at v6.19-rc4 80 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37#define pr_fmt(fmt) "Memory failure: " fmt 38 39#include <linux/kernel.h> 40#include <linux/mm.h> 41#include <linux/memory-failure.h> 42#include <linux/page-flags.h> 43#include <linux/sched/signal.h> 44#include <linux/sched/task.h> 45#include <linux/dax.h> 46#include <linux/ksm.h> 47#include <linux/rmap.h> 48#include <linux/export.h> 49#include <linux/pagemap.h> 50#include <linux/swap.h> 51#include <linux/backing-dev.h> 52#include <linux/migrate.h> 53#include <linux/slab.h> 54#include <linux/leafops.h> 55#include <linux/hugetlb.h> 56#include <linux/memory_hotplug.h> 57#include <linux/mm_inline.h> 58#include <linux/memremap.h> 59#include <linux/kfifo.h> 60#include <linux/ratelimit.h> 61#include <linux/pagewalk.h> 62#include <linux/shmem_fs.h> 63#include <linux/sysctl.h> 64 65#define CREATE_TRACE_POINTS 66#include <trace/events/memory-failure.h> 67 68#include "swap.h" 69#include "internal.h" 70 71static int sysctl_memory_failure_early_kill __read_mostly; 72 73static int sysctl_memory_failure_recovery __read_mostly = 1; 74 75static int sysctl_enable_soft_offline __read_mostly = 1; 76 77atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 78 79static bool hw_memory_failure __read_mostly = false; 80 81static DEFINE_MUTEX(mf_mutex); 82 83void num_poisoned_pages_inc(unsigned long pfn) 84{ 85 atomic_long_inc(&num_poisoned_pages); 86 memblk_nr_poison_inc(pfn); 87} 88 89void num_poisoned_pages_sub(unsigned long pfn, long i) 90{ 91 atomic_long_sub(i, &num_poisoned_pages); 92 if (pfn != -1UL) 93 memblk_nr_poison_sub(pfn, i); 94} 95 96/** 97 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 98 * @_name: name of the file in the per NUMA sysfs directory. 99 */ 100#define MF_ATTR_RO(_name) \ 101static ssize_t _name##_show(struct device *dev, \ 102 struct device_attribute *attr, \ 103 char *buf) \ 104{ \ 105 struct memory_failure_stats *mf_stats = \ 106 &NODE_DATA(dev->id)->mf_stats; \ 107 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 108} \ 109static DEVICE_ATTR_RO(_name) 110 111MF_ATTR_RO(total); 112MF_ATTR_RO(ignored); 113MF_ATTR_RO(failed); 114MF_ATTR_RO(delayed); 115MF_ATTR_RO(recovered); 116 117static struct attribute *memory_failure_attr[] = { 118 &dev_attr_total.attr, 119 &dev_attr_ignored.attr, 120 &dev_attr_failed.attr, 121 &dev_attr_delayed.attr, 122 &dev_attr_recovered.attr, 123 NULL, 124}; 125 126const struct attribute_group memory_failure_attr_group = { 127 .name = "memory_failure", 128 .attrs = memory_failure_attr, 129}; 130 131static const struct ctl_table memory_failure_table[] = { 132 { 133 .procname = "memory_failure_early_kill", 134 .data = &sysctl_memory_failure_early_kill, 135 .maxlen = sizeof(sysctl_memory_failure_early_kill), 136 .mode = 0644, 137 .proc_handler = proc_dointvec_minmax, 138 .extra1 = SYSCTL_ZERO, 139 .extra2 = SYSCTL_ONE, 140 }, 141 { 142 .procname = "memory_failure_recovery", 143 .data = &sysctl_memory_failure_recovery, 144 .maxlen = sizeof(sysctl_memory_failure_recovery), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ZERO, 148 .extra2 = SYSCTL_ONE, 149 }, 150 { 151 .procname = "enable_soft_offline", 152 .data = &sysctl_enable_soft_offline, 153 .maxlen = sizeof(sysctl_enable_soft_offline), 154 .mode = 0644, 155 .proc_handler = proc_dointvec_minmax, 156 .extra1 = SYSCTL_ZERO, 157 .extra2 = SYSCTL_ONE, 158 } 159}; 160 161static struct rb_root_cached pfn_space_itree = RB_ROOT_CACHED; 162 163static DEFINE_MUTEX(pfn_space_lock); 164 165/* 166 * Return values: 167 * 1: the page is dissolved (if needed) and taken off from buddy, 168 * 0: the page is dissolved (if needed) and not taken off from buddy, 169 * < 0: failed to dissolve. 170 */ 171static int __page_handle_poison(struct page *page) 172{ 173 int ret; 174 175 /* 176 * zone_pcp_disable() can't be used here. It will 177 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 178 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 179 * optimization is enabled. This will break current lock dependency 180 * chain and leads to deadlock. 181 * Disabling pcp before dissolving the page was a deterministic 182 * approach because we made sure that those pages cannot end up in any 183 * PCP list. Draining PCP lists expels those pages to the buddy system, 184 * but nothing guarantees that those pages do not get back to a PCP 185 * queue if we need to refill those. 186 */ 187 ret = dissolve_free_hugetlb_folio(page_folio(page)); 188 if (!ret) { 189 drain_all_pages(page_zone(page)); 190 ret = take_page_off_buddy(page); 191 } 192 193 return ret; 194} 195 196static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 197{ 198 if (hugepage_or_freepage) { 199 /* 200 * Doing this check for free pages is also fine since 201 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 202 */ 203 if (__page_handle_poison(page) <= 0) 204 /* 205 * We could fail to take off the target page from buddy 206 * for example due to racy page allocation, but that's 207 * acceptable because soft-offlined page is not broken 208 * and if someone really want to use it, they should 209 * take it. 210 */ 211 return false; 212 } 213 214 SetPageHWPoison(page); 215 if (release) 216 put_page(page); 217 page_ref_inc(page); 218 num_poisoned_pages_inc(page_to_pfn(page)); 219 220 return true; 221} 222 223static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly; 224 225void hwpoison_filter_register(hwpoison_filter_func_t *filter) 226{ 227 rcu_assign_pointer(hwpoison_filter_func, filter); 228} 229EXPORT_SYMBOL_GPL(hwpoison_filter_register); 230 231void hwpoison_filter_unregister(void) 232{ 233 RCU_INIT_POINTER(hwpoison_filter_func, NULL); 234 synchronize_rcu(); 235} 236EXPORT_SYMBOL_GPL(hwpoison_filter_unregister); 237 238static int hwpoison_filter(struct page *p) 239{ 240 int ret = 0; 241 hwpoison_filter_func_t *filter; 242 243 rcu_read_lock(); 244 filter = rcu_dereference(hwpoison_filter_func); 245 if (filter) 246 ret = filter(p); 247 rcu_read_unlock(); 248 249 return ret; 250} 251 252/* 253 * Kill all processes that have a poisoned page mapped and then isolate 254 * the page. 255 * 256 * General strategy: 257 * Find all processes having the page mapped and kill them. 258 * But we keep a page reference around so that the page is not 259 * actually freed yet. 260 * Then stash the page away 261 * 262 * There's no convenient way to get back to mapped processes 263 * from the VMAs. So do a brute-force search over all 264 * running processes. 265 * 266 * Remember that machine checks are not common (or rather 267 * if they are common you have other problems), so this shouldn't 268 * be a performance issue. 269 * 270 * Also there are some races possible while we get from the 271 * error detection to actually handle it. 272 */ 273 274struct to_kill { 275 struct list_head nd; 276 struct task_struct *tsk; 277 unsigned long addr; 278 short size_shift; 279}; 280 281/* 282 * Send all the processes who have the page mapped a signal. 283 * ``action optional'' if they are not immediately affected by the error 284 * ``action required'' if error happened in current execution context 285 */ 286static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 287{ 288 struct task_struct *t = tk->tsk; 289 short addr_lsb = tk->size_shift; 290 int ret = 0; 291 292 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 293 pfn, t->comm, task_pid_nr(t)); 294 295 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 296 ret = force_sig_mceerr(BUS_MCEERR_AR, 297 (void __user *)tk->addr, addr_lsb); 298 else 299 /* 300 * Signal other processes sharing the page if they have 301 * PF_MCE_EARLY set. 302 * Don't use force here, it's convenient if the signal 303 * can be temporarily blocked. 304 */ 305 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 306 addr_lsb, t); 307 if (ret < 0) 308 pr_info("Error sending signal to %s:%d: %d\n", 309 t->comm, task_pid_nr(t), ret); 310 return ret; 311} 312 313/* 314 * Unknown page type encountered. Try to check whether it can turn PageLRU by 315 * lru_add_drain_all. 316 */ 317void shake_folio(struct folio *folio) 318{ 319 if (folio_test_hugetlb(folio)) 320 return; 321 /* 322 * TODO: Could shrink slab caches here if a lightweight range-based 323 * shrinker will be available. 324 */ 325 if (folio_test_slab(folio)) 326 return; 327 328 lru_add_drain_all(); 329} 330EXPORT_SYMBOL_GPL(shake_folio); 331 332static void shake_page(struct page *page) 333{ 334 shake_folio(page_folio(page)); 335} 336 337static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 338 unsigned long address) 339{ 340 unsigned long ret = 0; 341 pgd_t *pgd; 342 p4d_t *p4d; 343 pud_t *pud; 344 pmd_t *pmd; 345 pte_t *pte; 346 pte_t ptent; 347 348 VM_BUG_ON_VMA(address == -EFAULT, vma); 349 pgd = pgd_offset(vma->vm_mm, address); 350 if (!pgd_present(*pgd)) 351 return 0; 352 p4d = p4d_offset(pgd, address); 353 if (!p4d_present(*p4d)) 354 return 0; 355 pud = pud_offset(p4d, address); 356 if (!pud_present(*pud)) 357 return 0; 358 if (pud_trans_huge(*pud)) 359 return PUD_SHIFT; 360 pmd = pmd_offset(pud, address); 361 if (!pmd_present(*pmd)) 362 return 0; 363 if (pmd_trans_huge(*pmd)) 364 return PMD_SHIFT; 365 pte = pte_offset_map(pmd, address); 366 if (!pte) 367 return 0; 368 ptent = ptep_get(pte); 369 if (pte_present(ptent)) 370 ret = PAGE_SHIFT; 371 pte_unmap(pte); 372 return ret; 373} 374 375/* 376 * Failure handling: if we can't find or can't kill a process there's 377 * not much we can do. We just print a message and ignore otherwise. 378 */ 379 380/* 381 * Schedule a process for later kill. 382 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 383 */ 384static void __add_to_kill(struct task_struct *tsk, const struct page *p, 385 struct vm_area_struct *vma, struct list_head *to_kill, 386 unsigned long addr) 387{ 388 struct to_kill *tk; 389 390 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 391 if (!tk) { 392 pr_err("Out of memory while machine check handling\n"); 393 return; 394 } 395 396 tk->addr = addr; 397 if (is_zone_device_page(p)) 398 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 399 else 400 tk->size_shift = folio_shift(page_folio(p)); 401 402 /* 403 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 404 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 405 * so "tk->size_shift == 0" effectively checks no mapping on 406 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 407 * to a process' address space, it's possible not all N VMAs 408 * contain mappings for the page, but at least one VMA does. 409 * Only deliver SIGBUS with payload derived from the VMA that 410 * has a mapping for the page. 411 */ 412 if (tk->addr == -EFAULT) { 413 pr_info("Unable to find user space address %lx in %s\n", 414 page_to_pfn(p), tsk->comm); 415 } else if (tk->size_shift == 0) { 416 kfree(tk); 417 return; 418 } 419 420 get_task_struct(tsk); 421 tk->tsk = tsk; 422 list_add_tail(&tk->nd, to_kill); 423} 424 425static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 426 struct vm_area_struct *vma, struct list_head *to_kill, 427 unsigned long addr) 428{ 429 if (addr == -EFAULT) 430 return; 431 __add_to_kill(tsk, p, vma, to_kill, addr); 432} 433 434#ifdef CONFIG_KSM 435static bool task_in_to_kill_list(struct list_head *to_kill, 436 struct task_struct *tsk) 437{ 438 struct to_kill *tk, *next; 439 440 list_for_each_entry_safe(tk, next, to_kill, nd) { 441 if (tk->tsk == tsk) 442 return true; 443 } 444 445 return false; 446} 447 448void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451{ 452 if (!task_in_to_kill_list(to_kill, tsk)) 453 __add_to_kill(tsk, p, vma, to_kill, addr); 454} 455#endif 456/* 457 * Kill the processes that have been collected earlier. 458 * 459 * Only do anything when FORCEKILL is set, otherwise just free the 460 * list (this is used for clean pages which do not need killing) 461 */ 462static void kill_procs(struct list_head *to_kill, int forcekill, 463 unsigned long pfn, int flags) 464{ 465 struct to_kill *tk, *next; 466 467 list_for_each_entry_safe(tk, next, to_kill, nd) { 468 if (forcekill) { 469 if (tk->addr == -EFAULT) { 470 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 471 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 472 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 473 tk->tsk, PIDTYPE_PID); 474 } 475 476 /* 477 * In theory the process could have mapped 478 * something else on the address in-between. We could 479 * check for that, but we need to tell the 480 * process anyways. 481 */ 482 else if (kill_proc(tk, pfn, flags) < 0) 483 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 484 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 485 } 486 list_del(&tk->nd); 487 put_task_struct(tk->tsk); 488 kfree(tk); 489 } 490} 491 492/* 493 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 494 * on behalf of the thread group. Return task_struct of the (first found) 495 * dedicated thread if found, and return NULL otherwise. 496 * 497 * We already hold rcu lock in the caller, so we don't have to call 498 * rcu_read_lock/unlock() in this function. 499 */ 500static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 501{ 502 struct task_struct *t; 503 504 for_each_thread(tsk, t) { 505 if (t->flags & PF_MCE_PROCESS) { 506 if (t->flags & PF_MCE_EARLY) 507 return t; 508 } else { 509 if (sysctl_memory_failure_early_kill) 510 return t; 511 } 512 } 513 return NULL; 514} 515 516/* 517 * Determine whether a given process is "early kill" process which expects 518 * to be signaled when some page under the process is hwpoisoned. 519 * Return task_struct of the dedicated thread (main thread unless explicitly 520 * specified) if the process is "early kill" and otherwise returns NULL. 521 * 522 * Note that the above is true for Action Optional case. For Action Required 523 * case, it's only meaningful to the current thread which need to be signaled 524 * with SIGBUS, this error is Action Optional for other non current 525 * processes sharing the same error page,if the process is "early kill", the 526 * task_struct of the dedicated thread will also be returned. 527 */ 528struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 529{ 530 if (!tsk->mm) 531 return NULL; 532 /* 533 * Comparing ->mm here because current task might represent 534 * a subthread, while tsk always points to the main thread. 535 */ 536 if (force_early && tsk->mm == current->mm) 537 return current; 538 539 return find_early_kill_thread(tsk); 540} 541 542/* 543 * Collect processes when the error hit an anonymous page. 544 */ 545static void collect_procs_anon(const struct folio *folio, 546 const struct page *page, struct list_head *to_kill, 547 int force_early) 548{ 549 struct task_struct *tsk; 550 struct anon_vma *av; 551 pgoff_t pgoff; 552 553 av = folio_lock_anon_vma_read(folio, NULL); 554 if (av == NULL) /* Not actually mapped anymore */ 555 return; 556 557 pgoff = page_pgoff(folio, page); 558 rcu_read_lock(); 559 for_each_process(tsk) { 560 struct vm_area_struct *vma; 561 struct anon_vma_chain *vmac; 562 struct task_struct *t = task_early_kill(tsk, force_early); 563 unsigned long addr; 564 565 if (!t) 566 continue; 567 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 568 pgoff, pgoff) { 569 vma = vmac->vma; 570 if (vma->vm_mm != t->mm) 571 continue; 572 addr = page_mapped_in_vma(page, vma); 573 add_to_kill_anon_file(t, page, vma, to_kill, addr); 574 } 575 } 576 rcu_read_unlock(); 577 anon_vma_unlock_read(av); 578} 579 580/* 581 * Collect processes when the error hit a file mapped page. 582 */ 583static void collect_procs_file(const struct folio *folio, 584 const struct page *page, struct list_head *to_kill, 585 int force_early) 586{ 587 struct vm_area_struct *vma; 588 struct task_struct *tsk; 589 struct address_space *mapping = folio->mapping; 590 pgoff_t pgoff; 591 592 i_mmap_lock_read(mapping); 593 rcu_read_lock(); 594 pgoff = page_pgoff(folio, page); 595 for_each_process(tsk) { 596 struct task_struct *t = task_early_kill(tsk, force_early); 597 unsigned long addr; 598 599 if (!t) 600 continue; 601 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 602 pgoff) { 603 /* 604 * Send early kill signal to tasks where a vma covers 605 * the page but the corrupted page is not necessarily 606 * mapped in its pte. 607 * Assume applications who requested early kill want 608 * to be informed of all such data corruptions. 609 */ 610 if (vma->vm_mm != t->mm) 611 continue; 612 addr = page_address_in_vma(folio, page, vma); 613 add_to_kill_anon_file(t, page, vma, to_kill, addr); 614 } 615 } 616 rcu_read_unlock(); 617 i_mmap_unlock_read(mapping); 618} 619 620#ifdef CONFIG_FS_DAX 621static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 622 struct vm_area_struct *vma, 623 struct list_head *to_kill, pgoff_t pgoff) 624{ 625 unsigned long addr = vma_address(vma, pgoff, 1); 626 __add_to_kill(tsk, p, vma, to_kill, addr); 627} 628 629/* 630 * Collect processes when the error hit a fsdax page. 631 */ 632static void collect_procs_fsdax(const struct page *page, 633 struct address_space *mapping, pgoff_t pgoff, 634 struct list_head *to_kill, bool pre_remove) 635{ 636 struct vm_area_struct *vma; 637 struct task_struct *tsk; 638 639 i_mmap_lock_read(mapping); 640 rcu_read_lock(); 641 for_each_process(tsk) { 642 struct task_struct *t = tsk; 643 644 /* 645 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 646 * the current may not be the one accessing the fsdax page. 647 * Otherwise, search for the current task. 648 */ 649 if (!pre_remove) 650 t = task_early_kill(tsk, true); 651 if (!t) 652 continue; 653 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 654 if (vma->vm_mm == t->mm) 655 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 656 } 657 } 658 rcu_read_unlock(); 659 i_mmap_unlock_read(mapping); 660} 661#endif /* CONFIG_FS_DAX */ 662 663/* 664 * Collect the processes who have the corrupted page mapped to kill. 665 */ 666static void collect_procs(const struct folio *folio, const struct page *page, 667 struct list_head *tokill, int force_early) 668{ 669 if (!folio->mapping) 670 return; 671 if (unlikely(folio_test_ksm(folio))) 672 collect_procs_ksm(folio, page, tokill, force_early); 673 else if (folio_test_anon(folio)) 674 collect_procs_anon(folio, page, tokill, force_early); 675 else 676 collect_procs_file(folio, page, tokill, force_early); 677} 678 679struct hwpoison_walk { 680 struct to_kill tk; 681 unsigned long pfn; 682 int flags; 683}; 684 685static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 686{ 687 tk->addr = addr; 688 tk->size_shift = shift; 689} 690 691static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 692 unsigned long poisoned_pfn, struct to_kill *tk) 693{ 694 unsigned long pfn = 0; 695 696 if (pte_present(pte)) { 697 pfn = pte_pfn(pte); 698 } else { 699 const softleaf_t entry = softleaf_from_pte(pte); 700 701 if (softleaf_is_hwpoison(entry)) 702 pfn = softleaf_to_pfn(entry); 703 } 704 705 if (!pfn || pfn != poisoned_pfn) 706 return 0; 707 708 set_to_kill(tk, addr, shift); 709 return 1; 710} 711 712#ifdef CONFIG_TRANSPARENT_HUGEPAGE 713static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 714 struct hwpoison_walk *hwp) 715{ 716 pmd_t pmd = *pmdp; 717 unsigned long pfn; 718 unsigned long hwpoison_vaddr; 719 720 if (!pmd_present(pmd)) 721 return 0; 722 pfn = pmd_pfn(pmd); 723 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 724 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 725 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 726 return 1; 727 } 728 return 0; 729} 730#else 731static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 732 struct hwpoison_walk *hwp) 733{ 734 return 0; 735} 736#endif 737 738static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 739 unsigned long end, struct mm_walk *walk) 740{ 741 struct hwpoison_walk *hwp = walk->private; 742 int ret = 0; 743 pte_t *ptep, *mapped_pte; 744 spinlock_t *ptl; 745 746 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 747 if (ptl) { 748 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 749 spin_unlock(ptl); 750 goto out; 751 } 752 753 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 754 addr, &ptl); 755 if (!ptep) 756 goto out; 757 758 for (; addr != end; ptep++, addr += PAGE_SIZE) { 759 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 760 hwp->pfn, &hwp->tk); 761 if (ret == 1) 762 break; 763 } 764 pte_unmap_unlock(mapped_pte, ptl); 765out: 766 cond_resched(); 767 return ret; 768} 769 770#ifdef CONFIG_HUGETLB_PAGE 771static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 772 unsigned long addr, unsigned long end, 773 struct mm_walk *walk) 774{ 775 struct hwpoison_walk *hwp = walk->private; 776 struct hstate *h = hstate_vma(walk->vma); 777 spinlock_t *ptl; 778 pte_t pte; 779 int ret; 780 781 ptl = huge_pte_lock(h, walk->mm, ptep); 782 pte = huge_ptep_get(walk->mm, addr, ptep); 783 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 784 hwp->pfn, &hwp->tk); 785 spin_unlock(ptl); 786 return ret; 787} 788#else 789#define hwpoison_hugetlb_range NULL 790#endif 791 792static int hwpoison_test_walk(unsigned long start, unsigned long end, 793 struct mm_walk *walk) 794{ 795 /* We also want to consider pages mapped into VM_PFNMAP. */ 796 return 0; 797} 798 799static const struct mm_walk_ops hwpoison_walk_ops = { 800 .pmd_entry = hwpoison_pte_range, 801 .hugetlb_entry = hwpoison_hugetlb_range, 802 .test_walk = hwpoison_test_walk, 803 .walk_lock = PGWALK_RDLOCK, 804}; 805 806/* 807 * Sends SIGBUS to the current process with error info. 808 * 809 * This function is intended to handle "Action Required" MCEs on already 810 * hardware poisoned pages. They could happen, for example, when 811 * memory_failure() failed to unmap the error page at the first call, or 812 * when multiple local machine checks happened on different CPUs. 813 * 814 * MCE handler currently has no easy access to the error virtual address, 815 * so this function walks page table to find it. The returned virtual address 816 * is proper in most cases, but it could be wrong when the application 817 * process has multiple entries mapping the error page. 818 */ 819static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 820 int flags) 821{ 822 int ret; 823 struct hwpoison_walk priv = { 824 .pfn = pfn, 825 }; 826 priv.tk.tsk = p; 827 828 if (!p->mm) 829 return -EFAULT; 830 831 mmap_read_lock(p->mm); 832 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 833 (void *)&priv); 834 /* 835 * ret = 1 when CMCI wins, regardless of whether try_to_unmap() 836 * succeeds or fails, then kill the process with SIGBUS. 837 * ret = 0 when poison page is a clean page and it's dropped, no 838 * SIGBUS is needed. 839 */ 840 if (ret == 1 && priv.tk.addr) 841 kill_proc(&priv.tk, pfn, flags); 842 mmap_read_unlock(p->mm); 843 844 return ret > 0 ? -EHWPOISON : 0; 845} 846 847/* 848 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 849 * But it could not do more to isolate the page from being accessed again, 850 * nor does it kill the process. This is extremely rare and one of the 851 * potential causes is that the page state has been changed due to 852 * underlying race condition. This is the most severe outcomes. 853 * 854 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 855 * It should have killed the process, but it can't isolate the page, 856 * due to conditions such as extra pin, unmap failure, etc. Accessing 857 * the page again may trigger another MCE and the process will be killed 858 * by the m-f() handler immediately. 859 * 860 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 861 * The page is unmapped, and is removed from the LRU or file mapping. 862 * An attempt to access the page again will trigger page fault and the 863 * PF handler will kill the process. 864 * 865 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 866 * The page has been completely isolated, that is, unmapped, taken out of 867 * the buddy system, or hole-punnched out of the file mapping. 868 */ 869static const char *action_name[] = { 870 [MF_IGNORED] = "Ignored", 871 [MF_FAILED] = "Failed", 872 [MF_DELAYED] = "Delayed", 873 [MF_RECOVERED] = "Recovered", 874}; 875 876static const char * const action_page_types[] = { 877 [MF_MSG_KERNEL] = "reserved kernel page", 878 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 879 [MF_MSG_HUGE] = "huge page", 880 [MF_MSG_FREE_HUGE] = "free huge page", 881 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 882 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 883 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 884 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 885 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 886 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 887 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 888 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 889 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 890 [MF_MSG_CLEAN_LRU] = "clean LRU page", 891 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 892 [MF_MSG_BUDDY] = "free buddy page", 893 [MF_MSG_DAX] = "dax page", 894 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 895 [MF_MSG_ALREADY_POISONED] = "already poisoned page", 896 [MF_MSG_PFN_MAP] = "non struct page pfn", 897 [MF_MSG_UNKNOWN] = "unknown page", 898}; 899 900/* 901 * XXX: It is possible that a page is isolated from LRU cache, 902 * and then kept in swap cache or failed to remove from page cache. 903 * The page count will stop it from being freed by unpoison. 904 * Stress tests should be aware of this memory leak problem. 905 */ 906static int delete_from_lru_cache(struct folio *folio) 907{ 908 if (folio_isolate_lru(folio)) { 909 /* 910 * Clear sensible page flags, so that the buddy system won't 911 * complain when the folio is unpoison-and-freed. 912 */ 913 folio_clear_active(folio); 914 folio_clear_unevictable(folio); 915 916 /* 917 * Poisoned page might never drop its ref count to 0 so we have 918 * to uncharge it manually from its memcg. 919 */ 920 mem_cgroup_uncharge(folio); 921 922 /* 923 * drop the refcount elevated by folio_isolate_lru() 924 */ 925 folio_put(folio); 926 return 0; 927 } 928 return -EIO; 929} 930 931static int truncate_error_folio(struct folio *folio, unsigned long pfn, 932 struct address_space *mapping) 933{ 934 int ret = MF_FAILED; 935 936 if (mapping->a_ops->error_remove_folio) { 937 int err = mapping->a_ops->error_remove_folio(mapping, folio); 938 939 if (err != 0) 940 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 941 else if (!filemap_release_folio(folio, GFP_NOIO)) 942 pr_info("%#lx: failed to release buffers\n", pfn); 943 else 944 ret = MF_RECOVERED; 945 } else { 946 /* 947 * If the file system doesn't support it just invalidate 948 * This fails on dirty or anything with private pages 949 */ 950 if (mapping_evict_folio(mapping, folio)) 951 ret = MF_RECOVERED; 952 else 953 pr_info("%#lx: Failed to invalidate\n", pfn); 954 } 955 956 return ret; 957} 958 959struct page_state { 960 unsigned long mask; 961 unsigned long res; 962 enum mf_action_page_type type; 963 964 /* Callback ->action() has to unlock the relevant page inside it. */ 965 int (*action)(struct page_state *ps, struct page *p); 966}; 967 968/* 969 * Return true if page is still referenced by others, otherwise return 970 * false. 971 * 972 * The extra_pins is true when one extra refcount is expected. 973 */ 974static bool has_extra_refcount(struct page_state *ps, struct page *p, 975 bool extra_pins) 976{ 977 int count = page_count(p) - 1; 978 979 if (extra_pins) 980 count -= folio_nr_pages(page_folio(p)); 981 982 if (count > 0) { 983 pr_err("%#lx: %s still referenced by %d users\n", 984 page_to_pfn(p), action_page_types[ps->type], count); 985 return true; 986 } 987 988 return false; 989} 990 991/* 992 * Error hit kernel page. 993 * Do nothing, try to be lucky and not touch this instead. For a few cases we 994 * could be more sophisticated. 995 */ 996static int me_kernel(struct page_state *ps, struct page *p) 997{ 998 unlock_page(p); 999 return MF_IGNORED; 1000} 1001 1002/* 1003 * Page in unknown state. Do nothing. 1004 * This is a catch-all in case we fail to make sense of the page state. 1005 */ 1006static int me_unknown(struct page_state *ps, struct page *p) 1007{ 1008 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1009 unlock_page(p); 1010 return MF_IGNORED; 1011} 1012 1013/* 1014 * Clean (or cleaned) page cache page. 1015 */ 1016static int me_pagecache_clean(struct page_state *ps, struct page *p) 1017{ 1018 struct folio *folio = page_folio(p); 1019 int ret; 1020 struct address_space *mapping; 1021 bool extra_pins; 1022 1023 delete_from_lru_cache(folio); 1024 1025 /* 1026 * For anonymous folios the only reference left 1027 * should be the one m_f() holds. 1028 */ 1029 if (folio_test_anon(folio)) { 1030 ret = MF_RECOVERED; 1031 goto out; 1032 } 1033 1034 /* 1035 * Now truncate the page in the page cache. This is really 1036 * more like a "temporary hole punch" 1037 * Don't do this for block devices when someone else 1038 * has a reference, because it could be file system metadata 1039 * and that's not safe to truncate. 1040 */ 1041 mapping = folio_mapping(folio); 1042 if (!mapping) { 1043 /* Folio has been torn down in the meantime */ 1044 ret = MF_FAILED; 1045 goto out; 1046 } 1047 1048 /* 1049 * The shmem page is kept in page cache instead of truncating 1050 * so is expected to have an extra refcount after error-handling. 1051 */ 1052 extra_pins = shmem_mapping(mapping); 1053 1054 /* 1055 * Truncation is a bit tricky. Enable it per file system for now. 1056 * 1057 * Open: to take i_rwsem or not for this? Right now we don't. 1058 */ 1059 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1060 if (has_extra_refcount(ps, p, extra_pins)) 1061 ret = MF_FAILED; 1062 1063out: 1064 folio_unlock(folio); 1065 1066 return ret; 1067} 1068 1069/* 1070 * Dirty pagecache page 1071 * Issues: when the error hit a hole page the error is not properly 1072 * propagated. 1073 */ 1074static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1075{ 1076 struct folio *folio = page_folio(p); 1077 struct address_space *mapping = folio_mapping(folio); 1078 1079 /* TBD: print more information about the file. */ 1080 if (mapping) { 1081 /* 1082 * IO error will be reported by write(), fsync(), etc. 1083 * who check the mapping. 1084 * This way the application knows that something went 1085 * wrong with its dirty file data. 1086 */ 1087 mapping_set_error(mapping, -EIO); 1088 } 1089 1090 return me_pagecache_clean(ps, p); 1091} 1092 1093/* 1094 * Clean and dirty swap cache. 1095 * 1096 * Dirty swap cache page is tricky to handle. The page could live both in page 1097 * table and swap cache(ie. page is freshly swapped in). So it could be 1098 * referenced concurrently by 2 types of PTEs: 1099 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1100 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1101 * and then 1102 * - clear dirty bit to prevent IO 1103 * - remove from LRU 1104 * - but keep in the swap cache, so that when we return to it on 1105 * a later page fault, we know the application is accessing 1106 * corrupted data and shall be killed (we installed simple 1107 * interception code in do_swap_page to catch it). 1108 * 1109 * Clean swap cache pages can be directly isolated. A later page fault will 1110 * bring in the known good data from disk. 1111 */ 1112static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1113{ 1114 struct folio *folio = page_folio(p); 1115 int ret; 1116 bool extra_pins = false; 1117 1118 folio_clear_dirty(folio); 1119 /* Trigger EIO in shmem: */ 1120 folio_clear_uptodate(folio); 1121 1122 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1123 folio_unlock(folio); 1124 1125 if (ret == MF_DELAYED) 1126 extra_pins = true; 1127 1128 if (has_extra_refcount(ps, p, extra_pins)) 1129 ret = MF_FAILED; 1130 1131 return ret; 1132} 1133 1134static int me_swapcache_clean(struct page_state *ps, struct page *p) 1135{ 1136 struct folio *folio = page_folio(p); 1137 int ret; 1138 1139 swap_cache_del_folio(folio); 1140 1141 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1142 folio_unlock(folio); 1143 1144 if (has_extra_refcount(ps, p, false)) 1145 ret = MF_FAILED; 1146 1147 return ret; 1148} 1149 1150/* 1151 * Huge pages. Needs work. 1152 * Issues: 1153 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1154 * To narrow down kill region to one page, we need to break up pmd. 1155 */ 1156static int me_huge_page(struct page_state *ps, struct page *p) 1157{ 1158 struct folio *folio = page_folio(p); 1159 int res; 1160 struct address_space *mapping; 1161 bool extra_pins = false; 1162 1163 mapping = folio_mapping(folio); 1164 if (mapping) { 1165 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1166 /* The page is kept in page cache. */ 1167 extra_pins = true; 1168 folio_unlock(folio); 1169 } else { 1170 folio_unlock(folio); 1171 /* 1172 * migration entry prevents later access on error hugepage, 1173 * so we can free and dissolve it into buddy to save healthy 1174 * subpages. 1175 */ 1176 folio_put(folio); 1177 if (__page_handle_poison(p) > 0) { 1178 page_ref_inc(p); 1179 res = MF_RECOVERED; 1180 } else { 1181 res = MF_FAILED; 1182 } 1183 } 1184 1185 if (has_extra_refcount(ps, p, extra_pins)) 1186 res = MF_FAILED; 1187 1188 return res; 1189} 1190 1191/* 1192 * Various page states we can handle. 1193 * 1194 * A page state is defined by its current page->flags bits. 1195 * The table matches them in order and calls the right handler. 1196 * 1197 * This is quite tricky because we can access page at any time 1198 * in its live cycle, so all accesses have to be extremely careful. 1199 * 1200 * This is not complete. More states could be added. 1201 * For any missing state don't attempt recovery. 1202 */ 1203 1204#define dirty (1UL << PG_dirty) 1205#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1206#define unevict (1UL << PG_unevictable) 1207#define mlock (1UL << PG_mlocked) 1208#define lru (1UL << PG_lru) 1209#define head (1UL << PG_head) 1210#define reserved (1UL << PG_reserved) 1211 1212static struct page_state error_states[] = { 1213 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1214 /* 1215 * free pages are specially detected outside this table: 1216 * PG_buddy pages only make a small fraction of all free pages. 1217 */ 1218 1219 { head, head, MF_MSG_HUGE, me_huge_page }, 1220 1221 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1222 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1223 1224 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1225 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1226 1227 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1228 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1229 1230 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1231 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1232 1233 /* 1234 * Catchall entry: must be at end. 1235 */ 1236 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1237}; 1238 1239#undef dirty 1240#undef sc 1241#undef unevict 1242#undef mlock 1243#undef lru 1244#undef head 1245#undef reserved 1246 1247static void update_per_node_mf_stats(unsigned long pfn, 1248 enum mf_result result) 1249{ 1250 int nid = MAX_NUMNODES; 1251 struct memory_failure_stats *mf_stats = NULL; 1252 1253 nid = pfn_to_nid(pfn); 1254 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1255 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1256 return; 1257 } 1258 1259 mf_stats = &NODE_DATA(nid)->mf_stats; 1260 switch (result) { 1261 case MF_IGNORED: 1262 ++mf_stats->ignored; 1263 break; 1264 case MF_FAILED: 1265 ++mf_stats->failed; 1266 break; 1267 case MF_DELAYED: 1268 ++mf_stats->delayed; 1269 break; 1270 case MF_RECOVERED: 1271 ++mf_stats->recovered; 1272 break; 1273 default: 1274 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1275 break; 1276 } 1277 ++mf_stats->total; 1278} 1279 1280/* 1281 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1282 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1283 */ 1284static int action_result(unsigned long pfn, enum mf_action_page_type type, 1285 enum mf_result result) 1286{ 1287 trace_memory_failure_event(pfn, type, result); 1288 1289 if (type != MF_MSG_ALREADY_POISONED && type != MF_MSG_PFN_MAP) { 1290 num_poisoned_pages_inc(pfn); 1291 update_per_node_mf_stats(pfn, result); 1292 } 1293 1294 pr_err("%#lx: recovery action for %s: %s\n", 1295 pfn, action_page_types[type], action_name[result]); 1296 1297 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1298} 1299 1300static int page_action(struct page_state *ps, struct page *p, 1301 unsigned long pfn) 1302{ 1303 int result; 1304 1305 /* page p should be unlocked after returning from ps->action(). */ 1306 result = ps->action(ps, p); 1307 1308 /* Could do more checks here if page looks ok */ 1309 /* 1310 * Could adjust zone counters here to correct for the missing page. 1311 */ 1312 1313 return action_result(pfn, ps->type, result); 1314} 1315 1316static inline bool PageHWPoisonTakenOff(struct page *page) 1317{ 1318 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1319} 1320 1321void SetPageHWPoisonTakenOff(struct page *page) 1322{ 1323 set_page_private(page, MAGIC_HWPOISON); 1324} 1325 1326void ClearPageHWPoisonTakenOff(struct page *page) 1327{ 1328 if (PageHWPoison(page)) 1329 set_page_private(page, 0); 1330} 1331 1332/* 1333 * Return true if a page type of a given page is supported by hwpoison 1334 * mechanism (while handling could fail), otherwise false. This function 1335 * does not return true for hugetlb or device memory pages, so it's assumed 1336 * to be called only in the context where we never have such pages. 1337 */ 1338static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1339{ 1340 if (PageSlab(page)) 1341 return false; 1342 1343 /* Soft offline could migrate movable_ops pages */ 1344 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page)) 1345 return true; 1346 1347 return PageLRU(page) || is_free_buddy_page(page); 1348} 1349 1350static int __get_hwpoison_page(struct page *page, unsigned long flags) 1351{ 1352 struct folio *folio = page_folio(page); 1353 int ret = 0; 1354 bool hugetlb = false; 1355 1356 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1357 if (hugetlb) { 1358 /* Make sure hugetlb demotion did not happen from under us. */ 1359 if (folio == page_folio(page)) 1360 return ret; 1361 if (ret > 0) { 1362 folio_put(folio); 1363 folio = page_folio(page); 1364 } 1365 } 1366 1367 /* 1368 * This check prevents from calling folio_try_get() for any 1369 * unsupported type of folio in order to reduce the risk of unexpected 1370 * races caused by taking a folio refcount. 1371 */ 1372 if (!HWPoisonHandlable(&folio->page, flags)) 1373 return -EBUSY; 1374 1375 if (folio_try_get(folio)) { 1376 if (folio == page_folio(page)) 1377 return 1; 1378 1379 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1380 folio_put(folio); 1381 } 1382 1383 return 0; 1384} 1385 1386#define GET_PAGE_MAX_RETRY_NUM 3 1387 1388static int get_any_page(struct page *p, unsigned long flags) 1389{ 1390 int ret = 0, pass = 0; 1391 bool count_increased = false; 1392 1393 if (flags & MF_COUNT_INCREASED) 1394 count_increased = true; 1395 1396try_again: 1397 if (!count_increased) { 1398 ret = __get_hwpoison_page(p, flags); 1399 if (!ret) { 1400 if (page_count(p)) { 1401 /* We raced with an allocation, retry. */ 1402 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1403 goto try_again; 1404 ret = -EBUSY; 1405 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1406 /* We raced with put_page, retry. */ 1407 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1408 goto try_again; 1409 ret = -EIO; 1410 } 1411 goto out; 1412 } else if (ret == -EBUSY) { 1413 /* 1414 * We raced with (possibly temporary) unhandlable 1415 * page, retry. 1416 */ 1417 if (pass++ < 3) { 1418 shake_page(p); 1419 goto try_again; 1420 } 1421 ret = -EIO; 1422 goto out; 1423 } 1424 } 1425 1426 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1427 ret = 1; 1428 } else { 1429 /* 1430 * A page we cannot handle. Check whether we can turn 1431 * it into something we can handle. 1432 */ 1433 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1434 put_page(p); 1435 shake_page(p); 1436 count_increased = false; 1437 goto try_again; 1438 } 1439 put_page(p); 1440 ret = -EIO; 1441 } 1442out: 1443 if (ret == -EIO) 1444 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1445 1446 return ret; 1447} 1448 1449static int __get_unpoison_page(struct page *page) 1450{ 1451 struct folio *folio = page_folio(page); 1452 int ret = 0; 1453 bool hugetlb = false; 1454 1455 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1456 if (hugetlb) { 1457 /* Make sure hugetlb demotion did not happen from under us. */ 1458 if (folio == page_folio(page)) 1459 return ret; 1460 if (ret > 0) 1461 folio_put(folio); 1462 } 1463 1464 /* 1465 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1466 * but also isolated from buddy freelist, so need to identify the 1467 * state and have to cancel both operations to unpoison. 1468 */ 1469 if (PageHWPoisonTakenOff(page)) 1470 return -EHWPOISON; 1471 1472 return get_page_unless_zero(page) ? 1 : 0; 1473} 1474 1475/** 1476 * get_hwpoison_page() - Get refcount for memory error handling 1477 * @p: Raw error page (hit by memory error) 1478 * @flags: Flags controlling behavior of error handling 1479 * 1480 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1481 * error on it, after checking that the error page is in a well-defined state 1482 * (defined as a page-type we can successfully handle the memory error on it, 1483 * such as LRU page and hugetlb page). 1484 * 1485 * Memory error handling could be triggered at any time on any type of page, 1486 * so it's prone to race with typical memory management lifecycle (like 1487 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1488 * extra care for the error page's state (as done in __get_hwpoison_page()), 1489 * and has some retry logic in get_any_page(). 1490 * 1491 * When called from unpoison_memory(), the caller should already ensure that 1492 * the given page has PG_hwpoison. So it's never reused for other page 1493 * allocations, and __get_unpoison_page() never races with them. 1494 * 1495 * Return: 0 on failure or free buddy (hugetlb) page, 1496 * 1 on success for in-use pages in a well-defined state, 1497 * -EIO for pages on which we can not handle memory errors, 1498 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1499 * operations like allocation and free, 1500 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1501 */ 1502static int get_hwpoison_page(struct page *p, unsigned long flags) 1503{ 1504 int ret; 1505 1506 zone_pcp_disable(page_zone(p)); 1507 if (flags & MF_UNPOISON) 1508 ret = __get_unpoison_page(p); 1509 else 1510 ret = get_any_page(p, flags); 1511 zone_pcp_enable(page_zone(p)); 1512 1513 return ret; 1514} 1515 1516/* 1517 * The caller must guarantee the folio isn't large folio, except hugetlb. 1518 * try_to_unmap() can't handle it. 1519 */ 1520int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1521{ 1522 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1523 struct address_space *mapping; 1524 1525 if (folio_test_swapcache(folio)) { 1526 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1527 ttu &= ~TTU_HWPOISON; 1528 } 1529 1530 /* 1531 * Propagate the dirty bit from PTEs to struct page first, because we 1532 * need this to decide if we should kill or just drop the page. 1533 * XXX: the dirty test could be racy: set_page_dirty() may not always 1534 * be called inside page lock (it's recommended but not enforced). 1535 */ 1536 mapping = folio_mapping(folio); 1537 if (!must_kill && !folio_test_dirty(folio) && mapping && 1538 mapping_can_writeback(mapping)) { 1539 if (folio_mkclean(folio)) { 1540 folio_set_dirty(folio); 1541 } else { 1542 ttu &= ~TTU_HWPOISON; 1543 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1544 pfn); 1545 } 1546 } 1547 1548 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1549 /* 1550 * For hugetlb folios in shared mappings, try_to_unmap 1551 * could potentially call huge_pmd_unshare. Because of 1552 * this, take semaphore in write mode here and set 1553 * TTU_RMAP_LOCKED to indicate we have taken the lock 1554 * at this higher level. 1555 */ 1556 mapping = hugetlb_folio_mapping_lock_write(folio); 1557 if (!mapping) { 1558 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1559 folio_pfn(folio)); 1560 return -EBUSY; 1561 } 1562 1563 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1564 i_mmap_unlock_write(mapping); 1565 } else { 1566 try_to_unmap(folio, ttu); 1567 } 1568 1569 return folio_mapped(folio) ? -EBUSY : 0; 1570} 1571 1572/* 1573 * Do all that is necessary to remove user space mappings. Unmap 1574 * the pages and send SIGBUS to the processes if the data was dirty. 1575 */ 1576static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1577 unsigned long pfn, int flags) 1578{ 1579 LIST_HEAD(tokill); 1580 bool unmap_success; 1581 int forcekill; 1582 bool mlocked = folio_test_mlocked(folio); 1583 1584 /* 1585 * Here we are interested only in user-mapped pages, so skip any 1586 * other types of pages. 1587 */ 1588 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1589 folio_test_pgtable(folio) || folio_test_offline(folio)) 1590 return true; 1591 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1592 return true; 1593 1594 /* 1595 * This check implies we don't kill processes if their pages 1596 * are in the swap cache early. Those are always late kills. 1597 */ 1598 if (!folio_mapped(folio)) 1599 return true; 1600 1601 /* 1602 * First collect all the processes that have the page 1603 * mapped in dirty form. This has to be done before try_to_unmap, 1604 * because ttu takes the rmap data structures down. 1605 */ 1606 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1607 1608 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); 1609 if (!unmap_success) 1610 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1611 pfn, folio_mapcount(folio)); 1612 1613 /* 1614 * try_to_unmap() might put mlocked page in lru cache, so call 1615 * shake_page() again to ensure that it's flushed. 1616 */ 1617 if (mlocked) 1618 shake_folio(folio); 1619 1620 /* 1621 * Now that the dirty bit has been propagated to the 1622 * struct page and all unmaps done we can decide if 1623 * killing is needed or not. Only kill when the page 1624 * was dirty or the process is not restartable, 1625 * otherwise the tokill list is merely 1626 * freed. When there was a problem unmapping earlier 1627 * use a more force-full uncatchable kill to prevent 1628 * any accesses to the poisoned memory. 1629 */ 1630 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1631 !unmap_success; 1632 kill_procs(&tokill, forcekill, pfn, flags); 1633 1634 return unmap_success; 1635} 1636 1637static int identify_page_state(unsigned long pfn, struct page *p, 1638 unsigned long page_flags) 1639{ 1640 struct page_state *ps; 1641 1642 /* 1643 * The first check uses the current page flags which may not have any 1644 * relevant information. The second check with the saved page flags is 1645 * carried out only if the first check can't determine the page status. 1646 */ 1647 for (ps = error_states;; ps++) 1648 if ((p->flags.f & ps->mask) == ps->res) 1649 break; 1650 1651 page_flags |= (p->flags.f & (1UL << PG_dirty)); 1652 1653 if (!ps->mask) 1654 for (ps = error_states;; ps++) 1655 if ((page_flags & ps->mask) == ps->res) 1656 break; 1657 return page_action(ps, p, pfn); 1658} 1659 1660/* 1661 * When 'release' is 'false', it means that if thp split has failed, 1662 * there is still more to do, hence the page refcount we took earlier 1663 * is still needed. 1664 */ 1665static int try_to_split_thp_page(struct page *page, unsigned int new_order, 1666 bool release) 1667{ 1668 int ret; 1669 1670 lock_page(page); 1671 ret = split_huge_page_to_order(page, new_order); 1672 unlock_page(page); 1673 1674 if (ret && release) 1675 put_page(page); 1676 1677 return ret; 1678} 1679 1680static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1681 struct address_space *mapping, pgoff_t index, int flags) 1682{ 1683 struct to_kill *tk; 1684 unsigned long size = 0; 1685 1686 list_for_each_entry(tk, to_kill, nd) 1687 if (tk->size_shift) 1688 size = max(size, 1UL << tk->size_shift); 1689 1690 if (size) { 1691 /* 1692 * Unmap the largest mapping to avoid breaking up device-dax 1693 * mappings which are constant size. The actual size of the 1694 * mapping being torn down is communicated in siginfo, see 1695 * kill_proc() 1696 */ 1697 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1698 1699 unmap_mapping_range(mapping, start, size, 0); 1700 } 1701 1702 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1703} 1704 1705/* 1706 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1707 * either do not claim or fails to claim a hwpoison event, or devdax. 1708 * The fsdax pages are initialized per base page, and the devdax pages 1709 * could be initialized either as base pages, or as compound pages with 1710 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1711 * hwpoison, such that, if a subpage of a compound page is poisoned, 1712 * simply mark the compound head page is by far sufficient. 1713 */ 1714static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1715 struct dev_pagemap *pgmap) 1716{ 1717 struct folio *folio = pfn_folio(pfn); 1718 LIST_HEAD(to_kill); 1719 dax_entry_t cookie; 1720 int rc = 0; 1721 1722 /* 1723 * Prevent the inode from being freed while we are interrogating 1724 * the address_space, typically this would be handled by 1725 * lock_page(), but dax pages do not use the page lock. This 1726 * also prevents changes to the mapping of this pfn until 1727 * poison signaling is complete. 1728 */ 1729 cookie = dax_lock_folio(folio); 1730 if (!cookie) 1731 return -EBUSY; 1732 1733 if (hwpoison_filter(&folio->page)) { 1734 rc = -EOPNOTSUPP; 1735 goto unlock; 1736 } 1737 1738 switch (pgmap->type) { 1739 case MEMORY_DEVICE_PRIVATE: 1740 case MEMORY_DEVICE_COHERENT: 1741 /* 1742 * TODO: Handle device pages which may need coordination 1743 * with device-side memory. 1744 */ 1745 rc = -ENXIO; 1746 goto unlock; 1747 default: 1748 break; 1749 } 1750 1751 /* 1752 * Use this flag as an indication that the dax page has been 1753 * remapped UC to prevent speculative consumption of poison. 1754 */ 1755 SetPageHWPoison(&folio->page); 1756 1757 /* 1758 * Unlike System-RAM there is no possibility to swap in a 1759 * different physical page at a given virtual address, so all 1760 * userspace consumption of ZONE_DEVICE memory necessitates 1761 * SIGBUS (i.e. MF_MUST_KILL) 1762 */ 1763 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1764 collect_procs(folio, &folio->page, &to_kill, true); 1765 1766 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1767unlock: 1768 dax_unlock_folio(folio, cookie); 1769 return rc; 1770} 1771 1772#ifdef CONFIG_FS_DAX 1773/** 1774 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1775 * @mapping: address_space of the file in use 1776 * @index: start pgoff of the range within the file 1777 * @count: length of the range, in unit of PAGE_SIZE 1778 * @mf_flags: memory failure flags 1779 */ 1780int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1781 unsigned long count, int mf_flags) 1782{ 1783 LIST_HEAD(to_kill); 1784 dax_entry_t cookie; 1785 struct page *page; 1786 size_t end = index + count; 1787 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1788 1789 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1790 1791 for (; index < end; index++) { 1792 page = NULL; 1793 cookie = dax_lock_mapping_entry(mapping, index, &page); 1794 if (!cookie) 1795 return -EBUSY; 1796 if (!page) 1797 goto unlock; 1798 1799 if (!pre_remove) 1800 SetPageHWPoison(page); 1801 1802 /* 1803 * The pre_remove case is revoking access, the memory is still 1804 * good and could theoretically be put back into service. 1805 */ 1806 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1807 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1808 index, mf_flags); 1809unlock: 1810 dax_unlock_mapping_entry(mapping, index, cookie); 1811 } 1812 return 0; 1813} 1814EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1815#endif /* CONFIG_FS_DAX */ 1816 1817#ifdef CONFIG_HUGETLB_PAGE 1818 1819/* 1820 * Struct raw_hwp_page represents information about "raw error page", 1821 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1822 */ 1823struct raw_hwp_page { 1824 struct llist_node node; 1825 struct page *page; 1826}; 1827 1828static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1829{ 1830 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1831} 1832 1833bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1834{ 1835 struct llist_head *raw_hwp_head; 1836 struct raw_hwp_page *p; 1837 struct folio *folio = page_folio(page); 1838 bool ret = false; 1839 1840 if (!folio_test_hwpoison(folio)) 1841 return false; 1842 1843 if (!folio_test_hugetlb(folio)) 1844 return PageHWPoison(page); 1845 1846 /* 1847 * When RawHwpUnreliable is set, kernel lost track of which subpages 1848 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1849 */ 1850 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1851 return true; 1852 1853 mutex_lock(&mf_mutex); 1854 1855 raw_hwp_head = raw_hwp_list_head(folio); 1856 llist_for_each_entry(p, raw_hwp_head->first, node) { 1857 if (page == p->page) { 1858 ret = true; 1859 break; 1860 } 1861 } 1862 1863 mutex_unlock(&mf_mutex); 1864 1865 return ret; 1866} 1867 1868static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1869{ 1870 struct llist_node *head; 1871 struct raw_hwp_page *p, *next; 1872 unsigned long count = 0; 1873 1874 head = llist_del_all(raw_hwp_list_head(folio)); 1875 llist_for_each_entry_safe(p, next, head, node) { 1876 if (move_flag) 1877 SetPageHWPoison(p->page); 1878 else 1879 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1880 kfree(p); 1881 count++; 1882 } 1883 return count; 1884} 1885 1886static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1887{ 1888 struct llist_head *head; 1889 struct raw_hwp_page *raw_hwp; 1890 struct raw_hwp_page *p; 1891 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1892 1893 /* 1894 * Once the hwpoison hugepage has lost reliable raw error info, 1895 * there is little meaning to keep additional error info precisely, 1896 * so skip to add additional raw error info. 1897 */ 1898 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1899 return -EHWPOISON; 1900 head = raw_hwp_list_head(folio); 1901 llist_for_each_entry(p, head->first, node) { 1902 if (p->page == page) 1903 return -EHWPOISON; 1904 } 1905 1906 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1907 if (raw_hwp) { 1908 raw_hwp->page = page; 1909 llist_add(&raw_hwp->node, head); 1910 /* the first error event will be counted in action_result(). */ 1911 if (ret) 1912 num_poisoned_pages_inc(page_to_pfn(page)); 1913 } else { 1914 /* 1915 * Failed to save raw error info. We no longer trace all 1916 * hwpoisoned subpages, and we need refuse to free/dissolve 1917 * this hwpoisoned hugepage. 1918 */ 1919 folio_set_hugetlb_raw_hwp_unreliable(folio); 1920 /* 1921 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1922 * used any more, so free it. 1923 */ 1924 __folio_free_raw_hwp(folio, false); 1925 } 1926 return ret; 1927} 1928 1929static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1930{ 1931 /* 1932 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1933 * pages for tail pages are required but they don't exist. 1934 */ 1935 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1936 return 0; 1937 1938 /* 1939 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1940 * definition. 1941 */ 1942 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1943 return 0; 1944 1945 return __folio_free_raw_hwp(folio, move_flag); 1946} 1947 1948void folio_clear_hugetlb_hwpoison(struct folio *folio) 1949{ 1950 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1951 return; 1952 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1953 return; 1954 folio_clear_hwpoison(folio); 1955 folio_free_raw_hwp(folio, true); 1956} 1957 1958/* 1959 * Called from hugetlb code with hugetlb_lock held. 1960 * 1961 * Return values: 1962 * 0 - free hugepage 1963 * 1 - in-use hugepage 1964 * 2 - not a hugepage 1965 * -EBUSY - the hugepage is busy (try to retry) 1966 * -EHWPOISON - the hugepage is already hwpoisoned 1967 */ 1968int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1969 bool *migratable_cleared) 1970{ 1971 struct page *page = pfn_to_page(pfn); 1972 struct folio *folio = page_folio(page); 1973 int ret = 2; /* fallback to normal page handling */ 1974 bool count_increased = false; 1975 1976 if (!folio_test_hugetlb(folio)) 1977 goto out; 1978 1979 if (flags & MF_COUNT_INCREASED) { 1980 ret = 1; 1981 count_increased = true; 1982 } else if (folio_test_hugetlb_freed(folio)) { 1983 ret = 0; 1984 } else if (folio_test_hugetlb_migratable(folio)) { 1985 ret = folio_try_get(folio); 1986 if (ret) 1987 count_increased = true; 1988 } else { 1989 ret = -EBUSY; 1990 if (!(flags & MF_NO_RETRY)) 1991 goto out; 1992 } 1993 1994 if (folio_set_hugetlb_hwpoison(folio, page)) { 1995 ret = -EHWPOISON; 1996 goto out; 1997 } 1998 1999 /* 2000 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2001 * from being migrated by memory hotremove. 2002 */ 2003 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2004 folio_clear_hugetlb_migratable(folio); 2005 *migratable_cleared = true; 2006 } 2007 2008 return ret; 2009out: 2010 if (count_increased) 2011 folio_put(folio); 2012 return ret; 2013} 2014 2015/* 2016 * Taking refcount of hugetlb pages needs extra care about race conditions 2017 * with basic operations like hugepage allocation/free/demotion. 2018 * So some of prechecks for hwpoison (pinning, and testing/setting 2019 * PageHWPoison) should be done in single hugetlb_lock range. 2020 */ 2021static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2022{ 2023 int res; 2024 struct page *p = pfn_to_page(pfn); 2025 struct folio *folio; 2026 unsigned long page_flags; 2027 bool migratable_cleared = false; 2028 2029 *hugetlb = 1; 2030retry: 2031 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2032 if (res == 2) { /* fallback to normal page handling */ 2033 *hugetlb = 0; 2034 return 0; 2035 } else if (res == -EHWPOISON) { 2036 if (flags & MF_ACTION_REQUIRED) { 2037 folio = page_folio(p); 2038 res = kill_accessing_process(current, folio_pfn(folio), flags); 2039 } 2040 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2041 return res; 2042 } else if (res == -EBUSY) { 2043 if (!(flags & MF_NO_RETRY)) { 2044 flags |= MF_NO_RETRY; 2045 goto retry; 2046 } 2047 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2048 } 2049 2050 folio = page_folio(p); 2051 folio_lock(folio); 2052 2053 if (hwpoison_filter(p)) { 2054 folio_clear_hugetlb_hwpoison(folio); 2055 if (migratable_cleared) 2056 folio_set_hugetlb_migratable(folio); 2057 folio_unlock(folio); 2058 if (res == 1) 2059 folio_put(folio); 2060 return -EOPNOTSUPP; 2061 } 2062 2063 /* 2064 * Handling free hugepage. The possible race with hugepage allocation 2065 * or demotion can be prevented by PageHWPoison flag. 2066 */ 2067 if (res == 0) { 2068 folio_unlock(folio); 2069 if (__page_handle_poison(p) > 0) { 2070 page_ref_inc(p); 2071 res = MF_RECOVERED; 2072 } else { 2073 res = MF_FAILED; 2074 } 2075 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2076 } 2077 2078 page_flags = folio->flags.f; 2079 2080 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2081 folio_unlock(folio); 2082 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2083 } 2084 2085 return identify_page_state(pfn, p, page_flags); 2086} 2087 2088#else 2089static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2090{ 2091 return 0; 2092} 2093 2094static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2095{ 2096 return 0; 2097} 2098#endif /* CONFIG_HUGETLB_PAGE */ 2099 2100/* Drop the extra refcount in case we come from madvise() */ 2101static void put_ref_page(unsigned long pfn, int flags) 2102{ 2103 if (!(flags & MF_COUNT_INCREASED)) 2104 return; 2105 2106 put_page(pfn_to_page(pfn)); 2107} 2108 2109static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2110 struct dev_pagemap *pgmap) 2111{ 2112 int rc = -ENXIO; 2113 2114 /* device metadata space is not recoverable */ 2115 if (!pgmap_pfn_valid(pgmap, pfn)) 2116 goto out; 2117 2118 /* 2119 * Call driver's implementation to handle the memory failure, otherwise 2120 * fall back to generic handler. 2121 */ 2122 if (pgmap_has_memory_failure(pgmap)) { 2123 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2124 /* 2125 * Fall back to generic handler too if operation is not 2126 * supported inside the driver/device/filesystem. 2127 */ 2128 if (rc != -EOPNOTSUPP) 2129 goto out; 2130 } 2131 2132 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2133out: 2134 /* drop pgmap ref acquired in caller */ 2135 put_dev_pagemap(pgmap); 2136 if (rc != -EOPNOTSUPP) 2137 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2138 return rc; 2139} 2140 2141/* 2142 * The calling condition is as such: thp split failed, page might have 2143 * been RDMA pinned, not much can be done for recovery. 2144 * But a SIGBUS should be delivered with vaddr provided so that the user 2145 * application has a chance to recover. Also, application processes' 2146 * election for MCE early killed will be honored. 2147 */ 2148static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2149 struct folio *folio) 2150{ 2151 LIST_HEAD(tokill); 2152 2153 folio_lock(folio); 2154 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2155 folio_unlock(folio); 2156 2157 kill_procs(&tokill, true, pfn, flags); 2158} 2159 2160int register_pfn_address_space(struct pfn_address_space *pfn_space) 2161{ 2162 guard(mutex)(&pfn_space_lock); 2163 2164 if (!pfn_space->pfn_to_vma_pgoff) 2165 return -EINVAL; 2166 2167 if (interval_tree_iter_first(&pfn_space_itree, 2168 pfn_space->node.start, 2169 pfn_space->node.last)) 2170 return -EBUSY; 2171 2172 interval_tree_insert(&pfn_space->node, &pfn_space_itree); 2173 2174 return 0; 2175} 2176EXPORT_SYMBOL_GPL(register_pfn_address_space); 2177 2178void unregister_pfn_address_space(struct pfn_address_space *pfn_space) 2179{ 2180 guard(mutex)(&pfn_space_lock); 2181 2182 if (interval_tree_iter_first(&pfn_space_itree, 2183 pfn_space->node.start, 2184 pfn_space->node.last)) 2185 interval_tree_remove(&pfn_space->node, &pfn_space_itree); 2186} 2187EXPORT_SYMBOL_GPL(unregister_pfn_address_space); 2188 2189static void add_to_kill_pgoff(struct task_struct *tsk, 2190 struct vm_area_struct *vma, 2191 struct list_head *to_kill, 2192 pgoff_t pgoff) 2193{ 2194 struct to_kill *tk; 2195 2196 tk = kmalloc(sizeof(*tk), GFP_ATOMIC); 2197 if (!tk) { 2198 pr_info("Unable to kill proc %d\n", tsk->pid); 2199 return; 2200 } 2201 2202 /* Check for pgoff not backed by struct page */ 2203 tk->addr = vma_address(vma, pgoff, 1); 2204 tk->size_shift = PAGE_SHIFT; 2205 2206 if (tk->addr == -EFAULT) 2207 pr_info("Unable to find address %lx in %s\n", 2208 pgoff, tsk->comm); 2209 2210 get_task_struct(tsk); 2211 tk->tsk = tsk; 2212 list_add_tail(&tk->nd, to_kill); 2213} 2214 2215/* 2216 * Collect processes when the error hit a PFN not backed by struct page. 2217 */ 2218static void collect_procs_pfn(struct pfn_address_space *pfn_space, 2219 unsigned long pfn, struct list_head *to_kill) 2220{ 2221 struct vm_area_struct *vma; 2222 struct task_struct *tsk; 2223 struct address_space *mapping = pfn_space->mapping; 2224 2225 i_mmap_lock_read(mapping); 2226 rcu_read_lock(); 2227 for_each_process(tsk) { 2228 struct task_struct *t = tsk; 2229 2230 t = task_early_kill(tsk, true); 2231 if (!t) 2232 continue; 2233 vma_interval_tree_foreach(vma, &mapping->i_mmap, 0, ULONG_MAX) { 2234 pgoff_t pgoff; 2235 2236 if (vma->vm_mm == t->mm && 2237 !pfn_space->pfn_to_vma_pgoff(vma, pfn, &pgoff)) 2238 add_to_kill_pgoff(t, vma, to_kill, pgoff); 2239 } 2240 } 2241 rcu_read_unlock(); 2242 i_mmap_unlock_read(mapping); 2243} 2244 2245/** 2246 * memory_failure_pfn - Handle memory failure on a page not backed by 2247 * struct page. 2248 * @pfn: Page Number of the corrupted page 2249 * @flags: fine tune action taken 2250 * 2251 * Return: 2252 * 0 - success, 2253 * -EBUSY - Page PFN does not belong to any address space mapping. 2254 */ 2255static int memory_failure_pfn(unsigned long pfn, int flags) 2256{ 2257 struct interval_tree_node *node; 2258 LIST_HEAD(tokill); 2259 2260 scoped_guard(mutex, &pfn_space_lock) { 2261 bool mf_handled = false; 2262 2263 /* 2264 * Modules registers with MM the address space mapping to 2265 * the device memory they manage. Iterate to identify 2266 * exactly which address space has mapped to this failing 2267 * PFN. 2268 */ 2269 for (node = interval_tree_iter_first(&pfn_space_itree, pfn, pfn); node; 2270 node = interval_tree_iter_next(node, pfn, pfn)) { 2271 struct pfn_address_space *pfn_space = 2272 container_of(node, struct pfn_address_space, node); 2273 2274 collect_procs_pfn(pfn_space, pfn, &tokill); 2275 2276 mf_handled = true; 2277 } 2278 2279 if (!mf_handled) 2280 return action_result(pfn, MF_MSG_PFN_MAP, MF_IGNORED); 2281 } 2282 2283 /* 2284 * Unlike System-RAM there is no possibility to swap in a different 2285 * physical page at a given virtual address, so all userspace 2286 * consumption of direct PFN memory necessitates SIGBUS (i.e. 2287 * MF_MUST_KILL) 2288 */ 2289 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 2290 2291 kill_procs(&tokill, true, pfn, flags); 2292 2293 return action_result(pfn, MF_MSG_PFN_MAP, MF_RECOVERED); 2294} 2295 2296/** 2297 * memory_failure - Handle memory failure of a page. 2298 * @pfn: Page Number of the corrupted page 2299 * @flags: fine tune action taken 2300 * 2301 * This function is called by the low level machine check code 2302 * of an architecture when it detects hardware memory corruption 2303 * of a page. It tries its best to recover, which includes 2304 * dropping pages, killing processes etc. 2305 * 2306 * The function is primarily of use for corruptions that 2307 * happen outside the current execution context (e.g. when 2308 * detected by a background scrubber) 2309 * 2310 * Must run in process context (e.g. a work queue) with interrupts 2311 * enabled and no spinlocks held. 2312 * 2313 * Return: 2314 * 0 - success, 2315 * -ENXIO - memory not managed by the kernel 2316 * -EOPNOTSUPP - hwpoison_filter() filtered the error event, 2317 * -EHWPOISON - the page was already poisoned, potentially 2318 * kill process, 2319 * other negative values - failure. 2320 */ 2321int memory_failure(unsigned long pfn, int flags) 2322{ 2323 struct page *p; 2324 struct folio *folio; 2325 struct dev_pagemap *pgmap; 2326 int res = 0; 2327 unsigned long page_flags; 2328 bool retry = true; 2329 int hugetlb = 0; 2330 2331 if (!sysctl_memory_failure_recovery) 2332 panic("Memory failure on page %lx", pfn); 2333 2334 mutex_lock(&mf_mutex); 2335 2336 if (!(flags & MF_SW_SIMULATED)) 2337 hw_memory_failure = true; 2338 2339 p = pfn_to_online_page(pfn); 2340 if (!p) { 2341 res = arch_memory_failure(pfn, flags); 2342 if (res == 0) 2343 goto unlock_mutex; 2344 2345 if (!pfn_valid(pfn) && !arch_is_platform_page(PFN_PHYS(pfn))) { 2346 /* 2347 * The PFN is not backed by struct page. 2348 */ 2349 res = memory_failure_pfn(pfn, flags); 2350 goto unlock_mutex; 2351 } 2352 2353 if (pfn_valid(pfn)) { 2354 pgmap = get_dev_pagemap(pfn); 2355 put_ref_page(pfn, flags); 2356 if (pgmap) { 2357 res = memory_failure_dev_pagemap(pfn, flags, 2358 pgmap); 2359 goto unlock_mutex; 2360 } 2361 } 2362 pr_err("%#lx: memory outside kernel control\n", pfn); 2363 res = -ENXIO; 2364 goto unlock_mutex; 2365 } 2366 2367try_again: 2368 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2369 if (hugetlb) 2370 goto unlock_mutex; 2371 2372 if (TestSetPageHWPoison(p)) { 2373 res = -EHWPOISON; 2374 if (flags & MF_ACTION_REQUIRED) 2375 res = kill_accessing_process(current, pfn, flags); 2376 if (flags & MF_COUNT_INCREASED) 2377 put_page(p); 2378 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2379 goto unlock_mutex; 2380 } 2381 2382 /* 2383 * We need/can do nothing about count=0 pages. 2384 * 1) it's a free page, and therefore in safe hand: 2385 * check_new_page() will be the gate keeper. 2386 * 2) it's part of a non-compound high order page. 2387 * Implies some kernel user: cannot stop them from 2388 * R/W the page; let's pray that the page has been 2389 * used and will be freed some time later. 2390 * In fact it's dangerous to directly bump up page count from 0, 2391 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2392 */ 2393 if (!(flags & MF_COUNT_INCREASED)) { 2394 res = get_hwpoison_page(p, flags); 2395 if (!res) { 2396 if (is_free_buddy_page(p)) { 2397 if (take_page_off_buddy(p)) { 2398 page_ref_inc(p); 2399 res = MF_RECOVERED; 2400 } else { 2401 /* We lost the race, try again */ 2402 if (retry) { 2403 ClearPageHWPoison(p); 2404 retry = false; 2405 goto try_again; 2406 } 2407 res = MF_FAILED; 2408 } 2409 res = action_result(pfn, MF_MSG_BUDDY, res); 2410 } else { 2411 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2412 } 2413 goto unlock_mutex; 2414 } else if (res < 0) { 2415 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2416 goto unlock_mutex; 2417 } 2418 } 2419 2420 folio = page_folio(p); 2421 2422 /* filter pages that are protected from hwpoison test by users */ 2423 folio_lock(folio); 2424 if (hwpoison_filter(p)) { 2425 ClearPageHWPoison(p); 2426 folio_unlock(folio); 2427 folio_put(folio); 2428 res = -EOPNOTSUPP; 2429 goto unlock_mutex; 2430 } 2431 folio_unlock(folio); 2432 2433 if (folio_test_large(folio)) { 2434 const int new_order = min_order_for_split(folio); 2435 int err; 2436 2437 /* 2438 * The flag must be set after the refcount is bumped 2439 * otherwise it may race with THP split. 2440 * And the flag can't be set in get_hwpoison_page() since 2441 * it is called by soft offline too and it is just called 2442 * for !MF_COUNT_INCREASED. So here seems to be the best 2443 * place. 2444 * 2445 * Don't need care about the above error handling paths for 2446 * get_hwpoison_page() since they handle either free page 2447 * or unhandlable page. The refcount is bumped iff the 2448 * page is a valid handlable page. 2449 */ 2450 folio_set_has_hwpoisoned(folio); 2451 err = try_to_split_thp_page(p, new_order, /* release= */ false); 2452 /* 2453 * If splitting a folio to order-0 fails, kill the process. 2454 * Split the folio regardless to minimize unusable pages. 2455 * Because the memory failure code cannot handle large 2456 * folios, this split is always treated as if it failed. 2457 */ 2458 if (err || new_order) { 2459 /* get folio again in case the original one is split */ 2460 folio = page_folio(p); 2461 res = -EHWPOISON; 2462 kill_procs_now(p, pfn, flags, folio); 2463 put_page(p); 2464 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2465 goto unlock_mutex; 2466 } 2467 VM_BUG_ON_PAGE(!page_count(p), p); 2468 folio = page_folio(p); 2469 } 2470 2471 /* 2472 * We ignore non-LRU pages for good reasons. 2473 * - PG_locked is only well defined for LRU pages and a few others 2474 * - to avoid races with __SetPageLocked() 2475 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2476 * The check (unnecessarily) ignores LRU pages being isolated and 2477 * walked by the page reclaim code, however that's not a big loss. 2478 */ 2479 shake_folio(folio); 2480 2481 folio_lock(folio); 2482 2483 /* 2484 * We're only intended to deal with the non-Compound page here. 2485 * The page cannot become compound pages again as folio has been 2486 * splited and extra refcnt is held. 2487 */ 2488 WARN_ON(folio_test_large(folio)); 2489 2490 /* 2491 * We use page flags to determine what action should be taken, but 2492 * the flags can be modified by the error containment action. One 2493 * example is an mlocked page, where PG_mlocked is cleared by 2494 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2495 * status correctly, we save a copy of the page flags at this time. 2496 */ 2497 page_flags = folio->flags.f; 2498 2499 /* 2500 * __munlock_folio() may clear a writeback folio's LRU flag without 2501 * the folio lock. We need to wait for writeback completion for this 2502 * folio or it may trigger a vfs BUG while evicting inode. 2503 */ 2504 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2505 goto identify_page_state; 2506 2507 /* 2508 * It's very difficult to mess with pages currently under IO 2509 * and in many cases impossible, so we just avoid it here. 2510 */ 2511 folio_wait_writeback(folio); 2512 2513 /* 2514 * Now take care of user space mappings. 2515 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2516 */ 2517 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2518 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2519 goto unlock_page; 2520 } 2521 2522 /* 2523 * Torn down by someone else? 2524 */ 2525 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2526 folio->mapping == NULL) { 2527 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2528 goto unlock_page; 2529 } 2530 2531identify_page_state: 2532 res = identify_page_state(pfn, p, page_flags); 2533 mutex_unlock(&mf_mutex); 2534 return res; 2535unlock_page: 2536 folio_unlock(folio); 2537unlock_mutex: 2538 mutex_unlock(&mf_mutex); 2539 return res; 2540} 2541EXPORT_SYMBOL_GPL(memory_failure); 2542 2543#define MEMORY_FAILURE_FIFO_ORDER 4 2544#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2545 2546struct memory_failure_entry { 2547 unsigned long pfn; 2548 int flags; 2549}; 2550 2551struct memory_failure_cpu { 2552 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2553 MEMORY_FAILURE_FIFO_SIZE); 2554 raw_spinlock_t lock; 2555 struct work_struct work; 2556}; 2557 2558static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2559 2560/** 2561 * memory_failure_queue - Schedule handling memory failure of a page. 2562 * @pfn: Page Number of the corrupted page 2563 * @flags: Flags for memory failure handling 2564 * 2565 * This function is called by the low level hardware error handler 2566 * when it detects hardware memory corruption of a page. It schedules 2567 * the recovering of error page, including dropping pages, killing 2568 * processes etc. 2569 * 2570 * The function is primarily of use for corruptions that 2571 * happen outside the current execution context (e.g. when 2572 * detected by a background scrubber) 2573 * 2574 * Can run in IRQ context. 2575 */ 2576void memory_failure_queue(unsigned long pfn, int flags) 2577{ 2578 struct memory_failure_cpu *mf_cpu; 2579 unsigned long proc_flags; 2580 bool buffer_overflow; 2581 struct memory_failure_entry entry = { 2582 .pfn = pfn, 2583 .flags = flags, 2584 }; 2585 2586 mf_cpu = &get_cpu_var(memory_failure_cpu); 2587 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2588 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2589 if (!buffer_overflow) 2590 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2591 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2592 put_cpu_var(memory_failure_cpu); 2593 if (buffer_overflow) 2594 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2595 pfn); 2596} 2597EXPORT_SYMBOL_GPL(memory_failure_queue); 2598 2599static void memory_failure_work_func(struct work_struct *work) 2600{ 2601 struct memory_failure_cpu *mf_cpu; 2602 struct memory_failure_entry entry = { 0, }; 2603 unsigned long proc_flags; 2604 int gotten; 2605 2606 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2607 for (;;) { 2608 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2609 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2610 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2611 if (!gotten) 2612 break; 2613 if (entry.flags & MF_SOFT_OFFLINE) 2614 soft_offline_page(entry.pfn, entry.flags); 2615 else 2616 memory_failure(entry.pfn, entry.flags); 2617 } 2618} 2619 2620static int __init memory_failure_init(void) 2621{ 2622 struct memory_failure_cpu *mf_cpu; 2623 int cpu; 2624 2625 for_each_possible_cpu(cpu) { 2626 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2627 raw_spin_lock_init(&mf_cpu->lock); 2628 INIT_KFIFO(mf_cpu->fifo); 2629 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2630 } 2631 2632 register_sysctl_init("vm", memory_failure_table); 2633 2634 return 0; 2635} 2636core_initcall(memory_failure_init); 2637 2638#undef pr_fmt 2639#define pr_fmt(fmt) "Unpoison: " fmt 2640#define unpoison_pr_info(fmt, pfn, rs) \ 2641({ \ 2642 if (__ratelimit(rs)) \ 2643 pr_info(fmt, pfn); \ 2644}) 2645 2646/** 2647 * unpoison_memory - Unpoison a previously poisoned page 2648 * @pfn: Page number of the to be unpoisoned page 2649 * 2650 * Software-unpoison a page that has been poisoned by 2651 * memory_failure() earlier. 2652 * 2653 * This is only done on the software-level, so it only works 2654 * for linux injected failures, not real hardware failures 2655 * 2656 * Returns 0 for success, otherwise -errno. 2657 */ 2658int unpoison_memory(unsigned long pfn) 2659{ 2660 struct folio *folio; 2661 struct page *p; 2662 int ret = -EBUSY, ghp; 2663 unsigned long count; 2664 bool huge = false; 2665 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2666 DEFAULT_RATELIMIT_BURST); 2667 2668 p = pfn_to_online_page(pfn); 2669 if (!p) 2670 return -EIO; 2671 folio = page_folio(p); 2672 2673 mutex_lock(&mf_mutex); 2674 2675 if (hw_memory_failure) { 2676 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2677 pfn, &unpoison_rs); 2678 ret = -EOPNOTSUPP; 2679 goto unlock_mutex; 2680 } 2681 2682 if (is_huge_zero_folio(folio)) { 2683 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2684 pfn, &unpoison_rs); 2685 ret = -EOPNOTSUPP; 2686 goto unlock_mutex; 2687 } 2688 2689 if (!PageHWPoison(p)) { 2690 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2691 pfn, &unpoison_rs); 2692 goto unlock_mutex; 2693 } 2694 2695 if (folio_ref_count(folio) > 1) { 2696 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2697 pfn, &unpoison_rs); 2698 goto unlock_mutex; 2699 } 2700 2701 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2702 folio_test_reserved(folio) || folio_test_offline(folio)) 2703 goto unlock_mutex; 2704 2705 if (folio_mapped(folio)) { 2706 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2707 pfn, &unpoison_rs); 2708 goto unlock_mutex; 2709 } 2710 2711 if (folio_mapping(folio)) { 2712 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2713 pfn, &unpoison_rs); 2714 goto unlock_mutex; 2715 } 2716 2717 ghp = get_hwpoison_page(p, MF_UNPOISON); 2718 if (!ghp) { 2719 if (folio_test_hugetlb(folio)) { 2720 huge = true; 2721 count = folio_free_raw_hwp(folio, false); 2722 if (count == 0) 2723 goto unlock_mutex; 2724 } 2725 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2726 } else if (ghp < 0) { 2727 if (ghp == -EHWPOISON) { 2728 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2729 } else { 2730 ret = ghp; 2731 unpoison_pr_info("%#lx: failed to grab page\n", 2732 pfn, &unpoison_rs); 2733 } 2734 } else { 2735 if (folio_test_hugetlb(folio)) { 2736 huge = true; 2737 count = folio_free_raw_hwp(folio, false); 2738 if (count == 0) { 2739 folio_put(folio); 2740 goto unlock_mutex; 2741 } 2742 } 2743 2744 folio_put(folio); 2745 if (TestClearPageHWPoison(p)) { 2746 folio_put(folio); 2747 ret = 0; 2748 } 2749 } 2750 2751unlock_mutex: 2752 mutex_unlock(&mf_mutex); 2753 if (!ret) { 2754 if (!huge) 2755 num_poisoned_pages_sub(pfn, 1); 2756 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2757 page_to_pfn(p), &unpoison_rs); 2758 } 2759 return ret; 2760} 2761EXPORT_SYMBOL(unpoison_memory); 2762 2763#undef pr_fmt 2764#define pr_fmt(fmt) "Soft offline: " fmt 2765 2766/* 2767 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2768 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2769 * If the page is mapped, it migrates the contents over. 2770 */ 2771static int soft_offline_in_use_page(struct page *page) 2772{ 2773 long ret = 0; 2774 unsigned long pfn = page_to_pfn(page); 2775 struct folio *folio = page_folio(page); 2776 char const *msg_page[] = {"page", "hugepage"}; 2777 bool huge = folio_test_hugetlb(folio); 2778 bool isolated; 2779 LIST_HEAD(pagelist); 2780 struct migration_target_control mtc = { 2781 .nid = NUMA_NO_NODE, 2782 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2783 .reason = MR_MEMORY_FAILURE, 2784 }; 2785 2786 if (!huge && folio_test_large(folio)) { 2787 const int new_order = min_order_for_split(folio); 2788 2789 /* 2790 * If new_order (target split order) is not 0, do not split the 2791 * folio at all to retain the still accessible large folio. 2792 * NOTE: if minimizing the number of soft offline pages is 2793 * preferred, split it to non-zero new_order like it is done in 2794 * memory_failure(). 2795 */ 2796 if (new_order || try_to_split_thp_page(page, /* new_order= */ 0, 2797 /* release= */ true)) { 2798 pr_info("%#lx: thp split failed\n", pfn); 2799 return -EBUSY; 2800 } 2801 folio = page_folio(page); 2802 } 2803 2804 folio_lock(folio); 2805 if (!huge) 2806 folio_wait_writeback(folio); 2807 if (PageHWPoison(page)) { 2808 folio_unlock(folio); 2809 folio_put(folio); 2810 pr_info("%#lx: page already poisoned\n", pfn); 2811 return 0; 2812 } 2813 2814 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2815 /* 2816 * Try to invalidate first. This should work for 2817 * non dirty unmapped page cache pages. 2818 */ 2819 ret = mapping_evict_folio(folio_mapping(folio), folio); 2820 folio_unlock(folio); 2821 2822 if (ret) { 2823 pr_info("%#lx: invalidated\n", pfn); 2824 page_handle_poison(page, false, true); 2825 return 0; 2826 } 2827 2828 isolated = isolate_folio_to_list(folio, &pagelist); 2829 2830 /* 2831 * If we succeed to isolate the folio, we grabbed another refcount on 2832 * the folio, so we can safely drop the one we got from get_any_page(). 2833 * If we failed to isolate the folio, it means that we cannot go further 2834 * and we will return an error, so drop the reference we got from 2835 * get_any_page() as well. 2836 */ 2837 folio_put(folio); 2838 2839 if (isolated) { 2840 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2841 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2842 if (!ret) { 2843 bool release = !huge; 2844 2845 if (!page_handle_poison(page, huge, release)) 2846 ret = -EBUSY; 2847 } else { 2848 if (!list_empty(&pagelist)) 2849 putback_movable_pages(&pagelist); 2850 2851 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2852 pfn, msg_page[huge], ret, &page->flags.f); 2853 if (ret > 0) 2854 ret = -EBUSY; 2855 } 2856 } else { 2857 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2858 pfn, msg_page[huge], page_count(page), &page->flags.f); 2859 ret = -EBUSY; 2860 } 2861 return ret; 2862} 2863 2864/** 2865 * soft_offline_page - Soft offline a page. 2866 * @pfn: pfn to soft-offline 2867 * @flags: flags. Same as memory_failure(). 2868 * 2869 * Returns 0 on success, 2870 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2871 * disabled by /proc/sys/vm/enable_soft_offline, 2872 * < 0 otherwise negated errno. 2873 * 2874 * Soft offline a page, by migration or invalidation, 2875 * without killing anything. This is for the case when 2876 * a page is not corrupted yet (so it's still valid to access), 2877 * but has had a number of corrected errors and is better taken 2878 * out. 2879 * 2880 * The actual policy on when to do that is maintained by 2881 * user space. 2882 * 2883 * This should never impact any application or cause data loss, 2884 * however it might take some time. 2885 * 2886 * This is not a 100% solution for all memory, but tries to be 2887 * ``good enough'' for the majority of memory. 2888 */ 2889int soft_offline_page(unsigned long pfn, int flags) 2890{ 2891 int ret; 2892 bool try_again = true; 2893 struct page *page; 2894 2895 if (!pfn_valid(pfn)) { 2896 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2897 return -ENXIO; 2898 } 2899 2900 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2901 page = pfn_to_online_page(pfn); 2902 if (!page) { 2903 put_ref_page(pfn, flags); 2904 return -EIO; 2905 } 2906 2907 if (!sysctl_enable_soft_offline) { 2908 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2909 put_ref_page(pfn, flags); 2910 return -EOPNOTSUPP; 2911 } 2912 2913 mutex_lock(&mf_mutex); 2914 2915 if (PageHWPoison(page)) { 2916 pr_info("%#lx: page already poisoned\n", pfn); 2917 put_ref_page(pfn, flags); 2918 mutex_unlock(&mf_mutex); 2919 return 0; 2920 } 2921 2922retry: 2923 get_online_mems(); 2924 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2925 put_online_mems(); 2926 2927 if (hwpoison_filter(page)) { 2928 if (ret > 0) 2929 put_page(page); 2930 2931 mutex_unlock(&mf_mutex); 2932 return -EOPNOTSUPP; 2933 } 2934 2935 if (ret > 0) { 2936 ret = soft_offline_in_use_page(page); 2937 } else if (ret == 0) { 2938 if (!page_handle_poison(page, true, false)) { 2939 if (try_again) { 2940 try_again = false; 2941 flags &= ~MF_COUNT_INCREASED; 2942 goto retry; 2943 } 2944 ret = -EBUSY; 2945 } 2946 } 2947 2948 mutex_unlock(&mf_mutex); 2949 2950 return ret; 2951}