Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26#include <linux/pidfs.h>
27
28#include <linux/uaccess.h>
29
30#include "internal.h"
31
32int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35{
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40}
41EXPORT_SYMBOL(simple_getattr);
42
43int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44{
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52}
53EXPORT_SYMBOL(simple_statfs);
54
55/*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
59int always_delete_dentry(const struct dentry *dentry)
60{
61 return 1;
62}
63EXPORT_SYMBOL(always_delete_dentry);
64
65/*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70{
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 spin_lock(&dentry->d_lock);
75 dentry->d_flags |= DCACHE_DONTCACHE;
76 spin_unlock(&dentry->d_lock);
77 }
78 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 return NULL;
80
81 d_add(dentry, NULL);
82 return NULL;
83}
84EXPORT_SYMBOL(simple_lookup);
85
86int dcache_dir_open(struct inode *inode, struct file *file)
87{
88 file->private_data = d_alloc_cursor(file->f_path.dentry);
89
90 return file->private_data ? 0 : -ENOMEM;
91}
92EXPORT_SYMBOL(dcache_dir_open);
93
94int dcache_dir_close(struct inode *inode, struct file *file)
95{
96 dput(file->private_data);
97 return 0;
98}
99EXPORT_SYMBOL(dcache_dir_close);
100
101/* parent is locked at least shared */
102/*
103 * Returns an element of siblings' list.
104 * We are looking for <count>th positive after <p>; if
105 * found, dentry is grabbed and returned to caller.
106 * If no such element exists, NULL is returned.
107 */
108static struct dentry *scan_positives(struct dentry *cursor,
109 struct hlist_node **p,
110 loff_t count,
111 struct dentry *last)
112{
113 struct dentry *dentry = cursor->d_parent, *found = NULL;
114
115 spin_lock(&dentry->d_lock);
116 while (*p) {
117 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 p = &d->d_sib.next;
119 // we must at least skip cursors, to avoid livelocks
120 if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 continue;
122 if (simple_positive(d) && !--count) {
123 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 if (simple_positive(d))
125 found = dget_dlock(d);
126 spin_unlock(&d->d_lock);
127 if (likely(found))
128 break;
129 count = 1;
130 }
131 if (need_resched()) {
132 if (!hlist_unhashed(&cursor->d_sib))
133 __hlist_del(&cursor->d_sib);
134 hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 p = &cursor->d_sib.next;
136 spin_unlock(&dentry->d_lock);
137 cond_resched();
138 spin_lock(&dentry->d_lock);
139 }
140 }
141 spin_unlock(&dentry->d_lock);
142 dput(last);
143 return found;
144}
145
146loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147{
148 struct dentry *dentry = file->f_path.dentry;
149 switch (whence) {
150 case 1:
151 offset += file->f_pos;
152 fallthrough;
153 case 0:
154 if (offset >= 0)
155 break;
156 fallthrough;
157 default:
158 return -EINVAL;
159 }
160 if (offset != file->f_pos) {
161 struct dentry *cursor = file->private_data;
162 struct dentry *to = NULL;
163
164 inode_lock_shared(dentry->d_inode);
165
166 if (offset > 2)
167 to = scan_positives(cursor, &dentry->d_children.first,
168 offset - 2, NULL);
169 spin_lock(&dentry->d_lock);
170 hlist_del_init(&cursor->d_sib);
171 if (to)
172 hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 spin_unlock(&dentry->d_lock);
174 dput(to);
175
176 file->f_pos = offset;
177
178 inode_unlock_shared(dentry->d_inode);
179 }
180 return offset;
181}
182EXPORT_SYMBOL(dcache_dir_lseek);
183
184/*
185 * Directory is locked and all positive dentries in it are safe, since
186 * for ramfs-type trees they can't go away without unlink() or rmdir(),
187 * both impossible due to the lock on directory.
188 */
189
190int dcache_readdir(struct file *file, struct dir_context *ctx)
191{
192 struct dentry *dentry = file->f_path.dentry;
193 struct dentry *cursor = file->private_data;
194 struct dentry *next = NULL;
195 struct hlist_node **p;
196
197 if (!dir_emit_dots(file, ctx))
198 return 0;
199
200 if (ctx->pos == 2)
201 p = &dentry->d_children.first;
202 else
203 p = &cursor->d_sib.next;
204
205 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 d_inode(next)->i_ino,
208 fs_umode_to_dtype(d_inode(next)->i_mode)))
209 break;
210 ctx->pos++;
211 p = &next->d_sib.next;
212 }
213 spin_lock(&dentry->d_lock);
214 hlist_del_init(&cursor->d_sib);
215 if (next)
216 hlist_add_before(&cursor->d_sib, &next->d_sib);
217 spin_unlock(&dentry->d_lock);
218 dput(next);
219
220 return 0;
221}
222EXPORT_SYMBOL(dcache_readdir);
223
224ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225{
226 return -EISDIR;
227}
228EXPORT_SYMBOL(generic_read_dir);
229
230const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
236 .fsync = noop_fsync,
237};
238EXPORT_SYMBOL(simple_dir_operations);
239
240const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
242};
243EXPORT_SYMBOL(simple_dir_inode_operations);
244
245/* simple_offset_add() never assigns these to a dentry */
246enum {
247 DIR_OFFSET_FIRST = 2, /* Find first real entry */
248 DIR_OFFSET_EOD = S32_MAX,
249};
250
251/* simple_offset_add() allocation range */
252enum {
253 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
254 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
255};
256
257static void offset_set(struct dentry *dentry, long offset)
258{
259 dentry->d_fsdata = (void *)offset;
260}
261
262static long dentry2offset(struct dentry *dentry)
263{
264 return (long)dentry->d_fsdata;
265}
266
267static struct lock_class_key simple_offset_lock_class;
268
269/**
270 * simple_offset_init - initialize an offset_ctx
271 * @octx: directory offset map to be initialized
272 *
273 */
274void simple_offset_init(struct offset_ctx *octx)
275{
276 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 octx->next_offset = DIR_OFFSET_MIN;
279}
280
281/**
282 * simple_offset_add - Add an entry to a directory's offset map
283 * @octx: directory offset ctx to be updated
284 * @dentry: new dentry being added
285 *
286 * Returns zero on success. @octx and the dentry's offset are updated.
287 * Otherwise, a negative errno value is returned.
288 */
289int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290{
291 unsigned long offset;
292 int ret;
293
294 if (dentry2offset(dentry) != 0)
295 return -EBUSY;
296
297 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 DIR_OFFSET_MAX, &octx->next_offset,
299 GFP_KERNEL);
300 if (unlikely(ret < 0))
301 return ret == -EBUSY ? -ENOSPC : ret;
302
303 offset_set(dentry, offset);
304 return 0;
305}
306
307static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 long offset)
309{
310 int ret;
311
312 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 if (ret)
314 return ret;
315 offset_set(dentry, offset);
316 return 0;
317}
318
319/**
320 * simple_offset_remove - Remove an entry to a directory's offset map
321 * @octx: directory offset ctx to be updated
322 * @dentry: dentry being removed
323 *
324 */
325void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326{
327 long offset;
328
329 offset = dentry2offset(dentry);
330 if (offset == 0)
331 return;
332
333 mtree_erase(&octx->mt, offset);
334 offset_set(dentry, 0);
335}
336
337/**
338 * simple_offset_rename - handle directory offsets for rename
339 * @old_dir: parent directory of source entry
340 * @old_dentry: dentry of source entry
341 * @new_dir: parent_directory of destination entry
342 * @new_dentry: dentry of destination
343 *
344 * Caller provides appropriate serialization.
345 *
346 * User space expects the directory offset value of the replaced
347 * (new) directory entry to be unchanged after a rename.
348 *
349 * Caller must have grabbed a slot for new_dentry in the maple_tree
350 * associated with new_dir, even if dentry is negative.
351 */
352void simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
353 struct inode *new_dir, struct dentry *new_dentry)
354{
355 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
356 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
357 long new_offset = dentry2offset(new_dentry);
358
359 if (WARN_ON(!new_offset))
360 return;
361
362 simple_offset_remove(old_ctx, old_dentry);
363 offset_set(new_dentry, 0);
364 WARN_ON(simple_offset_replace(new_ctx, old_dentry, new_offset));
365}
366
367/**
368 * simple_offset_rename_exchange - exchange rename with directory offsets
369 * @old_dir: parent of dentry being moved
370 * @old_dentry: dentry being moved
371 * @new_dir: destination parent
372 * @new_dentry: destination dentry
373 *
374 * This API preserves the directory offset values. Caller provides
375 * appropriate serialization.
376 *
377 * Returns zero on success. Otherwise a negative errno is returned and the
378 * rename is rolled back.
379 */
380int simple_offset_rename_exchange(struct inode *old_dir,
381 struct dentry *old_dentry,
382 struct inode *new_dir,
383 struct dentry *new_dentry)
384{
385 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 long old_index = dentry2offset(old_dentry);
388 long new_index = dentry2offset(new_dentry);
389 int ret;
390
391 if (WARN_ON(!old_index || !new_index))
392 return -EINVAL;
393
394 ret = mtree_store(&new_ctx->mt, new_index, old_dentry, GFP_KERNEL);
395 if (WARN_ON(ret))
396 return ret;
397
398 ret = mtree_store(&old_ctx->mt, old_index, new_dentry, GFP_KERNEL);
399 if (WARN_ON(ret)) {
400 mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL);
401 return ret;
402 }
403
404 offset_set(old_dentry, new_index);
405 offset_set(new_dentry, old_index);
406 simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
407 return 0;
408}
409
410/**
411 * simple_offset_destroy - Release offset map
412 * @octx: directory offset ctx that is about to be destroyed
413 *
414 * During fs teardown (eg. umount), a directory's offset map might still
415 * contain entries. xa_destroy() cleans out anything that remains.
416 */
417void simple_offset_destroy(struct offset_ctx *octx)
418{
419 mtree_destroy(&octx->mt);
420}
421
422/**
423 * offset_dir_llseek - Advance the read position of a directory descriptor
424 * @file: an open directory whose position is to be updated
425 * @offset: a byte offset
426 * @whence: enumerator describing the starting position for this update
427 *
428 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
429 *
430 * Returns the updated read position if successful; otherwise a
431 * negative errno is returned and the read position remains unchanged.
432 */
433static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
434{
435 switch (whence) {
436 case SEEK_CUR:
437 offset += file->f_pos;
438 fallthrough;
439 case SEEK_SET:
440 if (offset >= 0)
441 break;
442 fallthrough;
443 default:
444 return -EINVAL;
445 }
446
447 return vfs_setpos(file, offset, LONG_MAX);
448}
449
450static struct dentry *find_positive_dentry(struct dentry *parent,
451 struct dentry *dentry,
452 bool next)
453{
454 struct dentry *found = NULL;
455
456 spin_lock(&parent->d_lock);
457 if (next)
458 dentry = d_next_sibling(dentry);
459 else if (!dentry)
460 dentry = d_first_child(parent);
461 hlist_for_each_entry_from(dentry, d_sib) {
462 if (!simple_positive(dentry))
463 continue;
464 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
465 if (simple_positive(dentry))
466 found = dget_dlock(dentry);
467 spin_unlock(&dentry->d_lock);
468 if (likely(found))
469 break;
470 }
471 spin_unlock(&parent->d_lock);
472 return found;
473}
474
475static noinline_for_stack struct dentry *
476offset_dir_lookup(struct dentry *parent, loff_t offset)
477{
478 struct inode *inode = d_inode(parent);
479 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
480 struct dentry *child, *found = NULL;
481
482 MA_STATE(mas, &octx->mt, offset, offset);
483
484 if (offset == DIR_OFFSET_FIRST)
485 found = find_positive_dentry(parent, NULL, false);
486 else {
487 rcu_read_lock();
488 child = mas_find_rev(&mas, DIR_OFFSET_MIN);
489 found = find_positive_dentry(parent, child, false);
490 rcu_read_unlock();
491 }
492 return found;
493}
494
495static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
496{
497 struct inode *inode = d_inode(dentry);
498
499 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
500 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
501}
502
503static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
504{
505 struct dentry *dir = file->f_path.dentry;
506 struct dentry *dentry;
507
508 dentry = offset_dir_lookup(dir, ctx->pos);
509 if (!dentry)
510 goto out_eod;
511 while (true) {
512 struct dentry *next;
513
514 ctx->pos = dentry2offset(dentry);
515 if (!offset_dir_emit(ctx, dentry))
516 break;
517
518 next = find_positive_dentry(dir, dentry, true);
519 dput(dentry);
520
521 if (!next)
522 goto out_eod;
523 dentry = next;
524 }
525 dput(dentry);
526 return;
527
528out_eod:
529 ctx->pos = DIR_OFFSET_EOD;
530}
531
532/**
533 * offset_readdir - Emit entries starting at offset @ctx->pos
534 * @file: an open directory to iterate over
535 * @ctx: directory iteration context
536 *
537 * Caller must hold @file's i_rwsem to prevent insertion or removal of
538 * entries during this call.
539 *
540 * On entry, @ctx->pos contains an offset that represents the first entry
541 * to be read from the directory.
542 *
543 * The operation continues until there are no more entries to read, or
544 * until the ctx->actor indicates there is no more space in the caller's
545 * output buffer.
546 *
547 * On return, @ctx->pos contains an offset that will read the next entry
548 * in this directory when offset_readdir() is called again with @ctx.
549 * Caller places this value in the d_off field of the last entry in the
550 * user's buffer.
551 *
552 * Return values:
553 * %0 - Complete
554 */
555static int offset_readdir(struct file *file, struct dir_context *ctx)
556{
557 struct dentry *dir = file->f_path.dentry;
558
559 lockdep_assert_held(&d_inode(dir)->i_rwsem);
560
561 if (!dir_emit_dots(file, ctx))
562 return 0;
563 if (ctx->pos != DIR_OFFSET_EOD)
564 offset_iterate_dir(file, ctx);
565 return 0;
566}
567
568const struct file_operations simple_offset_dir_operations = {
569 .llseek = offset_dir_llseek,
570 .iterate_shared = offset_readdir,
571 .read = generic_read_dir,
572 .fsync = noop_fsync,
573};
574
575struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
576{
577 struct dentry *child = NULL, *d;
578
579 spin_lock(&parent->d_lock);
580 d = prev ? d_next_sibling(prev) : d_first_child(parent);
581 hlist_for_each_entry_from(d, d_sib) {
582 if (simple_positive(d)) {
583 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
584 if (simple_positive(d))
585 child = dget_dlock(d);
586 spin_unlock(&d->d_lock);
587 if (likely(child))
588 break;
589 }
590 }
591 spin_unlock(&parent->d_lock);
592 dput(prev);
593 return child;
594}
595EXPORT_SYMBOL(find_next_child);
596
597static void __simple_recursive_removal(struct dentry *dentry,
598 void (*callback)(struct dentry *),
599 bool locked)
600{
601 struct dentry *this = dget(dentry);
602 while (true) {
603 struct dentry *victim = NULL, *child;
604 struct inode *inode = this->d_inode;
605
606 inode_lock_nested(inode, I_MUTEX_CHILD);
607 if (d_is_dir(this))
608 inode->i_flags |= S_DEAD;
609 while ((child = find_next_child(this, victim)) == NULL) {
610 // kill and ascend
611 // update metadata while it's still locked
612 inode_set_ctime_current(inode);
613 clear_nlink(inode);
614 inode_unlock(inode);
615 victim = this;
616 this = this->d_parent;
617 inode = this->d_inode;
618 if (!locked || victim != dentry)
619 inode_lock_nested(inode, I_MUTEX_CHILD);
620 if (simple_positive(victim)) {
621 d_invalidate(victim); // avoid lost mounts
622 if (callback)
623 callback(victim);
624 fsnotify_delete(inode, d_inode(victim), victim);
625 d_make_discardable(victim);
626 }
627 if (victim == dentry) {
628 inode_set_mtime_to_ts(inode,
629 inode_set_ctime_current(inode));
630 if (d_is_dir(dentry))
631 drop_nlink(inode);
632 if (!locked)
633 inode_unlock(inode);
634 dput(dentry);
635 return;
636 }
637 }
638 inode_unlock(inode);
639 this = child;
640 }
641}
642
643void simple_recursive_removal(struct dentry *dentry,
644 void (*callback)(struct dentry *))
645{
646 return __simple_recursive_removal(dentry, callback, false);
647}
648EXPORT_SYMBOL(simple_recursive_removal);
649
650void simple_remove_by_name(struct dentry *parent, const char *name,
651 void (*callback)(struct dentry *))
652{
653 struct dentry *dentry;
654
655 dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent);
656 if (!IS_ERR(dentry)) {
657 simple_recursive_removal(dentry, callback);
658 dput(dentry); // paired with lookup_noperm_positive_unlocked()
659 }
660}
661EXPORT_SYMBOL(simple_remove_by_name);
662
663/* caller holds parent directory with I_MUTEX_PARENT */
664void locked_recursive_removal(struct dentry *dentry,
665 void (*callback)(struct dentry *))
666{
667 return __simple_recursive_removal(dentry, callback, true);
668}
669EXPORT_SYMBOL(locked_recursive_removal);
670
671static const struct super_operations simple_super_operations = {
672 .statfs = simple_statfs,
673};
674
675static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
676{
677 struct pseudo_fs_context *ctx = fc->fs_private;
678 struct inode *root;
679
680 s->s_maxbytes = MAX_LFS_FILESIZE;
681 s->s_blocksize = PAGE_SIZE;
682 s->s_blocksize_bits = PAGE_SHIFT;
683 s->s_magic = ctx->magic;
684 s->s_op = ctx->ops ?: &simple_super_operations;
685 s->s_export_op = ctx->eops;
686 s->s_xattr = ctx->xattr;
687 s->s_time_gran = 1;
688 s->s_d_flags |= ctx->s_d_flags;
689 root = new_inode(s);
690 if (!root)
691 return -ENOMEM;
692
693 /*
694 * since this is the first inode, make it number 1. New inodes created
695 * after this must take care not to collide with it (by passing
696 * max_reserved of 1 to iunique).
697 */
698 root->i_ino = 1;
699 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
700 simple_inode_init_ts(root);
701 s->s_root = d_make_root(root);
702 if (!s->s_root)
703 return -ENOMEM;
704 set_default_d_op(s, ctx->dops);
705 return 0;
706}
707
708static int pseudo_fs_get_tree(struct fs_context *fc)
709{
710 return get_tree_nodev(fc, pseudo_fs_fill_super);
711}
712
713static void pseudo_fs_free(struct fs_context *fc)
714{
715 kfree(fc->fs_private);
716}
717
718static const struct fs_context_operations pseudo_fs_context_ops = {
719 .free = pseudo_fs_free,
720 .get_tree = pseudo_fs_get_tree,
721};
722
723/*
724 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
725 * will never be mountable)
726 */
727struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
728 unsigned long magic)
729{
730 struct pseudo_fs_context *ctx;
731
732 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
733 if (likely(ctx)) {
734 ctx->magic = magic;
735 fc->fs_private = ctx;
736 fc->ops = &pseudo_fs_context_ops;
737 fc->sb_flags |= SB_NOUSER;
738 fc->global = true;
739 }
740 return ctx;
741}
742EXPORT_SYMBOL(init_pseudo);
743
744int simple_open(struct inode *inode, struct file *file)
745{
746 if (inode->i_private)
747 file->private_data = inode->i_private;
748 return 0;
749}
750EXPORT_SYMBOL(simple_open);
751
752int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
753{
754 struct inode *inode = d_inode(old_dentry);
755
756 inode_set_mtime_to_ts(dir,
757 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
758 inc_nlink(inode);
759 ihold(inode);
760 d_make_persistent(dentry, inode);
761 return 0;
762}
763EXPORT_SYMBOL(simple_link);
764
765int simple_empty(struct dentry *dentry)
766{
767 struct dentry *child;
768 int ret = 0;
769
770 spin_lock(&dentry->d_lock);
771 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
772 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
773 if (simple_positive(child)) {
774 spin_unlock(&child->d_lock);
775 goto out;
776 }
777 spin_unlock(&child->d_lock);
778 }
779 ret = 1;
780out:
781 spin_unlock(&dentry->d_lock);
782 return ret;
783}
784EXPORT_SYMBOL(simple_empty);
785
786void __simple_unlink(struct inode *dir, struct dentry *dentry)
787{
788 struct inode *inode = d_inode(dentry);
789
790 inode_set_mtime_to_ts(dir,
791 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
792 drop_nlink(inode);
793}
794EXPORT_SYMBOL(__simple_unlink);
795
796void __simple_rmdir(struct inode *dir, struct dentry *dentry)
797{
798 drop_nlink(d_inode(dentry));
799 __simple_unlink(dir, dentry);
800 drop_nlink(dir);
801}
802EXPORT_SYMBOL(__simple_rmdir);
803
804int simple_unlink(struct inode *dir, struct dentry *dentry)
805{
806 __simple_unlink(dir, dentry);
807 d_make_discardable(dentry);
808 return 0;
809}
810EXPORT_SYMBOL(simple_unlink);
811
812int simple_rmdir(struct inode *dir, struct dentry *dentry)
813{
814 if (!simple_empty(dentry))
815 return -ENOTEMPTY;
816
817 __simple_rmdir(dir, dentry);
818 d_make_discardable(dentry);
819 return 0;
820}
821EXPORT_SYMBOL(simple_rmdir);
822
823/**
824 * simple_rename_timestamp - update the various inode timestamps for rename
825 * @old_dir: old parent directory
826 * @old_dentry: dentry that is being renamed
827 * @new_dir: new parent directory
828 * @new_dentry: target for rename
829 *
830 * POSIX mandates that the old and new parent directories have their ctime and
831 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
832 * their ctime updated.
833 */
834void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
835 struct inode *new_dir, struct dentry *new_dentry)
836{
837 struct inode *newino = d_inode(new_dentry);
838
839 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
840 if (new_dir != old_dir)
841 inode_set_mtime_to_ts(new_dir,
842 inode_set_ctime_current(new_dir));
843 inode_set_ctime_current(d_inode(old_dentry));
844 if (newino)
845 inode_set_ctime_current(newino);
846}
847EXPORT_SYMBOL_GPL(simple_rename_timestamp);
848
849int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
850 struct inode *new_dir, struct dentry *new_dentry)
851{
852 bool old_is_dir = d_is_dir(old_dentry);
853 bool new_is_dir = d_is_dir(new_dentry);
854
855 if (old_dir != new_dir && old_is_dir != new_is_dir) {
856 if (old_is_dir) {
857 drop_nlink(old_dir);
858 inc_nlink(new_dir);
859 } else {
860 drop_nlink(new_dir);
861 inc_nlink(old_dir);
862 }
863 }
864 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
865 return 0;
866}
867EXPORT_SYMBOL_GPL(simple_rename_exchange);
868
869int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
870 struct dentry *old_dentry, struct inode *new_dir,
871 struct dentry *new_dentry, unsigned int flags)
872{
873 int they_are_dirs = d_is_dir(old_dentry);
874
875 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
876 return -EINVAL;
877
878 if (flags & RENAME_EXCHANGE)
879 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
880
881 if (!simple_empty(new_dentry))
882 return -ENOTEMPTY;
883
884 if (d_really_is_positive(new_dentry)) {
885 simple_unlink(new_dir, new_dentry);
886 if (they_are_dirs) {
887 drop_nlink(d_inode(new_dentry));
888 drop_nlink(old_dir);
889 }
890 } else if (they_are_dirs) {
891 drop_nlink(old_dir);
892 inc_nlink(new_dir);
893 }
894
895 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
896 return 0;
897}
898EXPORT_SYMBOL(simple_rename);
899
900/**
901 * simple_setattr - setattr for simple filesystem
902 * @idmap: idmap of the target mount
903 * @dentry: dentry
904 * @iattr: iattr structure
905 *
906 * Returns 0 on success, -error on failure.
907 *
908 * simple_setattr is a simple ->setattr implementation without a proper
909 * implementation of size changes.
910 *
911 * It can either be used for in-memory filesystems or special files
912 * on simple regular filesystems. Anything that needs to change on-disk
913 * or wire state on size changes needs its own setattr method.
914 */
915int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
916 struct iattr *iattr)
917{
918 struct inode *inode = d_inode(dentry);
919 int error;
920
921 error = setattr_prepare(idmap, dentry, iattr);
922 if (error)
923 return error;
924
925 if (iattr->ia_valid & ATTR_SIZE)
926 truncate_setsize(inode, iattr->ia_size);
927 setattr_copy(idmap, inode, iattr);
928 mark_inode_dirty(inode);
929 return 0;
930}
931EXPORT_SYMBOL(simple_setattr);
932
933static int simple_read_folio(struct file *file, struct folio *folio)
934{
935 folio_zero_range(folio, 0, folio_size(folio));
936 flush_dcache_folio(folio);
937 folio_mark_uptodate(folio);
938 folio_unlock(folio);
939 return 0;
940}
941
942int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
943 loff_t pos, unsigned len,
944 struct folio **foliop, void **fsdata)
945{
946 struct folio *folio;
947
948 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
949 mapping_gfp_mask(mapping));
950 if (IS_ERR(folio))
951 return PTR_ERR(folio);
952
953 *foliop = folio;
954
955 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
956 size_t from = offset_in_folio(folio, pos);
957
958 folio_zero_segments(folio, 0, from,
959 from + len, folio_size(folio));
960 }
961 return 0;
962}
963EXPORT_SYMBOL(simple_write_begin);
964
965/**
966 * simple_write_end - .write_end helper for non-block-device FSes
967 * @iocb: kernel I/O control block
968 * @mapping: "
969 * @pos: "
970 * @len: "
971 * @copied: "
972 * @folio: "
973 * @fsdata: "
974 *
975 * simple_write_end does the minimum needed for updating a folio after
976 * writing is done. It has the same API signature as the .write_end of
977 * address_space_operations vector. So it can just be set onto .write_end for
978 * FSes that don't need any other processing. i_rwsem is assumed to be held
979 * exclusively.
980 * Block based filesystems should use generic_write_end().
981 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
982 * is not called, so a filesystem that actually does store data in .write_inode
983 * should extend on what's done here with a call to mark_inode_dirty() in the
984 * case that i_size has changed.
985 *
986 * Use *ONLY* with simple_read_folio()
987 */
988static int simple_write_end(const struct kiocb *iocb,
989 struct address_space *mapping,
990 loff_t pos, unsigned len, unsigned copied,
991 struct folio *folio, void *fsdata)
992{
993 struct inode *inode = folio->mapping->host;
994 loff_t last_pos = pos + copied;
995
996 /* zero the stale part of the folio if we did a short copy */
997 if (!folio_test_uptodate(folio)) {
998 if (copied < len) {
999 size_t from = offset_in_folio(folio, pos);
1000
1001 folio_zero_range(folio, from + copied, len - copied);
1002 }
1003 folio_mark_uptodate(folio);
1004 }
1005 /*
1006 * No need to use i_size_read() here, the i_size
1007 * cannot change under us because we hold the i_rwsem.
1008 */
1009 if (last_pos > inode->i_size)
1010 i_size_write(inode, last_pos);
1011
1012 folio_mark_dirty(folio);
1013 folio_unlock(folio);
1014 folio_put(folio);
1015
1016 return copied;
1017}
1018
1019/*
1020 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1021 */
1022const struct address_space_operations ram_aops = {
1023 .read_folio = simple_read_folio,
1024 .write_begin = simple_write_begin,
1025 .write_end = simple_write_end,
1026 .dirty_folio = noop_dirty_folio,
1027};
1028EXPORT_SYMBOL(ram_aops);
1029
1030/*
1031 * the inodes created here are not hashed. If you use iunique to generate
1032 * unique inode values later for this filesystem, then you must take care
1033 * to pass it an appropriate max_reserved value to avoid collisions.
1034 */
1035int simple_fill_super(struct super_block *s, unsigned long magic,
1036 const struct tree_descr *files)
1037{
1038 struct inode *inode;
1039 struct dentry *dentry;
1040 int i;
1041
1042 s->s_blocksize = PAGE_SIZE;
1043 s->s_blocksize_bits = PAGE_SHIFT;
1044 s->s_magic = magic;
1045 s->s_op = &simple_super_operations;
1046 s->s_time_gran = 1;
1047
1048 inode = new_inode(s);
1049 if (!inode)
1050 return -ENOMEM;
1051 /*
1052 * because the root inode is 1, the files array must not contain an
1053 * entry at index 1
1054 */
1055 inode->i_ino = 1;
1056 inode->i_mode = S_IFDIR | 0755;
1057 simple_inode_init_ts(inode);
1058 inode->i_op = &simple_dir_inode_operations;
1059 inode->i_fop = &simple_dir_operations;
1060 set_nlink(inode, 2);
1061 s->s_root = d_make_root(inode);
1062 if (!s->s_root)
1063 return -ENOMEM;
1064 for (i = 0; !files->name || files->name[0]; i++, files++) {
1065 if (!files->name)
1066 continue;
1067
1068 /* warn if it tries to conflict with the root inode */
1069 if (unlikely(i == 1))
1070 printk(KERN_WARNING "%s: %s passed in a files array"
1071 "with an index of 1!\n", __func__,
1072 s->s_type->name);
1073
1074 dentry = d_alloc_name(s->s_root, files->name);
1075 if (!dentry)
1076 return -ENOMEM;
1077 inode = new_inode(s);
1078 if (!inode) {
1079 dput(dentry);
1080 return -ENOMEM;
1081 }
1082 inode->i_mode = S_IFREG | files->mode;
1083 simple_inode_init_ts(inode);
1084 inode->i_fop = files->ops;
1085 inode->i_ino = i;
1086 d_make_persistent(dentry, inode);
1087 dput(dentry);
1088 }
1089 return 0;
1090}
1091EXPORT_SYMBOL(simple_fill_super);
1092
1093static DEFINE_SPINLOCK(pin_fs_lock);
1094
1095int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1096{
1097 struct vfsmount *mnt = NULL;
1098 spin_lock(&pin_fs_lock);
1099 if (unlikely(!*mount)) {
1100 spin_unlock(&pin_fs_lock);
1101 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1102 if (IS_ERR(mnt))
1103 return PTR_ERR(mnt);
1104 spin_lock(&pin_fs_lock);
1105 if (!*mount)
1106 *mount = mnt;
1107 }
1108 mntget(*mount);
1109 ++*count;
1110 spin_unlock(&pin_fs_lock);
1111 mntput(mnt);
1112 return 0;
1113}
1114EXPORT_SYMBOL(simple_pin_fs);
1115
1116void simple_release_fs(struct vfsmount **mount, int *count)
1117{
1118 struct vfsmount *mnt;
1119 spin_lock(&pin_fs_lock);
1120 mnt = *mount;
1121 if (!--*count)
1122 *mount = NULL;
1123 spin_unlock(&pin_fs_lock);
1124 mntput(mnt);
1125}
1126EXPORT_SYMBOL(simple_release_fs);
1127
1128/**
1129 * simple_read_from_buffer - copy data from the buffer to user space
1130 * @to: the user space buffer to read to
1131 * @count: the maximum number of bytes to read
1132 * @ppos: the current position in the buffer
1133 * @from: the buffer to read from
1134 * @available: the size of the buffer
1135 *
1136 * The simple_read_from_buffer() function reads up to @count bytes from the
1137 * buffer @from at offset @ppos into the user space address starting at @to.
1138 *
1139 * On success, the number of bytes read is returned and the offset @ppos is
1140 * advanced by this number, or negative value is returned on error.
1141 **/
1142ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1143 const void *from, size_t available)
1144{
1145 loff_t pos = *ppos;
1146 size_t ret;
1147
1148 if (pos < 0)
1149 return -EINVAL;
1150 if (pos >= available || !count)
1151 return 0;
1152 if (count > available - pos)
1153 count = available - pos;
1154 ret = copy_to_user(to, from + pos, count);
1155 if (ret == count)
1156 return -EFAULT;
1157 count -= ret;
1158 *ppos = pos + count;
1159 return count;
1160}
1161EXPORT_SYMBOL(simple_read_from_buffer);
1162
1163/**
1164 * simple_write_to_buffer - copy data from user space to the buffer
1165 * @to: the buffer to write to
1166 * @available: the size of the buffer
1167 * @ppos: the current position in the buffer
1168 * @from: the user space buffer to read from
1169 * @count: the maximum number of bytes to read
1170 *
1171 * The simple_write_to_buffer() function reads up to @count bytes from the user
1172 * space address starting at @from into the buffer @to at offset @ppos.
1173 *
1174 * On success, the number of bytes written is returned and the offset @ppos is
1175 * advanced by this number, or negative value is returned on error.
1176 **/
1177ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1178 const void __user *from, size_t count)
1179{
1180 loff_t pos = *ppos;
1181 size_t res;
1182
1183 if (pos < 0)
1184 return -EINVAL;
1185 if (pos >= available || !count)
1186 return 0;
1187 if (count > available - pos)
1188 count = available - pos;
1189 res = copy_from_user(to + pos, from, count);
1190 if (res == count)
1191 return -EFAULT;
1192 count -= res;
1193 *ppos = pos + count;
1194 return count;
1195}
1196EXPORT_SYMBOL(simple_write_to_buffer);
1197
1198/**
1199 * memory_read_from_buffer - copy data from the buffer
1200 * @to: the kernel space buffer to read to
1201 * @count: the maximum number of bytes to read
1202 * @ppos: the current position in the buffer
1203 * @from: the buffer to read from
1204 * @available: the size of the buffer
1205 *
1206 * The memory_read_from_buffer() function reads up to @count bytes from the
1207 * buffer @from at offset @ppos into the kernel space address starting at @to.
1208 *
1209 * On success, the number of bytes read is returned and the offset @ppos is
1210 * advanced by this number, or negative value is returned on error.
1211 **/
1212ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1213 const void *from, size_t available)
1214{
1215 loff_t pos = *ppos;
1216
1217 if (pos < 0)
1218 return -EINVAL;
1219 if (pos >= available)
1220 return 0;
1221 if (count > available - pos)
1222 count = available - pos;
1223 memcpy(to, from + pos, count);
1224 *ppos = pos + count;
1225
1226 return count;
1227}
1228EXPORT_SYMBOL(memory_read_from_buffer);
1229
1230/*
1231 * Transaction based IO.
1232 * The file expects a single write which triggers the transaction, and then
1233 * possibly a read which collects the result - which is stored in a
1234 * file-local buffer.
1235 */
1236
1237void simple_transaction_set(struct file *file, size_t n)
1238{
1239 struct simple_transaction_argresp *ar = file->private_data;
1240
1241 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1242
1243 /*
1244 * The barrier ensures that ar->size will really remain zero until
1245 * ar->data is ready for reading.
1246 */
1247 smp_mb();
1248 ar->size = n;
1249}
1250EXPORT_SYMBOL(simple_transaction_set);
1251
1252char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1253{
1254 struct simple_transaction_argresp *ar;
1255 static DEFINE_SPINLOCK(simple_transaction_lock);
1256
1257 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1258 return ERR_PTR(-EFBIG);
1259
1260 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1261 if (!ar)
1262 return ERR_PTR(-ENOMEM);
1263
1264 spin_lock(&simple_transaction_lock);
1265
1266 /* only one write allowed per open */
1267 if (file->private_data) {
1268 spin_unlock(&simple_transaction_lock);
1269 free_page((unsigned long)ar);
1270 return ERR_PTR(-EBUSY);
1271 }
1272
1273 file->private_data = ar;
1274
1275 spin_unlock(&simple_transaction_lock);
1276
1277 if (copy_from_user(ar->data, buf, size))
1278 return ERR_PTR(-EFAULT);
1279
1280 return ar->data;
1281}
1282EXPORT_SYMBOL(simple_transaction_get);
1283
1284ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1285{
1286 struct simple_transaction_argresp *ar = file->private_data;
1287
1288 if (!ar)
1289 return 0;
1290 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1291}
1292EXPORT_SYMBOL(simple_transaction_read);
1293
1294int simple_transaction_release(struct inode *inode, struct file *file)
1295{
1296 free_page((unsigned long)file->private_data);
1297 return 0;
1298}
1299EXPORT_SYMBOL(simple_transaction_release);
1300
1301/* Simple attribute files */
1302
1303struct simple_attr {
1304 int (*get)(void *, u64 *);
1305 int (*set)(void *, u64);
1306 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1307 char set_buf[24];
1308 void *data;
1309 const char *fmt; /* format for read operation */
1310 struct mutex mutex; /* protects access to these buffers */
1311};
1312
1313/* simple_attr_open is called by an actual attribute open file operation
1314 * to set the attribute specific access operations. */
1315int simple_attr_open(struct inode *inode, struct file *file,
1316 int (*get)(void *, u64 *), int (*set)(void *, u64),
1317 const char *fmt)
1318{
1319 struct simple_attr *attr;
1320
1321 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1322 if (!attr)
1323 return -ENOMEM;
1324
1325 attr->get = get;
1326 attr->set = set;
1327 attr->data = inode->i_private;
1328 attr->fmt = fmt;
1329 mutex_init(&attr->mutex);
1330
1331 file->private_data = attr;
1332
1333 return nonseekable_open(inode, file);
1334}
1335EXPORT_SYMBOL_GPL(simple_attr_open);
1336
1337int simple_attr_release(struct inode *inode, struct file *file)
1338{
1339 kfree(file->private_data);
1340 return 0;
1341}
1342EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1343
1344/* read from the buffer that is filled with the get function */
1345ssize_t simple_attr_read(struct file *file, char __user *buf,
1346 size_t len, loff_t *ppos)
1347{
1348 struct simple_attr *attr;
1349 size_t size;
1350 ssize_t ret;
1351
1352 attr = file->private_data;
1353
1354 if (!attr->get)
1355 return -EACCES;
1356
1357 ret = mutex_lock_interruptible(&attr->mutex);
1358 if (ret)
1359 return ret;
1360
1361 if (*ppos && attr->get_buf[0]) {
1362 /* continued read */
1363 size = strlen(attr->get_buf);
1364 } else {
1365 /* first read */
1366 u64 val;
1367 ret = attr->get(attr->data, &val);
1368 if (ret)
1369 goto out;
1370
1371 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1372 attr->fmt, (unsigned long long)val);
1373 }
1374
1375 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1376out:
1377 mutex_unlock(&attr->mutex);
1378 return ret;
1379}
1380EXPORT_SYMBOL_GPL(simple_attr_read);
1381
1382/* interpret the buffer as a number to call the set function with */
1383static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1384 size_t len, loff_t *ppos, bool is_signed)
1385{
1386 struct simple_attr *attr;
1387 unsigned long long val;
1388 size_t size;
1389 ssize_t ret;
1390
1391 attr = file->private_data;
1392 if (!attr->set)
1393 return -EACCES;
1394
1395 ret = mutex_lock_interruptible(&attr->mutex);
1396 if (ret)
1397 return ret;
1398
1399 ret = -EFAULT;
1400 size = min(sizeof(attr->set_buf) - 1, len);
1401 if (copy_from_user(attr->set_buf, buf, size))
1402 goto out;
1403
1404 attr->set_buf[size] = '\0';
1405 if (is_signed)
1406 ret = kstrtoll(attr->set_buf, 0, &val);
1407 else
1408 ret = kstrtoull(attr->set_buf, 0, &val);
1409 if (ret)
1410 goto out;
1411 ret = attr->set(attr->data, val);
1412 if (ret == 0)
1413 ret = len; /* on success, claim we got the whole input */
1414out:
1415 mutex_unlock(&attr->mutex);
1416 return ret;
1417}
1418
1419ssize_t simple_attr_write(struct file *file, const char __user *buf,
1420 size_t len, loff_t *ppos)
1421{
1422 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1423}
1424EXPORT_SYMBOL_GPL(simple_attr_write);
1425
1426ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1427 size_t len, loff_t *ppos)
1428{
1429 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1430}
1431EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1432
1433/**
1434 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1435 * @inode: the object to encode
1436 * @fh: where to store the file handle fragment
1437 * @max_len: maximum length to store there (in 4 byte units)
1438 * @parent: parent directory inode, if wanted
1439 *
1440 * This generic encode_fh function assumes that the 32 inode number
1441 * is suitable for locating an inode, and that the generation number
1442 * can be used to check that it is still valid. It places them in the
1443 * filehandle fragment where export_decode_fh expects to find them.
1444 */
1445int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1446 struct inode *parent)
1447{
1448 struct fid *fid = (void *)fh;
1449 int len = *max_len;
1450 int type = FILEID_INO32_GEN;
1451
1452 if (parent && (len < 4)) {
1453 *max_len = 4;
1454 return FILEID_INVALID;
1455 } else if (len < 2) {
1456 *max_len = 2;
1457 return FILEID_INVALID;
1458 }
1459
1460 len = 2;
1461 fid->i32.ino = inode->i_ino;
1462 fid->i32.gen = inode->i_generation;
1463 if (parent) {
1464 fid->i32.parent_ino = parent->i_ino;
1465 fid->i32.parent_gen = parent->i_generation;
1466 len = 4;
1467 type = FILEID_INO32_GEN_PARENT;
1468 }
1469 *max_len = len;
1470 return type;
1471}
1472EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1473
1474/**
1475 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1476 * @sb: filesystem to do the file handle conversion on
1477 * @fid: file handle to convert
1478 * @fh_len: length of the file handle in bytes
1479 * @fh_type: type of file handle
1480 * @get_inode: filesystem callback to retrieve inode
1481 *
1482 * This function decodes @fid as long as it has one of the well-known
1483 * Linux filehandle types and calls @get_inode on it to retrieve the
1484 * inode for the object specified in the file handle.
1485 */
1486struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1487 int fh_len, int fh_type, struct inode *(*get_inode)
1488 (struct super_block *sb, u64 ino, u32 gen))
1489{
1490 struct inode *inode = NULL;
1491
1492 if (fh_len < 2)
1493 return NULL;
1494
1495 switch (fh_type) {
1496 case FILEID_INO32_GEN:
1497 case FILEID_INO32_GEN_PARENT:
1498 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1499 break;
1500 }
1501
1502 return d_obtain_alias(inode);
1503}
1504EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1505
1506/**
1507 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1508 * @sb: filesystem to do the file handle conversion on
1509 * @fid: file handle to convert
1510 * @fh_len: length of the file handle in bytes
1511 * @fh_type: type of file handle
1512 * @get_inode: filesystem callback to retrieve inode
1513 *
1514 * This function decodes @fid as long as it has one of the well-known
1515 * Linux filehandle types and calls @get_inode on it to retrieve the
1516 * inode for the _parent_ object specified in the file handle if it
1517 * is specified in the file handle, or NULL otherwise.
1518 */
1519struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1520 int fh_len, int fh_type, struct inode *(*get_inode)
1521 (struct super_block *sb, u64 ino, u32 gen))
1522{
1523 struct inode *inode = NULL;
1524
1525 if (fh_len <= 2)
1526 return NULL;
1527
1528 switch (fh_type) {
1529 case FILEID_INO32_GEN_PARENT:
1530 inode = get_inode(sb, fid->i32.parent_ino,
1531 (fh_len > 3 ? fid->i32.parent_gen : 0));
1532 break;
1533 }
1534
1535 return d_obtain_alias(inode);
1536}
1537EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1538
1539/**
1540 * __generic_file_fsync - generic fsync implementation for simple filesystems
1541 *
1542 * @file: file to synchronize
1543 * @start: start offset in bytes
1544 * @end: end offset in bytes (inclusive)
1545 * @datasync: only synchronize essential metadata if true
1546 *
1547 * This is a generic implementation of the fsync method for simple
1548 * filesystems which track all non-inode metadata in the buffers list
1549 * hanging off the address_space structure.
1550 */
1551int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1552 int datasync)
1553{
1554 struct inode *inode = file->f_mapping->host;
1555 int err;
1556 int ret;
1557
1558 err = file_write_and_wait_range(file, start, end);
1559 if (err)
1560 return err;
1561
1562 inode_lock(inode);
1563 ret = sync_mapping_buffers(inode->i_mapping);
1564 if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1565 goto out;
1566 if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1567 goto out;
1568
1569 err = sync_inode_metadata(inode, 1);
1570 if (ret == 0)
1571 ret = err;
1572
1573out:
1574 inode_unlock(inode);
1575 /* check and advance again to catch errors after syncing out buffers */
1576 err = file_check_and_advance_wb_err(file);
1577 if (ret == 0)
1578 ret = err;
1579 return ret;
1580}
1581EXPORT_SYMBOL(__generic_file_fsync);
1582
1583/**
1584 * generic_file_fsync - generic fsync implementation for simple filesystems
1585 * with flush
1586 * @file: file to synchronize
1587 * @start: start offset in bytes
1588 * @end: end offset in bytes (inclusive)
1589 * @datasync: only synchronize essential metadata if true
1590 *
1591 */
1592
1593int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1594 int datasync)
1595{
1596 struct inode *inode = file->f_mapping->host;
1597 int err;
1598
1599 err = __generic_file_fsync(file, start, end, datasync);
1600 if (err)
1601 return err;
1602 return blkdev_issue_flush(inode->i_sb->s_bdev);
1603}
1604EXPORT_SYMBOL(generic_file_fsync);
1605
1606/**
1607 * generic_check_addressable - Check addressability of file system
1608 * @blocksize_bits: log of file system block size
1609 * @num_blocks: number of blocks in file system
1610 *
1611 * Determine whether a file system with @num_blocks blocks (and a
1612 * block size of 2**@blocksize_bits) is addressable by the sector_t
1613 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1614 */
1615int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1616{
1617 u64 last_fs_block = num_blocks - 1;
1618 u64 last_fs_page, max_bytes;
1619
1620 if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1621 return -EFBIG;
1622
1623 last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1624
1625 if (unlikely(num_blocks == 0))
1626 return 0;
1627
1628 if (blocksize_bits < 9)
1629 return -EINVAL;
1630
1631 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1632 (last_fs_page > (pgoff_t)(~0ULL))) {
1633 return -EFBIG;
1634 }
1635 return 0;
1636}
1637EXPORT_SYMBOL(generic_check_addressable);
1638
1639/*
1640 * No-op implementation of ->fsync for in-memory filesystems.
1641 */
1642int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1643{
1644 return 0;
1645}
1646EXPORT_SYMBOL(noop_fsync);
1647
1648ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1649{
1650 /*
1651 * iomap based filesystems support direct I/O without need for
1652 * this callback. However, it still needs to be set in
1653 * inode->a_ops so that open/fcntl know that direct I/O is
1654 * generally supported.
1655 */
1656 return -EINVAL;
1657}
1658EXPORT_SYMBOL_GPL(noop_direct_IO);
1659
1660/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1661void kfree_link(void *p)
1662{
1663 kfree(p);
1664}
1665EXPORT_SYMBOL(kfree_link);
1666
1667struct inode *alloc_anon_inode(struct super_block *s)
1668{
1669 static const struct address_space_operations anon_aops = {
1670 .dirty_folio = noop_dirty_folio,
1671 };
1672 struct inode *inode = new_inode_pseudo(s);
1673
1674 if (!inode)
1675 return ERR_PTR(-ENOMEM);
1676
1677 inode->i_ino = get_next_ino();
1678 inode->i_mapping->a_ops = &anon_aops;
1679
1680 /*
1681 * Mark the inode dirty from the very beginning,
1682 * that way it will never be moved to the dirty
1683 * list because mark_inode_dirty() will think
1684 * that it already _is_ on the dirty list.
1685 */
1686 inode_state_assign_raw(inode, I_DIRTY);
1687 /*
1688 * Historically anonymous inodes don't have a type at all and
1689 * userspace has come to rely on this.
1690 */
1691 inode->i_mode = S_IRUSR | S_IWUSR;
1692 inode->i_uid = current_fsuid();
1693 inode->i_gid = current_fsgid();
1694 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1695 simple_inode_init_ts(inode);
1696 return inode;
1697}
1698EXPORT_SYMBOL(alloc_anon_inode);
1699
1700/**
1701 * simple_nosetlease - generic helper for prohibiting leases
1702 * @filp: file pointer
1703 * @arg: type of lease to obtain
1704 * @flp: new lease supplied for insertion
1705 * @priv: private data for lm_setup operation
1706 *
1707 * Generic helper for filesystems that do not wish to allow leases to be set.
1708 * All arguments are ignored and it just returns -EINVAL.
1709 */
1710int
1711simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1712 void **priv)
1713{
1714 return -EINVAL;
1715}
1716EXPORT_SYMBOL(simple_nosetlease);
1717
1718/**
1719 * simple_get_link - generic helper to get the target of "fast" symlinks
1720 * @dentry: not used here
1721 * @inode: the symlink inode
1722 * @done: not used here
1723 *
1724 * Generic helper for filesystems to use for symlink inodes where a pointer to
1725 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1726 * since as an optimization the path lookup code uses any non-NULL ->i_link
1727 * directly, without calling ->get_link(). But ->get_link() still must be set,
1728 * to mark the inode_operations as being for a symlink.
1729 *
1730 * Return: the symlink target
1731 */
1732const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1733 struct delayed_call *done)
1734{
1735 return inode->i_link;
1736}
1737EXPORT_SYMBOL(simple_get_link);
1738
1739const struct inode_operations simple_symlink_inode_operations = {
1740 .get_link = simple_get_link,
1741};
1742EXPORT_SYMBOL(simple_symlink_inode_operations);
1743
1744/*
1745 * Operations for a permanently empty directory.
1746 */
1747static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1748{
1749 return ERR_PTR(-ENOENT);
1750}
1751
1752static int empty_dir_setattr(struct mnt_idmap *idmap,
1753 struct dentry *dentry, struct iattr *attr)
1754{
1755 return -EPERM;
1756}
1757
1758static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1759{
1760 return -EOPNOTSUPP;
1761}
1762
1763static const struct inode_operations empty_dir_inode_operations = {
1764 .lookup = empty_dir_lookup,
1765 .setattr = empty_dir_setattr,
1766 .listxattr = empty_dir_listxattr,
1767};
1768
1769static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1770{
1771 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1772 return generic_file_llseek_size(file, offset, whence, 2, 2);
1773}
1774
1775static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1776{
1777 dir_emit_dots(file, ctx);
1778 return 0;
1779}
1780
1781static const struct file_operations empty_dir_operations = {
1782 .llseek = empty_dir_llseek,
1783 .read = generic_read_dir,
1784 .iterate_shared = empty_dir_readdir,
1785 .fsync = noop_fsync,
1786};
1787
1788
1789void make_empty_dir_inode(struct inode *inode)
1790{
1791 set_nlink(inode, 2);
1792 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1793 inode->i_uid = GLOBAL_ROOT_UID;
1794 inode->i_gid = GLOBAL_ROOT_GID;
1795 inode->i_rdev = 0;
1796 inode->i_size = 0;
1797 inode->i_blkbits = PAGE_SHIFT;
1798 inode->i_blocks = 0;
1799
1800 inode->i_op = &empty_dir_inode_operations;
1801 inode->i_opflags &= ~IOP_XATTR;
1802 inode->i_fop = &empty_dir_operations;
1803}
1804
1805bool is_empty_dir_inode(struct inode *inode)
1806{
1807 return (inode->i_fop == &empty_dir_operations) &&
1808 (inode->i_op == &empty_dir_inode_operations);
1809}
1810
1811#if IS_ENABLED(CONFIG_UNICODE)
1812/**
1813 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1814 * @dentry: dentry whose name we are checking against
1815 * @len: len of name of dentry
1816 * @str: str pointer to name of dentry
1817 * @name: Name to compare against
1818 *
1819 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1820 */
1821int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1822 const char *str, const struct qstr *name)
1823{
1824 const struct dentry *parent;
1825 const struct inode *dir;
1826 union shortname_store strbuf;
1827 struct qstr qstr;
1828
1829 /*
1830 * Attempt a case-sensitive match first. It is cheaper and
1831 * should cover most lookups, including all the sane
1832 * applications that expect a case-sensitive filesystem.
1833 *
1834 * This comparison is safe under RCU because the caller
1835 * guarantees the consistency between str and len. See
1836 * __d_lookup_rcu_op_compare() for details.
1837 */
1838 if (len == name->len && !memcmp(str, name->name, len))
1839 return 0;
1840
1841 parent = READ_ONCE(dentry->d_parent);
1842 dir = READ_ONCE(parent->d_inode);
1843 if (!dir || !IS_CASEFOLDED(dir))
1844 return 1;
1845
1846 qstr.len = len;
1847 qstr.name = str;
1848 /*
1849 * If the dentry name is stored in-line, then it may be concurrently
1850 * modified by a rename. If this happens, the VFS will eventually retry
1851 * the lookup, so it doesn't matter what ->d_compare() returns.
1852 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1853 * string. Therefore, we have to copy the name into a temporary buffer.
1854 * As above, len is guaranteed to match str, so the shortname case
1855 * is exactly when str points to ->d_shortname.
1856 */
1857 if (qstr.name == dentry->d_shortname.string) {
1858 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1859 qstr.name = strbuf.string;
1860 /* prevent compiler from optimizing out the temporary buffer */
1861 barrier();
1862 }
1863
1864 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1865}
1866EXPORT_SYMBOL(generic_ci_d_compare);
1867
1868/**
1869 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1870 * @dentry: dentry of the parent directory
1871 * @str: qstr of name whose hash we should fill in
1872 *
1873 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1874 */
1875int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1876{
1877 const struct inode *dir = READ_ONCE(dentry->d_inode);
1878 struct super_block *sb = dentry->d_sb;
1879 const struct unicode_map *um = sb->s_encoding;
1880 int ret;
1881
1882 if (!dir || !IS_CASEFOLDED(dir))
1883 return 0;
1884
1885 ret = utf8_casefold_hash(um, dentry, str);
1886 if (ret < 0 && sb_has_strict_encoding(sb))
1887 return -EINVAL;
1888 return 0;
1889}
1890EXPORT_SYMBOL(generic_ci_d_hash);
1891
1892static const struct dentry_operations generic_ci_dentry_ops = {
1893 .d_hash = generic_ci_d_hash,
1894 .d_compare = generic_ci_d_compare,
1895#ifdef CONFIG_FS_ENCRYPTION
1896 .d_revalidate = fscrypt_d_revalidate,
1897#endif
1898};
1899
1900/**
1901 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1902 * This is a filesystem helper for comparison with directory entries.
1903 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1904 *
1905 * @parent: Inode of the parent of the dirent under comparison
1906 * @name: name under lookup.
1907 * @folded_name: Optional pre-folded name under lookup
1908 * @de_name: Dirent name.
1909 * @de_name_len: dirent name length.
1910 *
1911 * Test whether a case-insensitive directory entry matches the filename
1912 * being searched. If @folded_name is provided, it is used instead of
1913 * recalculating the casefold of @name.
1914 *
1915 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1916 * < 0 on error.
1917 */
1918int generic_ci_match(const struct inode *parent,
1919 const struct qstr *name,
1920 const struct qstr *folded_name,
1921 const u8 *de_name, u32 de_name_len)
1922{
1923 const struct super_block *sb = parent->i_sb;
1924 const struct unicode_map *um = sb->s_encoding;
1925 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1926 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1927 int res = 0;
1928
1929 if (IS_ENCRYPTED(parent)) {
1930 const struct fscrypt_str encrypted_name =
1931 FSTR_INIT((u8 *) de_name, de_name_len);
1932
1933 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1934 return -EINVAL;
1935
1936 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1937 if (!decrypted_name.name)
1938 return -ENOMEM;
1939 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1940 &decrypted_name);
1941 if (res < 0) {
1942 kfree(decrypted_name.name);
1943 return res;
1944 }
1945 dirent.name = decrypted_name.name;
1946 dirent.len = decrypted_name.len;
1947 }
1948
1949 /*
1950 * Attempt a case-sensitive match first. It is cheaper and
1951 * should cover most lookups, including all the sane
1952 * applications that expect a case-sensitive filesystem.
1953 */
1954
1955 if (dirent.len == name->len &&
1956 !memcmp(name->name, dirent.name, dirent.len))
1957 goto out;
1958
1959 if (folded_name->name)
1960 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1961 else
1962 res = utf8_strncasecmp(um, name, &dirent);
1963
1964out:
1965 kfree(decrypted_name.name);
1966 if (res < 0 && sb_has_strict_encoding(sb)) {
1967 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1968 return 0;
1969 }
1970 return !res;
1971}
1972EXPORT_SYMBOL(generic_ci_match);
1973#endif
1974
1975#ifdef CONFIG_FS_ENCRYPTION
1976static const struct dentry_operations generic_encrypted_dentry_ops = {
1977 .d_revalidate = fscrypt_d_revalidate,
1978};
1979#endif
1980
1981/**
1982 * generic_set_sb_d_ops - helper for choosing the set of
1983 * filesystem-wide dentry operations for the enabled features
1984 * @sb: superblock to be configured
1985 *
1986 * Filesystems supporting casefolding and/or fscrypt can call this
1987 * helper at mount-time to configure default dentry_operations to the
1988 * best set of dentry operations required for the enabled features.
1989 * The helper must be called after these have been configured, but
1990 * before the root dentry is created.
1991 */
1992void generic_set_sb_d_ops(struct super_block *sb)
1993{
1994#if IS_ENABLED(CONFIG_UNICODE)
1995 if (sb->s_encoding) {
1996 set_default_d_op(sb, &generic_ci_dentry_ops);
1997 return;
1998 }
1999#endif
2000#ifdef CONFIG_FS_ENCRYPTION
2001 if (sb->s_cop) {
2002 set_default_d_op(sb, &generic_encrypted_dentry_ops);
2003 return;
2004 }
2005#endif
2006}
2007EXPORT_SYMBOL(generic_set_sb_d_ops);
2008
2009/**
2010 * inode_maybe_inc_iversion - increments i_version
2011 * @inode: inode with the i_version that should be updated
2012 * @force: increment the counter even if it's not necessary?
2013 *
2014 * Every time the inode is modified, the i_version field must be seen to have
2015 * changed by any observer.
2016 *
2017 * If "force" is set or the QUERIED flag is set, then ensure that we increment
2018 * the value, and clear the queried flag.
2019 *
2020 * In the common case where neither is set, then we can return "false" without
2021 * updating i_version.
2022 *
2023 * If this function returns false, and no other metadata has changed, then we
2024 * can avoid logging the metadata.
2025 */
2026bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2027{
2028 u64 cur, new;
2029
2030 /*
2031 * The i_version field is not strictly ordered with any other inode
2032 * information, but the legacy inode_inc_iversion code used a spinlock
2033 * to serialize increments.
2034 *
2035 * We add a full memory barrier to ensure that any de facto ordering
2036 * with other state is preserved (either implicitly coming from cmpxchg
2037 * or explicitly from smp_mb if we don't know upfront if we will execute
2038 * the former).
2039 *
2040 * These barriers pair with inode_query_iversion().
2041 */
2042 cur = inode_peek_iversion_raw(inode);
2043 if (!force && !(cur & I_VERSION_QUERIED)) {
2044 smp_mb();
2045 cur = inode_peek_iversion_raw(inode);
2046 }
2047
2048 do {
2049 /* If flag is clear then we needn't do anything */
2050 if (!force && !(cur & I_VERSION_QUERIED))
2051 return false;
2052
2053 /* Since lowest bit is flag, add 2 to avoid it */
2054 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2055 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2056 return true;
2057}
2058EXPORT_SYMBOL(inode_maybe_inc_iversion);
2059
2060/**
2061 * inode_query_iversion - read i_version for later use
2062 * @inode: inode from which i_version should be read
2063 *
2064 * Read the inode i_version counter. This should be used by callers that wish
2065 * to store the returned i_version for later comparison. This will guarantee
2066 * that a later query of the i_version will result in a different value if
2067 * anything has changed.
2068 *
2069 * In this implementation, we fetch the current value, set the QUERIED flag and
2070 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2071 * that fails, we try again with the newly fetched value from the cmpxchg.
2072 */
2073u64 inode_query_iversion(struct inode *inode)
2074{
2075 u64 cur, new;
2076 bool fenced = false;
2077
2078 /*
2079 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2080 * inode_maybe_inc_iversion(), see that routine for more details.
2081 */
2082 cur = inode_peek_iversion_raw(inode);
2083 do {
2084 /* If flag is already set, then no need to swap */
2085 if (cur & I_VERSION_QUERIED) {
2086 if (!fenced)
2087 smp_mb();
2088 break;
2089 }
2090
2091 fenced = true;
2092 new = cur | I_VERSION_QUERIED;
2093 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2094 return cur >> I_VERSION_QUERIED_SHIFT;
2095}
2096EXPORT_SYMBOL(inode_query_iversion);
2097
2098ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2099 ssize_t direct_written, ssize_t buffered_written)
2100{
2101 struct address_space *mapping = iocb->ki_filp->f_mapping;
2102 loff_t pos = iocb->ki_pos - buffered_written;
2103 loff_t end = iocb->ki_pos - 1;
2104 int err;
2105
2106 /*
2107 * If the buffered write fallback returned an error, we want to return
2108 * the number of bytes which were written by direct I/O, or the error
2109 * code if that was zero.
2110 *
2111 * Note that this differs from normal direct-io semantics, which will
2112 * return -EFOO even if some bytes were written.
2113 */
2114 if (unlikely(buffered_written < 0)) {
2115 if (direct_written)
2116 return direct_written;
2117 return buffered_written;
2118 }
2119
2120 /*
2121 * We need to ensure that the page cache pages are written to disk and
2122 * invalidated to preserve the expected O_DIRECT semantics.
2123 */
2124 err = filemap_write_and_wait_range(mapping, pos, end);
2125 if (err < 0) {
2126 /*
2127 * We don't know how much we wrote, so just return the number of
2128 * bytes which were direct-written
2129 */
2130 iocb->ki_pos -= buffered_written;
2131 if (direct_written)
2132 return direct_written;
2133 return err;
2134 }
2135 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2136 return direct_written + buffered_written;
2137}
2138EXPORT_SYMBOL_GPL(direct_write_fallback);
2139
2140/**
2141 * simple_inode_init_ts - initialize the timestamps for a new inode
2142 * @inode: inode to be initialized
2143 *
2144 * When a new inode is created, most filesystems set the timestamps to the
2145 * current time. Add a helper to do this.
2146 */
2147struct timespec64 simple_inode_init_ts(struct inode *inode)
2148{
2149 struct timespec64 ts = inode_set_ctime_current(inode);
2150
2151 inode_set_atime_to_ts(inode, ts);
2152 inode_set_mtime_to_ts(inode, ts);
2153 return ts;
2154}
2155EXPORT_SYMBOL(simple_inode_init_ts);
2156
2157struct dentry *stashed_dentry_get(struct dentry **stashed)
2158{
2159 struct dentry *dentry;
2160
2161 guard(rcu)();
2162 dentry = rcu_dereference(*stashed);
2163 if (!dentry)
2164 return NULL;
2165 if (IS_ERR(dentry))
2166 return dentry;
2167 if (!lockref_get_not_dead(&dentry->d_lockref))
2168 return NULL;
2169 return dentry;
2170}
2171
2172static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2173 struct super_block *sb,
2174 void *data)
2175{
2176 struct dentry *dentry;
2177 struct inode *inode;
2178 const struct stashed_operations *sops = sb->s_fs_info;
2179 int ret;
2180
2181 inode = new_inode_pseudo(sb);
2182 if (!inode) {
2183 sops->put_data(data);
2184 return ERR_PTR(-ENOMEM);
2185 }
2186
2187 inode->i_flags |= S_IMMUTABLE;
2188 inode->i_mode = S_IFREG;
2189 simple_inode_init_ts(inode);
2190
2191 ret = sops->init_inode(inode, data);
2192 if (ret < 0) {
2193 iput(inode);
2194 return ERR_PTR(ret);
2195 }
2196
2197 /* Notice when this is changed. */
2198 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2199
2200 dentry = d_alloc_anon(sb);
2201 if (!dentry) {
2202 iput(inode);
2203 return ERR_PTR(-ENOMEM);
2204 }
2205
2206 /* Store address of location where dentry's supposed to be stashed. */
2207 dentry->d_fsdata = stashed;
2208
2209 /* @data is now owned by the fs */
2210 d_instantiate(dentry, inode);
2211 return dentry;
2212}
2213
2214struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2215{
2216 guard(rcu)();
2217 for (;;) {
2218 struct dentry *old;
2219
2220 /* Assume any old dentry was cleared out. */
2221 old = cmpxchg(stashed, NULL, dentry);
2222 if (likely(!old))
2223 return dentry;
2224
2225 /* Check if somebody else installed a reusable dentry. */
2226 if (lockref_get_not_dead(&old->d_lockref))
2227 return old;
2228
2229 /* There's an old dead dentry there, try to take it over. */
2230 if (likely(try_cmpxchg(stashed, &old, dentry)))
2231 return dentry;
2232 }
2233}
2234
2235/**
2236 * path_from_stashed - create path from stashed or new dentry
2237 * @stashed: where to retrieve or stash dentry
2238 * @mnt: mnt of the filesystems to use
2239 * @data: data to store in inode->i_private
2240 * @path: path to create
2241 *
2242 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2243 * is still valid then it will be reused. If the dentry isn't able the function
2244 * will allocate a new dentry and inode. It will then check again whether it
2245 * can reuse an existing dentry in case one has been added in the meantime or
2246 * update @stashed with the newly added dentry.
2247 *
2248 * Special-purpose helper for nsfs and pidfs.
2249 *
2250 * Return: On success zero and on failure a negative error is returned.
2251 */
2252int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2253 struct path *path)
2254{
2255 struct dentry *dentry, *res;
2256 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2257
2258 /* See if dentry can be reused. */
2259 res = stashed_dentry_get(stashed);
2260 if (IS_ERR(res))
2261 return PTR_ERR(res);
2262 if (res) {
2263 sops->put_data(data);
2264 goto make_path;
2265 }
2266
2267 /* Allocate a new dentry. */
2268 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2269 if (IS_ERR(dentry))
2270 return PTR_ERR(dentry);
2271
2272 /* Added a new dentry. @data is now owned by the filesystem. */
2273 if (sops->stash_dentry)
2274 res = sops->stash_dentry(stashed, dentry);
2275 else
2276 res = stash_dentry(stashed, dentry);
2277 if (IS_ERR(res)) {
2278 dput(dentry);
2279 return PTR_ERR(res);
2280 }
2281 if (res != dentry)
2282 dput(dentry);
2283
2284make_path:
2285 path->dentry = res;
2286 path->mnt = mntget(mnt);
2287 VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2288 VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2289 return 0;
2290}
2291
2292void stashed_dentry_prune(struct dentry *dentry)
2293{
2294 struct dentry **stashed = dentry->d_fsdata;
2295 struct inode *inode = d_inode(dentry);
2296
2297 if (WARN_ON_ONCE(!stashed))
2298 return;
2299
2300 if (!inode)
2301 return;
2302
2303 /*
2304 * Only replace our own @dentry as someone else might've
2305 * already cleared out @dentry and stashed their own
2306 * dentry in there.
2307 */
2308 cmpxchg(stashed, dentry, NULL);
2309}
2310
2311/**
2312 * simple_start_creating - prepare to create a given name
2313 * @parent: directory in which to prepare to create the name
2314 * @name: the name to be created
2315 *
2316 * Required lock is taken and a lookup in performed prior to creating an
2317 * object in a directory. No permission checking is performed.
2318 *
2319 * Returns: a negative dentry on which vfs_create() or similar may
2320 * be attempted, or an error.
2321 */
2322struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2323{
2324 struct qstr qname = QSTR(name);
2325 int err;
2326
2327 err = lookup_noperm_common(&qname, parent);
2328 if (err)
2329 return ERR_PTR(err);
2330 return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2331}
2332EXPORT_SYMBOL(simple_start_creating);
2333
2334/* parent must have been held exclusive since simple_start_creating() */
2335void simple_done_creating(struct dentry *child)
2336{
2337 inode_unlock(child->d_parent->d_inode);
2338 dput(child);
2339}
2340EXPORT_SYMBOL(simple_done_creating);