Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_CPUMASK_H
3#define __LINUX_CPUMASK_H
4
5/*
6 * Cpumasks provide a bitmap suitable for representing the
7 * set of CPUs in a system, one bit position per CPU number. In general,
8 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 */
10#include <linux/atomic.h>
11#include <linux/bitmap.h>
12#include <linux/cleanup.h>
13#include <linux/cpumask_types.h>
14#include <linux/gfp_types.h>
15#include <linux/numa.h>
16#include <linux/threads.h>
17#include <linux/types.h>
18
19#include <asm/bug.h>
20
21/**
22 * cpumask_pr_args - printf args to output a cpumask
23 * @maskp: cpumask to be printed
24 *
25 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
26 */
27#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
28
29#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
30#define nr_cpu_ids ((unsigned int)NR_CPUS)
31#else
32extern unsigned int nr_cpu_ids;
33#endif
34
35static __always_inline void set_nr_cpu_ids(unsigned int nr)
36{
37#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
38 WARN_ON(nr != nr_cpu_ids);
39#else
40 nr_cpu_ids = nr;
41#endif
42}
43
44/*
45 * We have several different "preferred sizes" for the cpumask
46 * operations, depending on operation.
47 *
48 * For example, the bitmap scanning and operating operations have
49 * optimized routines that work for the single-word case, but only when
50 * the size is constant. So if NR_CPUS fits in one single word, we are
51 * better off using that small constant, in order to trigger the
52 * optimized bit finding. That is 'small_cpumask_size'.
53 *
54 * The clearing and copying operations will similarly perform better
55 * with a constant size, but we limit that size arbitrarily to four
56 * words. We call this 'large_cpumask_size'.
57 *
58 * Finally, some operations just want the exact limit, either because
59 * they set bits or just don't have any faster fixed-sized versions. We
60 * call this just 'nr_cpumask_bits'.
61 *
62 * Note that these optional constants are always guaranteed to be at
63 * least as big as 'nr_cpu_ids' itself is, and all our cpumask
64 * allocations are at least that size (see cpumask_size()). The
65 * optimization comes from being able to potentially use a compile-time
66 * constant instead of a run-time generated exact number of CPUs.
67 */
68#if NR_CPUS <= BITS_PER_LONG
69 #define small_cpumask_bits ((unsigned int)NR_CPUS)
70 #define large_cpumask_bits ((unsigned int)NR_CPUS)
71#elif NR_CPUS <= 4*BITS_PER_LONG
72 #define small_cpumask_bits nr_cpu_ids
73 #define large_cpumask_bits ((unsigned int)NR_CPUS)
74#else
75 #define small_cpumask_bits nr_cpu_ids
76 #define large_cpumask_bits nr_cpu_ids
77#endif
78#define nr_cpumask_bits nr_cpu_ids
79
80/*
81 * The following particular system cpumasks and operations manage
82 * possible, present, active and online cpus.
83 *
84 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
85 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
86 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online
87 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
88 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
89 *
90 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
91 *
92 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs
93 * that it is possible might ever be plugged in at anytime during the
94 * life of that system boot. The cpu_present_mask is dynamic(*),
95 * representing which CPUs are currently plugged in. And
96 * cpu_online_mask is the dynamic subset of cpu_present_mask,
97 * indicating those CPUs available for scheduling.
98 *
99 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
100 * depending on what ACPI reports as currently plugged in, otherwise
101 * cpu_present_mask is just a copy of cpu_possible_mask.
102 *
103 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
104 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
105 *
106 * Subtleties:
107 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
108 * assumption that their single CPU is online. The UP
109 * cpu_{online,possible,present}_masks are placebos. Changing them
110 * will have no useful affect on the following num_*_cpus()
111 * and cpu_*() macros in the UP case. This ugliness is a UP
112 * optimization - don't waste any instructions or memory references
113 * asking if you're online or how many CPUs there are if there is
114 * only one CPU.
115 */
116
117extern struct cpumask __cpu_possible_mask;
118extern struct cpumask __cpu_online_mask;
119extern struct cpumask __cpu_enabled_mask;
120extern struct cpumask __cpu_present_mask;
121extern struct cpumask __cpu_active_mask;
122extern struct cpumask __cpu_dying_mask;
123#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
124#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
125#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask)
126#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
127#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
128#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
129
130extern atomic_t __num_online_cpus;
131extern unsigned int __num_possible_cpus;
132
133extern cpumask_t cpus_booted_once_mask;
134
135static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
136{
137#ifdef CONFIG_DEBUG_PER_CPU_MAPS
138 WARN_ON_ONCE(cpu >= bits);
139#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
140}
141
142/* verify cpu argument to cpumask_* operators */
143static __always_inline unsigned int cpumask_check(unsigned int cpu)
144{
145 cpu_max_bits_warn(cpu, small_cpumask_bits);
146 return cpu;
147}
148
149/**
150 * cpumask_first - get the first cpu in a cpumask
151 * @srcp: the cpumask pointer
152 *
153 * Return: >= nr_cpu_ids if no cpus set.
154 */
155static __always_inline unsigned int cpumask_first(const struct cpumask *srcp)
156{
157 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
158}
159
160/**
161 * cpumask_first_zero - get the first unset cpu in a cpumask
162 * @srcp: the cpumask pointer
163 *
164 * Return: >= nr_cpu_ids if all cpus are set.
165 */
166static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
167{
168 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
169}
170
171/**
172 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
173 * @srcp1: the first input
174 * @srcp2: the second input
175 *
176 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
177 */
178static __always_inline
179unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
180{
181 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
182}
183
184/**
185 * cpumask_first_andnot - return the first cpu from *srcp1 & ~*srcp2
186 * @srcp1: the first input
187 * @srcp2: the second input
188 *
189 * Return: >= nr_cpu_ids if no such cpu found.
190 */
191static __always_inline
192unsigned int cpumask_first_andnot(const struct cpumask *srcp1, const struct cpumask *srcp2)
193{
194 return find_first_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
195}
196
197/**
198 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3
199 * @srcp1: the first input
200 * @srcp2: the second input
201 * @srcp3: the third input
202 *
203 * Return: >= nr_cpu_ids if no cpus set in all.
204 */
205static __always_inline
206unsigned int cpumask_first_and_and(const struct cpumask *srcp1,
207 const struct cpumask *srcp2,
208 const struct cpumask *srcp3)
209{
210 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
211 cpumask_bits(srcp3), small_cpumask_bits);
212}
213
214/**
215 * cpumask_last - get the last CPU in a cpumask
216 * @srcp: - the cpumask pointer
217 *
218 * Return: >= nr_cpumask_bits if no CPUs set.
219 */
220static __always_inline unsigned int cpumask_last(const struct cpumask *srcp)
221{
222 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
223}
224
225/**
226 * cpumask_next - get the next cpu in a cpumask
227 * @n: the cpu prior to the place to search (i.e. return will be > @n)
228 * @srcp: the cpumask pointer
229 *
230 * Return: >= nr_cpu_ids if no further cpus set.
231 */
232static __always_inline
233unsigned int cpumask_next(int n, const struct cpumask *srcp)
234{
235 /* -1 is a legal arg here. */
236 if (n != -1)
237 cpumask_check(n);
238 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
239}
240
241/**
242 * cpumask_next_zero - get the next unset cpu in a cpumask
243 * @n: the cpu prior to the place to search (i.e. return will be > @n)
244 * @srcp: the cpumask pointer
245 *
246 * Return: >= nr_cpu_ids if no further cpus unset.
247 */
248static __always_inline
249unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
250{
251 /* -1 is a legal arg here. */
252 if (n != -1)
253 cpumask_check(n);
254 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
255}
256
257#if NR_CPUS == 1
258/* Uniprocessor: there is only one valid CPU */
259static __always_inline
260unsigned int cpumask_local_spread(unsigned int i, int node)
261{
262 return 0;
263}
264
265static __always_inline
266unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
267 const struct cpumask *src2p)
268{
269 return cpumask_first_and(src1p, src2p);
270}
271
272static __always_inline
273unsigned int cpumask_any_distribute(const struct cpumask *srcp)
274{
275 return cpumask_first(srcp);
276}
277#else
278unsigned int cpumask_local_spread(unsigned int i, int node);
279unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
280 const struct cpumask *src2p);
281unsigned int cpumask_any_distribute(const struct cpumask *srcp);
282#endif /* NR_CPUS */
283
284/**
285 * cpumask_next_and - get the next cpu in *src1p & *src2p
286 * @n: the cpu prior to the place to search (i.e. return will be > @n)
287 * @src1p: the first cpumask pointer
288 * @src2p: the second cpumask pointer
289 *
290 * Return: >= nr_cpu_ids if no further cpus set in both.
291 */
292static __always_inline
293unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
294 const struct cpumask *src2p)
295{
296 /* -1 is a legal arg here. */
297 if (n != -1)
298 cpumask_check(n);
299 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
300 small_cpumask_bits, n + 1);
301}
302
303/**
304 * cpumask_next_andnot - get the next cpu in *src1p & ~*src2p
305 * @n: the cpu prior to the place to search (i.e. return will be > @n)
306 * @src1p: the first cpumask pointer
307 * @src2p: the second cpumask pointer
308 *
309 * Return: >= nr_cpu_ids if no further cpus set in both.
310 */
311static __always_inline
312unsigned int cpumask_next_andnot(int n, const struct cpumask *src1p,
313 const struct cpumask *src2p)
314{
315 /* -1 is a legal arg here. */
316 if (n != -1)
317 cpumask_check(n);
318 return find_next_andnot_bit(cpumask_bits(src1p), cpumask_bits(src2p),
319 small_cpumask_bits, n + 1);
320}
321
322/**
323 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from
324 * @n+1. If nothing found, wrap around and start from
325 * the beginning
326 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
327 * @src1p: the first cpumask pointer
328 * @src2p: the second cpumask pointer
329 *
330 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty.
331 */
332static __always_inline
333unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p,
334 const struct cpumask *src2p)
335{
336 /* -1 is a legal arg here. */
337 if (n != -1)
338 cpumask_check(n);
339 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p),
340 small_cpumask_bits, n + 1);
341}
342
343/**
344 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing
345 * found, wrap around and start from the beginning
346 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
347 * @src: cpumask pointer
348 *
349 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty.
350 */
351static __always_inline
352unsigned int cpumask_next_wrap(int n, const struct cpumask *src)
353{
354 /* -1 is a legal arg here. */
355 if (n != -1)
356 cpumask_check(n);
357 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1);
358}
359
360/**
361 * cpumask_random - get random cpu in *src.
362 * @src: cpumask pointer
363 *
364 * Return: random set bit, or >= nr_cpu_ids if @src is empty.
365 */
366static __always_inline
367unsigned int cpumask_random(const struct cpumask *src)
368{
369 return find_random_bit(cpumask_bits(src), nr_cpu_ids);
370}
371
372/**
373 * for_each_cpu - iterate over every cpu in a mask
374 * @cpu: the (optionally unsigned) integer iterator
375 * @mask: the cpumask pointer
376 *
377 * After the loop, cpu is >= nr_cpu_ids.
378 */
379#define for_each_cpu(cpu, mask) \
380 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
381
382/**
383 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
384 * @cpu: the (optionally unsigned) integer iterator
385 * @mask: the cpumask pointer
386 * @start: the start location
387 *
388 * The implementation does not assume any bit in @mask is set (including @start).
389 *
390 * After the loop, cpu is >= nr_cpu_ids.
391 */
392#define for_each_cpu_wrap(cpu, mask, start) \
393 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
394
395/**
396 * for_each_cpu_and - iterate over every cpu in both masks
397 * @cpu: the (optionally unsigned) integer iterator
398 * @mask1: the first cpumask pointer
399 * @mask2: the second cpumask pointer
400 *
401 * This saves a temporary CPU mask in many places. It is equivalent to:
402 * struct cpumask tmp;
403 * cpumask_and(&tmp, &mask1, &mask2);
404 * for_each_cpu(cpu, &tmp)
405 * ...
406 *
407 * After the loop, cpu is >= nr_cpu_ids.
408 */
409#define for_each_cpu_and(cpu, mask1, mask2) \
410 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
411
412/**
413 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
414 * those present in another.
415 * @cpu: the (optionally unsigned) integer iterator
416 * @mask1: the first cpumask pointer
417 * @mask2: the second cpumask pointer
418 *
419 * This saves a temporary CPU mask in many places. It is equivalent to:
420 * struct cpumask tmp;
421 * cpumask_andnot(&tmp, &mask1, &mask2);
422 * for_each_cpu(cpu, &tmp)
423 * ...
424 *
425 * After the loop, cpu is >= nr_cpu_ids.
426 */
427#define for_each_cpu_andnot(cpu, mask1, mask2) \
428 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
429
430/**
431 * for_each_cpu_or - iterate over every cpu present in either mask
432 * @cpu: the (optionally unsigned) integer iterator
433 * @mask1: the first cpumask pointer
434 * @mask2: the second cpumask pointer
435 *
436 * This saves a temporary CPU mask in many places. It is equivalent to:
437 * struct cpumask tmp;
438 * cpumask_or(&tmp, &mask1, &mask2);
439 * for_each_cpu(cpu, &tmp)
440 * ...
441 *
442 * After the loop, cpu is >= nr_cpu_ids.
443 */
444#define for_each_cpu_or(cpu, mask1, mask2) \
445 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
446
447/**
448 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask.
449 * @cpu: the (optionally unsigned) integer iterator
450 * @mask: the cpumask pointer
451 *
452 * After the loop, cpu is >= nr_cpu_ids.
453 */
454#define for_each_cpu_from(cpu, mask) \
455 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits)
456
457/**
458 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one.
459 * @mask: the cpumask to search
460 * @cpu: the cpu to ignore.
461 *
462 * Often used to find any cpu but smp_processor_id() in a mask.
463 * If @cpu == -1, the function is equivalent to cpumask_any().
464 * Return: >= nr_cpu_ids if no cpus set.
465 */
466static __always_inline
467unsigned int cpumask_any_but(const struct cpumask *mask, int cpu)
468{
469 unsigned int i;
470
471 /* -1 is a legal arg here. */
472 if (cpu != -1)
473 cpumask_check(cpu);
474
475 for_each_cpu(i, mask)
476 if (i != cpu)
477 break;
478 return i;
479}
480
481/**
482 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one.
483 * @mask1: the first input cpumask
484 * @mask2: the second input cpumask
485 * @cpu: the cpu to ignore
486 *
487 * If @cpu == -1, the function is equivalent to cpumask_any_and().
488 * Returns >= nr_cpu_ids if no cpus set.
489 */
490static __always_inline
491unsigned int cpumask_any_and_but(const struct cpumask *mask1,
492 const struct cpumask *mask2,
493 int cpu)
494{
495 unsigned int i;
496
497 /* -1 is a legal arg here. */
498 if (cpu != -1)
499 cpumask_check(cpu);
500
501 i = cpumask_first_and(mask1, mask2);
502 if (i != cpu)
503 return i;
504
505 return cpumask_next_and(cpu, mask1, mask2);
506}
507
508/**
509 * cpumask_any_andnot_but - pick an arbitrary cpu from *mask1 & ~*mask2, but not this one.
510 * @mask1: the first input cpumask
511 * @mask2: the second input cpumask
512 * @cpu: the cpu to ignore
513 *
514 * If @cpu == -1, the function returns the first matching cpu.
515 * Returns >= nr_cpu_ids if no cpus set.
516 */
517static __always_inline
518unsigned int cpumask_any_andnot_but(const struct cpumask *mask1,
519 const struct cpumask *mask2,
520 int cpu)
521{
522 unsigned int i;
523
524 /* -1 is a legal arg here. */
525 if (cpu != -1)
526 cpumask_check(cpu);
527
528 i = cpumask_first_andnot(mask1, mask2);
529 if (i != cpu)
530 return i;
531
532 return cpumask_next_andnot(cpu, mask1, mask2);
533}
534
535/**
536 * cpumask_nth - get the Nth cpu in a cpumask
537 * @srcp: the cpumask pointer
538 * @cpu: the Nth cpu to find, starting from 0
539 *
540 * Return: >= nr_cpu_ids if such cpu doesn't exist.
541 */
542static __always_inline
543unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
544{
545 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
546}
547
548/**
549 * cpumask_nth_and - get the Nth cpu in 2 cpumasks
550 * @srcp1: the cpumask pointer
551 * @srcp2: the cpumask pointer
552 * @cpu: the Nth cpu to find, starting from 0
553 *
554 * Return: >= nr_cpu_ids if such cpu doesn't exist.
555 */
556static __always_inline
557unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
558 const struct cpumask *srcp2)
559{
560 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
561 small_cpumask_bits, cpumask_check(cpu));
562}
563
564/**
565 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
566 * @srcp1: the cpumask pointer
567 * @srcp2: the cpumask pointer
568 * @srcp3: the cpumask pointer
569 * @cpu: the Nth cpu to find, starting from 0
570 *
571 * Return: >= nr_cpu_ids if such cpu doesn't exist.
572 */
573static __always_inline
574unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
575 const struct cpumask *srcp2,
576 const struct cpumask *srcp3)
577{
578 return find_nth_and_andnot_bit(cpumask_bits(srcp1),
579 cpumask_bits(srcp2),
580 cpumask_bits(srcp3),
581 small_cpumask_bits, cpumask_check(cpu));
582}
583
584#define CPU_BITS_NONE \
585{ \
586 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
587}
588
589#define CPU_BITS_CPU0 \
590{ \
591 [0] = 1UL \
592}
593
594/**
595 * cpumask_set_cpu - set a cpu in a cpumask
596 * @cpu: cpu number (< nr_cpu_ids)
597 * @dstp: the cpumask pointer
598 */
599static __always_inline
600void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
601{
602 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
603}
604
605static __always_inline
606void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
607{
608 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
609}
610
611/**
612 * cpumask_clear_cpus - clear cpus in a cpumask
613 * @dstp: the cpumask pointer
614 * @cpu: cpu number (< nr_cpu_ids)
615 * @ncpus: number of cpus to clear (< nr_cpu_ids)
616 */
617static __always_inline void cpumask_clear_cpus(struct cpumask *dstp,
618 unsigned int cpu, unsigned int ncpus)
619{
620 cpumask_check(cpu + ncpus - 1);
621 bitmap_clear(cpumask_bits(dstp), cpumask_check(cpu), ncpus);
622}
623
624/**
625 * cpumask_clear_cpu - clear a cpu in a cpumask
626 * @cpu: cpu number (< nr_cpu_ids)
627 * @dstp: the cpumask pointer
628 */
629static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
630{
631 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
632}
633
634static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
635{
636 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
637}
638
639/**
640 * cpumask_test_cpu - test for a cpu in a cpumask
641 * @cpu: cpu number (< nr_cpu_ids)
642 * @cpumask: the cpumask pointer
643 *
644 * Return: true if @cpu is set in @cpumask, else returns false
645 */
646static __always_inline
647bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
648{
649 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
650}
651
652/**
653 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
654 * @cpu: cpu number (< nr_cpu_ids)
655 * @cpumask: the cpumask pointer
656 *
657 * test_and_set_bit wrapper for cpumasks.
658 *
659 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
660 */
661static __always_inline
662bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
663{
664 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
665}
666
667/**
668 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
669 * @cpu: cpu number (< nr_cpu_ids)
670 * @cpumask: the cpumask pointer
671 *
672 * test_and_clear_bit wrapper for cpumasks.
673 *
674 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
675 */
676static __always_inline
677bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
678{
679 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
680}
681
682/**
683 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
684 * @dstp: the cpumask pointer
685 */
686static __always_inline void cpumask_setall(struct cpumask *dstp)
687{
688 if (small_const_nbits(small_cpumask_bits)) {
689 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
690 return;
691 }
692 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
693}
694
695/**
696 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
697 * @dstp: the cpumask pointer
698 */
699static __always_inline void cpumask_clear(struct cpumask *dstp)
700{
701 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
702}
703
704/**
705 * cpumask_and - *dstp = *src1p & *src2p
706 * @dstp: the cpumask result
707 * @src1p: the first input
708 * @src2p: the second input
709 *
710 * Return: false if *@dstp is empty, else returns true
711 */
712static __always_inline
713bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p,
714 const struct cpumask *src2p)
715{
716 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
717 cpumask_bits(src2p), small_cpumask_bits);
718}
719
720/**
721 * cpumask_or - *dstp = *src1p | *src2p
722 * @dstp: the cpumask result
723 * @src1p: the first input
724 * @src2p: the second input
725 */
726static __always_inline
727void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
728 const struct cpumask *src2p)
729{
730 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
731 cpumask_bits(src2p), small_cpumask_bits);
732}
733
734/**
735 * cpumask_weighted_or - *dstp = *src1p | *src2p and return the weight of the result
736 * @dstp: the cpumask result
737 * @src1p: the first input
738 * @src2p: the second input
739 *
740 * Return: The number of bits set in the resulting cpumask @dstp
741 */
742static __always_inline
743unsigned int cpumask_weighted_or(struct cpumask *dstp, const struct cpumask *src1p,
744 const struct cpumask *src2p)
745{
746 return bitmap_weighted_or(cpumask_bits(dstp), cpumask_bits(src1p),
747 cpumask_bits(src2p), small_cpumask_bits);
748}
749
750/**
751 * cpumask_xor - *dstp = *src1p ^ *src2p
752 * @dstp: the cpumask result
753 * @src1p: the first input
754 * @src2p: the second input
755 */
756static __always_inline
757void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p,
758 const struct cpumask *src2p)
759{
760 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
761 cpumask_bits(src2p), small_cpumask_bits);
762}
763
764/**
765 * cpumask_andnot - *dstp = *src1p & ~*src2p
766 * @dstp: the cpumask result
767 * @src1p: the first input
768 * @src2p: the second input
769 *
770 * Return: false if *@dstp is empty, else returns true
771 */
772static __always_inline
773bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p,
774 const struct cpumask *src2p)
775{
776 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
777 cpumask_bits(src2p), small_cpumask_bits);
778}
779
780/**
781 * cpumask_equal - *src1p == *src2p
782 * @src1p: the first input
783 * @src2p: the second input
784 *
785 * Return: true if the cpumasks are equal, false if not
786 */
787static __always_inline
788bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p)
789{
790 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
791 small_cpumask_bits);
792}
793
794/**
795 * cpumask_or_equal - *src1p | *src2p == *src3p
796 * @src1p: the first input
797 * @src2p: the second input
798 * @src3p: the third input
799 *
800 * Return: true if first cpumask ORed with second cpumask == third cpumask,
801 * otherwise false
802 */
803static __always_inline
804bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p,
805 const struct cpumask *src3p)
806{
807 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
808 cpumask_bits(src3p), small_cpumask_bits);
809}
810
811/**
812 * cpumask_intersects - (*src1p & *src2p) != 0
813 * @src1p: the first input
814 * @src2p: the second input
815 *
816 * Return: true if first cpumask ANDed with second cpumask is non-empty,
817 * otherwise false
818 */
819static __always_inline
820bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p)
821{
822 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
823 small_cpumask_bits);
824}
825
826/**
827 * cpumask_subset - (*src1p & ~*src2p) == 0
828 * @src1p: the first input
829 * @src2p: the second input
830 *
831 * Return: true if *@src1p is a subset of *@src2p, else returns false
832 */
833static __always_inline
834bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p)
835{
836 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
837 small_cpumask_bits);
838}
839
840/**
841 * cpumask_empty - *srcp == 0
842 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
843 *
844 * Return: true if srcp is empty (has no bits set), else false
845 */
846static __always_inline bool cpumask_empty(const struct cpumask *srcp)
847{
848 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
849}
850
851/**
852 * cpumask_full - *srcp == 0xFFFFFFFF...
853 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
854 *
855 * Return: true if srcp is full (has all bits set), else false
856 */
857static __always_inline bool cpumask_full(const struct cpumask *srcp)
858{
859 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
860}
861
862/**
863 * cpumask_weight - Count of bits in *srcp
864 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
865 *
866 * Return: count of bits set in *srcp
867 */
868static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp)
869{
870 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
871}
872
873/**
874 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
875 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
876 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
877 *
878 * Return: count of bits set in both *srcp1 and *srcp2
879 */
880static __always_inline
881unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
882{
883 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
884}
885
886/**
887 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2)
888 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
889 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
890 *
891 * Return: count of bits set in both *srcp1 and *srcp2
892 */
893static __always_inline
894unsigned int cpumask_weight_andnot(const struct cpumask *srcp1,
895 const struct cpumask *srcp2)
896{
897 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
898}
899
900/**
901 * cpumask_shift_right - *dstp = *srcp >> n
902 * @dstp: the cpumask result
903 * @srcp: the input to shift
904 * @n: the number of bits to shift by
905 */
906static __always_inline
907void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n)
908{
909 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
910 small_cpumask_bits);
911}
912
913/**
914 * cpumask_shift_left - *dstp = *srcp << n
915 * @dstp: the cpumask result
916 * @srcp: the input to shift
917 * @n: the number of bits to shift by
918 */
919static __always_inline
920void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n)
921{
922 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
923 nr_cpumask_bits);
924}
925
926/**
927 * cpumask_copy - *dstp = *srcp
928 * @dstp: the result
929 * @srcp: the input cpumask
930 */
931static __always_inline
932void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp)
933{
934 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
935}
936
937/**
938 * cpumask_any - pick an arbitrary cpu from *srcp
939 * @srcp: the input cpumask
940 *
941 * Return: >= nr_cpu_ids if no cpus set.
942 */
943#define cpumask_any(srcp) cpumask_first(srcp)
944
945/**
946 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2
947 * @mask1: the first input cpumask
948 * @mask2: the second input cpumask
949 *
950 * Return: >= nr_cpu_ids if no cpus set.
951 */
952#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
953
954/**
955 * cpumask_of - the cpumask containing just a given cpu
956 * @cpu: the cpu (<= nr_cpu_ids)
957 */
958#define cpumask_of(cpu) (get_cpu_mask(cpu))
959
960/**
961 * cpumask_parse_user - extract a cpumask from a user string
962 * @buf: the buffer to extract from
963 * @len: the length of the buffer
964 * @dstp: the cpumask to set.
965 *
966 * Return: -errno, or 0 for success.
967 */
968static __always_inline
969int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp)
970{
971 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
972}
973
974/**
975 * cpumask_parselist_user - extract a cpumask from a user string
976 * @buf: the buffer to extract from
977 * @len: the length of the buffer
978 * @dstp: the cpumask to set.
979 *
980 * Return: -errno, or 0 for success.
981 */
982static __always_inline
983int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp)
984{
985 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
986 nr_cpumask_bits);
987}
988
989/**
990 * cpumask_parse - extract a cpumask from a string
991 * @buf: the buffer to extract from
992 * @dstp: the cpumask to set.
993 *
994 * Return: -errno, or 0 for success.
995 */
996static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp)
997{
998 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
999}
1000
1001/**
1002 * cpulist_parse - extract a cpumask from a user string of ranges
1003 * @buf: the buffer to extract from
1004 * @dstp: the cpumask to set.
1005 *
1006 * Return: -errno, or 0 for success.
1007 */
1008static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp)
1009{
1010 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
1011}
1012
1013/**
1014 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes
1015 *
1016 * Return: size to allocate for a &struct cpumask in bytes
1017 */
1018static __always_inline unsigned int cpumask_size(void)
1019{
1020 return bitmap_size(large_cpumask_bits);
1021}
1022
1023#ifdef CONFIG_CPUMASK_OFFSTACK
1024
1025#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
1026#define __cpumask_var_read_mostly __read_mostly
1027#define CPUMASK_VAR_NULL NULL
1028
1029bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
1030
1031static __always_inline
1032bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
1033{
1034 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
1035}
1036
1037/**
1038 * alloc_cpumask_var - allocate a struct cpumask
1039 * @mask: pointer to cpumask_var_t where the cpumask is returned
1040 * @flags: GFP_ flags
1041 *
1042 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
1043 * a nop returning a constant 1 (in <linux/cpumask.h>).
1044 *
1045 * See alloc_cpumask_var_node.
1046 *
1047 * Return: %true if allocation succeeded, %false if not
1048 */
1049static __always_inline
1050bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1051{
1052 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
1053}
1054
1055static __always_inline
1056bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1057{
1058 return alloc_cpumask_var(mask, flags | __GFP_ZERO);
1059}
1060
1061void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
1062void free_cpumask_var(cpumask_var_t mask);
1063void free_bootmem_cpumask_var(cpumask_var_t mask);
1064
1065static __always_inline bool cpumask_available(cpumask_var_t mask)
1066{
1067 return mask != NULL;
1068}
1069
1070#else
1071
1072#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
1073#define __cpumask_var_read_mostly
1074#define CPUMASK_VAR_NULL {}
1075
1076static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1077{
1078 return true;
1079}
1080
1081static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1082 int node)
1083{
1084 return true;
1085}
1086
1087static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1088{
1089 cpumask_clear(*mask);
1090 return true;
1091}
1092
1093static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1094 int node)
1095{
1096 cpumask_clear(*mask);
1097 return true;
1098}
1099
1100static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
1101{
1102}
1103
1104static __always_inline void free_cpumask_var(cpumask_var_t mask)
1105{
1106}
1107
1108static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask)
1109{
1110}
1111
1112static __always_inline bool cpumask_available(cpumask_var_t mask)
1113{
1114 return true;
1115}
1116#endif /* CONFIG_CPUMASK_OFFSTACK */
1117
1118DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T));
1119
1120/* It's common to want to use cpu_all_mask in struct member initializers,
1121 * so it has to refer to an address rather than a pointer. */
1122extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
1123#define cpu_all_mask to_cpumask(cpu_all_bits)
1124
1125/* First bits of cpu_bit_bitmap are in fact unset. */
1126#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
1127
1128#if NR_CPUS == 1
1129/* Uniprocessor: the possible/online/present masks are always "1" */
1130#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1131#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1132#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1133
1134#define for_each_possible_cpu_wrap(cpu, start) \
1135 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1136#define for_each_online_cpu_wrap(cpu, start) \
1137 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1138#else
1139#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
1140#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
1141#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask)
1142#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
1143
1144#define for_each_possible_cpu_wrap(cpu, start) \
1145 for_each_cpu_wrap((cpu), cpu_possible_mask, (start))
1146#define for_each_online_cpu_wrap(cpu, start) \
1147 for_each_cpu_wrap((cpu), cpu_online_mask, (start))
1148#endif
1149
1150/* Wrappers for arch boot code to manipulate normally-constant masks */
1151void init_cpu_present(const struct cpumask *src);
1152void init_cpu_possible(const struct cpumask *src);
1153
1154#define assign_cpu(cpu, mask, val) \
1155 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val))
1156
1157#define __assign_cpu(cpu, mask, val) \
1158 __assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val))
1159
1160#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled))
1161#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present))
1162#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active))
1163#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying))
1164
1165void set_cpu_online(unsigned int cpu, bool online);
1166void set_cpu_possible(unsigned int cpu, bool possible);
1167
1168/**
1169 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask *
1170 * @bitmap: the bitmap
1171 *
1172 * There are a few places where cpumask_var_t isn't appropriate and
1173 * static cpumasks must be used (eg. very early boot), yet we don't
1174 * expose the definition of 'struct cpumask'.
1175 *
1176 * This does the conversion, and can be used as a constant initializer.
1177 */
1178#define to_cpumask(bitmap) \
1179 ((struct cpumask *)(1 ? (bitmap) \
1180 : (void *)sizeof(__check_is_bitmap(bitmap))))
1181
1182static __always_inline int __check_is_bitmap(const unsigned long *bitmap)
1183{
1184 return 1;
1185}
1186
1187/*
1188 * Special-case data structure for "single bit set only" constant CPU masks.
1189 *
1190 * We pre-generate all the 64 (or 32) possible bit positions, with enough
1191 * padding to the left and the right, and return the constant pointer
1192 * appropriately offset.
1193 */
1194extern const unsigned long
1195 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1196
1197static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1198{
1199 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1200 p -= cpu / BITS_PER_LONG;
1201 return to_cpumask(p);
1202}
1203
1204#if NR_CPUS > 1
1205/**
1206 * num_online_cpus() - Read the number of online CPUs
1207 *
1208 * Despite the fact that __num_online_cpus is of type atomic_t, this
1209 * interface gives only a momentary snapshot and is not protected against
1210 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1211 * region.
1212 *
1213 * Return: momentary snapshot of the number of online CPUs
1214 */
1215static __always_inline unsigned int num_online_cpus(void)
1216{
1217 return raw_atomic_read(&__num_online_cpus);
1218}
1219
1220static __always_inline unsigned int num_possible_cpus(void)
1221{
1222 return __num_possible_cpus;
1223}
1224
1225#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask)
1226#define num_present_cpus() cpumask_weight(cpu_present_mask)
1227#define num_active_cpus() cpumask_weight(cpu_active_mask)
1228
1229static __always_inline bool cpu_online(unsigned int cpu)
1230{
1231 return cpumask_test_cpu(cpu, cpu_online_mask);
1232}
1233
1234static __always_inline bool cpu_enabled(unsigned int cpu)
1235{
1236 return cpumask_test_cpu(cpu, cpu_enabled_mask);
1237}
1238
1239static __always_inline bool cpu_possible(unsigned int cpu)
1240{
1241 return cpumask_test_cpu(cpu, cpu_possible_mask);
1242}
1243
1244static __always_inline bool cpu_present(unsigned int cpu)
1245{
1246 return cpumask_test_cpu(cpu, cpu_present_mask);
1247}
1248
1249static __always_inline bool cpu_active(unsigned int cpu)
1250{
1251 return cpumask_test_cpu(cpu, cpu_active_mask);
1252}
1253
1254static __always_inline bool cpu_dying(unsigned int cpu)
1255{
1256 return cpumask_test_cpu(cpu, cpu_dying_mask);
1257}
1258
1259#else
1260
1261#define num_online_cpus() 1U
1262#define num_possible_cpus() 1U
1263#define num_enabled_cpus() 1U
1264#define num_present_cpus() 1U
1265#define num_active_cpus() 1U
1266
1267static __always_inline bool cpu_online(unsigned int cpu)
1268{
1269 return cpu == 0;
1270}
1271
1272static __always_inline bool cpu_possible(unsigned int cpu)
1273{
1274 return cpu == 0;
1275}
1276
1277static __always_inline bool cpu_enabled(unsigned int cpu)
1278{
1279 return cpu == 0;
1280}
1281
1282static __always_inline bool cpu_present(unsigned int cpu)
1283{
1284 return cpu == 0;
1285}
1286
1287static __always_inline bool cpu_active(unsigned int cpu)
1288{
1289 return cpu == 0;
1290}
1291
1292static __always_inline bool cpu_dying(unsigned int cpu)
1293{
1294 return false;
1295}
1296
1297#endif /* NR_CPUS > 1 */
1298
1299#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
1300
1301#if NR_CPUS <= BITS_PER_LONG
1302#define CPU_BITS_ALL \
1303{ \
1304 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1305}
1306
1307#else /* NR_CPUS > BITS_PER_LONG */
1308
1309#define CPU_BITS_ALL \
1310{ \
1311 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1312 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1313}
1314#endif /* NR_CPUS > BITS_PER_LONG */
1315
1316/**
1317 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
1318 * as comma-separated list of cpus or hex values of cpumask
1319 * @list: indicates whether the cpumap must be list
1320 * @mask: the cpumask to copy
1321 * @buf: the buffer to copy into
1322 *
1323 * Return: the length of the (null-terminated) @buf string, zero if
1324 * nothing is copied.
1325 */
1326static __always_inline ssize_t
1327cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1328{
1329 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1330 nr_cpu_ids);
1331}
1332
1333/**
1334 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
1335 * hex values of cpumask
1336 *
1337 * @buf: the buffer to copy into
1338 * @mask: the cpumask to copy
1339 * @off: in the string from which we are copying, we copy to @buf
1340 * @count: the maximum number of bytes to print
1341 *
1342 * The function prints the cpumask into the buffer as hex values of
1343 * cpumask; Typically used by bin_attribute to export cpumask bitmask
1344 * ABI.
1345 *
1346 * Return: the length of how many bytes have been copied, excluding
1347 * terminating '\0'.
1348 */
1349static __always_inline
1350ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1351 loff_t off, size_t count)
1352{
1353 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1354 nr_cpu_ids, off, count) - 1;
1355}
1356
1357/**
1358 * cpumap_print_list_to_buf - copies the cpumask into the buffer as
1359 * comma-separated list of cpus
1360 * @buf: the buffer to copy into
1361 * @mask: the cpumask to copy
1362 * @off: in the string from which we are copying, we copy to @buf
1363 * @count: the maximum number of bytes to print
1364 *
1365 * Everything is same with the above cpumap_print_bitmask_to_buf()
1366 * except the print format.
1367 *
1368 * Return: the length of how many bytes have been copied, excluding
1369 * terminating '\0'.
1370 */
1371static __always_inline
1372ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1373 loff_t off, size_t count)
1374{
1375 return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1376 nr_cpu_ids, off, count) - 1;
1377}
1378
1379#if NR_CPUS <= BITS_PER_LONG
1380#define CPU_MASK_ALL \
1381(cpumask_t) { { \
1382 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1383} }
1384#else
1385#define CPU_MASK_ALL \
1386(cpumask_t) { { \
1387 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1388 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1389} }
1390#endif /* NR_CPUS > BITS_PER_LONG */
1391
1392#define CPU_MASK_NONE \
1393(cpumask_t) { { \
1394 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
1395} }
1396
1397#define CPU_MASK_CPU0 \
1398(cpumask_t) { { \
1399 [0] = 1UL \
1400} }
1401
1402/*
1403 * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1404 * to avoid breaking userspace which may allocate a buffer based on the size
1405 * reported by e.g. fstat.
1406 *
1407 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1408 *
1409 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1410 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1411 * cover a worst-case of every other cpu being on one of two nodes for a
1412 * very large NR_CPUS.
1413 *
1414 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1415 * unsigned comparison to -1.
1416 */
1417#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1418 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1419#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1420
1421#endif /* __LINUX_CPUMASK_H */