967EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9968 9969int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9970 struct netlink_ext_ack *extack) 9971{ 9972 const struct net_device_ops *ops = dev->netdev_ops; 9973 int err; 9974 9975 if (!ops->ndo_set_mac_address) 9976 return -EOPNOTSUPP; 9977 if (ss->ss_family != dev->type) 9978 return -EINVAL; 9979 if (!netif_device_present(dev)) 9980 return -ENODEV; 9981 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9982 if (err) 9983 return err; 9984 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9985 err = ops->ndo_set_mac_address(dev, ss); 9986 if (err) 9987 return err; 9988 } 9989 dev->addr_assign_type = NET_ADDR_SET; 9990 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9991 add_device_randomness(dev->dev_addr, dev->addr_len); 9992 return 0; 9993} 9994 9995DECLARE_RWSEM(dev_addr_sem); 9996 9997/* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9998int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9999{ 10000 size_t size = sizeof(sa->sa_data); 10001 struct net_device *dev; 10002 int ret = 0; 10003 10004 down_read(&dev_addr_sem); 10005 rcu_read_lock(); 10006 10007 dev = dev_get_by_name_rcu(net, dev_name); 10008 if (!dev) { 10009 ret = -ENODEV; 10010 goto unlock; 10011 } 10012 if (!dev->addr_len) 10013 memset(sa->sa_data, 0, size); 10014 else 10015 memcpy(sa->sa_data, dev->dev_addr, 10016 min_t(size_t, size, dev->addr_len)); 10017 sa->sa_family = dev->type; 10018 10019unlock: 10020 rcu_read_unlock(); 10021 up_read(&dev_addr_sem); 10022 return ret; 10023} 10024EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 10025 10026int netif_change_carrier(struct net_device *dev, bool new_carrier) 10027{ 10028 const struct net_device_ops *ops = dev->netdev_ops; 10029 10030 if (!ops->ndo_change_carrier) 10031 return -EOPNOTSUPP; 10032 if (!netif_device_present(dev)) 10033 return -ENODEV; 10034 return ops->ndo_change_carrier(dev, new_carrier); 10035} 10036 10037/** 10038 * dev_get_phys_port_id - Get device physical port ID 10039 * @dev: device 10040 * @ppid: port ID 10041 * 10042 * Get device physical port ID 10043 */ 10044int dev_get_phys_port_id(struct net_device *dev, 10045 struct netdev_phys_item_id *ppid) 10046{ 10047 const struct net_device_ops *ops = dev->netdev_ops; 10048 10049 if (!ops->ndo_get_phys_port_id) 10050 return -EOPNOTSUPP; 10051 return ops->ndo_get_phys_port_id(dev, ppid); 10052} 10053 10054/** 10055 * dev_get_phys_port_name - Get device physical port name 10056 * @dev: device 10057 * @name: port name 10058 * @len: limit of bytes to copy to name 10059 * 10060 * Get device physical port name 10061 */ 10062int dev_get_phys_port_name(struct net_device *dev, 10063 char *name, size_t len) 10064{ 10065 const struct net_device_ops *ops = dev->netdev_ops; 10066 int err; 10067 10068 if (ops->ndo_get_phys_port_name) { 10069 err = ops->ndo_get_phys_port_name(dev, name, len); 10070 if (err != -EOPNOTSUPP) 10071 return err; 10072 } 10073 return devlink_compat_phys_port_name_get(dev, name, len); 10074} 10075 10076/** 10077 * netif_get_port_parent_id() - Get the device's port parent identifier 10078 * @dev: network device 10079 * @ppid: pointer to a storage for the port's parent identifier 10080 * @recurse: allow/disallow recursion to lower devices 10081 * 10082 * Get the devices's port parent identifier. 10083 * 10084 * Return: 0 on success, -errno on failure. 10085 */ 10086int netif_get_port_parent_id(struct net_device *dev, 10087 struct netdev_phys_item_id *ppid, bool recurse) 10088{ 10089 const struct net_device_ops *ops = dev->netdev_ops; 10090 struct netdev_phys_item_id first = { }; 10091 struct net_device *lower_dev; 10092 struct list_head *iter; 10093 int err; 10094 10095 if (ops->ndo_get_port_parent_id) { 10096 err = ops->ndo_get_port_parent_id(dev, ppid); 10097 if (err != -EOPNOTSUPP) 10098 return err; 10099 } 10100 10101 err = devlink_compat_switch_id_get(dev, ppid); 10102 if (!recurse || err != -EOPNOTSUPP) 10103 return err; 10104 10105 netdev_for_each_lower_dev(dev, lower_dev, iter) { 10106 err = netif_get_port_parent_id(lower_dev, ppid, true); 10107 if (err) 10108 break; 10109 if (!first.id_len) 10110 first = *ppid; 10111 else if (memcmp(&first, ppid, sizeof(*ppid))) 10112 return -EOPNOTSUPP; 10113 } 10114 10115 return err; 10116} 10117EXPORT_SYMBOL(netif_get_port_parent_id); 10118 10119/** 10120 * netdev_port_same_parent_id - Indicate if two network devices have 10121 * the same port parent identifier 10122 * @a: first network device 10123 * @b: second network device 10124 */ 10125bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10126{ 10127 struct netdev_phys_item_id a_id = { }; 10128 struct netdev_phys_item_id b_id = { }; 10129 10130 if (netif_get_port_parent_id(a, &a_id, true) || 10131 netif_get_port_parent_id(b, &b_id, true)) 10132 return false; 10133 10134 return netdev_phys_item_id_same(&a_id, &b_id); 10135} 10136EXPORT_SYMBOL(netdev_port_same_parent_id); 10137 10138int netif_change_proto_down(struct net_device *dev, bool proto_down) 10139{ 10140 if (!dev->change_proto_down) 10141 return -EOPNOTSUPP; 10142 if (!netif_device_present(dev)) 10143 return -ENODEV; 10144 if (proto_down) 10145 netif_carrier_off(dev); 10146 else 10147 netif_carrier_on(dev); 10148 WRITE_ONCE(dev->proto_down, proto_down); 10149 return 0; 10150} 10151 10152/** 10153 * netdev_change_proto_down_reason_locked - proto down reason 10154 * 10155 * @dev: device 10156 * @mask: proto down mask 10157 * @value: proto down value 10158 */ 10159void netdev_change_proto_down_reason_locked(struct net_device *dev, 10160 unsigned long mask, u32 value) 10161{ 10162 u32 proto_down_reason; 10163 int b; 10164 10165 if (!mask) { 10166 proto_down_reason = value; 10167 } else { 10168 proto_down_reason = dev->proto_down_reason; 10169 for_each_set_bit(b, &mask, 32) { 10170 if (value & (1 << b)) 10171 proto_down_reason |= BIT(b); 10172 else 10173 proto_down_reason &= ~BIT(b); 10174 } 10175 } 10176 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10177} 10178 10179struct bpf_xdp_link { 10180 struct bpf_link link; 10181 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10182 int flags; 10183}; 10184 10185static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10186{ 10187 if (flags & XDP_FLAGS_HW_MODE) 10188 return XDP_MODE_HW; 10189 if (flags & XDP_FLAGS_DRV_MODE) 10190 return XDP_MODE_DRV; 10191 if (flags & XDP_FLAGS_SKB_MODE) 10192 return XDP_MODE_SKB; 10193 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10194} 10195 10196static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10197{ 10198 switch (mode) { 10199 case XDP_MODE_SKB: 10200 return generic_xdp_install; 10201 case XDP_MODE_DRV: 10202 case XDP_MODE_HW: 10203 return dev->netdev_ops->ndo_bpf; 10204 default: 10205 return NULL; 10206 } 10207} 10208 10209static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10210 enum bpf_xdp_mode mode) 10211{ 10212 return dev->xdp_state[mode].link; 10213} 10214 10215static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10216 enum bpf_xdp_mode mode) 10217{ 10218 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10219 10220 if (link) 10221 return link->link.prog; 10222 return dev->xdp_state[mode].prog; 10223} 10224 10225u8 dev_xdp_prog_count(struct net_device *dev) 10226{ 10227 u8 count = 0; 10228 int i; 10229 10230 for (i = 0; i < __MAX_XDP_MODE; i++) 10231 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10232 count++; 10233 return count; 10234} 10235EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10236 10237u8 dev_xdp_sb_prog_count(struct net_device *dev) 10238{ 10239 u8 count = 0; 10240 int i; 10241 10242 for (i = 0; i < __MAX_XDP_MODE; i++) 10243 if (dev->xdp_state[i].prog && 10244 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10245 count++; 10246 return count; 10247} 10248 10249int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10250{ 10251 if (!dev->netdev_ops->ndo_bpf) 10252 return -EOPNOTSUPP; 10253 10254 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10255 bpf->command == XDP_SETUP_PROG && 10256 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10257 NL_SET_ERR_MSG(bpf->extack, 10258 "unable to propagate XDP to device using tcp-data-split"); 10259 return -EBUSY; 10260 } 10261 10262 if (dev_get_min_mp_channel_count(dev)) { 10263 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10264 return -EBUSY; 10265 } 10266 10267 return dev->netdev_ops->ndo_bpf(dev, bpf); 10268} 10269EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10270 10271u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10272{ 10273 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10274 10275 return prog ? prog->aux->id : 0; 10276} 10277 10278static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10279 struct bpf_xdp_link *link) 10280{ 10281 dev->xdp_state[mode].link = link; 10282 dev->xdp_state[mode].prog = NULL; 10283} 10284 10285static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10286 struct bpf_prog *prog) 10287{ 10288 dev->xdp_state[mode].link = NULL; 10289 dev->xdp_state[mode].prog = prog; 10290} 10291 10292static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10293 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10294 u32 flags, struct bpf_prog *prog) 10295{ 10296 struct netdev_bpf xdp; 10297 int err; 10298 10299 netdev_ops_assert_locked(dev); 10300 10301 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10302 prog && !prog->aux->xdp_has_frags) { 10303 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10304 return -EBUSY; 10305 } 10306 10307 if (dev_get_min_mp_channel_count(dev)) { 10308 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10309 return -EBUSY; 10310 } 10311 10312 memset(&xdp, 0, sizeof(xdp)); 10313 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10314 xdp.extack = extack; 10315 xdp.flags = flags; 10316 xdp.prog = prog; 10317 10318 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10319 * "moved" into driver), so they don't increment it on their own, but 10320 * they do decrement refcnt when program is detached or replaced. 10321 * Given net_device also owns link/prog, we need to bump refcnt here 10322 * to prevent drivers from underflowing it. 10323 */ 10324 if (prog) 10325 bpf_prog_inc(prog); 10326 err = bpf_op(dev, &xdp); 10327 if (err) { 10328 if (prog) 10329 bpf_prog_put(prog); 10330 return err; 10331 } 10332 10333 if (mode != XDP_MODE_HW) 10334 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10335 10336 return 0; 10337} 10338 10339static void dev_xdp_uninstall(struct net_device *dev) 10340{ 10341 struct bpf_xdp_link *link; 10342 struct bpf_prog *prog; 10343 enum bpf_xdp_mode mode; 10344 bpf_op_t bpf_op; 10345 10346 ASSERT_RTNL(); 10347 10348 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10349 prog = dev_xdp_prog(dev, mode); 10350 if (!prog) 10351 continue; 10352 10353 bpf_op = dev_xdp_bpf_op(dev, mode); 10354 if (!bpf_op) 10355 continue; 10356 10357 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10358 10359 /* auto-detach link from net device */ 10360 link = dev_xdp_link(dev, mode); 10361 if (link) 10362 link->dev = NULL; 10363 else 10364 bpf_prog_put(prog); 10365 10366 dev_xdp_set_link(dev, mode, NULL); 10367 } 10368} 10369 10370static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10371 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10372 struct bpf_prog *old_prog, u32 flags) 10373{ 10374 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10375 struct bpf_prog *cur_prog; 10376 struct net_device *upper; 10377 struct list_head *iter; 10378 enum bpf_xdp_mode mode; 10379 bpf_op_t bpf_op; 10380 int err; 10381 10382 ASSERT_RTNL(); 10383 10384 /* either link or prog attachment, never both */ 10385 if (link && (new_prog || old_prog)) 10386 return -EINVAL; 10387 /* link supports only XDP mode flags */ 10388 if (link && (flags & ~XDP_FLAGS_MODES)) { 10389 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10390 return -EINVAL; 10391 } 10392 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10393 if (num_modes > 1) { 10394 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10395 return -EINVAL; 10396 } 10397 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10398 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10399 NL_SET_ERR_MSG(extack, 10400 "More than one program loaded, unset mode is ambiguous"); 10401 return -EINVAL; 10402 } 10403 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10404 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10405 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10406 return -EINVAL; 10407 } 10408 10409 mode = dev_xdp_mode(dev, flags); 10410 /* can't replace attached link */ 10411 if (dev_xdp_link(dev, mode)) { 10412 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10413 return -EBUSY; 10414 } 10415 10416 /* don't allow if an upper device already has a program */ 10417 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10418 if (dev_xdp_prog_count(upper) > 0) { 10419 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10420 return -EEXIST; 10421 } 10422 } 10423 10424 cur_prog = dev_xdp_prog(dev, mode); 10425 /* can't replace attached prog with link */ 10426 if (link && cur_prog) { 10427 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10428 return -EBUSY; 10429 } 10430 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10431 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10432 return -EEXIST; 10433 } 10434 10435 /* put effective new program into new_prog */ 10436 if (link) 10437 new_prog = link->link.prog; 10438 10439 if (new_prog) { 10440 bool offload = mode == XDP_MODE_HW; 10441 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10442 ? XDP_MODE_DRV : XDP_MODE_SKB; 10443 10444 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10445 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10446 return -EBUSY; 10447 } 10448 if (!offload && dev_xdp_prog(dev, other_mode)) { 10449 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10450 return -EEXIST; 10451 } 10452 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10453 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10454 return -EINVAL; 10455 } 10456 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10457 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10458 return -EINVAL; 10459 } 10460 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10461 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10462 return -EINVAL; 10463 } 10464 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10465 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10466 return -EINVAL; 10467 } 10468 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10469 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10470 return -EINVAL; 10471 } 10472 } 10473 10474 /* don't call drivers if the effective program didn't change */ 10475 if (new_prog != cur_prog) { 10476 bpf_op = dev_xdp_bpf_op(dev, mode); 10477 if (!bpf_op) { 10478 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10479 return -EOPNOTSUPP; 10480 } 10481 10482 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10483 if (err) 10484 return err; 10485 } 10486 10487 if (link) 10488 dev_xdp_set_link(dev, mode, link); 10489 else 10490 dev_xdp_set_prog(dev, mode, new_prog); 10491 if (cur_prog) 10492 bpf_prog_put(cur_prog); 10493 10494 return 0; 10495} 10496 10497static int dev_xdp_attach_link(struct net_device *dev, 10498 struct netlink_ext_ack *extack, 10499 struct bpf_xdp_link *link) 10500{ 10501 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10502} 10503 10504static int dev_xdp_detach_link(struct net_device *dev, 10505 struct netlink_ext_ack *extack, 10506 struct bpf_xdp_link *link) 10507{ 10508 enum bpf_xdp_mode mode; 10509 bpf_op_t bpf_op; 10510 10511 ASSERT_RTNL(); 10512 10513 mode = dev_xdp_mode(dev, link->flags); 10514 if (dev_xdp_link(dev, mode) != link) 10515 return -EINVAL; 10516 10517 bpf_op = dev_xdp_bpf_op(dev, mode); 10518 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10519 dev_xdp_set_link(dev, mode, NULL); 10520 return 0; 10521} 10522 10523static void bpf_xdp_link_release(struct bpf_link *link) 10524{ 10525 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10526 10527 rtnl_lock(); 10528 10529 /* if racing with net_device's tear down, xdp_link->dev might be 10530 * already NULL, in which case link was already auto-detached 10531 */ 10532 if (xdp_link->dev) { 10533 netdev_lock_ops(xdp_link->dev); 10534 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10535 netdev_unlock_ops(xdp_link->dev); 10536 xdp_link->dev = NULL; 10537 } 10538 10539 rtnl_unlock(); 10540} 10541 10542static int bpf_xdp_link_detach(struct bpf_link *link) 10543{ 10544 bpf_xdp_link_release(link); 10545 return 0; 10546} 10547 10548static void bpf_xdp_link_dealloc(struct bpf_link *link) 10549{ 10550 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10551 10552 kfree(xdp_link); 10553} 10554 10555static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10556 struct seq_file *seq) 10557{ 10558 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10559 u32 ifindex = 0; 10560 10561 rtnl_lock(); 10562 if (xdp_link->dev) 10563 ifindex = xdp_link->dev->ifindex; 10564 rtnl_unlock(); 10565 10566 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10567} 10568 10569static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10570 struct bpf_link_info *info) 10571{ 10572 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10573 u32 ifindex = 0; 10574 10575 rtnl_lock(); 10576 if (xdp_link->dev) 10577 ifindex = xdp_link->dev->ifindex; 10578 rtnl_unlock(); 10579 10580 info->xdp.ifindex = ifindex; 10581 return 0; 10582} 10583 10584static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10585 struct bpf_prog *old_prog) 10586{ 10587 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10588 enum bpf_xdp_mode mode; 10589 bpf_op_t bpf_op; 10590 int err = 0; 10591 10592 rtnl_lock(); 10593 10594 /* link might have been auto-released already, so fail */ 10595 if (!xdp_link->dev) { 10596 err = -ENOLINK; 10597 goto out_unlock; 10598 } 10599 10600 if (old_prog && link->prog != old_prog) { 10601 err = -EPERM; 10602 goto out_unlock; 10603 } 10604 old_prog = link->prog; 10605 if (old_prog->type != new_prog->type || 10606 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10607 err = -EINVAL; 10608 goto out_unlock; 10609 } 10610 10611 if (old_prog == new_prog) { 10612 /* no-op, don't disturb drivers */ 10613 bpf_prog_put(new_prog); 10614 goto out_unlock; 10615 } 10616 10617 netdev_lock_ops(xdp_link->dev); 10618 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10619 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10620 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10621 xdp_link->flags, new_prog); 10622 netdev_unlock_ops(xdp_link->dev); 10623 if (err) 10624 goto out_unlock; 10625 10626 old_prog = xchg(&link->prog, new_prog); 10627 bpf_prog_put(old_prog); 10628 10629out_unlock: 10630 rtnl_unlock(); 10631 return err; 10632} 10633 10634static const struct bpf_link_ops bpf_xdp_link_lops = { 10635 .release = bpf_xdp_link_release, 10636 .dealloc = bpf_xdp_link_dealloc, 10637 .detach = bpf_xdp_link_detach, 10638 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10639 .fill_link_info = bpf_xdp_link_fill_link_info, 10640 .update_prog = bpf_xdp_link_update, 10641}; 10642 10643int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10644{ 10645 struct net *net = current->nsproxy->net_ns; 10646 struct bpf_link_primer link_primer; 10647 struct netlink_ext_ack extack = {}; 10648 struct bpf_xdp_link *link; 10649 struct net_device *dev; 10650 int err, fd; 10651 10652 rtnl_lock(); 10653 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10654 if (!dev) { 10655 rtnl_unlock(); 10656 return -EINVAL; 10657 } 10658 10659 link = kzalloc(sizeof(*link), GFP_USER); 10660 if (!link) { 10661 err = -ENOMEM; 10662 goto unlock; 10663 } 10664 10665 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10666 attr->link_create.attach_type); 10667 link->dev = dev; 10668 link->flags = attr->link_create.flags; 10669 10670 err = bpf_link_prime(&link->link, &link_primer); 10671 if (err) { 10672 kfree(link); 10673 goto unlock; 10674 } 10675 10676 netdev_lock_ops(dev); 10677 err = dev_xdp_attach_link(dev, &extack, link); 10678 netdev_unlock_ops(dev); 10679 rtnl_unlock(); 10680 10681 if (err) { 10682 link->dev = NULL; 10683 bpf_link_cleanup(&link_primer); 10684 trace_bpf_xdp_link_attach_failed(extack._msg); 10685 goto out_put_dev; 10686 } 10687 10688 fd = bpf_link_settle(&link_primer); 10689 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10690 dev_put(dev); 10691 return fd; 10692 10693unlock: 10694 rtnl_unlock(); 10695 10696out_put_dev: 10697 dev_put(dev); 10698 return err; 10699} 10700 10701/** 10702 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10703 * @dev: device 10704 * @extack: netlink extended ack 10705 * @fd: new program fd or negative value to clear 10706 * @expected_fd: old program fd that userspace expects to replace or clear 10707 * @flags: xdp-related flags 10708 * 10709 * Set or clear a bpf program for a device 10710 */ 10711int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10712 int fd, int expected_fd, u32 flags) 10713{ 10714 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10715 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10716 int err; 10717 10718 ASSERT_RTNL(); 10719 10720 if (fd >= 0) { 10721 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10722 mode != XDP_MODE_SKB); 10723 if (IS_ERR(new_prog)) 10724 return PTR_ERR(new_prog); 10725 } 10726 10727 if (expected_fd >= 0) { 10728 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10729 mode != XDP_MODE_SKB); 10730 if (IS_ERR(old_prog)) { 10731 err = PTR_ERR(old_prog); 10732 old_prog = NULL; 10733 goto err_out; 10734 } 10735 } 10736 10737 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10738 10739err_out: 10740 if (err && new_prog) 10741 bpf_prog_put(new_prog); 10742 if (old_prog) 10743 bpf_prog_put(old_prog); 10744 return err; 10745} 10746 10747u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10748{ 10749 int i; 10750 10751 netdev_ops_assert_locked(dev); 10752 10753 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10754 if (dev->_rx[i].mp_params.mp_priv) 10755 /* The channel count is the idx plus 1. */ 10756 return i + 1; 10757 10758 return 0; 10759} 10760 10761/** 10762 * dev_index_reserve() - allocate an ifindex in a namespace 10763 * @net: the applicable net namespace 10764 * @ifindex: requested ifindex, pass %0 to get one allocated 10765 * 10766 * Allocate a ifindex for a new device. Caller must either use the ifindex 10767 * to store the device (via list_netdevice()) or call dev_index_release() 10768 * to give the index up. 10769 * 10770 * Return: a suitable unique value for a new device interface number or -errno. 10771 */ 10772static int dev_index_reserve(struct net *net, u32 ifindex) 10773{ 10774 int err; 10775 10776 if (ifindex > INT_MAX) { 10777 DEBUG_NET_WARN_ON_ONCE(1); 10778 return -EINVAL; 10779 } 10780 10781 if (!ifindex) 10782 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10783 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10784 else 10785 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10786 if (err < 0) 10787 return err; 10788 10789 return ifindex; 10790} 10791 10792static void dev_index_release(struct net *net, int ifindex) 10793{ 10794 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10795 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10796} 10797 10798static bool from_cleanup_net(void) 10799{ 10800#ifdef CONFIG_NET_NS 10801 return current == READ_ONCE(cleanup_net_task); 10802#else 10803 return false; 10804#endif 10805} 10806 10807/* Delayed registration/unregisteration */ 10808LIST_HEAD(net_todo_list); 10809DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10810atomic_t dev_unreg_count = ATOMIC_INIT(0); 10811 10812static void net_set_todo(struct net_device *dev) 10813{ 10814 list_add_tail(&dev->todo_list, &net_todo_list); 10815} 10816 10817static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10818 struct net_device *upper, netdev_features_t features) 10819{ 10820 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10821 netdev_features_t feature; 10822 int feature_bit; 10823 10824 for_each_netdev_feature(upper_disables, feature_bit) { 10825 feature = __NETIF_F_BIT(feature_bit); 10826 if (!(upper->wanted_features & feature) 10827 && (features & feature)) { 10828 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10829 &feature, upper->name); 10830 features &= ~feature; 10831 } 10832 } 10833 10834 return features; 10835} 10836 10837static void netdev_sync_lower_features(struct net_device *upper, 10838 struct net_device *lower, netdev_features_t features) 10839{ 10840 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10841 netdev_features_t feature; 10842 int feature_bit; 10843 10844 for_each_netdev_feature(upper_disables, feature_bit) { 10845 feature = __NETIF_F_BIT(feature_bit); 10846 if (!(features & feature) && (lower->features & feature)) { 10847 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10848 &feature, lower->name); 10849 netdev_lock_ops(lower); 10850 lower->wanted_features &= ~feature; 10851 __netdev_update_features(lower); 10852 10853 if (unlikely(lower->features & feature)) 10854 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10855 &feature, lower->name); 10856 else 10857 netdev_features_change(lower); 10858 netdev_unlock_ops(lower); 10859 } 10860 } 10861} 10862 10863static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10864{ 10865 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10866 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10867 bool hw_csum = features & NETIF_F_HW_CSUM; 10868 10869 return ip_csum || hw_csum; 10870} 10871 10872static netdev_features_t netdev_fix_features(struct net_device *dev, 10873 netdev_features_t features) 10874{ 10875 /* Fix illegal checksum combinations */ 10876 if ((features & NETIF_F_HW_CSUM) && 10877 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10878 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10879 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10880 } 10881 10882 /* TSO requires that SG is present as well. */ 10883 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10884 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10885 features &= ~NETIF_F_ALL_TSO; 10886 } 10887 10888 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10889 !(features & NETIF_F_IP_CSUM)) { 10890 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10891 features &= ~NETIF_F_TSO; 10892 features &= ~NETIF_F_TSO_ECN; 10893 } 10894 10895 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10896 !(features & NETIF_F_IPV6_CSUM)) { 10897 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10898 features &= ~NETIF_F_TSO6; 10899 } 10900 10901 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10902 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10903 features &= ~NETIF_F_TSO_MANGLEID; 10904 10905 /* TSO ECN requires that TSO is present as well. */ 10906 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10907 features &= ~NETIF_F_TSO_ECN; 10908 10909 /* Software GSO depends on SG. */ 10910 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10911 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10912 features &= ~NETIF_F_GSO; 10913 } 10914 10915 /* GSO partial features require GSO partial be set */ 10916 if ((features & dev->gso_partial_features) && 10917 !(features & NETIF_F_GSO_PARTIAL)) { 10918 netdev_dbg(dev, 10919 "Dropping partially supported GSO features since no GSO partial.\n"); 10920 features &= ~dev->gso_partial_features; 10921 } 10922 10923 if (!(features & NETIF_F_RXCSUM)) { 10924 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10925 * successfully merged by hardware must also have the 10926 * checksum verified by hardware. If the user does not 10927 * want to enable RXCSUM, logically, we should disable GRO_HW. 10928 */ 10929 if (features & NETIF_F_GRO_HW) { 10930 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10931 features &= ~NETIF_F_GRO_HW; 10932 } 10933 } 10934 10935 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10936 if (features & NETIF_F_RXFCS) { 10937 if (features & NETIF_F_LRO) { 10938 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10939 features &= ~NETIF_F_LRO; 10940 } 10941 10942 if (features & NETIF_F_GRO_HW) { 10943 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10944 features &= ~NETIF_F_GRO_HW; 10945 } 10946 } 10947 10948 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10949 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10950 features &= ~NETIF_F_LRO; 10951 } 10952 10953 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10954 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10955 features &= ~NETIF_F_HW_TLS_TX; 10956 } 10957 10958 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10959 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10960 features &= ~NETIF_F_HW_TLS_RX; 10961 } 10962 10963 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10964 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10965 features &= ~NETIF_F_GSO_UDP_L4; 10966 } 10967 10968 return features; 10969} 10970 10971int __netdev_update_features(struct net_device *dev) 10972{ 10973 struct net_device *upper, *lower; 10974 netdev_features_t features; 10975 struct list_head *iter; 10976 int err = -1; 10977 10978 ASSERT_RTNL(); 10979 netdev_ops_assert_locked(dev); 10980 10981 features = netdev_get_wanted_features(dev); 10982 10983 if (dev->netdev_ops->ndo_fix_features) 10984 features = dev->netdev_ops->ndo_fix_features(dev, features); 10985 10986 /* driver might be less strict about feature dependencies */ 10987 features = netdev_fix_features(dev, features); 10988 10989 /* some features can't be enabled if they're off on an upper device */ 10990 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10991 features = netdev_sync_upper_features(dev, upper, features); 10992 10993 if (dev->features == features) 10994 goto sync_lower; 10995 10996 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10997 &dev->features, &features); 10998 10999 if (dev->netdev_ops->ndo_set_features) 11000 err = dev->netdev_ops->ndo_set_features(dev, features); 11001 else 11002 err = 0; 11003 11004 if (unlikely(err < 0)) { 11005 netdev_err(dev, 11006 "set_features() failed (%d); wanted %pNF, left %pNF\n", 11007 err, &features, &dev->features); 11008 /* return non-0 since some features might have changed and 11009 * it's better to fire a spurious notification than miss it 11010 */ 11011 return -1; 11012 } 11013 11014sync_lower: 11015 /* some features must be disabled on lower devices when disabled 11016 * on an upper device (think: bonding master or bridge) 11017 */ 11018 netdev_for_each_lower_dev(dev, lower, iter) 11019 netdev_sync_lower_features(dev, lower, features); 11020 11021 if (!err) { 11022 netdev_features_t diff = features ^ dev->features; 11023 11024 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 11025 /* udp_tunnel_{get,drop}_rx_info both need 11026 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 11027 * device, or they won't do anything. 11028 * Thus we need to update dev->features 11029 * *before* calling udp_tunnel_get_rx_info, 11030 * but *after* calling udp_tunnel_drop_rx_info. 11031 */ 11032 udp_tunnel_nic_lock(dev); 11033 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 11034 dev->features = features; 11035 udp_tunnel_get_rx_info(dev); 11036 } else { 11037 udp_tunnel_drop_rx_info(dev); 11038 } 11039 udp_tunnel_nic_unlock(dev); 11040 } 11041 11042 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 11043 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 11044 dev->features = features; 11045 err |= vlan_get_rx_ctag_filter_info(dev); 11046 } else { 11047 vlan_drop_rx_ctag_filter_info(dev); 11048 } 11049 } 11050 11051 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 11052 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 11053 dev->features = features; 11054 err |= vlan_get_rx_stag_filter_info(dev); 11055 } else { 11056 vlan_drop_rx_stag_filter_info(dev); 11057 } 11058 } 11059 11060 dev->features = features; 11061 } 11062 11063 return err < 0 ? 0 : 1; 11064} 11065 11066/** 11067 * netdev_update_features - recalculate device features 11068 * @dev: the device to check 11069 * 11070 * Recalculate dev->features set and send notifications if it 11071 * has changed. Should be called after driver or hardware dependent 11072 * conditions might have changed that influence the features. 11073 */ 11074void netdev_update_features(struct net_device *dev) 11075{ 11076 if (__netdev_update_features(dev)) 11077 netdev_features_change(dev); 11078} 11079EXPORT_SYMBOL(netdev_update_features); 11080 11081/** 11082 * netdev_change_features - recalculate device features 11083 * @dev: the device to check 11084 * 11085 * Recalculate dev->features set and send notifications even 11086 * if they have not changed. Should be called instead of 11087 * netdev_update_features() if also dev->vlan_features might 11088 * have changed to allow the changes to be propagated to stacked 11089 * VLAN devices. 11090 */ 11091void netdev_change_features(struct net_device *dev) 11092{ 11093 __netdev_update_features(dev); 11094 netdev_features_change(dev); 11095} 11096EXPORT_SYMBOL(netdev_change_features); 11097 11098/** 11099 * netif_stacked_transfer_operstate - transfer operstate 11100 * @rootdev: the root or lower level device to transfer state from 11101 * @dev: the device to transfer operstate to 11102 * 11103 * Transfer operational state from root to device. This is normally 11104 * called when a stacking relationship exists between the root 11105 * device and the device(a leaf device). 11106 */ 11107void netif_stacked_transfer_operstate(const struct net_device *rootdev, 11108 struct net_device *dev) 11109{ 11110 if (rootdev->operstate == IF_OPER_DORMANT) 11111 netif_dormant_on(dev); 11112 else 11113 netif_dormant_off(dev); 11114 11115 if (rootdev->operstate == IF_OPER_TESTING) 11116 netif_testing_on(dev); 11117 else 11118 netif_testing_off(dev); 11119 11120 if (netif_carrier_ok(rootdev)) 11121 netif_carrier_on(dev); 11122 else 11123 netif_carrier_off(dev); 11124} 11125EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11126 11127static int netif_alloc_rx_queues(struct net_device *dev) 11128{ 11129 unsigned int i, count = dev->num_rx_queues; 11130 struct netdev_rx_queue *rx; 11131 size_t sz = count * sizeof(*rx); 11132 int err = 0; 11133 11134 BUG_ON(count < 1); 11135 11136 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11137 if (!rx) 11138 return -ENOMEM; 11139 11140 dev->_rx = rx; 11141 11142 for (i = 0; i < count; i++) { 11143 rx[i].dev = dev; 11144 11145 /* XDP RX-queue setup */ 11146 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11147 if (err < 0) 11148 goto err_rxq_info; 11149 } 11150 return 0; 11151 11152err_rxq_info: 11153 /* Rollback successful reg's and free other resources */ 11154 while (i--) 11155 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11156 kvfree(dev->_rx); 11157 dev->_rx = NULL; 11158 return err; 11159} 11160 11161static void netif_free_rx_queues(struct net_device *dev) 11162{ 11163 unsigned int i, count = dev->num_rx_queues; 11164 11165 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11166 if (!dev->_rx) 11167 return; 11168 11169 for (i = 0; i < count; i++) 11170 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11171 11172 kvfree(dev->_rx); 11173} 11174 11175static void netdev_init_one_queue(struct net_device *dev, 11176 struct netdev_queue *queue, void *_unused) 11177{ 11178 /* Initialize queue lock */ 11179 spin_lock_init(&queue->_xmit_lock); 11180 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11181 queue->xmit_lock_owner = -1; 11182 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11183 queue->dev = dev; 11184#ifdef CONFIG_BQL 11185 dql_init(&queue->dql, HZ); 11186#endif 11187} 11188 11189static void netif_free_tx_queues(struct net_device *dev) 11190{ 11191 kvfree(dev->_tx); 11192} 11193 11194static int netif_alloc_netdev_queues(struct net_device *dev) 11195{ 11196 unsigned int count = dev->num_tx_queues; 11197 struct netdev_queue *tx; 11198 size_t sz = count * sizeof(*tx); 11199 11200 if (count < 1 || count > 0xffff) 11201 return -EINVAL; 11202 11203 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11204 if (!tx) 11205 return -ENOMEM; 11206 11207 dev->_tx = tx; 11208 11209 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11210 spin_lock_init(&dev->tx_global_lock); 11211 11212 return 0; 11213} 11214 11215void netif_tx_stop_all_queues(struct net_device *dev) 11216{ 11217 unsigned int i; 11218 11219 for (i = 0; i < dev->num_tx_queues; i++) { 11220 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11221 11222 netif_tx_stop_queue(txq); 11223 } 11224} 11225EXPORT_SYMBOL(netif_tx_stop_all_queues); 11226 11227static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11228{ 11229 void __percpu *v; 11230 11231 /* Drivers implementing ndo_get_peer_dev must support tstat 11232 * accounting, so that skb_do_redirect() can bump the dev's 11233 * RX stats upon network namespace switch. 11234 */ 11235 if (dev->netdev_ops->ndo_get_peer_dev && 11236 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11237 return -EOPNOTSUPP; 11238 11239 switch (dev->pcpu_stat_type) { 11240 case NETDEV_PCPU_STAT_NONE: 11241 return 0; 11242 case NETDEV_PCPU_STAT_LSTATS: 11243 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11244 break; 11245 case NETDEV_PCPU_STAT_TSTATS: 11246 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11247 break; 11248 case NETDEV_PCPU_STAT_DSTATS: 11249 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11250 break; 11251 default: 11252 return -EINVAL; 11253 } 11254 11255 return v ? 0 : -ENOMEM; 11256} 11257 11258static void netdev_do_free_pcpu_stats(struct net_device *dev) 11259{ 11260 switch (dev->pcpu_stat_type) { 11261 case NETDEV_PCPU_STAT_NONE: 11262 return; 11263 case NETDEV_PCPU_STAT_LSTATS: 11264 free_percpu(dev->lstats); 11265 break; 11266 case NETDEV_PCPU_STAT_TSTATS: 11267 free_percpu(dev->tstats); 11268 break; 11269 case NETDEV_PCPU_STAT_DSTATS: 11270 free_percpu(dev->dstats); 11271 break; 11272 } 11273} 11274 11275static void netdev_free_phy_link_topology(struct net_device *dev) 11276{ 11277 struct phy_link_topology *topo = dev->link_topo; 11278 11279 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11280 xa_destroy(&topo->phys); 11281 kfree(topo); 11282 dev->link_topo = NULL; 11283 } 11284} 11285 11286/** 11287 * register_netdevice() - register a network device 11288 * @dev: device to register 11289 * 11290 * Take a prepared network device structure and make it externally accessible. 11291 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11292 * Callers must hold the rtnl lock - you may want register_netdev() 11293 * instead of this. 11294 */ 11295int register_netdevice(struct net_device *dev) 11296{ 11297 int ret; 11298 struct net *net = dev_net(dev); 11299 11300 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11301 NETDEV_FEATURE_COUNT); 11302 BUG_ON(dev_boot_phase); 11303 ASSERT_RTNL(); 11304 11305 might_sleep(); 11306 11307 /* When net_device's are persistent, this will be fatal. */ 11308 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11309 BUG_ON(!net); 11310 11311 ret = ethtool_check_ops(dev->ethtool_ops); 11312 if (ret) 11313 return ret; 11314 11315 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11316 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11317 mutex_init(&dev->ethtool->rss_lock); 11318 11319 spin_lock_init(&dev->addr_list_lock); 11320 netdev_set_addr_lockdep_class(dev); 11321 11322 ret = dev_get_valid_name(net, dev, dev->name); 11323 if (ret < 0) 11324 goto out; 11325 11326 ret = -ENOMEM; 11327 dev->name_node = netdev_name_node_head_alloc(dev); 11328 if (!dev->name_node) 11329 goto out; 11330 11331 /* Init, if this function is available */ 11332 if (dev->netdev_ops->ndo_init) { 11333 ret = dev->netdev_ops->ndo_init(dev); 11334 if (ret) { 11335 if (ret > 0) 11336 ret = -EIO; 11337 goto err_free_name; 11338 } 11339 } 11340 11341 if (((dev->hw_features | dev->features) & 11342 NETIF_F_HW_VLAN_CTAG_FILTER) && 11343 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11344 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11345 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11346 ret = -EINVAL; 11347 goto err_uninit; 11348 } 11349 11350 ret = netdev_do_alloc_pcpu_stats(dev); 11351 if (ret) 11352 goto err_uninit; 11353 11354 ret = dev_index_reserve(net, dev->ifindex); 11355 if (ret < 0) 11356 goto err_free_pcpu; 11357 dev->ifindex = ret; 11358 11359 /* Transfer changeable features to wanted_features and enable 11360 * software offloads (GSO and GRO). 11361 */ 11362 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11363 dev->features |= NETIF_F_SOFT_FEATURES; 11364 11365 if (dev->udp_tunnel_nic_info) { 11366 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11367 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11368 } 11369 11370 dev->wanted_features = dev->features & dev->hw_features; 11371 11372 if (!(dev->flags & IFF_LOOPBACK)) 11373 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11374 11375 /* If IPv4 TCP segmentation offload is supported we should also 11376 * allow the device to enable segmenting the frame with the option 11377 * of ignoring a static IP ID value. This doesn't enable the 11378 * feature itself but allows the user to enable it later. 11379 */ 11380 if (dev->hw_features & NETIF_F_TSO) 11381 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11382 if (dev->vlan_features & NETIF_F_TSO) 11383 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11384 if (dev->mpls_features & NETIF_F_TSO) 11385 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11386 if (dev->hw_enc_features & NETIF_F_TSO) 11387 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11388 11389 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11390 */ 11391 dev->vlan_features |= NETIF_F_HIGHDMA; 11392 11393 /* Make NETIF_F_SG inheritable to tunnel devices. 11394 */ 11395 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11396 11397 /* Make NETIF_F_SG inheritable to MPLS. 11398 */ 11399 dev->mpls_features |= NETIF_F_SG; 11400 11401 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11402 ret = notifier_to_errno(ret); 11403 if (ret) 11404 goto err_ifindex_release; 11405 11406 ret = netdev_register_kobject(dev); 11407 11408 netdev_lock(dev); 11409 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11410 netdev_unlock(dev); 11411 11412 if (ret) 11413 goto err_uninit_notify; 11414 11415 netdev_lock_ops(dev); 11416 __netdev_update_features(dev); 11417 netdev_unlock_ops(dev); 11418 11419 /* 11420 * Default initial state at registry is that the 11421 * device is present. 11422 */ 11423 11424 set_bit(__LINK_STATE_PRESENT, &dev->state); 11425 11426 linkwatch_init_dev(dev); 11427 11428 dev_init_scheduler(dev); 11429 11430 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11431 list_netdevice(dev); 11432 11433 add_device_randomness(dev->dev_addr, dev->addr_len); 11434 11435 /* If the device has permanent device address, driver should 11436 * set dev_addr and also addr_assign_type should be set to 11437 * NET_ADDR_PERM (default value). 11438 */ 11439 if (dev->addr_assign_type == NET_ADDR_PERM) 11440 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11441 11442 /* Notify protocols, that a new device appeared. */ 11443 netdev_lock_ops(dev); 11444 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11445 netdev_unlock_ops(dev); 11446 ret = notifier_to_errno(ret); 11447 if (ret) { 11448 /* Expect explicit free_netdev() on failure */ 11449 dev->needs_free_netdev = false; 11450 unregister_netdevice_queue(dev, NULL); 11451 goto out; 11452 } 11453 /* 11454 * Prevent userspace races by waiting until the network 11455 * device is fully setup before sending notifications. 11456 */ 11457 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11458 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11459 11460out: 11461 return ret; 11462 11463err_uninit_notify: 11464 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11465err_ifindex_release: 11466 dev_index_release(net, dev->ifindex); 11467err_free_pcpu: 11468 netdev_do_free_pcpu_stats(dev); 11469err_uninit: 11470 if (dev->netdev_ops->ndo_uninit) 11471 dev->netdev_ops->ndo_uninit(dev); 11472 if (dev->priv_destructor) 11473 dev->priv_destructor(dev); 11474err_free_name: 11475 netdev_name_node_free(dev->name_node); 11476 goto out; 11477} 11478EXPORT_SYMBOL(register_netdevice); 11479 11480/* Initialize the core of a dummy net device. 11481 * The setup steps dummy netdevs need which normal netdevs get by going 11482 * through register_netdevice(). 11483 */ 11484static void init_dummy_netdev(struct net_device *dev) 11485{ 11486 /* make sure we BUG if trying to hit standard 11487 * register/unregister code path 11488 */ 11489 dev->reg_state = NETREG_DUMMY; 11490 11491 /* a dummy interface is started by default */ 11492 set_bit(__LINK_STATE_PRESENT, &dev->state); 11493 set_bit(__LINK_STATE_START, &dev->state); 11494 11495 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11496 * because users of this 'device' dont need to change 11497 * its refcount. 11498 */ 11499} 11500 11501/** 11502 * register_netdev - register a network device 11503 * @dev: device to register 11504 * 11505 * Take a completed network device structure and add it to the kernel 11506 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11507 * chain. 0 is returned on success. A negative errno code is returned 11508 * on a failure to set up the device, or if the name is a duplicate. 11509 * 11510 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11511 * and expands the device name if you passed a format string to 11512 * alloc_netdev. 11513 */ 11514int register_netdev(struct net_device *dev) 11515{ 11516 struct net *net = dev_net(dev); 11517 int err; 11518 11519 if (rtnl_net_lock_killable(net)) 11520 return -EINTR; 11521 11522 err = register_netdevice(dev); 11523 11524 rtnl_net_unlock(net); 11525 11526 return err; 11527} 11528EXPORT_SYMBOL(register_netdev); 11529 11530int netdev_refcnt_read(const struct net_device *dev) 11531{ 11532#ifdef CONFIG_PCPU_DEV_REFCNT 11533 int i, refcnt = 0; 11534 11535 for_each_possible_cpu(i) 11536 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11537 return refcnt; 11538#else 11539 return refcount_read(&dev->dev_refcnt); 11540#endif 11541} 11542EXPORT_SYMBOL(netdev_refcnt_read); 11543 11544int netdev_unregister_timeout_secs __read_mostly = 10; 11545 11546#define WAIT_REFS_MIN_MSECS 1 11547#define WAIT_REFS_MAX_MSECS 250 11548/** 11549 * netdev_wait_allrefs_any - wait until all references are gone. 11550 * @list: list of net_devices to wait on 11551 * 11552 * This is called when unregistering network devices. 11553 * 11554 * Any protocol or device that holds a reference should register 11555 * for netdevice notification, and cleanup and put back the 11556 * reference if they receive an UNREGISTER event. 11557 * We can get stuck here if buggy protocols don't correctly 11558 * call dev_put. 11559 */ 11560static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11561{ 11562 unsigned long rebroadcast_time, warning_time; 11563 struct net_device *dev; 11564 int wait = 0; 11565 11566 rebroadcast_time = warning_time = jiffies; 11567 11568 list_for_each_entry(dev, list, todo_list) 11569 if (netdev_refcnt_read(dev) == 1) 11570 return dev; 11571 11572 while (true) { 11573 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11574 rtnl_lock(); 11575 11576 /* Rebroadcast unregister notification */ 11577 list_for_each_entry(dev, list, todo_list) 11578 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11579 11580 __rtnl_unlock(); 11581 rcu_barrier(); 11582 rtnl_lock(); 11583 11584 list_for_each_entry(dev, list, todo_list) 11585 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11586 &dev->state)) { 11587 /* We must not have linkwatch events 11588 * pending on unregister. If this 11589 * happens, we simply run the queue 11590 * unscheduled, resulting in a noop 11591 * for this device. 11592 */ 11593 linkwatch_run_queue(); 11594 break; 11595 } 11596 11597 __rtnl_unlock(); 11598 11599 rebroadcast_time = jiffies; 11600 } 11601 11602 rcu_barrier(); 11603 11604 if (!wait) { 11605 wait = WAIT_REFS_MIN_MSECS; 11606 } else { 11607 msleep(wait); 11608 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11609 } 11610 11611 list_for_each_entry(dev, list, todo_list) 11612 if (netdev_refcnt_read(dev) == 1) 11613 return dev; 11614 11615 if (time_after(jiffies, warning_time + 11616 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11617 list_for_each_entry(dev, list, todo_list) { 11618 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11619 dev->name, netdev_refcnt_read(dev)); 11620 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11621 } 11622 11623 warning_time = jiffies; 11624 } 11625 } 11626} 11627 11628/* The sequence is: 11629 * 11630 * rtnl_lock(); 11631 * ... 11632 * register_netdevice(x1); 11633 * register_netdevice(x2); 11634 * ... 11635 * unregister_netdevice(y1); 11636 * unregister_netdevice(y2); 11637 * ... 11638 * rtnl_unlock(); 11639 * free_netdev(y1); 11640 * free_netdev(y2); 11641 * 11642 * We are invoked by rtnl_unlock(). 11643 * This allows us to deal with problems: 11644 * 1) We can delete sysfs objects which invoke hotplug 11645 * without deadlocking with linkwatch via keventd. 11646 * 2) Since we run with the RTNL semaphore not held, we can sleep 11647 * safely in order to wait for the netdev refcnt to drop to zero. 11648 * 11649 * We must not return until all unregister events added during 11650 * the interval the lock was held have been completed. 11651 */ 11652void netdev_run_todo(void) 11653{ 11654 struct net_device *dev, *tmp; 11655 struct list_head list; 11656 int cnt; 11657#ifdef CONFIG_LOCKDEP 11658 struct list_head unlink_list; 11659 11660 list_replace_init(&net_unlink_list, &unlink_list); 11661 11662 while (!list_empty(&unlink_list)) { 11663 dev = list_first_entry(&unlink_list, struct net_device, 11664 unlink_list); 11665 list_del_init(&dev->unlink_list); 11666 dev->nested_level = dev->lower_level - 1; 11667 } 11668#endif 11669 11670 /* Snapshot list, allow later requests */ 11671 list_replace_init(&net_todo_list, &list); 11672 11673 __rtnl_unlock(); 11674 11675 /* Wait for rcu callbacks to finish before next phase */ 11676 if (!list_empty(&list)) 11677 rcu_barrier(); 11678 11679 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11680 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11681 netdev_WARN(dev, "run_todo but not unregistering\n"); 11682 list_del(&dev->todo_list); 11683 continue; 11684 } 11685 11686 netdev_lock(dev); 11687 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11688 netdev_unlock(dev); 11689 linkwatch_sync_dev(dev); 11690 } 11691 11692 cnt = 0; 11693 while (!list_empty(&list)) { 11694 dev = netdev_wait_allrefs_any(&list); 11695 list_del(&dev->todo_list); 11696 11697 /* paranoia */ 11698 BUG_ON(netdev_refcnt_read(dev) != 1); 11699 BUG_ON(!list_empty(&dev->ptype_all)); 11700 BUG_ON(!list_empty(&dev->ptype_specific)); 11701 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11702 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11703 11704 netdev_do_free_pcpu_stats(dev); 11705 if (dev->priv_destructor) 11706 dev->priv_destructor(dev); 11707 if (dev->needs_free_netdev) 11708 free_netdev(dev); 11709 11710 cnt++; 11711 11712 /* Free network device */ 11713 kobject_put(&dev->dev.kobj); 11714 } 11715 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11716 wake_up(&netdev_unregistering_wq); 11717} 11718 11719/* Collate per-cpu network dstats statistics 11720 * 11721 * Read per-cpu network statistics from dev->dstats and populate the related 11722 * fields in @s. 11723 */ 11724static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11725 const struct pcpu_dstats __percpu *dstats) 11726{ 11727 int cpu; 11728 11729 for_each_possible_cpu(cpu) { 11730 u64 rx_packets, rx_bytes, rx_drops; 11731 u64 tx_packets, tx_bytes, tx_drops; 11732 const struct pcpu_dstats *stats; 11733 unsigned int start; 11734 11735 stats = per_cpu_ptr(dstats, cpu); 11736 do { 11737 start = u64_stats_fetch_begin(&stats->syncp); 11738 rx_packets = u64_stats_read(&stats->rx_packets); 11739 rx_bytes = u64_stats_read(&stats->rx_bytes); 11740 rx_drops = u64_stats_read(&stats->rx_drops); 11741 tx_packets = u64_stats_read(&stats->tx_packets); 11742 tx_bytes = u64_stats_read(&stats->tx_bytes); 11743 tx_drops = u64_stats_read(&stats->tx_drops); 11744 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11745 11746 s->rx_packets += rx_packets; 11747 s->rx_bytes += rx_bytes; 11748 s->rx_dropped += rx_drops; 11749 s->tx_packets += tx_packets; 11750 s->tx_bytes += tx_bytes; 11751 s->tx_dropped += tx_drops; 11752 } 11753} 11754 11755/* ndo_get_stats64 implementation for dtstats-based accounting. 11756 * 11757 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11758 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11759 */ 11760static void dev_get_dstats64(const struct net_device *dev, 11761 struct rtnl_link_stats64 *s) 11762{ 11763 netdev_stats_to_stats64(s, &dev->stats); 11764 dev_fetch_dstats(s, dev->dstats); 11765} 11766 11767/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11768 * all the same fields in the same order as net_device_stats, with only 11769 * the type differing, but rtnl_link_stats64 may have additional fields 11770 * at the end for newer counters. 11771 */ 11772void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11773 const struct net_device_stats *netdev_stats) 11774{ 11775 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11776 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11777 u64 *dst = (u64 *)stats64; 11778 11779 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11780 for (i = 0; i < n; i++) 11781 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11782 /* zero out counters that only exist in rtnl_link_stats64 */ 11783 memset((char *)stats64 + n * sizeof(u64), 0, 11784 sizeof(*stats64) - n * sizeof(u64)); 11785} 11786EXPORT_SYMBOL(netdev_stats_to_stats64); 11787 11788static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11789 struct net_device *dev) 11790{ 11791 struct net_device_core_stats __percpu *p; 11792 11793 p = alloc_percpu_gfp(struct net_device_core_stats, 11794 GFP_ATOMIC | __GFP_NOWARN); 11795 11796 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11797 free_percpu(p); 11798 11799 /* This READ_ONCE() pairs with the cmpxchg() above */ 11800 return READ_ONCE(dev->core_stats); 11801} 11802 11803noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11804{ 11805 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11806 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11807 unsigned long __percpu *field; 11808 11809 if (unlikely(!p)) { 11810 p = netdev_core_stats_alloc(dev); 11811 if (!p) 11812 return; 11813 } 11814 11815 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11816 this_cpu_inc(*field); 11817} 11818EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11819 11820/** 11821 * dev_get_stats - get network device statistics 11822 * @dev: device to get statistics from 11823 * @storage: place to store stats 11824 * 11825 * Get network statistics from device. Return @storage. 11826 * The device driver may provide its own method by setting 11827 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11828 * otherwise the internal statistics structure is used. 11829 */ 11830struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11831 struct rtnl_link_stats64 *storage) 11832{ 11833 const struct net_device_ops *ops = dev->netdev_ops; 11834 const struct net_device_core_stats __percpu *p; 11835 11836 /* 11837 * IPv{4,6} and udp tunnels share common stat helpers and use 11838 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11839 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11840 */ 11841 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11842 offsetof(struct pcpu_dstats, rx_bytes)); 11843 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11844 offsetof(struct pcpu_dstats, rx_packets)); 11845 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11846 offsetof(struct pcpu_dstats, tx_bytes)); 11847 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11848 offsetof(struct pcpu_dstats, tx_packets)); 11849 11850 if (ops->ndo_get_stats64) { 11851 memset(storage, 0, sizeof(*storage)); 11852 ops->ndo_get_stats64(dev, storage); 11853 } else if (ops->ndo_get_stats) { 11854 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11855 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11856 dev_get_tstats64(dev, storage); 11857 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11858 dev_get_dstats64(dev, storage); 11859 } else { 11860 netdev_stats_to_stats64(storage, &dev->stats); 11861 } 11862 11863 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11864 p = READ_ONCE(dev->core_stats); 11865 if (p) { 11866 const struct net_device_core_stats *core_stats; 11867 int i; 11868 11869 for_each_possible_cpu(i) { 11870 core_stats = per_cpu_ptr(p, i); 11871 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11872 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11873 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11874 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11875 } 11876 } 11877 return storage; 11878} 11879EXPORT_SYMBOL(dev_get_stats); 11880 11881/** 11882 * dev_fetch_sw_netstats - get per-cpu network device statistics 11883 * @s: place to store stats 11884 * @netstats: per-cpu network stats to read from 11885 * 11886 * Read per-cpu network statistics and populate the related fields in @s. 11887 */ 11888void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11889 const struct pcpu_sw_netstats __percpu *netstats) 11890{ 11891 int cpu; 11892 11893 for_each_possible_cpu(cpu) { 11894 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11895 const struct pcpu_sw_netstats *stats; 11896 unsigned int start; 11897 11898 stats = per_cpu_ptr(netstats, cpu); 11899 do { 11900 start = u64_stats_fetch_begin(&stats->syncp); 11901 rx_packets = u64_stats_read(&stats->rx_packets); 11902 rx_bytes = u64_stats_read(&stats->rx_bytes); 11903 tx_packets = u64_stats_read(&stats->tx_packets); 11904 tx_bytes = u64_stats_read(&stats->tx_bytes); 11905 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11906 11907 s->rx_packets += rx_packets; 11908 s->rx_bytes += rx_bytes; 11909 s->tx_packets += tx_packets; 11910 s->tx_bytes += tx_bytes; 11911 } 11912} 11913EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11914 11915/** 11916 * dev_get_tstats64 - ndo_get_stats64 implementation 11917 * @dev: device to get statistics from 11918 * @s: place to store stats 11919 * 11920 * Populate @s from dev->stats and dev->tstats. Can be used as 11921 * ndo_get_stats64() callback. 11922 */ 11923void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11924{ 11925 netdev_stats_to_stats64(s, &dev->stats); 11926 dev_fetch_sw_netstats(s, dev->tstats); 11927} 11928EXPORT_SYMBOL_GPL(dev_get_tstats64); 11929 11930struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11931{ 11932 struct netdev_queue *queue = dev_ingress_queue(dev); 11933 11934#ifdef CONFIG_NET_CLS_ACT 11935 if (queue) 11936 return queue; 11937 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11938 if (!queue) 11939 return NULL; 11940 netdev_init_one_queue(dev, queue, NULL); 11941 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11942 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11943 rcu_assign_pointer(dev->ingress_queue, queue); 11944#endif 11945 return queue; 11946} 11947 11948static const struct ethtool_ops default_ethtool_ops; 11949 11950void netdev_set_default_ethtool_ops(struct net_device *dev, 11951 const struct ethtool_ops *ops) 11952{ 11953 if (dev->ethtool_ops == &default_ethtool_ops) 11954 dev->ethtool_ops = ops; 11955} 11956EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11957 11958/** 11959 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11960 * @dev: netdev to enable the IRQ coalescing on 11961 * 11962 * Sets a conservative default for SW IRQ coalescing. Users can use 11963 * sysfs attributes to override the default values. 11964 */ 11965void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11966{ 11967 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11968 11969 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11970 netdev_set_gro_flush_timeout(dev, 20000); 11971 netdev_set_defer_hard_irqs(dev, 1); 11972 } 11973} 11974EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11975 11976/** 11977 * alloc_netdev_mqs - allocate network device 11978 * @sizeof_priv: size of private data to allocate space for 11979 * @name: device name format string 11980 * @name_assign_type: origin of device name 11981 * @setup: callback to initialize device 11982 * @txqs: the number of TX subqueues to allocate 11983 * @rxqs: the number of RX subqueues to allocate 11984 * 11985 * Allocates a struct net_device with private data area for driver use 11986 * and performs basic initialization. Also allocates subqueue structs 11987 * for each queue on the device. 11988 */ 11989struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11990 unsigned char name_assign_type, 11991 void (*setup)(struct net_device *), 11992 unsigned int txqs, unsigned int rxqs) 11993{ 11994 struct net_device *dev; 11995 size_t napi_config_sz; 11996 unsigned int maxqs; 11997 11998 BUG_ON(strlen(name) >= sizeof(dev->name)); 11999 12000 if (txqs < 1) { 12001 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 12002 return NULL; 12003 } 12004 12005 if (rxqs < 1) { 12006 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 12007 return NULL; 12008 } 12009 12010 maxqs = max(txqs, rxqs); 12011 12012 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 12013 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 12014 if (!dev) 12015 return NULL; 12016 12017 dev->priv_len = sizeof_priv; 12018 12019 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 12020#ifdef CONFIG_PCPU_DEV_REFCNT 12021 dev->pcpu_refcnt = alloc_percpu(int); 12022 if (!dev->pcpu_refcnt) 12023 goto free_dev; 12024 __dev_hold(dev); 12025#else 12026 refcount_set(&dev->dev_refcnt, 1); 12027#endif 12028 12029 if (dev_addr_init(dev)) 12030 goto free_pcpu; 12031 12032 dev_mc_init(dev); 12033 dev_uc_init(dev); 12034 12035 dev_net_set(dev, &init_net); 12036 12037 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 12038 dev->xdp_zc_max_segs = 1; 12039 dev->gso_max_segs = GSO_MAX_SEGS; 12040 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 12041 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 12042 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 12043 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 12044 dev->tso_max_segs = TSO_MAX_SEGS; 12045 dev->upper_level = 1; 12046 dev->lower_level = 1; 12047#ifdef CONFIG_LOCKDEP 12048 dev->nested_level = 0; 12049 INIT_LIST_HEAD(&dev->unlink_list); 12050#endif 12051 12052 INIT_LIST_HEAD(&dev->napi_list); 12053 INIT_LIST_HEAD(&dev->unreg_list); 12054 INIT_LIST_HEAD(&dev->close_list); 12055 INIT_LIST_HEAD(&dev->link_watch_list); 12056 INIT_LIST_HEAD(&dev->adj_list.upper); 12057 INIT_LIST_HEAD(&dev->adj_list.lower); 12058 INIT_LIST_HEAD(&dev->ptype_all); 12059 INIT_LIST_HEAD(&dev->ptype_specific); 12060 INIT_LIST_HEAD(&dev->net_notifier_list); 12061#ifdef CONFIG_NET_SCHED 12062 hash_init(dev->qdisc_hash); 12063#endif 12064 12065 mutex_init(&dev->lock); 12066 12067 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12068 setup(dev); 12069 12070 if (!dev->tx_queue_len) { 12071 dev->priv_flags |= IFF_NO_QUEUE; 12072 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 12073 } 12074 12075 dev->num_tx_queues = txqs; 12076 dev->real_num_tx_queues = txqs; 12077 if (netif_alloc_netdev_queues(dev)) 12078 goto free_all; 12079 12080 dev->num_rx_queues = rxqs; 12081 dev->real_num_rx_queues = rxqs; 12082 if (netif_alloc_rx_queues(dev)) 12083 goto free_all; 12084 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 12085 if (!dev->ethtool) 12086 goto free_all; 12087 12088 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 12089 if (!dev->cfg) 12090 goto free_all; 12091 dev->cfg_pending = dev->cfg; 12092 12093 dev->num_napi_configs = maxqs; 12094 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 12095 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 12096 if (!dev->napi_config) 12097 goto free_all; 12098 12099 strscpy(dev->name, name); 12100 dev->name_assign_type = name_assign_type; 12101 dev->group = INIT_NETDEV_GROUP; 12102 if (!dev->ethtool_ops) 12103 dev->ethtool_ops = &default_ethtool_ops; 12104 12105 nf_hook_netdev_init(dev); 12106 12107 return dev; 12108 12109free_all: 12110 free_netdev(dev); 12111 return NULL; 12112 12113free_pcpu: 12114#ifdef CONFIG_PCPU_DEV_REFCNT 12115 free_percpu(dev->pcpu_refcnt); 12116free_dev: 12117#endif 12118 kvfree(dev); 12119 return NULL; 12120} 12121EXPORT_SYMBOL(alloc_netdev_mqs); 12122 12123static void netdev_napi_exit(struct net_device *dev) 12124{ 12125 if (!list_empty(&dev->napi_list)) { 12126 struct napi_struct *p, *n; 12127 12128 netdev_lock(dev); 12129 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12130 __netif_napi_del_locked(p); 12131 netdev_unlock(dev); 12132 12133 synchronize_net(); 12134 } 12135 12136 kvfree(dev->napi_config); 12137} 12138 12139/** 12140 * free_netdev - free network device 12141 * @dev: device 12142 * 12143 * This function does the last stage of destroying an allocated device 12144 * interface. The reference to the device object is released. If this 12145 * is the last reference then it will be freed.Must be called in process 12146 * context. 12147 */ 12148void free_netdev(struct net_device *dev) 12149{ 12150 might_sleep(); 12151 12152 /* When called immediately after register_netdevice() failed the unwind 12153 * handling may still be dismantling the device. Handle that case by 12154 * deferring the free. 12155 */ 12156 if (dev->reg_state == NETREG_UNREGISTERING) { 12157 ASSERT_RTNL(); 12158 dev->needs_free_netdev = true; 12159 return; 12160 } 12161 12162 WARN_ON(dev->cfg != dev->cfg_pending); 12163 kfree(dev->cfg); 12164 kfree(dev->ethtool); 12165 netif_free_tx_queues(dev); 12166 netif_free_rx_queues(dev); 12167 12168 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12169 12170 /* Flush device addresses */ 12171 dev_addr_flush(dev); 12172 12173 netdev_napi_exit(dev); 12174 12175 netif_del_cpu_rmap(dev); 12176 12177 ref_tracker_dir_exit(&dev->refcnt_tracker); 12178#ifdef CONFIG_PCPU_DEV_REFCNT 12179 free_percpu(dev->pcpu_refcnt); 12180 dev->pcpu_refcnt = NULL; 12181#endif 12182 free_percpu(dev->core_stats); 12183 dev->core_stats = NULL; 12184 free_percpu(dev->xdp_bulkq); 12185 dev->xdp_bulkq = NULL; 12186 12187 netdev_free_phy_link_topology(dev); 12188 12189 mutex_destroy(&dev->lock); 12190 12191 /* Compatibility with error handling in drivers */ 12192 if (dev->reg_state == NETREG_UNINITIALIZED || 12193 dev->reg_state == NETREG_DUMMY) { 12194 kvfree(dev); 12195 return; 12196 } 12197 12198 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12199 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12200 12201 /* will free via device release */ 12202 put_device(&dev->dev); 12203} 12204EXPORT_SYMBOL(free_netdev); 12205 12206/** 12207 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12208 * @sizeof_priv: size of private data to allocate space for 12209 * 12210 * Return: the allocated net_device on success, NULL otherwise 12211 */ 12212struct net_device *alloc_netdev_dummy(int sizeof_priv) 12213{ 12214 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12215 init_dummy_netdev); 12216} 12217EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12218 12219/** 12220 * synchronize_net - Synchronize with packet receive processing 12221 * 12222 * Wait for packets currently being received to be done. 12223 * Does not block later packets from starting. 12224 */ 12225void synchronize_net(void) 12226{ 12227 might_sleep(); 12228 if (from_cleanup_net() || rtnl_is_locked()) 12229 synchronize_rcu_expedited(); 12230 else 12231 synchronize_rcu(); 12232} 12233EXPORT_SYMBOL(synchronize_net); 12234 12235static void netdev_rss_contexts_free(struct net_device *dev) 12236{ 12237 struct ethtool_rxfh_context *ctx; 12238 unsigned long context; 12239 12240 mutex_lock(&dev->ethtool->rss_lock); 12241 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12242 xa_erase(&dev->ethtool->rss_ctx, context); 12243 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12244 kfree(ctx); 12245 } 12246 xa_destroy(&dev->ethtool->rss_ctx); 12247 mutex_unlock(&dev->ethtool->rss_lock); 12248} 12249 12250/** 12251 * unregister_netdevice_queue - remove device from the kernel 12252 * @dev: device 12253 * @head: list 12254 * 12255 * This function shuts down a device interface and removes it 12256 * from the kernel tables. 12257 * If head not NULL, device is queued to be unregistered later. 12258 * 12259 * Callers must hold the rtnl semaphore. You may want 12260 * unregister_netdev() instead of this. 12261 */ 12262 12263void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12264{ 12265 ASSERT_RTNL(); 12266 12267 if (head) { 12268 list_move_tail(&dev->unreg_list, head); 12269 } else { 12270 LIST_HEAD(single); 12271 12272 list_add(&dev->unreg_list, &single); 12273 unregister_netdevice_many(&single); 12274 } 12275} 12276EXPORT_SYMBOL(unregister_netdevice_queue); 12277 12278static void dev_memory_provider_uninstall(struct net_device *dev) 12279{ 12280 unsigned int i; 12281 12282 for (i = 0; i < dev->real_num_rx_queues; i++) { 12283 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12284 struct pp_memory_provider_params *p = &rxq->mp_params; 12285 12286 if (p->mp_ops && p->mp_ops->uninstall) 12287 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12288 } 12289} 12290 12291/* devices must be UP and netdev_lock()'d */ 12292static void netif_close_many_and_unlock(struct list_head *close_head) 12293{ 12294 struct net_device *dev, *tmp; 12295 12296 netif_close_many(close_head, false); 12297 12298 /* ... now unlock them */ 12299 list_for_each_entry_safe(dev, tmp, close_head, close_list) { 12300 netdev_unlock(dev); 12301 list_del_init(&dev->close_list); 12302 } 12303} 12304 12305static void netif_close_many_and_unlock_cond(struct list_head *close_head) 12306{ 12307#ifdef CONFIG_LOCKDEP 12308 /* We can only track up to MAX_LOCK_DEPTH locks per task. 12309 * 12310 * Reserve half the available slots for additional locks possibly 12311 * taken by notifiers and (soft)irqs. 12312 */ 12313 unsigned int limit = MAX_LOCK_DEPTH / 2; 12314 12315 if (lockdep_depth(current) > limit) 12316 netif_close_many_and_unlock(close_head); 12317#endif 12318} 12319 12320void unregister_netdevice_many_notify(struct list_head *head, 12321 u32 portid, const struct nlmsghdr *nlh) 12322{ 12323 struct net_device *dev, *tmp; 12324 LIST_HEAD(close_head); 12325 int cnt = 0; 12326 12327 BUG_ON(dev_boot_phase); 12328 ASSERT_RTNL(); 12329 12330 if (list_empty(head)) 12331 return; 12332 12333 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12334 /* Some devices call without registering 12335 * for initialization unwind. Remove those 12336 * devices and proceed with the remaining. 12337 */ 12338 if (dev->reg_state == NETREG_UNINITIALIZED) { 12339 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12340 dev->name, dev); 12341 12342 WARN_ON(1); 12343 list_del(&dev->unreg_list); 12344 continue; 12345 } 12346 dev->dismantle = true; 12347 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12348 } 12349 12350 /* If device is running, close it first. Start with ops locked... */ 12351 list_for_each_entry(dev, head, unreg_list) { 12352 if (!(dev->flags & IFF_UP)) 12353 continue; 12354 if (netdev_need_ops_lock(dev)) { 12355 list_add_tail(&dev->close_list, &close_head); 12356 netdev_lock(dev); 12357 } 12358 netif_close_many_and_unlock_cond(&close_head); 12359 } 12360 netif_close_many_and_unlock(&close_head); 12361 /* ... now go over the rest. */ 12362 list_for_each_entry(dev, head, unreg_list) { 12363 if (!netdev_need_ops_lock(dev)) 12364 list_add_tail(&dev->close_list, &close_head); 12365 } 12366 netif_close_many(&close_head, true); 12367 12368 list_for_each_entry(dev, head, unreg_list) { 12369 /* And unlink it from device chain. */ 12370 unlist_netdevice(dev); 12371 netdev_lock(dev); 12372 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12373 netdev_unlock(dev); 12374 } 12375 flush_all_backlogs(); 12376 12377 synchronize_net(); 12378 12379 list_for_each_entry(dev, head, unreg_list) { 12380 struct sk_buff *skb = NULL; 12381 12382 /* Shutdown queueing discipline. */ 12383 netdev_lock_ops(dev); 12384 dev_shutdown(dev); 12385 dev_tcx_uninstall(dev); 12386 dev_xdp_uninstall(dev); 12387 dev_memory_provider_uninstall(dev); 12388 netdev_unlock_ops(dev); 12389 bpf_dev_bound_netdev_unregister(dev); 12390 12391 netdev_offload_xstats_disable_all(dev); 12392 12393 /* Notify protocols, that we are about to destroy 12394 * this device. They should clean all the things. 12395 */ 12396 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12397 12398 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12399 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12400 GFP_KERNEL, NULL, 0, 12401 portid, nlh); 12402 12403 /* 12404 * Flush the unicast and multicast chains 12405 */ 12406 dev_uc_flush(dev); 12407 dev_mc_flush(dev); 12408 12409 netdev_name_node_alt_flush(dev); 12410 netdev_name_node_free(dev->name_node); 12411 12412 netdev_rss_contexts_free(dev); 12413 12414 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12415 12416 if (dev->netdev_ops->ndo_uninit) 12417 dev->netdev_ops->ndo_uninit(dev); 12418 12419 mutex_destroy(&dev->ethtool->rss_lock); 12420 12421 net_shaper_flush_netdev(dev); 12422 12423 if (skb) 12424 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12425 12426 /* Notifier chain MUST detach us all upper devices. */ 12427 WARN_ON(netdev_has_any_upper_dev(dev)); 12428 WARN_ON(netdev_has_any_lower_dev(dev)); 12429 12430 /* Remove entries from kobject tree */ 12431 netdev_unregister_kobject(dev); 12432#ifdef CONFIG_XPS 12433 /* Remove XPS queueing entries */ 12434 netif_reset_xps_queues_gt(dev, 0); 12435#endif 12436 } 12437 12438 synchronize_net(); 12439 12440 list_for_each_entry(dev, head, unreg_list) { 12441 netdev_put(dev, &dev->dev_registered_tracker); 12442 net_set_todo(dev); 12443 cnt++; 12444 } 12445 atomic_add(cnt, &dev_unreg_count); 12446 12447 list_del(head); 12448} 12449 12450/** 12451 * unregister_netdevice_many - unregister many devices 12452 * @head: list of devices 12453 * 12454 * Note: As most callers use a stack allocated list_head, 12455 * we force a list_del() to make sure stack won't be corrupted later. 12456 */ 12457void unregister_netdevice_many(struct list_head *head) 12458{ 12459 unregister_netdevice_many_notify(head, 0, NULL); 12460} 12461EXPORT_SYMBOL(unregister_netdevice_many); 12462 12463/** 12464 * unregister_netdev - remove device from the kernel 12465 * @dev: device 12466 * 12467 * This function shuts down a device interface and removes it 12468 * from the kernel tables. 12469 * 12470 * This is just a wrapper for unregister_netdevice that takes 12471 * the rtnl semaphore. In general you want to use this and not 12472 * unregister_netdevice. 12473 */ 12474void unregister_netdev(struct net_device *dev) 12475{ 12476 rtnl_net_dev_lock(dev); 12477 unregister_netdevice(dev); 12478 rtnl_net_dev_unlock(dev); 12479} 12480EXPORT_SYMBOL(unregister_netdev); 12481 12482int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12483 const char *pat, int new_ifindex, 12484 struct netlink_ext_ack *extack) 12485{ 12486 struct netdev_name_node *name_node; 12487 struct net *net_old = dev_net(dev); 12488 char new_name[IFNAMSIZ] = {}; 12489 int err, new_nsid; 12490 12491 ASSERT_RTNL(); 12492 12493 /* Don't allow namespace local devices to be moved. */ 12494 err = -EINVAL; 12495 if (dev->netns_immutable) { 12496 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12497 goto out; 12498 } 12499 12500 /* Ensure the device has been registered */ 12501 if (dev->reg_state != NETREG_REGISTERED) { 12502 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12503 goto out; 12504 } 12505 12506 /* Get out if there is nothing todo */ 12507 err = 0; 12508 if (net_eq(net_old, net)) 12509 goto out; 12510 12511 /* Pick the destination device name, and ensure 12512 * we can use it in the destination network namespace. 12513 */ 12514 err = -EEXIST; 12515 if (netdev_name_in_use(net, dev->name)) { 12516 /* We get here if we can't use the current device name */ 12517 if (!pat) { 12518 NL_SET_ERR_MSG(extack, 12519 "An interface with the same name exists in the target netns"); 12520 goto out; 12521 } 12522 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12523 if (err < 0) { 12524 NL_SET_ERR_MSG_FMT(extack, 12525 "Unable to use '%s' for the new interface name in the target netns", 12526 pat); 12527 goto out; 12528 } 12529 } 12530 /* Check that none of the altnames conflicts. */ 12531 err = -EEXIST; 12532 netdev_for_each_altname(dev, name_node) { 12533 if (netdev_name_in_use(net, name_node->name)) { 12534 NL_SET_ERR_MSG_FMT(extack, 12535 "An interface with the altname %s exists in the target netns", 12536 name_node->name); 12537 goto out; 12538 } 12539 } 12540 12541 /* Check that new_ifindex isn't used yet. */ 12542 if (new_ifindex) { 12543 err = dev_index_reserve(net, new_ifindex); 12544 if (err < 0) { 12545 NL_SET_ERR_MSG_FMT(extack, 12546 "The ifindex %d is not available in the target netns", 12547 new_ifindex); 12548 goto out; 12549 } 12550 } else { 12551 /* If there is an ifindex conflict assign a new one */ 12552 err = dev_index_reserve(net, dev->ifindex); 12553 if (err == -EBUSY) 12554 err = dev_index_reserve(net, 0); 12555 if (err < 0) { 12556 NL_SET_ERR_MSG(extack, 12557 "Unable to allocate a new ifindex in the target netns"); 12558 goto out; 12559 } 12560 new_ifindex = err; 12561 } 12562 12563 /* 12564 * And now a mini version of register_netdevice unregister_netdevice. 12565 */ 12566 12567 netdev_lock_ops(dev); 12568 /* If device is running close it first. */ 12569 netif_close(dev); 12570 /* And unlink it from device chain */ 12571 unlist_netdevice(dev); 12572 12573 if (!netdev_need_ops_lock(dev)) 12574 netdev_lock(dev); 12575 dev->moving_ns = true; 12576 netdev_unlock(dev); 12577 12578 synchronize_net(); 12579 12580 /* Shutdown queueing discipline. */ 12581 netdev_lock_ops(dev); 12582 dev_shutdown(dev); 12583 netdev_unlock_ops(dev); 12584 12585 /* Notify protocols, that we are about to destroy 12586 * this device. They should clean all the things. 12587 * 12588 * Note that dev->reg_state stays at NETREG_REGISTERED. 12589 * This is wanted because this way 8021q and macvlan know 12590 * the device is just moving and can keep their slaves up. 12591 */ 12592 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12593 rcu_barrier(); 12594 12595 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12596 12597 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12598 new_ifindex); 12599 12600 /* 12601 * Flush the unicast and multicast chains 12602 */ 12603 dev_uc_flush(dev); 12604 dev_mc_flush(dev); 12605 12606 /* Send a netdev-removed uevent to the old namespace */ 12607 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12608 netdev_adjacent_del_links(dev); 12609 12610 /* Move per-net netdevice notifiers that are following the netdevice */ 12611 move_netdevice_notifiers_dev_net(dev, net); 12612 12613 /* Actually switch the network namespace */ 12614 netdev_lock(dev); 12615 dev_net_set(dev, net); 12616 netdev_unlock(dev); 12617 dev->ifindex = new_ifindex; 12618 12619 if (new_name[0]) { 12620 /* Rename the netdev to prepared name */ 12621 write_seqlock_bh(&netdev_rename_lock); 12622 strscpy(dev->name, new_name, IFNAMSIZ); 12623 write_sequnlock_bh(&netdev_rename_lock); 12624 } 12625 12626 /* Fixup kobjects */ 12627 dev_set_uevent_suppress(&dev->dev, 1); 12628 err = device_rename(&dev->dev, dev->name); 12629 dev_set_uevent_suppress(&dev->dev, 0); 12630 WARN_ON(err); 12631 12632 /* Send a netdev-add uevent to the new namespace */ 12633 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12634 netdev_adjacent_add_links(dev); 12635 12636 /* Adapt owner in case owning user namespace of target network 12637 * namespace is different from the original one. 12638 */ 12639 err = netdev_change_owner(dev, net_old, net); 12640 WARN_ON(err); 12641 12642 netdev_lock(dev); 12643 dev->moving_ns = false; 12644 if (!netdev_need_ops_lock(dev)) 12645 netdev_unlock(dev); 12646 12647 /* Add the device back in the hashes */ 12648 list_netdevice(dev); 12649 /* Notify protocols, that a new device appeared. */ 12650 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12651 netdev_unlock_ops(dev); 12652 12653 /* 12654 * Prevent userspace races by waiting until the network 12655 * device is fully setup before sending notifications. 12656 */ 12657 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12658 12659 synchronize_net(); 12660 err = 0; 12661out: 12662 return err; 12663} 12664 12665static int dev_cpu_dead(unsigned int oldcpu) 12666{ 12667 struct sk_buff **list_skb; 12668 struct sk_buff *skb; 12669 unsigned int cpu; 12670 struct softnet_data *sd, *oldsd, *remsd = NULL; 12671 12672 local_irq_disable(); 12673 cpu = smp_processor_id(); 12674 sd = &per_cpu(softnet_data, cpu); 12675 oldsd = &per_cpu(softnet_data, oldcpu); 12676 12677 /* Find end of our completion_queue. */ 12678 list_skb = &sd->completion_queue; 12679 while (*list_skb) 12680 list_skb = &(*list_skb)->next; 12681 /* Append completion queue from offline CPU. */ 12682 *list_skb = oldsd->completion_queue; 12683 oldsd->completion_queue = NULL; 12684 12685 /* Append output queue from offline CPU. */ 12686 if (oldsd->output_queue) { 12687 *sd->output_queue_tailp = oldsd->output_queue; 12688 sd->output_queue_tailp = oldsd->output_queue_tailp; 12689 oldsd->output_queue = NULL; 12690 oldsd->output_queue_tailp = &oldsd->output_queue; 12691 } 12692 /* Append NAPI poll list from offline CPU, with one exception : 12693 * process_backlog() must be called by cpu owning percpu backlog. 12694 * We properly handle process_queue & input_pkt_queue later. 12695 */ 12696 while (!list_empty(&oldsd->poll_list)) { 12697 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12698 struct napi_struct, 12699 poll_list); 12700 12701 list_del_init(&napi->poll_list); 12702 if (napi->poll == process_backlog) 12703 napi->state &= NAPIF_STATE_THREADED; 12704 else 12705 ____napi_schedule(sd, napi); 12706 } 12707 12708 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12709 local_irq_enable(); 12710 12711 if (!use_backlog_threads()) { 12712#ifdef CONFIG_RPS 12713 remsd = oldsd->rps_ipi_list; 12714 oldsd->rps_ipi_list = NULL; 12715#endif 12716 /* send out pending IPI's on offline CPU */ 12717 net_rps_send_ipi(remsd); 12718 } 12719 12720 /* Process offline CPU's input_pkt_queue */ 12721 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12722 netif_rx(skb); 12723 rps_input_queue_head_incr(oldsd); 12724 } 12725 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12726 netif_rx(skb); 12727 rps_input_queue_head_incr(oldsd); 12728 } 12729 12730 return 0; 12731} 12732 12733/** 12734 * netdev_increment_features - increment feature set by one 12735 * @all: current feature set 12736 * @one: new feature set 12737 * @mask: mask feature set 12738 * 12739 * Computes a new feature set after adding a device with feature set 12740 * @one to the master device with current feature set @all. Will not 12741 * enable anything that is off in @mask. Returns the new feature set. 12742 */ 12743netdev_features_t netdev_increment_features(netdev_features_t all, 12744 netdev_features_t one, netdev_features_t mask) 12745{ 12746 if (mask & NETIF_F_HW_CSUM) 12747 mask |= NETIF_F_CSUM_MASK; 12748 mask |= NETIF_F_VLAN_CHALLENGED; 12749 12750 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12751 all &= one | ~NETIF_F_ALL_FOR_ALL; 12752 12753 /* If one device supports hw checksumming, set for all. */ 12754 if (all & NETIF_F_HW_CSUM) 12755 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12756 12757 return all; 12758} 12759EXPORT_SYMBOL(netdev_increment_features); 12760 12761/** 12762 * netdev_compute_master_upper_features - compute feature from lowers 12763 * @dev: the upper device 12764 * @update_header: whether to update upper device's header_len/headroom/tailroom 12765 * 12766 * Recompute the upper device's feature based on all lower devices. 12767 */ 12768void netdev_compute_master_upper_features(struct net_device *dev, bool update_header) 12769{ 12770 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12771 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES; 12772 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES; 12773 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES; 12774 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES; 12775 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES; 12776 unsigned short max_header_len = ETH_HLEN; 12777 unsigned int tso_max_size = TSO_MAX_SIZE; 12778 unsigned short max_headroom = 0; 12779 unsigned short max_tailroom = 0; 12780 u16 tso_max_segs = TSO_MAX_SEGS; 12781 struct net_device *lower_dev; 12782 struct list_head *iter; 12783 12784 mpls_features = netdev_base_features(mpls_features); 12785 vlan_features = netdev_base_features(vlan_features); 12786 enc_features = netdev_base_features(enc_features); 12787 12788 netdev_for_each_lower_dev(dev, lower_dev, iter) { 12789 gso_partial_features = netdev_increment_features(gso_partial_features, 12790 lower_dev->gso_partial_features, 12791 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES); 12792 12793 vlan_features = netdev_increment_features(vlan_features, 12794 lower_dev->vlan_features, 12795 MASTER_UPPER_DEV_VLAN_FEATURES); 12796 12797 enc_features = netdev_increment_features(enc_features, 12798 lower_dev->hw_enc_features, 12799 MASTER_UPPER_DEV_ENC_FEATURES); 12800 12801 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12802 xfrm_features = netdev_increment_features(xfrm_features, 12803 lower_dev->hw_enc_features, 12804 MASTER_UPPER_DEV_XFRM_FEATURES); 12805 12806 mpls_features = netdev_increment_features(mpls_features, 12807 lower_dev->mpls_features, 12808 MASTER_UPPER_DEV_MPLS_FEATURES); 12809 12810 dst_release_flag &= lower_dev->priv_flags; 12811 12812 if (update_header) { 12813 max_header_len = max(max_header_len, lower_dev->hard_header_len); 12814 max_headroom = max(max_headroom, lower_dev->needed_headroom); 12815 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom); 12816 } 12817 12818 tso_max_size = min(tso_max_size, lower_dev->tso_max_size); 12819 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs); 12820 } 12821 12822 dev->gso_partial_features = gso_partial_features; 12823 dev->vlan_features = vlan_features; 12824 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | 12825 NETIF_F_HW_VLAN_CTAG_TX | 12826 NETIF_F_HW_VLAN_STAG_TX; 12827 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12828 dev->hw_enc_features |= xfrm_features; 12829 dev->mpls_features = mpls_features; 12830 12831 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 12832 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) && 12833 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) 12834 dev->priv_flags |= IFF_XMIT_DST_RELEASE; 12835 12836 if (update_header) { 12837 dev->hard_header_len = max_header_len; 12838 dev->needed_headroom = max_headroom; 12839 dev->needed_tailroom = max_tailroom; 12840 } 12841 12842 netif_set_tso_max_segs(dev, tso_max_segs); 12843 netif_set_tso_max_size(dev, tso_max_size); 12844 12845 netdev_change_features(dev); 12846} 12847EXPORT_SYMBOL(netdev_compute_master_upper_features); 12848 12849static struct hlist_head * __net_init netdev_create_hash(void) 12850{ 12851 int i; 12852 struct hlist_head *hash; 12853 12854 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12855 if (hash != NULL) 12856 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12857 INIT_HLIST_HEAD(&hash[i]); 12858 12859 return hash; 12860} 12861 12862/* Initialize per network namespace state */ 12863static int __net_init netdev_init(struct net *net) 12864{ 12865 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12866 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12867 12868 INIT_LIST_HEAD(&net->dev_base_head); 12869 12870 net->dev_name_head = netdev_create_hash(); 12871 if (net->dev_name_head == NULL) 12872 goto err_name; 12873 12874 net->dev_index_head = netdev_create_hash(); 12875 if (net->dev_index_head == NULL) 12876 goto err_idx; 12877 12878 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12879 12880 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12881 12882 return 0; 12883 12884err_idx: 12885 kfree(net->dev_name_head); 12886err_name: 12887 return -ENOMEM; 12888} 12889 12890/** 12891 * netdev_drivername - network driver for the device 12892 * @dev: network device 12893 * 12894 * Determine network driver for device. 12895 */ 12896const char *netdev_drivername(const struct net_device *dev) 12897{ 12898 const struct device_driver *driver; 12899 const struct device *parent; 12900 const char *empty = ""; 12901 12902 parent = dev->dev.parent; 12903 if (!parent) 12904 return empty; 12905 12906 driver = parent->driver; 12907 if (driver && driver->name) 12908 return driver->name; 12909 return empty; 12910} 12911 12912static void __netdev_printk(const char *level, const struct net_device *dev, 12913 struct va_format *vaf) 12914{ 12915 if (dev && dev->dev.parent) { 12916 dev_printk_emit(level[1] - '0', 12917 dev->dev.parent, 12918 "%s %s %s%s: %pV", 12919 dev_driver_string(dev->dev.parent), 12920 dev_name(dev->dev.parent), 12921 netdev_name(dev), netdev_reg_state(dev), 12922 vaf); 12923 } else if (dev) { 12924 printk("%s%s%s: %pV", 12925 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12926 } else { 12927 printk("%s(NULL net_device): %pV", level, vaf); 12928 } 12929} 12930 12931void netdev_printk(const char *level, const struct net_device *dev, 12932 const char *format, ...) 12933{ 12934 struct va_format vaf; 12935 va_list args; 12936 12937 va_start(args, format); 12938 12939 vaf.fmt = format; 12940 vaf.va = &args; 12941 12942 __netdev_printk(level, dev, &vaf); 12943 12944 va_end(args); 12945} 12946EXPORT_SYMBOL(netdev_printk); 12947 12948#define define_netdev_printk_level(func, level) \ 12949void func(const struct net_device *dev, const char *fmt, ...) \ 12950{ \ 12951 struct va_format vaf; \ 12952 va_list args; \ 12953 \ 12954 va_start(args, fmt); \ 12955 \ 12956 vaf.fmt = fmt; \ 12957 vaf.va = &args; \ 12958 \ 12959 __netdev_printk(level, dev, &vaf); \ 12960 \ 12961 va_end(args); \ 12962} \ 12963EXPORT_SYMBOL(func); 12964 12965define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12966define_netdev_printk_level(netdev_alert, KERN_ALERT); 12967define_netdev_printk_level(netdev_crit, KERN_CRIT); 12968define_netdev_printk_level(netdev_err, KERN_ERR); 12969define_netdev_printk_level(netdev_warn, KERN_WARNING); 12970define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12971define_netdev_printk_level(netdev_info, KERN_INFO); 12972 12973static void __net_exit netdev_exit(struct net *net) 12974{ 12975 kfree(net->dev_name_head); 12976 kfree(net->dev_index_head); 12977 xa_destroy(&net->dev_by_index); 12978 if (net != &init_net) 12979 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12980} 12981 12982static struct pernet_operations __net_initdata netdev_net_ops = { 12983 .init = netdev_init, 12984 .exit = netdev_exit, 12985}; 12986 12987static void __net_exit default_device_exit_net(struct net *net) 12988{ 12989 struct netdev_name_node *name_node, *tmp; 12990 struct net_device *dev, *aux; 12991 /* 12992 * Push all migratable network devices back to the 12993 * initial network namespace 12994 */ 12995 ASSERT_RTNL(); 12996 for_each_netdev_safe(net, dev, aux) { 12997 int err; 12998 char fb_name[IFNAMSIZ]; 12999 13000 /* Ignore unmoveable devices (i.e. loopback) */ 13001 if (dev->netns_immutable) 13002 continue; 13003 13004 /* Leave virtual devices for the generic cleanup */ 13005 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 13006 continue; 13007 13008 /* Push remaining network devices to init_net */ 13009 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 13010 if (netdev_name_in_use(&init_net, fb_name)) 13011 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 13012 13013 netdev_for_each_altname_safe(dev, name_node, tmp) 13014 if (netdev_name_in_use(&init_net, name_node->name)) 13015 __netdev_name_node_alt_destroy(name_node); 13016 13017 err = dev_change_net_namespace(dev, &init_net, fb_name); 13018 if (err) { 13019 pr_emerg("%s: failed to move %s to init_net: %d\n", 13020 __func__, dev->name, err); 13021 BUG(); 13022 } 13023 } 13024} 13025 13026static void __net_exit default_device_exit_batch(struct list_head *net_list) 13027{ 13028 /* At exit all network devices most be removed from a network 13029 * namespace. Do this in the reverse order of registration. 13030 * Do this across as many network namespaces as possible to 13031 * improve batching efficiency. 13032 */ 13033 struct net_device *dev; 13034 struct net *net; 13035 LIST_HEAD(dev_kill_list); 13036 13037 rtnl_lock(); 13038 list_for_each_entry(net, net_list, exit_list) { 13039 default_device_exit_net(net); 13040 cond_resched(); 13041 } 13042 13043 list_for_each_entry(net, net_list, exit_list) { 13044 for_each_netdev_reverse(net, dev) { 13045 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 13046 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 13047 else 13048 unregister_netdevice_queue(dev, &dev_kill_list); 13049 } 13050 } 13051 unregister_netdevice_many(&dev_kill_list); 13052 rtnl_unlock(); 13053} 13054 13055static struct pernet_operations __net_initdata default_device_ops = { 13056 .exit_batch = default_device_exit_batch, 13057}; 13058 13059static void __init net_dev_struct_check(void) 13060{ 13061 /* TX read-mostly hotpath */ 13062 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 13063 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 13064 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 13065 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 13066 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 13067 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 13068 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 13069 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 13070 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 13071 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 13072 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 13073 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 13075#ifdef CONFIG_XPS 13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 13077#endif 13078#ifdef CONFIG_NETFILTER_EGRESS 13079 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 13080#endif 13081#ifdef CONFIG_NET_XGRESS 13082 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 13083#endif 13084 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 13085 13086 /* TXRX read-mostly hotpath */ 13087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 13088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 13089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 13090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 13091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 13092 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 13093 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 13094 13095 /* RX read-mostly hotpath */ 13096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 13097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 13098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 13099 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 13100 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 13101 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 13102 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 13103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 13104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 13105#ifdef CONFIG_NETPOLL 13106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 13107#endif 13108#ifdef CONFIG_NET_XGRESS 13109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 13110#endif 13111 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 13112} 13113 13114/* 13115 * Initialize the DEV module. At boot time this walks the device list and 13116 * unhooks any devices that fail to initialise (normally hardware not 13117 * present) and leaves us with a valid list of present and active devices. 13118 * 13119 */ 13120 13121/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 13122#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 13123 13124static int net_page_pool_create(int cpuid) 13125{ 13126#if IS_ENABLED(CONFIG_PAGE_POOL) 13127 struct page_pool_params page_pool_params = { 13128 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 13129 .flags = PP_FLAG_SYSTEM_POOL, 13130 .nid = cpu_to_mem(cpuid), 13131 }; 13132 struct page_pool *pp_ptr; 13133 int err; 13134 13135 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 13136 if (IS_ERR(pp_ptr)) 13137 return -ENOMEM; 13138 13139 err = xdp_reg_page_pool(pp_ptr); 13140 if (err) { 13141 page_pool_destroy(pp_ptr); 13142 return err; 13143 } 13144 13145 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 13146#endif 13147 return 0; 13148} 13149 13150static int backlog_napi_should_run(unsigned int cpu) 13151{ 13152 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13153 struct napi_struct *napi = &sd->backlog; 13154 13155 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 13156} 13157 13158static void run_backlog_napi(unsigned int cpu) 13159{ 13160 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13161 13162 napi_threaded_poll_loop(&sd->backlog, false); 13163} 13164 13165static void backlog_napi_setup(unsigned int cpu) 13166{ 13167 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13168 struct napi_struct *napi = &sd->backlog; 13169 13170 napi->thread = this_cpu_read(backlog_napi); 13171 set_bit(NAPI_STATE_THREADED, &napi->state); 13172} 13173 13174static struct smp_hotplug_thread backlog_threads = { 13175 .store = &backlog_napi, 13176 .thread_should_run = backlog_napi_should_run, 13177 .thread_fn = run_backlog_napi, 13178 .thread_comm = "backlog_napi/%u", 13179 .setup = backlog_napi_setup, 13180}; 13181 13182/* 13183 * This is called single threaded during boot, so no need 13184 * to take the rtnl semaphore. 13185 */ 13186static int __init net_dev_init(void) 13187{ 13188 int i, rc = -ENOMEM; 13189 13190 BUG_ON(!dev_boot_phase); 13191 13192 net_dev_struct_check(); 13193 13194 if (dev_proc_init()) 13195 goto out; 13196 13197 if (netdev_kobject_init()) 13198 goto out; 13199 13200 for (i = 0; i < PTYPE_HASH_SIZE; i++) 13201 INIT_LIST_HEAD(&ptype_base[i]); 13202 13203 if (register_pernet_subsys(&netdev_net_ops)) 13204 goto out; 13205 13206 /* 13207 * Initialise the packet receive queues. 13208 */ 13209 13210 flush_backlogs_fallback = flush_backlogs_alloc(); 13211 if (!flush_backlogs_fallback) 13212 goto out; 13213 13214 for_each_possible_cpu(i) { 13215 struct softnet_data *sd = &per_cpu(softnet_data, i); 13216 13217 skb_queue_head_init(&sd->input_pkt_queue); 13218 skb_queue_head_init(&sd->process_queue); 13219#ifdef CONFIG_XFRM_OFFLOAD 13220 skb_queue_head_init(&sd->xfrm_backlog); 13221#endif 13222 INIT_LIST_HEAD(&sd->poll_list); 13223 sd->output_queue_tailp = &sd->output_queue; 13224#ifdef CONFIG_RPS 13225 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 13226 sd->cpu = i; 13227#endif 13228 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 13229 13230 gro_init(&sd->backlog.gro); 13231 sd->backlog.poll = process_backlog; 13232 sd->backlog.weight = weight_p; 13233 INIT_LIST_HEAD(&sd->backlog.poll_list); 13234 13235 if (net_page_pool_create(i)) 13236 goto out; 13237 } 13238 net_hotdata.skb_defer_nodes = 13239 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, 13240 __alignof__(struct skb_defer_node)); 13241 if (!net_hotdata.skb_defer_nodes) 13242 goto out; 13243 if (use_backlog_threads()) 13244 smpboot_register_percpu_thread(&backlog_threads); 13245 13246 dev_boot_phase = 0; 13247 13248 /* The loopback device is special if any other network devices 13249 * is present in a network namespace the loopback device must 13250 * be present. Since we now dynamically allocate and free the 13251 * loopback device ensure this invariant is maintained by 13252 * keeping the loopback device as the first device on the 13253 * list of network devices. Ensuring the loopback devices 13254 * is the first device that appears and the last network device 13255 * that disappears. 13256 */ 13257 if (register_pernet_device(&loopback_net_ops)) 13258 goto out; 13259 13260 if (register_pernet_device(&default_device_ops)) 13261 goto out; 13262 13263 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13264 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13265 13266 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13267 NULL, dev_cpu_dead); 13268 WARN_ON(rc < 0); 13269 rc = 0; 13270 13271 /* avoid static key IPIs to isolated CPUs */ 13272 if (housekeeping_enabled(HK_TYPE_MISC)) 13273 net_enable_timestamp(); 13274out: 13275 if (rc < 0) { 13276 for_each_possible_cpu(i) { 13277 struct page_pool *pp_ptr; 13278 13279 pp_ptr = per_cpu(system_page_pool.pool, i); 13280 if (!pp_ptr) 13281 continue; 13282 13283 xdp_unreg_page_pool(pp_ptr); 13284 page_pool_destroy(pp_ptr); 13285 per_cpu(system_page_pool.pool, i) = NULL; 13286 } 13287 } 13288 13289 return rc; 13290} 13291 13292subsys_initcall(net_dev_init);