at v6.19-rc4 22 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef BLK_INTERNAL_H 3#define BLK_INTERNAL_H 4 5#include <linux/bio-integrity.h> 6#include <linux/blk-crypto.h> 7#include <linux/lockdep.h> 8#include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 9#include <linux/sched/sysctl.h> 10#include <linux/timekeeping.h> 11#include <xen/xen.h> 12#include "blk-crypto-internal.h" 13 14struct elv_change_ctx; 15 16/* 17 * Default upper limit for the software max_sectors limit used for regular I/Os. 18 * This can be increased through sysfs. 19 * 20 * This should not be confused with the max_hw_sector limit that is entirely 21 * controlled by the block device driver, usually based on hardware limits. 22 */ 23#define BLK_DEF_MAX_SECTORS_CAP (SZ_4M >> SECTOR_SHIFT) 24 25#define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9) 26#define BLK_MIN_SEGMENT_SIZE 4096 27 28/* Max future timer expiry for timeouts */ 29#define BLK_MAX_TIMEOUT (5 * HZ) 30 31extern const struct kobj_type blk_queue_ktype; 32extern struct dentry *blk_debugfs_root; 33 34struct blk_flush_queue { 35 spinlock_t mq_flush_lock; 36 unsigned int flush_pending_idx:1; 37 unsigned int flush_running_idx:1; 38 blk_status_t rq_status; 39 unsigned long flush_pending_since; 40 struct list_head flush_queue[2]; 41 unsigned long flush_data_in_flight; 42 struct request *flush_rq; 43 struct rcu_head rcu_head; 44}; 45 46bool is_flush_rq(struct request *req); 47 48struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 49 gfp_t flags); 50void blk_free_flush_queue(struct blk_flush_queue *q); 51 52bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 53bool blk_queue_start_drain(struct request_queue *q); 54bool __blk_freeze_queue_start(struct request_queue *q, 55 struct task_struct *owner); 56int __bio_queue_enter(struct request_queue *q, struct bio *bio); 57void submit_bio_noacct_nocheck(struct bio *bio, bool split); 58void bio_await_chain(struct bio *bio); 59 60static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 61{ 62 rcu_read_lock(); 63 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 64 goto fail; 65 66 /* 67 * The code that increments the pm_only counter must ensure that the 68 * counter is globally visible before the queue is unfrozen. 69 */ 70 if (blk_queue_pm_only(q) && 71 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 72 goto fail_put; 73 74 rcu_read_unlock(); 75 return true; 76 77fail_put: 78 blk_queue_exit(q); 79fail: 80 rcu_read_unlock(); 81 return false; 82} 83 84static inline int bio_queue_enter(struct bio *bio) 85{ 86 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 87 88 if (blk_try_enter_queue(q, false)) { 89 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_); 90 rwsem_release(&q->io_lockdep_map, _RET_IP_); 91 return 0; 92 } 93 return __bio_queue_enter(q, bio); 94} 95 96static inline void blk_wait_io(struct completion *done) 97{ 98 /* Prevent hang_check timer from firing at us during very long I/O */ 99 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 100 101 if (timeout) 102 while (!wait_for_completion_io_timeout(done, timeout)) 103 ; 104 else 105 wait_for_completion_io(done); 106} 107 108struct block_device *blkdev_get_no_open(dev_t dev, bool autoload); 109void blkdev_put_no_open(struct block_device *bdev); 110 111#define BIO_INLINE_VECS 4 112struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 113 gfp_t gfp_mask); 114void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 115 116bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 117 struct page *page, unsigned len, unsigned offset); 118 119static inline bool biovec_phys_mergeable(struct request_queue *q, 120 struct bio_vec *vec1, struct bio_vec *vec2) 121{ 122 unsigned long mask = queue_segment_boundary(q); 123 phys_addr_t addr1 = bvec_phys(vec1); 124 phys_addr_t addr2 = bvec_phys(vec2); 125 126 /* 127 * Merging adjacent physical pages may not work correctly under KMSAN 128 * if their metadata pages aren't adjacent. Just disable merging. 129 */ 130 if (IS_ENABLED(CONFIG_KMSAN)) 131 return false; 132 133 if (addr1 + vec1->bv_len != addr2) 134 return false; 135 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 136 return false; 137 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 138 return false; 139 return true; 140} 141 142static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 143 struct bio_vec *bprv, unsigned int offset) 144{ 145 return (offset & lim->virt_boundary_mask) || 146 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 147} 148 149/* 150 * Check if adding a bio_vec after bprv with offset would create a gap in 151 * the SG list. Most drivers don't care about this, but some do. 152 */ 153static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 154 struct bio_vec *bprv, unsigned int offset) 155{ 156 if (!lim->virt_boundary_mask) 157 return false; 158 return __bvec_gap_to_prev(lim, bprv, offset); 159} 160 161static inline bool rq_mergeable(struct request *rq) 162{ 163 if (blk_rq_is_passthrough(rq)) 164 return false; 165 166 if (req_op(rq) == REQ_OP_FLUSH) 167 return false; 168 169 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 170 return false; 171 172 if (req_op(rq) == REQ_OP_ZONE_APPEND) 173 return false; 174 175 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 176 return false; 177 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 178 return false; 179 180 return true; 181} 182 183/* 184 * There are two different ways to handle DISCARD merges: 185 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 186 * send the bios to controller together. The ranges don't need to be 187 * contiguous. 188 * 2) Otherwise, the request will be normal read/write requests. The ranges 189 * need to be contiguous. 190 */ 191static inline bool blk_discard_mergable(struct request *req) 192{ 193 if (req_op(req) == REQ_OP_DISCARD && 194 queue_max_discard_segments(req->q) > 1) 195 return true; 196 return false; 197} 198 199static inline unsigned int blk_rq_get_max_segments(struct request *rq) 200{ 201 if (req_op(rq) == REQ_OP_DISCARD) 202 return queue_max_discard_segments(rq->q); 203 return queue_max_segments(rq->q); 204} 205 206static inline unsigned int blk_queue_get_max_sectors(struct request *rq) 207{ 208 struct request_queue *q = rq->q; 209 enum req_op op = req_op(rq); 210 211 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 212 return min(q->limits.max_discard_sectors, 213 UINT_MAX >> SECTOR_SHIFT); 214 215 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 216 return q->limits.max_write_zeroes_sectors; 217 218 if (rq->cmd_flags & REQ_ATOMIC) 219 return q->limits.atomic_write_max_sectors; 220 221 return q->limits.max_sectors; 222} 223 224#ifdef CONFIG_BLK_DEV_INTEGRITY 225void blk_flush_integrity(void); 226void bio_integrity_free(struct bio *bio); 227 228/* 229 * Integrity payloads can either be owned by the submitter, in which case 230 * bio_uninit will free them, or owned and generated by the block layer, 231 * in which case we'll verify them here (for reads) and free them before 232 * the bio is handed back to the submitted. 233 */ 234bool __bio_integrity_endio(struct bio *bio); 235static inline bool bio_integrity_endio(struct bio *bio) 236{ 237 struct bio_integrity_payload *bip = bio_integrity(bio); 238 239 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY)) 240 return __bio_integrity_endio(bio); 241 return true; 242} 243 244bool blk_integrity_merge_rq(struct request_queue *, struct request *, 245 struct request *); 246bool blk_integrity_merge_bio(struct request_queue *, struct request *, 247 struct bio *); 248 249static inline bool integrity_req_gap_back_merge(struct request *req, 250 struct bio *next) 251{ 252 struct bio_integrity_payload *bip = bio_integrity(req->bio); 253 struct bio_integrity_payload *bip_next = bio_integrity(next); 254 255 return bvec_gap_to_prev(&req->q->limits, 256 &bip->bip_vec[bip->bip_vcnt - 1], 257 bip_next->bip_vec[0].bv_offset); 258} 259 260static inline bool integrity_req_gap_front_merge(struct request *req, 261 struct bio *bio) 262{ 263 struct bio_integrity_payload *bip = bio_integrity(bio); 264 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 265 266 return bvec_gap_to_prev(&req->q->limits, 267 &bip->bip_vec[bip->bip_vcnt - 1], 268 bip_next->bip_vec[0].bv_offset); 269} 270 271extern const struct attribute_group blk_integrity_attr_group; 272#else /* CONFIG_BLK_DEV_INTEGRITY */ 273static inline bool blk_integrity_merge_rq(struct request_queue *rq, 274 struct request *r1, struct request *r2) 275{ 276 return true; 277} 278static inline bool blk_integrity_merge_bio(struct request_queue *rq, 279 struct request *r, struct bio *b) 280{ 281 return true; 282} 283static inline bool integrity_req_gap_back_merge(struct request *req, 284 struct bio *next) 285{ 286 return false; 287} 288static inline bool integrity_req_gap_front_merge(struct request *req, 289 struct bio *bio) 290{ 291 return false; 292} 293 294static inline void blk_flush_integrity(void) 295{ 296} 297static inline bool bio_integrity_endio(struct bio *bio) 298{ 299 return true; 300} 301static inline void bio_integrity_free(struct bio *bio) 302{ 303} 304#endif /* CONFIG_BLK_DEV_INTEGRITY */ 305 306unsigned long blk_rq_timeout(unsigned long timeout); 307void blk_add_timer(struct request *req); 308 309enum bio_merge_status { 310 BIO_MERGE_OK, 311 BIO_MERGE_NONE, 312 BIO_MERGE_FAILED, 313}; 314 315enum bio_merge_status bio_attempt_back_merge(struct request *req, 316 struct bio *bio, unsigned int nr_segs); 317bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 318 unsigned int nr_segs); 319bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 320 struct bio *bio, unsigned int nr_segs); 321 322/* 323 * Plug flush limits 324 */ 325#define BLK_MAX_REQUEST_COUNT 32 326#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 327 328/* 329 * Internal elevator interface 330 */ 331#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 332 333bool blk_insert_flush(struct request *rq); 334 335void elv_update_nr_hw_queues(struct request_queue *q, 336 struct elv_change_ctx *ctx); 337void elevator_set_default(struct request_queue *q); 338void elevator_set_none(struct request_queue *q); 339 340ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 341 char *buf); 342ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 343 char *buf); 344ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 345 char *buf); 346ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 347 char *buf); 348ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 349 const char *buf, size_t count); 350ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 351ssize_t part_timeout_store(struct device *, struct device_attribute *, 352 const char *, size_t); 353 354struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, 355 unsigned *nsegs); 356struct bio *bio_split_write_zeroes(struct bio *bio, 357 const struct queue_limits *lim, unsigned *nsegs); 358struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 359 unsigned *nr_segs); 360struct bio *bio_split_zone_append(struct bio *bio, 361 const struct queue_limits *lim, unsigned *nr_segs); 362 363/* 364 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE. 365 * 366 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is 367 * always valid if a bio has data. The check might lead to occasional false 368 * positives when bios are cloned, but compared to the performance impact of 369 * cloned bios themselves the loop below doesn't matter anyway. 370 */ 371static inline bool bio_may_need_split(struct bio *bio, 372 const struct queue_limits *lim) 373{ 374 if (lim->chunk_sectors) 375 return true; 376 if (bio->bi_vcnt != 1) 377 return true; 378 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > 379 lim->max_fast_segment_size; 380} 381 382/** 383 * __bio_split_to_limits - split a bio to fit the queue limits 384 * @bio: bio to be split 385 * @lim: queue limits to split based on 386 * @nr_segs: returns the number of segments in the returned bio 387 * 388 * Check if @bio needs splitting based on the queue limits, and if so split off 389 * a bio fitting the limits from the beginning of @bio and return it. @bio is 390 * shortened to the remainder and re-submitted. 391 * 392 * The split bio is allocated from @q->bio_split, which is provided by the 393 * block layer. 394 */ 395static inline struct bio *__bio_split_to_limits(struct bio *bio, 396 const struct queue_limits *lim, unsigned int *nr_segs) 397{ 398 switch (bio_op(bio)) { 399 case REQ_OP_READ: 400 case REQ_OP_WRITE: 401 if (bio_may_need_split(bio, lim)) 402 return bio_split_rw(bio, lim, nr_segs); 403 *nr_segs = 1; 404 return bio; 405 case REQ_OP_ZONE_APPEND: 406 return bio_split_zone_append(bio, lim, nr_segs); 407 case REQ_OP_DISCARD: 408 case REQ_OP_SECURE_ERASE: 409 return bio_split_discard(bio, lim, nr_segs); 410 case REQ_OP_WRITE_ZEROES: 411 return bio_split_write_zeroes(bio, lim, nr_segs); 412 default: 413 /* other operations can't be split */ 414 *nr_segs = 0; 415 return bio; 416 } 417} 418 419/** 420 * get_max_segment_size() - maximum number of bytes to add as a single segment 421 * @lim: Request queue limits. 422 * @paddr: address of the range to add 423 * @len: maximum length available to add at @paddr 424 * 425 * Returns the maximum number of bytes of the range starting at @paddr that can 426 * be added to a single segment. 427 */ 428static inline unsigned get_max_segment_size(const struct queue_limits *lim, 429 phys_addr_t paddr, unsigned int len) 430{ 431 /* 432 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 433 * after having calculated the minimum. 434 */ 435 return min_t(unsigned long, len, 436 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), 437 (unsigned long)lim->max_segment_size - 1) + 1); 438} 439 440int ll_back_merge_fn(struct request *req, struct bio *bio, 441 unsigned int nr_segs); 442bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 443 struct request *next); 444unsigned int blk_recalc_rq_segments(struct request *rq); 445bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 446enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 447 448int blk_set_default_limits(struct queue_limits *lim); 449void blk_apply_bdi_limits(struct backing_dev_info *bdi, 450 struct queue_limits *lim); 451int blk_dev_init(void); 452 453void update_io_ticks(struct block_device *part, unsigned long now, bool end); 454 455static inline void req_set_nomerge(struct request_queue *q, struct request *req) 456{ 457 req->cmd_flags |= REQ_NOMERGE; 458 if (req == q->last_merge) 459 q->last_merge = NULL; 460} 461 462/* 463 * Internal io_context interface 464 */ 465struct io_cq *ioc_find_get_icq(struct request_queue *q); 466struct io_cq *ioc_lookup_icq(struct request_queue *q); 467#ifdef CONFIG_BLK_ICQ 468void ioc_clear_queue(struct request_queue *q); 469#else 470static inline void ioc_clear_queue(struct request_queue *q) 471{ 472} 473#endif /* CONFIG_BLK_ICQ */ 474 475#ifdef CONFIG_BLK_DEV_ZONED 476void disk_init_zone_resources(struct gendisk *disk); 477void disk_free_zone_resources(struct gendisk *disk); 478static inline bool bio_zone_write_plugging(struct bio *bio) 479{ 480 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 481} 482static inline bool blk_req_bio_is_zone_append(struct request *rq, 483 struct bio *bio) 484{ 485 return req_op(rq) == REQ_OP_ZONE_APPEND || 486 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 487} 488void blk_zone_write_plug_bio_merged(struct bio *bio); 489void blk_zone_write_plug_init_request(struct request *rq); 490void blk_zone_append_update_request_bio(struct request *rq, struct bio *bio); 491void blk_zone_mgmt_bio_endio(struct bio *bio); 492void blk_zone_write_plug_bio_endio(struct bio *bio); 493static inline void blk_zone_bio_endio(struct bio *bio) 494{ 495 /* 496 * Zone management BIOs may impact zone write plugs (e.g. a zone reset 497 * changes a zone write plug zone write pointer offset), but these 498 * operation do not go through zone write plugging as they may operate 499 * on zones that do not have a zone write 500 * plug. blk_zone_mgmt_bio_endio() handles the potential changes to zone 501 * write plugs that are present. 502 */ 503 if (op_is_zone_mgmt(bio_op(bio))) { 504 blk_zone_mgmt_bio_endio(bio); 505 return; 506 } 507 508 /* 509 * For write BIOs to zoned devices, signal the completion of the BIO so 510 * that the next write BIO can be submitted by zone write plugging. 511 */ 512 if (bio_zone_write_plugging(bio)) 513 blk_zone_write_plug_bio_endio(bio); 514} 515 516void blk_zone_write_plug_finish_request(struct request *rq); 517static inline void blk_zone_finish_request(struct request *rq) 518{ 519 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) 520 blk_zone_write_plug_finish_request(rq); 521} 522int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 523 unsigned long arg); 524int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 525 unsigned int cmd, unsigned long arg); 526#else /* CONFIG_BLK_DEV_ZONED */ 527static inline void disk_init_zone_resources(struct gendisk *disk) 528{ 529} 530static inline void disk_free_zone_resources(struct gendisk *disk) 531{ 532} 533static inline bool bio_zone_write_plugging(struct bio *bio) 534{ 535 return false; 536} 537static inline bool blk_req_bio_is_zone_append(struct request *req, 538 struct bio *bio) 539{ 540 return false; 541} 542static inline void blk_zone_write_plug_bio_merged(struct bio *bio) 543{ 544} 545static inline void blk_zone_write_plug_init_request(struct request *rq) 546{ 547} 548static inline void blk_zone_append_update_request_bio(struct request *rq, 549 struct bio *bio) 550{ 551} 552static inline void blk_zone_bio_endio(struct bio *bio) 553{ 554} 555static inline void blk_zone_finish_request(struct request *rq) 556{ 557} 558static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 559 unsigned int cmd, unsigned long arg) 560{ 561 return -ENOTTY; 562} 563static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 564 blk_mode_t mode, unsigned int cmd, unsigned long arg) 565{ 566 return -ENOTTY; 567} 568#endif /* CONFIG_BLK_DEV_ZONED */ 569 570struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 571void bdev_add(struct block_device *bdev, dev_t dev); 572void bdev_unhash(struct block_device *bdev); 573void bdev_drop(struct block_device *bdev); 574 575int blk_alloc_ext_minor(void); 576void blk_free_ext_minor(unsigned int minor); 577#define ADDPART_FLAG_NONE 0 578#define ADDPART_FLAG_RAID 1 579#define ADDPART_FLAG_WHOLEDISK 2 580#define ADDPART_FLAG_READONLY 4 581int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 582 sector_t length); 583int bdev_del_partition(struct gendisk *disk, int partno); 584int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 585 sector_t length); 586void drop_partition(struct block_device *part); 587 588void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 589 590struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 591 struct lock_class_key *lkclass); 592 593/* 594 * Clean up a page appropriately, where the page may be pinned, may have a 595 * ref taken on it or neither. 596 */ 597static inline void bio_release_page(struct bio *bio, struct page *page) 598{ 599 if (bio_flagged(bio, BIO_PAGE_PINNED)) 600 unpin_user_page(page); 601} 602 603struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 604 605int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 606 607int disk_alloc_events(struct gendisk *disk); 608void disk_add_events(struct gendisk *disk); 609void disk_del_events(struct gendisk *disk); 610void disk_release_events(struct gendisk *disk); 611void disk_block_events(struct gendisk *disk); 612void disk_unblock_events(struct gendisk *disk); 613void disk_flush_events(struct gendisk *disk, unsigned int mask); 614extern struct device_attribute dev_attr_events; 615extern struct device_attribute dev_attr_events_async; 616extern struct device_attribute dev_attr_events_poll_msecs; 617 618extern struct attribute_group blk_trace_attr_group; 619 620blk_mode_t file_to_blk_mode(struct file *file); 621int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 622 loff_t lstart, loff_t lend); 623long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 624int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags); 625long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 626 627extern const struct address_space_operations def_blk_aops; 628 629int disk_register_independent_access_ranges(struct gendisk *disk); 630void disk_unregister_independent_access_ranges(struct gendisk *disk); 631 632int should_fail_bio(struct bio *bio); 633#ifdef CONFIG_FAIL_MAKE_REQUEST 634bool should_fail_request(struct block_device *part, unsigned int bytes); 635#else /* CONFIG_FAIL_MAKE_REQUEST */ 636static inline bool should_fail_request(struct block_device *part, 637 unsigned int bytes) 638{ 639 return false; 640} 641#endif /* CONFIG_FAIL_MAKE_REQUEST */ 642 643/* 644 * Optimized request reference counting. Ideally we'd make timeouts be more 645 * clever, as that's the only reason we need references at all... But until 646 * this happens, this is faster than using refcount_t. Also see: 647 * 648 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 649 */ 650#define req_ref_zero_or_close_to_overflow(req) \ 651 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 652 653static inline bool req_ref_inc_not_zero(struct request *req) 654{ 655 return atomic_inc_not_zero(&req->ref); 656} 657 658static inline bool req_ref_put_and_test(struct request *req) 659{ 660 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 661 return atomic_dec_and_test(&req->ref); 662} 663 664static inline void req_ref_set(struct request *req, int value) 665{ 666 atomic_set(&req->ref, value); 667} 668 669static inline int req_ref_read(struct request *req) 670{ 671 return atomic_read(&req->ref); 672} 673 674static inline u64 blk_time_get_ns(void) 675{ 676 struct blk_plug *plug = current->plug; 677 678 if (!plug || !in_task()) 679 return ktime_get_ns(); 680 681 /* 682 * 0 could very well be a valid time, but rather than flag "this is 683 * a valid timestamp" separately, just accept that we'll do an extra 684 * ktime_get_ns() if we just happen to get 0 as the current time. 685 */ 686 if (!plug->cur_ktime) { 687 plug->cur_ktime = ktime_get_ns(); 688 current->flags |= PF_BLOCK_TS; 689 } 690 return plug->cur_ktime; 691} 692 693static inline ktime_t blk_time_get(void) 694{ 695 return ns_to_ktime(blk_time_get_ns()); 696} 697 698void bdev_release(struct file *bdev_file); 699int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 700 const struct blk_holder_ops *hops, struct file *bdev_file); 701int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 702 703void blk_integrity_generate(struct bio *bio); 704void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter); 705void blk_integrity_prepare(struct request *rq); 706void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); 707 708#ifdef CONFIG_LOCKDEP 709static inline void blk_freeze_acquire_lock(struct request_queue *q) 710{ 711 if (!q->mq_freeze_disk_dead) 712 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_); 713 if (!q->mq_freeze_queue_dying) 714 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_); 715} 716 717static inline void blk_unfreeze_release_lock(struct request_queue *q) 718{ 719 if (!q->mq_freeze_queue_dying) 720 rwsem_release(&q->q_lockdep_map, _RET_IP_); 721 if (!q->mq_freeze_disk_dead) 722 rwsem_release(&q->io_lockdep_map, _RET_IP_); 723} 724#else 725static inline void blk_freeze_acquire_lock(struct request_queue *q) 726{ 727} 728static inline void blk_unfreeze_release_lock(struct request_queue *q) 729{ 730} 731#endif 732 733#endif /* BLK_INTERNAL_H */