Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * A generic kernel FIFO implementation
4 *
5 * Copyright (C) 2013 Stefani Seibold <stefani@seibold.net>
6 */
7
8#ifndef _LINUX_KFIFO_H
9#define _LINUX_KFIFO_H
10
11/*
12 * How to porting drivers to the new generic FIFO API:
13 *
14 * - Modify the declaration of the "struct kfifo *" object into a
15 * in-place "struct kfifo" object
16 * - Init the in-place object with kfifo_alloc() or kfifo_init()
17 * Note: The address of the in-place "struct kfifo" object must be
18 * passed as the first argument to this functions
19 * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get
20 * into kfifo_out
21 * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get
22 * into kfifo_out_spinlocked
23 * Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc
24 * must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked
25 * as the last parameter
26 * - The formerly __kfifo_* functions are renamed into kfifo_*
27 */
28
29/*
30 * Note about locking: There is no locking required until only one reader
31 * and one writer is using the fifo and no kfifo_reset() will be called.
32 * kfifo_reset_out() can be safely used, until it will be only called
33 * in the reader thread.
34 * For multiple writer and one reader there is only a need to lock the writer.
35 * And vice versa for only one writer and multiple reader there is only a need
36 * to lock the reader.
37 */
38
39#include <linux/array_size.h>
40#include <linux/spinlock.h>
41#include <linux/stddef.h>
42#include <linux/types.h>
43
44#include <asm/barrier.h>
45#include <asm/errno.h>
46
47struct scatterlist;
48
49struct __kfifo {
50 unsigned int in;
51 unsigned int out;
52 unsigned int mask;
53 unsigned int esize;
54 void *data;
55};
56
57#define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \
58 union { \
59 struct __kfifo kfifo; \
60 datatype *type; \
61 const datatype *const_type; \
62 char (*rectype)[recsize]; \
63 ptrtype *ptr; \
64 ptrtype const *ptr_const; \
65 }
66
67#define __STRUCT_KFIFO(type, size, recsize, ptrtype) \
68{ \
69 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
70 type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
71}
72
73#define STRUCT_KFIFO(type, size) \
74 struct __STRUCT_KFIFO(type, size, 0, type)
75
76#define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \
77{ \
78 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
79 type buf[0]; \
80}
81
82#define STRUCT_KFIFO_PTR(type) \
83 struct __STRUCT_KFIFO_PTR(type, 0, type)
84
85/*
86 * define compatibility "struct kfifo" for dynamic allocated fifos
87 */
88struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void);
89
90#define STRUCT_KFIFO_REC_1(size) \
91 struct __STRUCT_KFIFO(unsigned char, size, 1, void)
92
93#define STRUCT_KFIFO_REC_2(size) \
94 struct __STRUCT_KFIFO(unsigned char, size, 2, void)
95
96/*
97 * define kfifo_rec types
98 */
99struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void);
100struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void);
101
102/*
103 * helper macro to distinguish between real in place fifo where the fifo
104 * array is a part of the structure and the fifo type where the array is
105 * outside of the fifo structure.
106 */
107#define __is_kfifo_ptr(fifo) \
108 (sizeof(*fifo) == sizeof(STRUCT_KFIFO_PTR(typeof(*(fifo)->type))))
109
110/**
111 * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object
112 * @fifo: name of the declared fifo
113 * @type: type of the fifo elements
114 */
115#define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo
116
117/**
118 * DECLARE_KFIFO - macro to declare a fifo object
119 * @fifo: name of the declared fifo
120 * @type: type of the fifo elements
121 * @size: the number of elements in the fifo, this must be a power of 2
122 */
123#define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo
124
125/**
126 * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO
127 * @fifo: name of the declared fifo datatype
128 */
129#define INIT_KFIFO(fifo) \
130(void)({ \
131 typeof(&(fifo)) __tmp = &(fifo); \
132 struct __kfifo *__kfifo = &__tmp->kfifo; \
133 __kfifo->in = 0; \
134 __kfifo->out = 0; \
135 __kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\
136 __kfifo->esize = sizeof(*__tmp->buf); \
137 __kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \
138})
139
140/**
141 * DEFINE_KFIFO - macro to define and initialize a fifo
142 * @fifo: name of the declared fifo datatype
143 * @type: type of the fifo elements
144 * @size: the number of elements in the fifo, this must be a power of 2
145 *
146 * Note: the macro can be used for global and local fifo data type variables.
147 */
148#define DEFINE_KFIFO(fifo, type, size) \
149 DECLARE_KFIFO(fifo, type, size) = \
150 (typeof(fifo)) { \
151 { \
152 { \
153 .in = 0, \
154 .out = 0, \
155 .mask = __is_kfifo_ptr(&(fifo)) ? \
156 0 : \
157 ARRAY_SIZE((fifo).buf) - 1, \
158 .esize = sizeof(*(fifo).buf), \
159 .data = __is_kfifo_ptr(&(fifo)) ? \
160 NULL : \
161 (fifo).buf, \
162 } \
163 } \
164 }
165
166
167static inline unsigned int __must_check
168__kfifo_uint_must_check_helper(unsigned int val)
169{
170 return val;
171}
172
173static inline int __must_check
174__kfifo_int_must_check_helper(int val)
175{
176 return val;
177}
178
179/**
180 * kfifo_initialized - Check if the fifo is initialized
181 * @fifo: address of the fifo to check
182 *
183 * Return %true if fifo is initialized, otherwise %false.
184 * Assumes the fifo was 0 before.
185 */
186#define kfifo_initialized(fifo) ((fifo)->kfifo.mask)
187
188/**
189 * kfifo_esize - returns the size of the element managed by the fifo
190 * @fifo: address of the fifo to be used
191 */
192#define kfifo_esize(fifo) ((fifo)->kfifo.esize)
193
194/**
195 * kfifo_recsize - returns the size of the record length field
196 * @fifo: address of the fifo to be used
197 */
198#define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype))
199
200/**
201 * kfifo_size - returns the size of the fifo in elements
202 * @fifo: address of the fifo to be used
203 */
204#define kfifo_size(fifo) ((fifo)->kfifo.mask + 1)
205
206/**
207 * kfifo_reset - removes the entire fifo content
208 * @fifo: address of the fifo to be used
209 *
210 * Note: usage of kfifo_reset() is dangerous. It should be only called when the
211 * fifo is exclusived locked or when it is secured that no other thread is
212 * accessing the fifo.
213 */
214#define kfifo_reset(fifo) \
215(void)({ \
216 typeof((fifo) + 1) __tmp = (fifo); \
217 __tmp->kfifo.in = __tmp->kfifo.out = 0; \
218})
219
220/**
221 * kfifo_reset_out - skip fifo content
222 * @fifo: address of the fifo to be used
223 *
224 * Note: The usage of kfifo_reset_out() is safe until it will be only called
225 * from the reader thread and there is only one concurrent reader. Otherwise
226 * it is dangerous and must be handled in the same way as kfifo_reset().
227 */
228#define kfifo_reset_out(fifo) \
229(void)({ \
230 typeof((fifo) + 1) __tmp = (fifo); \
231 __tmp->kfifo.out = __tmp->kfifo.in; \
232})
233
234/**
235 * kfifo_len - returns the number of used elements in the fifo
236 * @fifo: address of the fifo to be used
237 */
238#define kfifo_len(fifo) \
239({ \
240 typeof((fifo) + 1) __tmpl = (fifo); \
241 __tmpl->kfifo.in - __tmpl->kfifo.out; \
242})
243
244/**
245 * kfifo_is_empty - returns true if the fifo is empty
246 * @fifo: address of the fifo to be used
247 */
248#define kfifo_is_empty(fifo) \
249({ \
250 typeof((fifo) + 1) __tmpq = (fifo); \
251 __tmpq->kfifo.in == __tmpq->kfifo.out; \
252})
253
254/**
255 * kfifo_is_empty_spinlocked - returns true if the fifo is empty using
256 * a spinlock for locking
257 * @fifo: address of the fifo to be used
258 * @lock: spinlock to be used for locking
259 */
260#define kfifo_is_empty_spinlocked(fifo, lock) \
261({ \
262 unsigned long __flags; \
263 bool __ret; \
264 spin_lock_irqsave(lock, __flags); \
265 __ret = kfifo_is_empty(fifo); \
266 spin_unlock_irqrestore(lock, __flags); \
267 __ret; \
268})
269
270/**
271 * kfifo_is_empty_spinlocked_noirqsave - returns true if the fifo is empty
272 * using a spinlock for locking, doesn't disable interrupts
273 * @fifo: address of the fifo to be used
274 * @lock: spinlock to be used for locking
275 */
276#define kfifo_is_empty_spinlocked_noirqsave(fifo, lock) \
277({ \
278 bool __ret; \
279 spin_lock(lock); \
280 __ret = kfifo_is_empty(fifo); \
281 spin_unlock(lock); \
282 __ret; \
283})
284
285/**
286 * kfifo_is_full - returns true if the fifo is full
287 * @fifo: address of the fifo to be used
288 */
289#define kfifo_is_full(fifo) \
290({ \
291 typeof((fifo) + 1) __tmpq = (fifo); \
292 kfifo_len(__tmpq) > __tmpq->kfifo.mask; \
293})
294
295/**
296 * kfifo_avail - returns the number of unused elements in the fifo
297 * @fifo: address of the fifo to be used
298 */
299#define kfifo_avail(fifo) \
300__kfifo_uint_must_check_helper( \
301({ \
302 typeof((fifo) + 1) __tmpq = (fifo); \
303 const size_t __recsize = sizeof(*__tmpq->rectype); \
304 unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \
305 (__recsize) ? ((__avail <= __recsize) ? 0 : \
306 __kfifo_max_r(__avail - __recsize, __recsize)) : \
307 __avail; \
308}) \
309)
310
311/**
312 * kfifo_skip_count - skip output data
313 * @fifo: address of the fifo to be used
314 * @count: count of data to skip
315 */
316#define kfifo_skip_count(fifo, count) do { \
317 typeof((fifo) + 1) __tmp = (fifo); \
318 const size_t __recsize = sizeof(*__tmp->rectype); \
319 struct __kfifo *__kfifo = &__tmp->kfifo; \
320 if (__recsize) \
321 __kfifo_skip_r(__kfifo, __recsize); \
322 else \
323 __kfifo->out += (count); \
324} while(0)
325
326/**
327 * kfifo_skip - skip output data
328 * @fifo: address of the fifo to be used
329 */
330#define kfifo_skip(fifo) kfifo_skip_count(fifo, 1)
331
332/**
333 * kfifo_peek_len - gets the size of the next fifo record
334 * @fifo: address of the fifo to be used
335 *
336 * This function returns the size of the next fifo record in number of bytes.
337 */
338#define kfifo_peek_len(fifo) \
339__kfifo_uint_must_check_helper( \
340({ \
341 typeof((fifo) + 1) __tmp = (fifo); \
342 const size_t __recsize = sizeof(*__tmp->rectype); \
343 struct __kfifo *__kfifo = &__tmp->kfifo; \
344 (!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \
345 __kfifo_len_r(__kfifo, __recsize); \
346}) \
347)
348
349/**
350 * kfifo_alloc - dynamically allocates a new fifo buffer
351 * @fifo: pointer to the fifo
352 * @size: the number of elements in the fifo, this must be a power of 2
353 * @gfp_mask: get_free_pages mask, passed to kmalloc()
354 *
355 * This macro dynamically allocates a new fifo buffer.
356 *
357 * The number of elements will be rounded-up to a power of 2.
358 * The fifo will be release with kfifo_free().
359 * Return 0 if no error, otherwise an error code.
360 */
361#define kfifo_alloc(fifo, size, gfp_mask) \
362__kfifo_int_must_check_helper( \
363({ \
364 typeof((fifo) + 1) __tmp = (fifo); \
365 struct __kfifo *__kfifo = &__tmp->kfifo; \
366 __is_kfifo_ptr(__tmp) ? \
367 __kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \
368 -EINVAL; \
369}) \
370)
371
372/**
373 * kfifo_alloc_node - dynamically allocates a new fifo buffer on a NUMA node
374 * @fifo: pointer to the fifo
375 * @size: the number of elements in the fifo, this must be a power of 2
376 * @gfp_mask: get_free_pages mask, passed to kmalloc()
377 * @node: NUMA node to allocate memory on
378 *
379 * This macro dynamically allocates a new fifo buffer with NUMA node awareness.
380 *
381 * The number of elements will be rounded-up to a power of 2.
382 * The fifo will be release with kfifo_free().
383 * Return 0 if no error, otherwise an error code.
384 */
385#define kfifo_alloc_node(fifo, size, gfp_mask, node) \
386__kfifo_int_must_check_helper( \
387({ \
388 typeof((fifo) + 1) __tmp = (fifo); \
389 struct __kfifo *__kfifo = &__tmp->kfifo; \
390 __is_kfifo_ptr(__tmp) ? \
391 __kfifo_alloc_node(__kfifo, size, sizeof(*__tmp->type), gfp_mask, node) : \
392 -EINVAL; \
393}) \
394)
395
396/**
397 * kfifo_free - frees the fifo
398 * @fifo: the fifo to be freed
399 */
400#define kfifo_free(fifo) \
401({ \
402 typeof((fifo) + 1) __tmp = (fifo); \
403 struct __kfifo *__kfifo = &__tmp->kfifo; \
404 if (__is_kfifo_ptr(__tmp)) \
405 __kfifo_free(__kfifo); \
406})
407
408/**
409 * kfifo_init - initialize a fifo using a preallocated buffer
410 * @fifo: the fifo to assign the buffer
411 * @buffer: the preallocated buffer to be used
412 * @size: the size of the internal buffer, this have to be a power of 2
413 *
414 * This macro initializes a fifo using a preallocated buffer.
415 *
416 * The number of elements will be rounded-up to a power of 2.
417 * Return 0 if no error, otherwise an error code.
418 */
419#define kfifo_init(fifo, buffer, size) \
420({ \
421 typeof((fifo) + 1) __tmp = (fifo); \
422 struct __kfifo *__kfifo = &__tmp->kfifo; \
423 __is_kfifo_ptr(__tmp) ? \
424 __kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \
425 -EINVAL; \
426})
427
428/**
429 * kfifo_put - put data into the fifo
430 * @fifo: address of the fifo to be used
431 * @val: the data to be added
432 *
433 * This macro copies the given value into the fifo.
434 * It returns 0 if the fifo was full. Otherwise it returns the number
435 * processed elements.
436 *
437 * Note that with only one concurrent reader and one concurrent
438 * writer, you don't need extra locking to use these macro.
439 */
440#define kfifo_put(fifo, val) \
441({ \
442 typeof((fifo) + 1) __tmp = (fifo); \
443 typeof(*__tmp->const_type) __val = (val); \
444 unsigned int __ret; \
445 size_t __recsize = sizeof(*__tmp->rectype); \
446 struct __kfifo *__kfifo = &__tmp->kfifo; \
447 if (__recsize) \
448 __ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \
449 __recsize); \
450 else { \
451 __ret = !kfifo_is_full(__tmp); \
452 if (__ret) { \
453 (__is_kfifo_ptr(__tmp) ? \
454 ((typeof(__tmp->type))__kfifo->data) : \
455 (__tmp->buf) \
456 )[__kfifo->in & __tmp->kfifo.mask] = \
457 *(typeof(__tmp->type))&__val; \
458 smp_wmb(); \
459 __kfifo->in++; \
460 } \
461 } \
462 __ret; \
463})
464
465/**
466 * kfifo_get - get data from the fifo
467 * @fifo: address of the fifo to be used
468 * @val: address where to store the data
469 *
470 * This macro reads the data from the fifo.
471 * It returns 0 if the fifo was empty. Otherwise it returns the number
472 * processed elements.
473 *
474 * Note that with only one concurrent reader and one concurrent
475 * writer, you don't need extra locking to use these macro.
476 */
477#define kfifo_get(fifo, val) \
478__kfifo_uint_must_check_helper( \
479({ \
480 typeof((fifo) + 1) __tmp = (fifo); \
481 typeof(__tmp->ptr) __val = (val); \
482 unsigned int __ret; \
483 const size_t __recsize = sizeof(*__tmp->rectype); \
484 struct __kfifo *__kfifo = &__tmp->kfifo; \
485 if (__recsize) \
486 __ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \
487 __recsize); \
488 else { \
489 __ret = !kfifo_is_empty(__tmp); \
490 if (__ret) { \
491 *(typeof(__tmp->type))__val = \
492 (__is_kfifo_ptr(__tmp) ? \
493 ((typeof(__tmp->type))__kfifo->data) : \
494 (__tmp->buf) \
495 )[__kfifo->out & __tmp->kfifo.mask]; \
496 smp_wmb(); \
497 __kfifo->out++; \
498 } \
499 } \
500 __ret; \
501}) \
502)
503
504/**
505 * kfifo_peek - get data from the fifo without removing
506 * @fifo: address of the fifo to be used
507 * @val: address where to store the data
508 *
509 * This reads the data from the fifo without removing it from the fifo.
510 * It returns 0 if the fifo was empty. Otherwise it returns the number
511 * processed elements.
512 *
513 * Note that with only one concurrent reader and one concurrent
514 * writer, you don't need extra locking to use these macro.
515 */
516#define kfifo_peek(fifo, val) \
517__kfifo_uint_must_check_helper( \
518({ \
519 typeof((fifo) + 1) __tmp = (fifo); \
520 typeof(__tmp->ptr) __val = (val); \
521 unsigned int __ret; \
522 const size_t __recsize = sizeof(*__tmp->rectype); \
523 struct __kfifo *__kfifo = &__tmp->kfifo; \
524 if (__recsize) \
525 __ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \
526 __recsize); \
527 else { \
528 __ret = !kfifo_is_empty(__tmp); \
529 if (__ret) { \
530 *(typeof(__tmp->type))__val = \
531 (__is_kfifo_ptr(__tmp) ? \
532 ((typeof(__tmp->type))__kfifo->data) : \
533 (__tmp->buf) \
534 )[__kfifo->out & __tmp->kfifo.mask]; \
535 smp_wmb(); \
536 } \
537 } \
538 __ret; \
539}) \
540)
541
542/**
543 * kfifo_in - put data into the fifo
544 * @fifo: address of the fifo to be used
545 * @buf: the data to be added
546 * @n: number of elements to be added
547 *
548 * This macro copies the given buffer into the fifo and returns the
549 * number of copied elements.
550 *
551 * Note that with only one concurrent reader and one concurrent
552 * writer, you don't need extra locking to use these macro.
553 */
554#define kfifo_in(fifo, buf, n) \
555({ \
556 typeof((fifo) + 1) __tmp = (fifo); \
557 typeof(__tmp->ptr_const) __buf = (buf); \
558 unsigned long __n = (n); \
559 const size_t __recsize = sizeof(*__tmp->rectype); \
560 struct __kfifo *__kfifo = &__tmp->kfifo; \
561 (__recsize) ?\
562 __kfifo_in_r(__kfifo, __buf, __n, __recsize) : \
563 __kfifo_in(__kfifo, __buf, __n); \
564})
565
566/**
567 * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking
568 * @fifo: address of the fifo to be used
569 * @buf: the data to be added
570 * @n: number of elements to be added
571 * @lock: pointer to the spinlock to use for locking
572 *
573 * This macro copies the given values buffer into the fifo and returns the
574 * number of copied elements.
575 */
576#define kfifo_in_spinlocked(fifo, buf, n, lock) \
577({ \
578 unsigned long __flags; \
579 unsigned int __ret; \
580 spin_lock_irqsave(lock, __flags); \
581 __ret = kfifo_in(fifo, buf, n); \
582 spin_unlock_irqrestore(lock, __flags); \
583 __ret; \
584})
585
586/**
587 * kfifo_in_spinlocked_noirqsave - put data into fifo using a spinlock for
588 * locking, don't disable interrupts
589 * @fifo: address of the fifo to be used
590 * @buf: the data to be added
591 * @n: number of elements to be added
592 * @lock: pointer to the spinlock to use for locking
593 *
594 * This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock()
595 * for locking and doesn't disable interrupts.
596 */
597#define kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock) \
598({ \
599 unsigned int __ret; \
600 spin_lock(lock); \
601 __ret = kfifo_in(fifo, buf, n); \
602 spin_unlock(lock); \
603 __ret; \
604})
605
606/* alias for kfifo_in_spinlocked, will be removed in a future release */
607#define kfifo_in_locked(fifo, buf, n, lock) \
608 kfifo_in_spinlocked(fifo, buf, n, lock)
609
610/**
611 * kfifo_out - get data from the fifo
612 * @fifo: address of the fifo to be used
613 * @buf: pointer to the storage buffer
614 * @n: max. number of elements to get
615 *
616 * This macro gets some data from the fifo and returns the numbers of elements
617 * copied.
618 *
619 * Note that with only one concurrent reader and one concurrent
620 * writer, you don't need extra locking to use these macro.
621 */
622#define kfifo_out(fifo, buf, n) \
623__kfifo_uint_must_check_helper( \
624({ \
625 typeof((fifo) + 1) __tmp = (fifo); \
626 typeof(__tmp->ptr) __buf = (buf); \
627 unsigned long __n = (n); \
628 const size_t __recsize = sizeof(*__tmp->rectype); \
629 struct __kfifo *__kfifo = &__tmp->kfifo; \
630 (__recsize) ?\
631 __kfifo_out_r(__kfifo, __buf, __n, __recsize) : \
632 __kfifo_out(__kfifo, __buf, __n); \
633}) \
634)
635
636/**
637 * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking
638 * @fifo: address of the fifo to be used
639 * @buf: pointer to the storage buffer
640 * @n: max. number of elements to get
641 * @lock: pointer to the spinlock to use for locking
642 *
643 * This macro gets the data from the fifo and returns the numbers of elements
644 * copied.
645 */
646#define kfifo_out_spinlocked(fifo, buf, n, lock) \
647__kfifo_uint_must_check_helper( \
648({ \
649 unsigned long __flags; \
650 unsigned int __ret; \
651 spin_lock_irqsave(lock, __flags); \
652 __ret = kfifo_out(fifo, buf, n); \
653 spin_unlock_irqrestore(lock, __flags); \
654 __ret; \
655}) \
656)
657
658/**
659 * kfifo_out_spinlocked_noirqsave - get data from the fifo using a spinlock
660 * for locking, don't disable interrupts
661 * @fifo: address of the fifo to be used
662 * @buf: pointer to the storage buffer
663 * @n: max. number of elements to get
664 * @lock: pointer to the spinlock to use for locking
665 *
666 * This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock()
667 * for locking and doesn't disable interrupts.
668 */
669#define kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock) \
670__kfifo_uint_must_check_helper( \
671({ \
672 unsigned int __ret; \
673 spin_lock(lock); \
674 __ret = kfifo_out(fifo, buf, n); \
675 spin_unlock(lock); \
676 __ret; \
677}) \
678)
679
680/* alias for kfifo_out_spinlocked, will be removed in a future release */
681#define kfifo_out_locked(fifo, buf, n, lock) \
682 kfifo_out_spinlocked(fifo, buf, n, lock)
683
684/**
685 * kfifo_from_user - puts some data from user space into the fifo
686 * @fifo: address of the fifo to be used
687 * @from: pointer to the data to be added
688 * @len: the length of the data to be added
689 * @copied: pointer to output variable to store the number of copied bytes
690 *
691 * This macro copies at most @len bytes from the @from into the
692 * fifo, depending of the available space and returns -EFAULT/0.
693 *
694 * Note that with only one concurrent reader and one concurrent
695 * writer, you don't need extra locking to use these macro.
696 */
697#define kfifo_from_user(fifo, from, len, copied) \
698__kfifo_uint_must_check_helper( \
699({ \
700 typeof((fifo) + 1) __tmp = (fifo); \
701 const void __user *__from = (from); \
702 unsigned int __len = (len); \
703 unsigned int *__copied = (copied); \
704 const size_t __recsize = sizeof(*__tmp->rectype); \
705 struct __kfifo *__kfifo = &__tmp->kfifo; \
706 (__recsize) ? \
707 __kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \
708 __kfifo_from_user(__kfifo, __from, __len, __copied); \
709}) \
710)
711
712/**
713 * kfifo_to_user - copies data from the fifo into user space
714 * @fifo: address of the fifo to be used
715 * @to: where the data must be copied
716 * @len: the size of the destination buffer
717 * @copied: pointer to output variable to store the number of copied bytes
718 *
719 * This macro copies at most @len bytes from the fifo into the
720 * @to buffer and returns -EFAULT/0.
721 *
722 * Note that with only one concurrent reader and one concurrent
723 * writer, you don't need extra locking to use these macro.
724 */
725#define kfifo_to_user(fifo, to, len, copied) \
726__kfifo_int_must_check_helper( \
727({ \
728 typeof((fifo) + 1) __tmp = (fifo); \
729 void __user *__to = (to); \
730 unsigned int __len = (len); \
731 unsigned int *__copied = (copied); \
732 const size_t __recsize = sizeof(*__tmp->rectype); \
733 struct __kfifo *__kfifo = &__tmp->kfifo; \
734 (__recsize) ? \
735 __kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \
736 __kfifo_to_user(__kfifo, __to, __len, __copied); \
737}) \
738)
739
740/**
741 * kfifo_dma_in_prepare_mapped - setup a scatterlist for DMA input
742 * @fifo: address of the fifo to be used
743 * @sgl: pointer to the scatterlist array
744 * @nents: number of entries in the scatterlist array
745 * @len: number of elements to transfer
746 * @dma: mapped dma address to fill into @sgl
747 *
748 * This macro fills a scatterlist for DMA input.
749 * It returns the number entries in the scatterlist array.
750 *
751 * Note that with only one concurrent reader and one concurrent
752 * writer, you don't need extra locking to use these macros.
753 */
754#define kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, dma) \
755({ \
756 typeof((fifo) + 1) __tmp = (fifo); \
757 struct scatterlist *__sgl = (sgl); \
758 int __nents = (nents); \
759 unsigned int __len = (len); \
760 const size_t __recsize = sizeof(*__tmp->rectype); \
761 struct __kfifo *__kfifo = &__tmp->kfifo; \
762 (__recsize) ? \
763 __kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \
764 dma) : \
765 __kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len, dma); \
766})
767
768#define kfifo_dma_in_prepare(fifo, sgl, nents, len) \
769 kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR)
770
771/**
772 * kfifo_dma_in_finish - finish a DMA IN operation
773 * @fifo: address of the fifo to be used
774 * @len: number of bytes to received
775 *
776 * This macro finishes a DMA IN operation. The in counter will be updated by
777 * the len parameter. No error checking will be done.
778 *
779 * Note that with only one concurrent reader and one concurrent
780 * writer, you don't need extra locking to use these macros.
781 */
782#define kfifo_dma_in_finish(fifo, len) \
783(void)({ \
784 typeof((fifo) + 1) __tmp = (fifo); \
785 unsigned int __len = (len); \
786 const size_t __recsize = sizeof(*__tmp->rectype); \
787 struct __kfifo *__kfifo = &__tmp->kfifo; \
788 if (__recsize) \
789 __kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \
790 else \
791 __kfifo->in += __len / sizeof(*__tmp->type); \
792})
793
794/**
795 * kfifo_dma_out_prepare_mapped - setup a scatterlist for DMA output
796 * @fifo: address of the fifo to be used
797 * @sgl: pointer to the scatterlist array
798 * @nents: number of entries in the scatterlist array
799 * @len: number of elements to transfer
800 * @dma: mapped dma address to fill into @sgl
801 *
802 * This macro fills a scatterlist for DMA output which at most @len bytes
803 * to transfer.
804 * It returns the number entries in the scatterlist array.
805 * A zero means there is no space available and the scatterlist is not filled.
806 *
807 * Note that with only one concurrent reader and one concurrent
808 * writer, you don't need extra locking to use these macros.
809 */
810#define kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, dma) \
811({ \
812 typeof((fifo) + 1) __tmp = (fifo); \
813 struct scatterlist *__sgl = (sgl); \
814 int __nents = (nents); \
815 unsigned int __len = (len); \
816 const size_t __recsize = sizeof(*__tmp->rectype); \
817 struct __kfifo *__kfifo = &__tmp->kfifo; \
818 (__recsize) ? \
819 __kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \
820 dma) : \
821 __kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len, dma); \
822})
823
824#define kfifo_dma_out_prepare(fifo, sgl, nents, len) \
825 kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR)
826
827/**
828 * kfifo_dma_out_finish - finish a DMA OUT operation
829 * @fifo: address of the fifo to be used
830 * @len: number of bytes transferred
831 *
832 * This macro finishes a DMA OUT operation. The out counter will be updated by
833 * the len parameter. No error checking will be done.
834 *
835 * Note that with only one concurrent reader and one concurrent
836 * writer, you don't need extra locking to use these macros.
837 */
838#define kfifo_dma_out_finish(fifo, len) do { \
839 typeof((fifo) + 1) ___tmp = (fifo); \
840 kfifo_skip_count(___tmp, (len) / sizeof(*___tmp->type)); \
841} while (0)
842
843/**
844 * kfifo_out_peek - gets some data from the fifo
845 * @fifo: address of the fifo to be used
846 * @buf: pointer to the storage buffer
847 * @n: max. number of elements to get
848 *
849 * This macro gets the data from the fifo and returns the numbers of elements
850 * copied. The data is not removed from the fifo.
851 *
852 * Note that with only one concurrent reader and one concurrent
853 * writer, you don't need extra locking to use these macro.
854 */
855#define kfifo_out_peek(fifo, buf, n) \
856__kfifo_uint_must_check_helper( \
857({ \
858 typeof((fifo) + 1) __tmp = (fifo); \
859 typeof(__tmp->ptr) __buf = (buf); \
860 unsigned long __n = (n); \
861 const size_t __recsize = sizeof(*__tmp->rectype); \
862 struct __kfifo *__kfifo = &__tmp->kfifo; \
863 (__recsize) ? \
864 __kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \
865 __kfifo_out_peek(__kfifo, __buf, __n); \
866}) \
867)
868
869/**
870 * kfifo_out_linear - gets a tail of/offset to available data
871 * @fifo: address of the fifo to be used
872 * @tail: pointer to an unsigned int to store the value of tail
873 * @n: max. number of elements to point at
874 *
875 * This macro obtains the offset (tail) to the available data in the fifo
876 * buffer and returns the
877 * numbers of elements available. It returns the available count till the end
878 * of data or till the end of the buffer. So that it can be used for linear
879 * data processing (like memcpy() of (@fifo->data + @tail) with count
880 * returned).
881 *
882 * Note that with only one concurrent reader and one concurrent
883 * writer, you don't need extra locking to use these macro.
884 */
885#define kfifo_out_linear(fifo, tail, n) \
886__kfifo_uint_must_check_helper( \
887({ \
888 typeof((fifo) + 1) __tmp = (fifo); \
889 unsigned int *__tail = (tail); \
890 unsigned long __n = (n); \
891 const size_t __recsize = sizeof(*__tmp->rectype); \
892 struct __kfifo *__kfifo = &__tmp->kfifo; \
893 (__recsize) ? \
894 __kfifo_out_linear_r(__kfifo, __tail, __n, __recsize) : \
895 __kfifo_out_linear(__kfifo, __tail, __n); \
896}) \
897)
898
899/**
900 * kfifo_out_linear_ptr - gets a pointer to the available data
901 * @fifo: address of the fifo to be used
902 * @ptr: pointer to data to store the pointer to tail
903 * @n: max. number of elements to point at
904 *
905 * Similarly to kfifo_out_linear(), this macro obtains the pointer to the
906 * available data in the fifo buffer and returns the numbers of elements
907 * available. It returns the available count till the end of available data or
908 * till the end of the buffer. So that it can be used for linear data
909 * processing (like memcpy() of @ptr with count returned).
910 *
911 * Note that with only one concurrent reader and one concurrent
912 * writer, you don't need extra locking to use these macro.
913 */
914#define kfifo_out_linear_ptr(fifo, ptr, n) \
915__kfifo_uint_must_check_helper( \
916({ \
917 typeof((fifo) + 1) ___tmp = (fifo); \
918 unsigned int ___tail; \
919 unsigned int ___n = kfifo_out_linear(___tmp, &___tail, (n)); \
920 *(ptr) = ___tmp->kfifo.data + ___tail * kfifo_esize(___tmp); \
921 ___n; \
922}) \
923)
924
925
926extern int __kfifo_alloc_node(struct __kfifo *fifo, unsigned int size,
927 size_t esize, gfp_t gfp_mask, int node);
928
929static inline int __kfifo_alloc(struct __kfifo *fifo, unsigned int size,
930 size_t esize, gfp_t gfp_mask)
931{
932 return __kfifo_alloc_node(fifo, size, esize, gfp_mask, NUMA_NO_NODE);
933}
934
935extern void __kfifo_free(struct __kfifo *fifo);
936
937extern int __kfifo_init(struct __kfifo *fifo, void *buffer,
938 unsigned int size, size_t esize);
939
940extern unsigned int __kfifo_in(struct __kfifo *fifo,
941 const void *buf, unsigned int len);
942
943extern unsigned int __kfifo_out(struct __kfifo *fifo,
944 void *buf, unsigned int len);
945
946extern int __kfifo_from_user(struct __kfifo *fifo,
947 const void __user *from, unsigned long len, unsigned int *copied);
948
949extern int __kfifo_to_user(struct __kfifo *fifo,
950 void __user *to, unsigned long len, unsigned int *copied);
951
952extern unsigned int __kfifo_dma_in_prepare(struct __kfifo *fifo,
953 struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma);
954
955extern unsigned int __kfifo_dma_out_prepare(struct __kfifo *fifo,
956 struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma);
957
958extern unsigned int __kfifo_out_peek(struct __kfifo *fifo,
959 void *buf, unsigned int len);
960
961extern unsigned int __kfifo_out_linear(struct __kfifo *fifo,
962 unsigned int *tail, unsigned int n);
963
964extern unsigned int __kfifo_in_r(struct __kfifo *fifo,
965 const void *buf, unsigned int len, size_t recsize);
966
967extern unsigned int __kfifo_out_r(struct __kfifo *fifo,
968 void *buf, unsigned int len, size_t recsize);
969
970extern int __kfifo_from_user_r(struct __kfifo *fifo,
971 const void __user *from, unsigned long len, unsigned int *copied,
972 size_t recsize);
973
974extern int __kfifo_to_user_r(struct __kfifo *fifo, void __user *to,
975 unsigned long len, unsigned int *copied, size_t recsize);
976
977extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo *fifo,
978 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize,
979 dma_addr_t dma);
980
981extern void __kfifo_dma_in_finish_r(struct __kfifo *fifo,
982 unsigned int len, size_t recsize);
983
984extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo *fifo,
985 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize,
986 dma_addr_t dma);
987
988extern unsigned int __kfifo_len_r(struct __kfifo *fifo, size_t recsize);
989
990extern void __kfifo_skip_r(struct __kfifo *fifo, size_t recsize);
991
992extern unsigned int __kfifo_out_peek_r(struct __kfifo *fifo,
993 void *buf, unsigned int len, size_t recsize);
994
995extern unsigned int __kfifo_out_linear_r(struct __kfifo *fifo,
996 unsigned int *tail, unsigned int n, size_t recsize);
997
998extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize);
999
1000#endif