at v6.19-rc4 50 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <hyperv/hvhdk.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167 168/* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183#define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208}; 209 210 211static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212{ 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223} 224 225static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226{ 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236} 237 238static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240{ 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246} 247 248/* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268#define VMBUS_MAKE_VERSION(MAJ, MIN) ((((u32)MAJ) << 16) | (MIN)) 269#define VERSION_WS2008 VMBUS_MAKE_VERSION(0, 13) 270#define VERSION_WIN7 VMBUS_MAKE_VERSION(1, 1) 271#define VERSION_WIN8 VMBUS_MAKE_VERSION(2, 4) 272#define VERSION_WIN8_1 VMBUS_MAKE_VERSION(3, 0) 273#define VERSION_WIN10 VMBUS_MAKE_VERSION(4, 0) 274#define VERSION_WIN10_V4_1 VMBUS_MAKE_VERSION(4, 1) 275#define VERSION_WIN10_V5 VMBUS_MAKE_VERSION(5, 0) 276#define VERSION_WIN10_V5_1 VMBUS_MAKE_VERSION(5, 1) 277#define VERSION_WIN10_V5_2 VMBUS_MAKE_VERSION(5, 2) 278#define VERSION_WIN10_V5_3 VMBUS_MAKE_VERSION(5, 3) 279#define VERSION_WIN10_V6_0 VMBUS_MAKE_VERSION(6, 0) 280 281/* Make maximum size of pipe payload of 16K */ 282#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 283 284/* Define PipeMode values. */ 285#define VMBUS_PIPE_TYPE_BYTE 0x00000000 286#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 287 288/* The size of the user defined data buffer for non-pipe offers. */ 289#define MAX_USER_DEFINED_BYTES 120 290 291/* The size of the user defined data buffer for pipe offers. */ 292#define MAX_PIPE_USER_DEFINED_BYTES 116 293 294/* 295 * At the center of the Channel Management library is the Channel Offer. This 296 * struct contains the fundamental information about an offer. 297 */ 298struct vmbus_channel_offer { 299 guid_t if_type; 300 guid_t if_instance; 301 302 /* 303 * These two fields are not currently used. 304 */ 305 u64 reserved1; 306 u64 reserved2; 307 308 u16 chn_flags; 309 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 310 311 union { 312 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 313 struct { 314 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 315 } std; 316 317 /* 318 * Pipes: 319 * The following structure is an integrated pipe protocol, which 320 * is implemented on top of standard user-defined data. Pipe 321 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 322 * use. 323 */ 324 struct { 325 u32 pipe_mode; 326 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 327 } pipe; 328 } u; 329 /* 330 * The sub_channel_index is defined in Win8: a value of zero means a 331 * primary channel and a value of non-zero means a sub-channel. 332 * 333 * Before Win8, the field is reserved, meaning it's always zero. 334 */ 335 u16 sub_channel_index; 336 u16 reserved3; 337} __packed; 338 339/* Server Flags */ 340#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 0x0001 341/* 342 * This flag indicates that the channel is offered by the paravisor, and must 343 * use encrypted memory for the channel ring buffer. 344 */ 345#define VMBUS_CHANNEL_CONFIDENTIAL_RING_BUFFER 0x0002 346/* 347 * This flag indicates that the channel is offered by the paravisor, and must 348 * use encrypted memory for GPA direct packets and additional GPADLs. 349 */ 350#define VMBUS_CHANNEL_CONFIDENTIAL_EXTERNAL_MEMORY 0x0004 351#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x0010 352#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x0100 353#define VMBUS_CHANNEL_PARENT_OFFER 0x0200 354#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x0400 355#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 356 357struct vmpacket_descriptor { 358 u16 type; 359 u16 offset8; 360 u16 len8; 361 u16 flags; 362 u64 trans_id; 363} __packed; 364 365struct vmpacket_header { 366 u32 prev_pkt_start_offset; 367 struct vmpacket_descriptor descriptor; 368} __packed; 369 370struct vmtransfer_page_range { 371 u32 byte_count; 372 u32 byte_offset; 373} __packed; 374 375struct vmtransfer_page_packet_header { 376 struct vmpacket_descriptor d; 377 u16 xfer_pageset_id; 378 u8 sender_owns_set; 379 u8 reserved; 380 u32 range_cnt; 381 struct vmtransfer_page_range ranges[]; 382} __packed; 383 384/* 385 * This structure defines a range in guest physical space that can be made to 386 * look virtually contiguous. 387 */ 388struct gpa_range { 389 u32 byte_count; 390 u32 byte_offset; 391 u64 pfn_array[]; 392}; 393 394/* 395 * This is the format for a GPA-Direct packet, which contains a set of GPA 396 * ranges, in addition to commands and/or data. 397 */ 398struct vmdata_gpa_direct { 399 struct vmpacket_descriptor d; 400 u32 reserved; 401 u32 range_cnt; 402 struct gpa_range range[1]; 403} __packed; 404 405#define VMPACKET_DATA_START_ADDRESS(__packet) \ 406 (void *)(((unsigned char *)__packet) + \ 407 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 408 409#define VMPACKET_DATA_LENGTH(__packet) \ 410 ((((struct vmpacket_descriptor)__packet)->len8 - \ 411 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 412 413#define VMPACKET_TRANSFER_MODE(__packet) \ 414 (((struct IMPACT)__packet)->type) 415 416enum vmbus_packet_type { 417 VM_PKT_INVALID = 0x0, 418 VM_PKT_SYNCH = 0x1, 419 VM_PKT_ADD_XFER_PAGESET = 0x2, 420 VM_PKT_RM_XFER_PAGESET = 0x3, 421 VM_PKT_ESTABLISH_GPADL = 0x4, 422 VM_PKT_TEARDOWN_GPADL = 0x5, 423 VM_PKT_DATA_INBAND = 0x6, 424 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 425 VM_PKT_DATA_USING_GPADL = 0x8, 426 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 427 VM_PKT_CANCEL_REQUEST = 0xa, 428 VM_PKT_COMP = 0xb, 429 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 430 VM_PKT_ADDITIONAL_DATA = 0xd 431}; 432 433#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 434 435 436/* Version 1 messages */ 437enum vmbus_channel_message_type { 438 CHANNELMSG_INVALID = 0, 439 CHANNELMSG_OFFERCHANNEL = 1, 440 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 441 CHANNELMSG_REQUESTOFFERS = 3, 442 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 443 CHANNELMSG_OPENCHANNEL = 5, 444 CHANNELMSG_OPENCHANNEL_RESULT = 6, 445 CHANNELMSG_CLOSECHANNEL = 7, 446 CHANNELMSG_GPADL_HEADER = 8, 447 CHANNELMSG_GPADL_BODY = 9, 448 CHANNELMSG_GPADL_CREATED = 10, 449 CHANNELMSG_GPADL_TEARDOWN = 11, 450 CHANNELMSG_GPADL_TORNDOWN = 12, 451 CHANNELMSG_RELID_RELEASED = 13, 452 CHANNELMSG_INITIATE_CONTACT = 14, 453 CHANNELMSG_VERSION_RESPONSE = 15, 454 CHANNELMSG_UNLOAD = 16, 455 CHANNELMSG_UNLOAD_RESPONSE = 17, 456 CHANNELMSG_18 = 18, 457 CHANNELMSG_19 = 19, 458 CHANNELMSG_20 = 20, 459 CHANNELMSG_TL_CONNECT_REQUEST = 21, 460 CHANNELMSG_MODIFYCHANNEL = 22, 461 CHANNELMSG_TL_CONNECT_RESULT = 23, 462 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 463 CHANNELMSG_COUNT 464}; 465 466/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 467#define INVALID_RELID U32_MAX 468 469struct vmbus_channel_message_header { 470 enum vmbus_channel_message_type msgtype; 471 u32 padding; 472} __packed; 473 474/* Query VMBus Version parameters */ 475struct vmbus_channel_query_vmbus_version { 476 struct vmbus_channel_message_header header; 477 u32 version; 478} __packed; 479 480/* VMBus Version Supported parameters */ 481struct vmbus_channel_version_supported { 482 struct vmbus_channel_message_header header; 483 u8 version_supported; 484} __packed; 485 486/* Offer Channel parameters */ 487struct vmbus_channel_offer_channel { 488 struct vmbus_channel_message_header header; 489 struct vmbus_channel_offer offer; 490 u32 child_relid; 491 u8 monitorid; 492 /* 493 * win7 and beyond splits this field into a bit field. 494 */ 495 u8 monitor_allocated:1; 496 u8 reserved:7; 497 /* 498 * These are new fields added in win7 and later. 499 * Do not access these fields without checking the 500 * negotiated protocol. 501 * 502 * If "is_dedicated_interrupt" is set, we must not set the 503 * associated bit in the channel bitmap while sending the 504 * interrupt to the host. 505 * 506 * connection_id is to be used in signaling the host. 507 */ 508 u16 is_dedicated_interrupt:1; 509 u16 reserved1:15; 510 u32 connection_id; 511} __packed; 512 513/* Rescind Offer parameters */ 514struct vmbus_channel_rescind_offer { 515 struct vmbus_channel_message_header header; 516 u32 child_relid; 517} __packed; 518 519/* 520 * Request Offer -- no parameters, SynIC message contains the partition ID 521 * Set Snoop -- no parameters, SynIC message contains the partition ID 522 * Clear Snoop -- no parameters, SynIC message contains the partition ID 523 * All Offers Delivered -- no parameters, SynIC message contains the partition 524 * ID 525 * Flush Client -- no parameters, SynIC message contains the partition ID 526 */ 527 528/* Open Channel parameters */ 529struct vmbus_channel_open_channel { 530 struct vmbus_channel_message_header header; 531 532 /* Identifies the specific VMBus channel that is being opened. */ 533 u32 child_relid; 534 535 /* ID making a particular open request at a channel offer unique. */ 536 u32 openid; 537 538 /* GPADL for the channel's ring buffer. */ 539 u32 ringbuffer_gpadlhandle; 540 541 /* 542 * Starting with win8, this field will be used to specify 543 * the target virtual processor on which to deliver the interrupt for 544 * the host to guest communication. 545 * Prior to win8, incoming channel interrupts would only 546 * be delivered on cpu 0. Setting this value to 0 would 547 * preserve the earlier behavior. 548 */ 549 u32 target_vp; 550 551 /* 552 * The upstream ring buffer begins at offset zero in the memory 553 * described by RingBufferGpadlHandle. The downstream ring buffer 554 * follows it at this offset (in pages). 555 */ 556 u32 downstream_ringbuffer_pageoffset; 557 558 /* User-specific data to be passed along to the server endpoint. */ 559 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 560} __packed; 561 562/* Open Channel Result parameters */ 563struct vmbus_channel_open_result { 564 struct vmbus_channel_message_header header; 565 u32 child_relid; 566 u32 openid; 567 u32 status; 568} __packed; 569 570/* Modify Channel Result parameters */ 571struct vmbus_channel_modifychannel_response { 572 struct vmbus_channel_message_header header; 573 u32 child_relid; 574 u32 status; 575} __packed; 576 577/* Close channel parameters; */ 578struct vmbus_channel_close_channel { 579 struct vmbus_channel_message_header header; 580 u32 child_relid; 581} __packed; 582 583/* Channel Message GPADL */ 584#define GPADL_TYPE_RING_BUFFER 1 585#define GPADL_TYPE_SERVER_SAVE_AREA 2 586#define GPADL_TYPE_TRANSACTION 8 587 588/* 589 * The number of PFNs in a GPADL message is defined by the number of 590 * pages that would be spanned by ByteCount and ByteOffset. If the 591 * implied number of PFNs won't fit in this packet, there will be a 592 * follow-up packet that contains more. 593 */ 594struct vmbus_channel_gpadl_header { 595 struct vmbus_channel_message_header header; 596 u32 child_relid; 597 u32 gpadl; 598 u16 range_buflen; 599 u16 rangecount; 600 struct gpa_range range[]; 601} __packed; 602 603/* This is the followup packet that contains more PFNs. */ 604struct vmbus_channel_gpadl_body { 605 struct vmbus_channel_message_header header; 606 u32 msgnumber; 607 u32 gpadl; 608 u64 pfn[]; 609} __packed; 610 611struct vmbus_channel_gpadl_created { 612 struct vmbus_channel_message_header header; 613 u32 child_relid; 614 u32 gpadl; 615 u32 creation_status; 616} __packed; 617 618struct vmbus_channel_gpadl_teardown { 619 struct vmbus_channel_message_header header; 620 u32 child_relid; 621 u32 gpadl; 622} __packed; 623 624struct vmbus_channel_gpadl_torndown { 625 struct vmbus_channel_message_header header; 626 u32 gpadl; 627} __packed; 628 629struct vmbus_channel_relid_released { 630 struct vmbus_channel_message_header header; 631 u32 child_relid; 632} __packed; 633 634/* 635 * Used by the paravisor only, means that the encrypted ring buffers and 636 * the encrypted external memory are supported 637 */ 638#define VMBUS_FEATURE_FLAG_CONFIDENTIAL_CHANNELS 0x10 639 640struct vmbus_channel_initiate_contact { 641 struct vmbus_channel_message_header header; 642 u32 vmbus_version_requested; 643 u32 target_vcpu; /* The VCPU the host should respond to */ 644 union { 645 u64 interrupt_page; 646 struct { 647 u8 msg_sint; 648 u8 msg_vtl; 649 u8 reserved[2]; 650 u32 feature_flags; /* VMBus version 6.0 */ 651 }; 652 }; 653 u64 monitor_page1; 654 u64 monitor_page2; 655} __packed; 656 657/* Hyper-V socket: guest's connect()-ing to host */ 658struct vmbus_channel_tl_connect_request { 659 struct vmbus_channel_message_header header; 660 guid_t guest_endpoint_id; 661 guid_t host_service_id; 662} __packed; 663 664/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 665struct vmbus_channel_modifychannel { 666 struct vmbus_channel_message_header header; 667 u32 child_relid; 668 u32 target_vp; 669} __packed; 670 671struct vmbus_channel_version_response { 672 struct vmbus_channel_message_header header; 673 u8 version_supported; 674 675 u8 connection_state; 676 u16 padding; 677 678 /* 679 * On new hosts that support VMBus protocol 5.0, we must use 680 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 681 * and for subsequent messages, we must use the Message Connection ID 682 * field in the host-returned Version Response Message. 683 * 684 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 685 */ 686 u32 msg_conn_id; 687} __packed; 688 689enum vmbus_channel_state { 690 CHANNEL_OFFER_STATE, 691 CHANNEL_OPENING_STATE, 692 CHANNEL_OPEN_STATE, 693 CHANNEL_OPENED_STATE, 694}; 695 696/* 697 * Represents each channel msg on the vmbus connection This is a 698 * variable-size data structure depending on the msg type itself 699 */ 700struct vmbus_channel_msginfo { 701 /* Bookkeeping stuff */ 702 struct list_head msglistentry; 703 704 /* So far, this is only used to handle gpadl body message */ 705 struct list_head submsglist; 706 707 /* Synchronize the request/response if needed */ 708 struct completion waitevent; 709 struct vmbus_channel *waiting_channel; 710 union { 711 struct vmbus_channel_version_supported version_supported; 712 struct vmbus_channel_open_result open_result; 713 struct vmbus_channel_gpadl_torndown gpadl_torndown; 714 struct vmbus_channel_gpadl_created gpadl_created; 715 struct vmbus_channel_version_response version_response; 716 struct vmbus_channel_modifychannel_response modify_response; 717 } response; 718 719 u32 msgsize; 720 /* 721 * The channel message that goes out on the "wire". 722 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 723 */ 724 unsigned char msg[]; 725}; 726 727enum vmbus_device_type { 728 HV_IDE = 0, 729 HV_SCSI, 730 HV_FC, 731 HV_NIC, 732 HV_ND, 733 HV_PCIE, 734 HV_FB, 735 HV_KBD, 736 HV_MOUSE, 737 HV_KVP, 738 HV_TS, 739 HV_HB, 740 HV_SHUTDOWN, 741 HV_FCOPY, 742 HV_BACKUP, 743 HV_DM, 744 HV_UNKNOWN, 745}; 746 747/* 748 * Provides request ids for VMBus. Encapsulates guest memory 749 * addresses and stores the next available slot in req_arr 750 * to generate new ids in constant time. 751 */ 752struct vmbus_requestor { 753 u64 *req_arr; 754 unsigned long *req_bitmap; /* is a given slot available? */ 755 u32 size; 756 u64 next_request_id; 757 spinlock_t req_lock; /* provides atomicity */ 758}; 759 760#define VMBUS_NO_RQSTOR U64_MAX 761#define VMBUS_RQST_ERROR (U64_MAX - 1) 762#define VMBUS_RQST_ADDR_ANY U64_MAX 763/* NetVSC-specific */ 764#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 765/* StorVSC-specific */ 766#define VMBUS_RQST_INIT (U64_MAX - 2) 767#define VMBUS_RQST_RESET (U64_MAX - 3) 768 769struct vmbus_device { 770 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 771 size_t pref_ring_size; 772 u16 dev_type; 773 guid_t guid; 774 bool perf_device; 775 bool allowed_in_isolated; 776}; 777 778#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 779 780struct vmbus_gpadl { 781 u32 gpadl_handle; 782 u32 size; 783 void *buffer; 784 bool decrypted; 785}; 786 787struct vmbus_channel { 788 struct list_head listentry; 789 790 struct hv_device *device_obj; 791 792 enum vmbus_channel_state state; 793 794 struct vmbus_channel_offer_channel offermsg; 795 /* 796 * These are based on the OfferMsg.MonitorId. 797 * Save it here for easy access. 798 */ 799 u8 monitor_grp; 800 u8 monitor_bit; 801 802 bool rescind; /* got rescind msg */ 803 bool rescind_ref; /* got rescind msg, got channel reference */ 804 struct completion rescind_event; 805 806 struct vmbus_gpadl ringbuffer_gpadlhandle; 807 808 /* Allocated memory for ring buffer */ 809 struct page *ringbuffer_page; 810 u32 ringbuffer_pagecount; 811 u32 ringbuffer_send_offset; 812 struct hv_ring_buffer_info outbound; /* send to parent */ 813 struct hv_ring_buffer_info inbound; /* receive from parent */ 814 815 struct vmbus_channel_close_channel close_msg; 816 817 /* Statistics */ 818 u64 interrupts; /* Host to Guest interrupts */ 819 u64 sig_events; /* Guest to Host events */ 820 821 /* 822 * Guest to host interrupts caused by the outbound ring buffer changing 823 * from empty to not empty. 824 */ 825 u64 intr_out_empty; 826 827 /* 828 * Indicates that a full outbound ring buffer was encountered. The flag 829 * is set to true when a full outbound ring buffer is encountered and 830 * set to false when a write to the outbound ring buffer is completed. 831 */ 832 bool out_full_flag; 833 834 /* Channel callback's invoked in softirq context */ 835 struct tasklet_struct callback_event; 836 void (*onchannel_callback)(void *context); 837 void *channel_callback_context; 838 839 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 840 u32 old, u32 new); 841 842 /* 843 * Synchronize channel scheduling and channel removal; see the inline 844 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 845 */ 846 spinlock_t sched_lock; 847 848 /* 849 * A channel can be marked for one of three modes of reading: 850 * BATCHED - callback called from taslket and should read 851 * channel until empty. Interrupts from the host 852 * are masked while read is in process (default). 853 * DIRECT - callback called from tasklet (softirq). 854 * ISR - callback called in interrupt context and must 855 * invoke its own deferred processing. 856 * Host interrupts are disabled and must be re-enabled 857 * when ring is empty. 858 */ 859 enum hv_callback_mode { 860 HV_CALL_BATCHED, 861 HV_CALL_DIRECT, 862 HV_CALL_ISR 863 } callback_mode; 864 865 bool is_dedicated_interrupt; 866 u64 sig_event; 867 868 /* 869 * Starting with win8, this field will be used to specify the 870 * target CPU on which to deliver the interrupt for the host 871 * to guest communication. 872 * 873 * Prior to win8, incoming channel interrupts would only be 874 * delivered on CPU 0. Setting this value to 0 would preserve 875 * the earlier behavior. 876 */ 877 u32 target_cpu; 878 /* 879 * Support for sub-channels. For high performance devices, 880 * it will be useful to have multiple sub-channels to support 881 * a scalable communication infrastructure with the host. 882 * The support for sub-channels is implemented as an extension 883 * to the current infrastructure. 884 * The initial offer is considered the primary channel and this 885 * offer message will indicate if the host supports sub-channels. 886 * The guest is free to ask for sub-channels to be offered and can 887 * open these sub-channels as a normal "primary" channel. However, 888 * all sub-channels will have the same type and instance guids as the 889 * primary channel. Requests sent on a given channel will result in a 890 * response on the same channel. 891 */ 892 893 /* 894 * Sub-channel creation callback. This callback will be called in 895 * process context when a sub-channel offer is received from the host. 896 * The guest can open the sub-channel in the context of this callback. 897 */ 898 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 899 900 /* 901 * Channel rescind callback. Some channels (the hvsock ones), need to 902 * register a callback which is invoked in vmbus_onoffer_rescind(). 903 */ 904 void (*chn_rescind_callback)(struct vmbus_channel *channel); 905 906 /* 907 * All Sub-channels of a primary channel are linked here. 908 */ 909 struct list_head sc_list; 910 /* 911 * The primary channel this sub-channel belongs to. 912 * This will be NULL for the primary channel. 913 */ 914 struct vmbus_channel *primary_channel; 915 /* 916 * Support per-channel state for use by vmbus drivers. 917 */ 918 void *per_channel_state; 919 920 /* 921 * Defer freeing channel until after all cpu's have 922 * gone through grace period. 923 */ 924 struct rcu_head rcu; 925 926 /* 927 * For sysfs per-channel properties. 928 */ 929 struct kobject kobj; 930 931 /* 932 * For performance critical channels (storage, networking 933 * etc,), Hyper-V has a mechanism to enhance the throughput 934 * at the expense of latency: 935 * When the host is to be signaled, we just set a bit in a shared page 936 * and this bit will be inspected by the hypervisor within a certain 937 * window and if the bit is set, the host will be signaled. The window 938 * of time is the monitor latency - currently around 100 usecs. This 939 * mechanism improves throughput by: 940 * 941 * A) Making the host more efficient - each time it wakes up, 942 * potentially it will process more number of packets. The 943 * monitor latency allows a batch to build up. 944 * B) By deferring the hypercall to signal, we will also minimize 945 * the interrupts. 946 * 947 * Clearly, these optimizations improve throughput at the expense of 948 * latency. Furthermore, since the channel is shared for both 949 * control and data messages, control messages currently suffer 950 * unnecessary latency adversely impacting performance and boot 951 * time. To fix this issue, permit tagging the channel as being 952 * in "low latency" mode. In this mode, we will bypass the monitor 953 * mechanism. 954 */ 955 bool low_latency; 956 957 bool probe_done; 958 959 /* 960 * Cache the device ID here for easy access; this is useful, in 961 * particular, in situations where the channel's device_obj has 962 * not been allocated/initialized yet. 963 */ 964 u16 device_id; 965 966 /* 967 * We must offload the handling of the primary/sub channels 968 * from the single-threaded vmbus_connection.work_queue to 969 * two different workqueue, otherwise we can block 970 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 971 */ 972 struct work_struct add_channel_work; 973 974 /* 975 * Guest to host interrupts caused by the inbound ring buffer changing 976 * from full to not full while a packet is waiting. 977 */ 978 u64 intr_in_full; 979 980 /* 981 * The total number of write operations that encountered a full 982 * outbound ring buffer. 983 */ 984 u64 out_full_total; 985 986 /* 987 * The number of write operations that were the first to encounter a 988 * full outbound ring buffer. 989 */ 990 u64 out_full_first; 991 992 /* enabling/disabling fuzz testing on the channel (default is false)*/ 993 bool fuzz_testing_state; 994 995 /* 996 * Interrupt delay will delay the guest from emptying the ring buffer 997 * for a specific amount of time. The delay is in microseconds and will 998 * be between 1 to a maximum of 1000, its default is 0 (no delay). 999 * The Message delay will delay guest reading on a per message basis 1000 * in microseconds between 1 to 1000 with the default being 0 1001 * (no delay). 1002 */ 1003 u32 fuzz_testing_interrupt_delay; 1004 u32 fuzz_testing_message_delay; 1005 1006 /* callback to generate a request ID from a request address */ 1007 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 1008 /* callback to retrieve a request address from a request ID */ 1009 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 1010 1011 /* request/transaction ids for VMBus */ 1012 struct vmbus_requestor requestor; 1013 u32 rqstor_size; 1014 1015 /* The max size of a packet on this channel */ 1016 u32 max_pkt_size; 1017 1018 /* function to mmap ring buffer memory to the channel's sysfs ring attribute */ 1019 int (*mmap_ring_buffer)(struct vmbus_channel *channel, struct vm_area_struct *vma); 1020 1021 /* boolean to control visibility of sysfs for ring buffer */ 1022 bool ring_sysfs_visible; 1023 /* The ring buffer is encrypted */ 1024 bool co_ring_buffer; 1025 /* The external memory is encrypted */ 1026 bool co_external_memory; 1027}; 1028 1029#define lock_requestor(channel, flags) \ 1030do { \ 1031 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1032 \ 1033 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1034} while (0) 1035 1036static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1037 unsigned long flags) 1038{ 1039 struct vmbus_requestor *rqstor = &channel->requestor; 1040 1041 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1042} 1043 1044u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1045u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1046 u64 rqst_addr); 1047u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1048 u64 rqst_addr); 1049u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1050 1051static inline bool is_co_ring_buffer(const struct vmbus_channel_offer_channel *o) 1052{ 1053 return !!(o->offer.chn_flags & VMBUS_CHANNEL_CONFIDENTIAL_RING_BUFFER); 1054} 1055 1056static inline bool is_co_external_memory(const struct vmbus_channel_offer_channel *o) 1057{ 1058 return !!(o->offer.chn_flags & VMBUS_CHANNEL_CONFIDENTIAL_EXTERNAL_MEMORY); 1059} 1060 1061static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1062{ 1063 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1064} 1065 1066static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1067{ 1068 return is_hvsock_offer(&c->offermsg); 1069} 1070 1071static inline bool is_sub_channel(const struct vmbus_channel *c) 1072{ 1073 return c->offermsg.offer.sub_channel_index != 0; 1074} 1075 1076static inline void set_channel_read_mode(struct vmbus_channel *c, 1077 enum hv_callback_mode mode) 1078{ 1079 c->callback_mode = mode; 1080} 1081 1082static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1083{ 1084 c->per_channel_state = s; 1085} 1086 1087static inline void *get_per_channel_state(struct vmbus_channel *c) 1088{ 1089 return c->per_channel_state; 1090} 1091 1092static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1093 u32 size) 1094{ 1095 unsigned long flags; 1096 1097 if (size) { 1098 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1099 ++c->out_full_total; 1100 1101 if (!c->out_full_flag) { 1102 ++c->out_full_first; 1103 c->out_full_flag = true; 1104 } 1105 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1106 } else { 1107 c->out_full_flag = false; 1108 } 1109 1110 c->outbound.ring_buffer->pending_send_sz = size; 1111} 1112 1113void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1114 1115int vmbus_request_offers(void); 1116 1117/* 1118 * APIs for managing sub-channels. 1119 */ 1120 1121void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1122 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1123 1124void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1125 void (*chn_rescind_cb)(struct vmbus_channel *)); 1126 1127/* The format must be the same as struct vmdata_gpa_direct */ 1128struct vmbus_channel_packet_page_buffer { 1129 u16 type; 1130 u16 dataoffset8; 1131 u16 length8; 1132 u16 flags; 1133 u64 transactionid; 1134 u32 reserved; 1135 u32 rangecount; 1136 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1137} __packed; 1138 1139/* The format must be the same as struct vmdata_gpa_direct */ 1140struct vmbus_channel_packet_multipage_buffer { 1141 u16 type; 1142 u16 dataoffset8; 1143 u16 length8; 1144 u16 flags; 1145 u64 transactionid; 1146 u32 reserved; 1147 u32 rangecount; /* Always 1 in this case */ 1148 struct hv_multipage_buffer range; 1149} __packed; 1150 1151/* The format must be the same as struct vmdata_gpa_direct */ 1152struct vmbus_packet_mpb_array { 1153 u16 type; 1154 u16 dataoffset8; 1155 u16 length8; 1156 u16 flags; 1157 u64 transactionid; 1158 u32 reserved; 1159 u32 rangecount; /* Always 1 in this case */ 1160 struct hv_mpb_array range; 1161} __packed; 1162 1163int vmbus_alloc_ring(struct vmbus_channel *channel, 1164 u32 send_size, u32 recv_size); 1165void vmbus_free_ring(struct vmbus_channel *channel); 1166 1167int vmbus_connect_ring(struct vmbus_channel *channel, 1168 void (*onchannel_callback)(void *context), 1169 void *context); 1170int vmbus_disconnect_ring(struct vmbus_channel *channel); 1171 1172extern int vmbus_open(struct vmbus_channel *channel, 1173 u32 send_ringbuffersize, 1174 u32 recv_ringbuffersize, 1175 void *userdata, 1176 u32 userdatalen, 1177 void (*onchannel_callback)(void *context), 1178 void *context); 1179 1180extern void vmbus_close(struct vmbus_channel *channel); 1181 1182extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1183 void *buffer, 1184 u32 bufferLen, 1185 u64 requestid, 1186 u64 *trans_id, 1187 enum vmbus_packet_type type, 1188 u32 flags); 1189extern int vmbus_sendpacket(struct vmbus_channel *channel, 1190 void *buffer, 1191 u32 bufferLen, 1192 u64 requestid, 1193 enum vmbus_packet_type type, 1194 u32 flags); 1195 1196extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1197 struct vmbus_packet_mpb_array *mpb, 1198 u32 desc_size, 1199 void *buffer, 1200 u32 bufferlen, 1201 u64 requestid); 1202 1203extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1204 void *kbuffer, 1205 u32 size, 1206 struct vmbus_gpadl *gpadl); 1207 1208extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1209 struct vmbus_gpadl *gpadl); 1210 1211void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1212 1213extern int vmbus_recvpacket(struct vmbus_channel *channel, 1214 void *buffer, 1215 u32 bufferlen, 1216 u32 *buffer_actual_len, 1217 u64 *requestid); 1218 1219extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1220 void *buffer, 1221 u32 bufferlen, 1222 u32 *buffer_actual_len, 1223 u64 *requestid); 1224 1225/* Base driver object */ 1226struct hv_driver { 1227 const char *name; 1228 1229 /* 1230 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1231 * channel flag, actually doesn't mean a synthetic device because the 1232 * offer's if_type/if_instance can change for every new hvsock 1233 * connection. 1234 * 1235 * However, to facilitate the notification of new-offer/rescind-offer 1236 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1237 * a special vmbus device, and hence we need the below flag to 1238 * indicate if the driver is the hvsock driver or not: we need to 1239 * specially treat the hvosck offer & driver in vmbus_match(). 1240 */ 1241 bool hvsock; 1242 1243 /* the device type supported by this driver */ 1244 guid_t dev_type; 1245 const struct hv_vmbus_device_id *id_table; 1246 1247 struct device_driver driver; 1248 1249 /* dynamic device GUID's */ 1250 struct { 1251 spinlock_t lock; 1252 struct list_head list; 1253 } dynids; 1254 1255 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1256 void (*remove)(struct hv_device *dev); 1257 void (*shutdown)(struct hv_device *); 1258 1259 int (*suspend)(struct hv_device *); 1260 int (*resume)(struct hv_device *); 1261 1262}; 1263 1264/* Base device object */ 1265struct hv_device { 1266 /* the device type id of this device */ 1267 guid_t dev_type; 1268 1269 /* the device instance id of this device */ 1270 guid_t dev_instance; 1271 u16 vendor_id; 1272 u16 device_id; 1273 1274 struct device device; 1275 /* 1276 * Driver name to force a match. Do not set directly, because core 1277 * frees it. Use driver_set_override() to set or clear it. 1278 */ 1279 const char *driver_override; 1280 1281 struct vmbus_channel *channel; 1282 struct kset *channels_kset; 1283 struct device_dma_parameters dma_parms; 1284 u64 dma_mask; 1285 1286 /* place holder to keep track of the dir for hv device in debugfs */ 1287 struct dentry *debug_dir; 1288 1289}; 1290 1291 1292#define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1293#define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1294 1295static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1296{ 1297 dev_set_drvdata(&dev->device, data); 1298} 1299 1300static inline void *hv_get_drvdata(struct hv_device *dev) 1301{ 1302 return dev_get_drvdata(&dev->device); 1303} 1304 1305struct device *hv_get_vmbus_root_device(void); 1306 1307struct hv_ring_buffer_debug_info { 1308 u32 current_interrupt_mask; 1309 u32 current_read_index; 1310 u32 current_write_index; 1311 u32 bytes_avail_toread; 1312 u32 bytes_avail_towrite; 1313}; 1314 1315 1316int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1317 struct hv_ring_buffer_debug_info *debug_info); 1318 1319bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1320 1321/* Vmbus interface */ 1322#define vmbus_driver_register(driver) \ 1323 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1324int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1325 struct module *owner, 1326 const char *mod_name); 1327void vmbus_driver_unregister(struct hv_driver *hv_driver); 1328 1329void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1330 1331int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1332 resource_size_t min, resource_size_t max, 1333 resource_size_t size, resource_size_t align, 1334 bool fb_overlap_ok); 1335void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1336 1337/* 1338 * GUID definitions of various offer types - services offered to the guest. 1339 */ 1340 1341/* 1342 * Network GUID 1343 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1344 */ 1345#define HV_NIC_GUID \ 1346 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1347 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1348 1349/* 1350 * IDE GUID 1351 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1352 */ 1353#define HV_IDE_GUID \ 1354 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1355 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1356 1357/* 1358 * SCSI GUID 1359 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1360 */ 1361#define HV_SCSI_GUID \ 1362 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1363 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1364 1365/* 1366 * Shutdown GUID 1367 * {0e0b6031-5213-4934-818b-38d90ced39db} 1368 */ 1369#define HV_SHUTDOWN_GUID \ 1370 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1371 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1372 1373/* 1374 * Time Synch GUID 1375 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1376 */ 1377#define HV_TS_GUID \ 1378 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1379 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1380 1381/* 1382 * Heartbeat GUID 1383 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1384 */ 1385#define HV_HEART_BEAT_GUID \ 1386 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1387 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1388 1389/* 1390 * KVP GUID 1391 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1392 */ 1393#define HV_KVP_GUID \ 1394 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1395 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1396 1397/* 1398 * Dynamic memory GUID 1399 * {525074dc-8985-46e2-8057-a307dc18a502} 1400 */ 1401#define HV_DM_GUID \ 1402 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1403 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1404 1405/* 1406 * Mouse GUID 1407 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1408 */ 1409#define HV_MOUSE_GUID \ 1410 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1411 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1412 1413/* 1414 * Keyboard GUID 1415 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1416 */ 1417#define HV_KBD_GUID \ 1418 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1419 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1420 1421/* 1422 * VSS (Backup/Restore) GUID 1423 */ 1424#define HV_VSS_GUID \ 1425 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1426 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1427/* 1428 * Synthetic Video GUID 1429 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1430 */ 1431#define HV_SYNTHVID_GUID \ 1432 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1433 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1434 1435/* 1436 * Synthetic FC GUID 1437 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1438 */ 1439#define HV_SYNTHFC_GUID \ 1440 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1441 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1442 1443/* 1444 * Guest File Copy Service 1445 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1446 */ 1447 1448#define HV_FCOPY_GUID \ 1449 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1450 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1451 1452/* 1453 * NetworkDirect. This is the guest RDMA service. 1454 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1455 */ 1456#define HV_ND_GUID \ 1457 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1458 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1459 1460/* 1461 * PCI Express Pass Through 1462 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1463 */ 1464 1465#define HV_PCIE_GUID \ 1466 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1467 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1468 1469/* 1470 * Linux doesn't support these 4 devices: the first two are for 1471 * Automatic Virtual Machine Activation, the third is for 1472 * Remote Desktop Virtualization, and the fourth is Initial 1473 * Machine Configuration (IMC) used only by Windows guests. 1474 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1475 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1476 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1477 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1478 */ 1479 1480#define HV_AVMA1_GUID \ 1481 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1482 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1483 1484#define HV_AVMA2_GUID \ 1485 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1486 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1487 1488#define HV_RDV_GUID \ 1489 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1490 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1491 1492#define HV_IMC_GUID \ 1493 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1494 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1495 1496/* 1497 * Common header for Hyper-V ICs 1498 */ 1499 1500#define ICMSGTYPE_NEGOTIATE 0 1501#define ICMSGTYPE_HEARTBEAT 1 1502#define ICMSGTYPE_KVPEXCHANGE 2 1503#define ICMSGTYPE_SHUTDOWN 3 1504#define ICMSGTYPE_TIMESYNC 4 1505#define ICMSGTYPE_VSS 5 1506#define ICMSGTYPE_FCOPY 7 1507 1508#define ICMSGHDRFLAG_TRANSACTION 1 1509#define ICMSGHDRFLAG_REQUEST 2 1510#define ICMSGHDRFLAG_RESPONSE 4 1511 1512 1513/* 1514 * While we want to handle util services as regular devices, 1515 * there is only one instance of each of these services; so 1516 * we statically allocate the service specific state. 1517 */ 1518 1519struct hv_util_service { 1520 u8 *recv_buffer; 1521 void *channel; 1522 void (*util_cb)(void *); 1523 int (*util_init)(struct hv_util_service *); 1524 int (*util_init_transport)(void); 1525 void (*util_deinit)(void); 1526 int (*util_pre_suspend)(void); 1527 int (*util_pre_resume)(void); 1528}; 1529 1530struct vmbuspipe_hdr { 1531 u32 flags; 1532 u32 msgsize; 1533} __packed; 1534 1535struct ic_version { 1536 u16 major; 1537 u16 minor; 1538} __packed; 1539 1540struct icmsg_hdr { 1541 struct ic_version icverframe; 1542 u16 icmsgtype; 1543 struct ic_version icvermsg; 1544 u16 icmsgsize; 1545 u32 status; 1546 u8 ictransaction_id; 1547 u8 icflags; 1548 u8 reserved[2]; 1549} __packed; 1550 1551#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1552#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1553#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1554 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1555 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1556 1557struct icmsg_negotiate { 1558 u16 icframe_vercnt; 1559 u16 icmsg_vercnt; 1560 u32 reserved; 1561 struct ic_version icversion_data[]; /* any size array */ 1562} __packed; 1563 1564struct shutdown_msg_data { 1565 u32 reason_code; 1566 u32 timeout_seconds; 1567 u32 flags; 1568 u8 display_message[2048]; 1569} __packed; 1570 1571struct heartbeat_msg_data { 1572 u64 seq_num; 1573 u32 reserved[8]; 1574} __packed; 1575 1576/* Time Sync IC defs */ 1577#define ICTIMESYNCFLAG_PROBE 0 1578#define ICTIMESYNCFLAG_SYNC 1 1579#define ICTIMESYNCFLAG_SAMPLE 2 1580 1581#ifdef __x86_64__ 1582#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1583#else 1584#define WLTIMEDELTA 116444736000000000LL 1585#endif 1586 1587struct ictimesync_data { 1588 u64 parenttime; 1589 u64 childtime; 1590 u64 roundtriptime; 1591 u8 flags; 1592} __packed; 1593 1594struct ictimesync_ref_data { 1595 u64 parenttime; 1596 u64 vmreferencetime; 1597 u8 flags; 1598 char leapflags; 1599 char stratum; 1600 u8 reserved[3]; 1601} __packed; 1602 1603struct hyperv_service_callback { 1604 u8 msg_type; 1605 char *log_msg; 1606 guid_t data; 1607 struct vmbus_channel *channel; 1608 void (*callback)(void *context); 1609}; 1610 1611struct hv_dma_range { 1612 dma_addr_t dma; 1613 u32 mapping_size; 1614}; 1615 1616#define MAX_SRV_VER 0x7ffffff 1617extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1618 const int *fw_version, int fw_vercnt, 1619 const int *srv_version, int srv_vercnt, 1620 int *nego_fw_version, int *nego_srv_version); 1621 1622void hv_process_channel_removal(struct vmbus_channel *channel); 1623 1624void vmbus_setevent(struct vmbus_channel *channel); 1625/* 1626 * Negotiated version with the Host. 1627 */ 1628 1629extern __u32 vmbus_proto_version; 1630 1631int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1632 const guid_t *shv_host_servie_id); 1633int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1634void vmbus_set_event(struct vmbus_channel *channel); 1635int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu); 1636 1637/* Get the start of the ring buffer. */ 1638static inline void * 1639hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1640{ 1641 return ring_info->ring_buffer->buffer; 1642} 1643 1644/* 1645 * Mask off host interrupt callback notifications 1646 */ 1647static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1648{ 1649 rbi->ring_buffer->interrupt_mask = 1; 1650 1651 /* make sure mask update is not reordered */ 1652 virt_mb(); 1653} 1654 1655/* 1656 * Re-enable host callback and return number of outstanding bytes 1657 */ 1658static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1659{ 1660 1661 rbi->ring_buffer->interrupt_mask = 0; 1662 1663 /* make sure mask update is not reordered */ 1664 virt_mb(); 1665 1666 /* 1667 * Now check to see if the ring buffer is still empty. 1668 * If it is not, we raced and we need to process new 1669 * incoming messages. 1670 */ 1671 return hv_get_bytes_to_read(rbi); 1672} 1673 1674/* 1675 * An API to support in-place processing of incoming VMBUS packets. 1676 */ 1677 1678/* Get data payload associated with descriptor */ 1679static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1680{ 1681 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1682} 1683 1684/* Get data size associated with descriptor */ 1685static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1686{ 1687 return (desc->len8 << 3) - (desc->offset8 << 3); 1688} 1689 1690/* Get packet length associated with descriptor */ 1691static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1692{ 1693 return desc->len8 << 3; 1694} 1695 1696struct vmpacket_descriptor * 1697hv_pkt_iter_first(struct vmbus_channel *channel); 1698 1699struct vmpacket_descriptor * 1700__hv_pkt_iter_next(struct vmbus_channel *channel, 1701 const struct vmpacket_descriptor *pkt); 1702 1703void hv_pkt_iter_close(struct vmbus_channel *channel); 1704 1705static inline struct vmpacket_descriptor * 1706hv_pkt_iter_next(struct vmbus_channel *channel, 1707 const struct vmpacket_descriptor *pkt) 1708{ 1709 struct vmpacket_descriptor *nxt; 1710 1711 nxt = __hv_pkt_iter_next(channel, pkt); 1712 if (!nxt) 1713 hv_pkt_iter_close(channel); 1714 1715 return nxt; 1716} 1717 1718#define foreach_vmbus_pkt(pkt, channel) \ 1719 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1720 pkt = hv_pkt_iter_next(channel, pkt)) 1721 1722/* 1723 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1724 * sends requests to read and write blocks. Each block must be 128 bytes or 1725 * smaller. Optionally, the VF driver can register a callback function which 1726 * will be invoked when the host says that one or more of the first 64 block 1727 * IDs is "invalid" which means that the VF driver should reread them. 1728 */ 1729#define HV_CONFIG_BLOCK_SIZE_MAX 128 1730 1731int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1732 unsigned int block_id, unsigned int *bytes_returned); 1733int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1734 unsigned int block_id); 1735int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1736 void (*block_invalidate)(void *context, 1737 u64 block_mask)); 1738 1739struct hyperv_pci_block_ops { 1740 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1741 unsigned int block_id, unsigned int *bytes_returned); 1742 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1743 unsigned int block_id); 1744 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1745 void (*block_invalidate)(void *context, 1746 u64 block_mask)); 1747}; 1748 1749extern struct hyperv_pci_block_ops hvpci_block_ops; 1750 1751static inline unsigned long virt_to_hvpfn(void *addr) 1752{ 1753 phys_addr_t paddr; 1754 1755 if (is_vmalloc_addr(addr)) 1756 paddr = page_to_phys(vmalloc_to_page(addr)) + 1757 offset_in_page(addr); 1758 else 1759 paddr = __pa(addr); 1760 1761 return paddr >> HV_HYP_PAGE_SHIFT; 1762} 1763 1764#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1765#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1766#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1767#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1768#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1769 1770#endif /* _HYPERV_H */