Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blk-integrity.h>
10#include <linux/pagemap.h>
11#include <linux/backing-dev-defs.h>
12#include <linux/gcd.h>
13#include <linux/lcm.h>
14#include <linux/jiffies.h>
15#include <linux/gfp.h>
16#include <linux/dma-mapping.h>
17#include <linux/t10-pi.h>
18#include <linux/crc64.h>
19
20#include "blk.h"
21#include "blk-rq-qos.h"
22#include "blk-wbt.h"
23
24void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25{
26 WRITE_ONCE(q->rq_timeout, timeout);
27}
28EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29
30/**
31 * blk_set_stacking_limits - set default limits for stacking devices
32 * @lim: the queue_limits structure to reset
33 *
34 * Prepare queue limits for applying limits from underlying devices using
35 * blk_stack_limits().
36 */
37void blk_set_stacking_limits(struct queue_limits *lim)
38{
39 memset(lim, 0, sizeof(*lim));
40 lim->logical_block_size = SECTOR_SIZE;
41 lim->physical_block_size = SECTOR_SIZE;
42 lim->io_min = SECTOR_SIZE;
43 lim->discard_granularity = SECTOR_SIZE;
44 lim->dma_alignment = SECTOR_SIZE - 1;
45 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46
47 /* Inherit limits from component devices */
48 lim->max_segments = USHRT_MAX;
49 lim->max_discard_segments = USHRT_MAX;
50 lim->max_hw_sectors = UINT_MAX;
51 lim->max_segment_size = UINT_MAX;
52 lim->max_sectors = UINT_MAX;
53 lim->max_dev_sectors = UINT_MAX;
54 lim->max_write_zeroes_sectors = UINT_MAX;
55 lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57 lim->max_hw_zone_append_sectors = UINT_MAX;
58 lim->max_user_discard_sectors = UINT_MAX;
59 lim->atomic_write_hw_max = UINT_MAX;
60}
61EXPORT_SYMBOL(blk_set_stacking_limits);
62
63void blk_apply_bdi_limits(struct backing_dev_info *bdi,
64 struct queue_limits *lim)
65{
66 u64 io_opt = lim->io_opt;
67
68 /*
69 * For read-ahead of large files to be effective, we need to read ahead
70 * at least twice the optimal I/O size. For rotational devices that do
71 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
72 * size to avoid falling back to the (rather inefficient) small default
73 * read-ahead size.
74 *
75 * There is no hardware limitation for the read-ahead size and the user
76 * might have increased the read-ahead size through sysfs, so don't ever
77 * decrease it.
78 */
79 if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
80 io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
81
82 bdi->ra_pages = max3(bdi->ra_pages,
83 io_opt * 2 >> PAGE_SHIFT,
84 VM_READAHEAD_PAGES);
85 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
86}
87
88static int blk_validate_zoned_limits(struct queue_limits *lim)
89{
90 if (!(lim->features & BLK_FEAT_ZONED)) {
91 if (WARN_ON_ONCE(lim->max_open_zones) ||
92 WARN_ON_ONCE(lim->max_active_zones) ||
93 WARN_ON_ONCE(lim->zone_write_granularity) ||
94 WARN_ON_ONCE(lim->max_zone_append_sectors))
95 return -EINVAL;
96 return 0;
97 }
98
99 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
100 return -EINVAL;
101
102 /*
103 * Given that active zones include open zones, the maximum number of
104 * open zones cannot be larger than the maximum number of active zones.
105 */
106 if (lim->max_active_zones &&
107 lim->max_open_zones > lim->max_active_zones)
108 return -EINVAL;
109
110 if (lim->zone_write_granularity < lim->logical_block_size)
111 lim->zone_write_granularity = lim->logical_block_size;
112
113 /*
114 * The Zone Append size is limited by the maximum I/O size and the zone
115 * size given that it can't span zones.
116 *
117 * If no max_hw_zone_append_sectors limit is provided, the block layer
118 * will emulated it, else we're also bound by the hardware limit.
119 */
120 lim->max_zone_append_sectors =
121 min_not_zero(lim->max_hw_zone_append_sectors,
122 min(lim->chunk_sectors, lim->max_hw_sectors));
123 return 0;
124}
125
126/*
127 * Maximum size of I/O that needs a block layer integrity buffer. Limited
128 * by the number of intervals for which we can fit the integrity buffer into
129 * the buffer size. Because the buffer is a single segment it is also limited
130 * by the maximum segment size.
131 */
132static inline unsigned int max_integrity_io_size(struct queue_limits *lim)
133{
134 return min_t(unsigned int, lim->max_segment_size,
135 (BLK_INTEGRITY_MAX_SIZE / lim->integrity.metadata_size) <<
136 lim->integrity.interval_exp);
137}
138
139static int blk_validate_integrity_limits(struct queue_limits *lim)
140{
141 struct blk_integrity *bi = &lim->integrity;
142
143 if (!bi->metadata_size) {
144 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
145 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
146 pr_warn("invalid PI settings.\n");
147 return -EINVAL;
148 }
149 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
150 return 0;
151 }
152
153 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
154 pr_warn("integrity support disabled.\n");
155 return -EINVAL;
156 }
157
158 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
159 (bi->flags & BLK_INTEGRITY_REF_TAG)) {
160 pr_warn("ref tag not support without checksum.\n");
161 return -EINVAL;
162 }
163
164 if (bi->pi_offset + bi->pi_tuple_size > bi->metadata_size) {
165 pr_warn("pi_offset (%u) + pi_tuple_size (%u) exceeds metadata_size (%u)\n",
166 bi->pi_offset, bi->pi_tuple_size, bi->metadata_size);
167 return -EINVAL;
168 }
169
170 switch (bi->csum_type) {
171 case BLK_INTEGRITY_CSUM_NONE:
172 if (bi->pi_tuple_size) {
173 pr_warn("pi_tuple_size must be 0 when checksum type is none\n");
174 return -EINVAL;
175 }
176 break;
177 case BLK_INTEGRITY_CSUM_CRC:
178 case BLK_INTEGRITY_CSUM_IP:
179 if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
180 pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n",
181 sizeof(struct t10_pi_tuple),
182 bi->pi_tuple_size);
183 return -EINVAL;
184 }
185 break;
186 case BLK_INTEGRITY_CSUM_CRC64:
187 if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
188 pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n",
189 sizeof(struct crc64_pi_tuple),
190 bi->pi_tuple_size);
191 return -EINVAL;
192 }
193 break;
194 }
195
196 if (!bi->interval_exp) {
197 bi->interval_exp = ilog2(lim->logical_block_size);
198 } else if (bi->interval_exp < SECTOR_SHIFT ||
199 bi->interval_exp > ilog2(lim->logical_block_size)) {
200 pr_warn("invalid interval_exp %u\n", bi->interval_exp);
201 return -EINVAL;
202 }
203
204 /*
205 * The PI generation / validation helpers do not expect intervals to
206 * straddle multiple bio_vecs. Enforce alignment so that those are
207 * never generated, and that each buffer is aligned as expected.
208 */
209 if (bi->csum_type) {
210 lim->dma_alignment = max(lim->dma_alignment,
211 (1U << bi->interval_exp) - 1);
212 }
213
214 /*
215 * The block layer automatically adds integrity data for bios that don't
216 * already have it. Limit the I/O size so that a single maximum size
217 * metadata segment can cover the integrity data for the entire I/O.
218 */
219 lim->max_sectors = min(lim->max_sectors,
220 max_integrity_io_size(lim) >> SECTOR_SHIFT);
221
222 return 0;
223}
224
225/*
226 * Returns max guaranteed bytes which we can fit in a bio.
227 *
228 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
229 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
230 * the first and last segments.
231 */
232static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
233{
234 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
235 unsigned int length;
236
237 length = min(max_segments, 2) * lim->logical_block_size;
238 if (max_segments > 2)
239 length += (max_segments - 2) * PAGE_SIZE;
240
241 return length;
242}
243
244static void blk_atomic_writes_update_limits(struct queue_limits *lim)
245{
246 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
247 blk_queue_max_guaranteed_bio(lim));
248
249 unit_limit = rounddown_pow_of_two(unit_limit);
250
251 lim->atomic_write_max_sectors =
252 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
253 lim->max_hw_sectors);
254 lim->atomic_write_unit_min =
255 min(lim->atomic_write_hw_unit_min, unit_limit);
256 lim->atomic_write_unit_max =
257 min(lim->atomic_write_hw_unit_max, unit_limit);
258 lim->atomic_write_boundary_sectors =
259 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
260}
261
262/*
263 * Test whether any boundary is aligned with any chunk size. Stacked
264 * devices store any stripe size in t->chunk_sectors.
265 */
266static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors,
267 unsigned int boundary_sectors)
268{
269 if (!chunk_sectors || !boundary_sectors)
270 return true;
271
272 if (boundary_sectors > chunk_sectors &&
273 boundary_sectors % chunk_sectors)
274 return false;
275
276 if (chunk_sectors > boundary_sectors &&
277 chunk_sectors % boundary_sectors)
278 return false;
279
280 return true;
281}
282
283static void blk_validate_atomic_write_limits(struct queue_limits *lim)
284{
285 unsigned int boundary_sectors;
286 unsigned int atomic_write_hw_max_sectors =
287 lim->atomic_write_hw_max >> SECTOR_SHIFT;
288
289 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
290 goto unsupported;
291
292 /* UINT_MAX indicates stacked limits in initial state */
293 if (lim->atomic_write_hw_max == UINT_MAX)
294 goto unsupported;
295
296 if (!lim->atomic_write_hw_max)
297 goto unsupported;
298
299 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
300 goto unsupported;
301
302 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
303 goto unsupported;
304
305 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
306 lim->atomic_write_hw_unit_max))
307 goto unsupported;
308
309 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
310 lim->atomic_write_hw_max))
311 goto unsupported;
312
313 if (WARN_ON_ONCE(lim->chunk_sectors &&
314 atomic_write_hw_max_sectors > lim->chunk_sectors))
315 goto unsupported;
316
317 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
318
319 if (boundary_sectors) {
320 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
321 lim->atomic_write_hw_boundary))
322 goto unsupported;
323
324 if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary(
325 lim->chunk_sectors, boundary_sectors)))
326 goto unsupported;
327
328 /*
329 * The boundary size just needs to be a multiple of unit_max
330 * (and not necessarily a power-of-2), so this following check
331 * could be relaxed in future.
332 * Furthermore, if needed, unit_max could even be reduced so
333 * that it is compliant with a !power-of-2 boundary.
334 */
335 if (!is_power_of_2(boundary_sectors))
336 goto unsupported;
337 }
338
339 blk_atomic_writes_update_limits(lim);
340 return;
341
342unsupported:
343 lim->atomic_write_max_sectors = 0;
344 lim->atomic_write_boundary_sectors = 0;
345 lim->atomic_write_unit_min = 0;
346 lim->atomic_write_unit_max = 0;
347}
348
349/*
350 * Check that the limits in lim are valid, initialize defaults for unset
351 * values, and cap values based on others where needed.
352 */
353int blk_validate_limits(struct queue_limits *lim)
354{
355 unsigned int max_hw_sectors;
356 unsigned int logical_block_sectors;
357 unsigned long seg_size;
358 int err;
359
360 /*
361 * Unless otherwise specified, default to 512 byte logical blocks and a
362 * physical block size equal to the logical block size.
363 */
364 if (!lim->logical_block_size)
365 lim->logical_block_size = SECTOR_SIZE;
366 else if (blk_validate_block_size(lim->logical_block_size)) {
367 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
368 return -EINVAL;
369 }
370 if (lim->physical_block_size < lim->logical_block_size) {
371 lim->physical_block_size = lim->logical_block_size;
372 } else if (!is_power_of_2(lim->physical_block_size)) {
373 pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
374 return -EINVAL;
375 }
376
377 /*
378 * The minimum I/O size defaults to the physical block size unless
379 * explicitly overridden.
380 */
381 if (lim->io_min < lim->physical_block_size)
382 lim->io_min = lim->physical_block_size;
383
384 /*
385 * The optimal I/O size may not be aligned to physical block size
386 * (because it may be limited by dma engines which have no clue about
387 * block size of the disks attached to them), so we round it down here.
388 */
389 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
390
391 /*
392 * max_hw_sectors has a somewhat weird default for historical reason,
393 * but driver really should set their own instead of relying on this
394 * value.
395 *
396 * The block layer relies on the fact that every driver can
397 * handle at lest a page worth of data per I/O, and needs the value
398 * aligned to the logical block size.
399 */
400 if (!lim->max_hw_sectors)
401 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
402 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
403 return -EINVAL;
404 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
405 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
406 return -EINVAL;
407 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
408 logical_block_sectors);
409
410 /*
411 * The actual max_sectors value is a complex beast and also takes the
412 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
413 * value into account. The ->max_sectors value is always calculated
414 * from these, so directly setting it won't have any effect.
415 */
416 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
417 lim->max_dev_sectors);
418 if (lim->max_user_sectors) {
419 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
420 return -EINVAL;
421 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
422 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
423 lim->max_sectors =
424 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
425 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
426 lim->max_sectors =
427 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
428 } else {
429 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
430 }
431 lim->max_sectors = round_down(lim->max_sectors,
432 logical_block_sectors);
433
434 /*
435 * Random default for the maximum number of segments. Driver should not
436 * rely on this and set their own.
437 */
438 if (!lim->max_segments)
439 lim->max_segments = BLK_MAX_SEGMENTS;
440
441 if (lim->max_hw_wzeroes_unmap_sectors &&
442 lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
443 return -EINVAL;
444 lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
445 lim->max_user_wzeroes_unmap_sectors);
446
447 lim->max_discard_sectors =
448 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
449
450 /*
451 * When discard is not supported, discard_granularity should be reported
452 * as 0 to userspace.
453 */
454 if (lim->max_discard_sectors)
455 lim->discard_granularity =
456 max(lim->discard_granularity, lim->physical_block_size);
457 else
458 lim->discard_granularity = 0;
459
460 if (!lim->max_discard_segments)
461 lim->max_discard_segments = 1;
462
463 /*
464 * By default there is no limit on the segment boundary alignment,
465 * but if there is one it can't be smaller than the page size as
466 * that would break all the normal I/O patterns.
467 */
468 if (!lim->seg_boundary_mask)
469 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
470 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
471 return -EINVAL;
472
473 /*
474 * Stacking device may have both virtual boundary and max segment
475 * size limit, so allow this setting now, and long-term the two
476 * might need to move out of stacking limits since we have immutable
477 * bvec and lower layer bio splitting is supposed to handle the two
478 * correctly.
479 */
480 if (lim->virt_boundary_mask) {
481 if (!lim->max_segment_size)
482 lim->max_segment_size = UINT_MAX;
483 } else {
484 /*
485 * The maximum segment size has an odd historic 64k default that
486 * drivers probably should override. Just like the I/O size we
487 * require drivers to at least handle a full page per segment.
488 */
489 if (!lim->max_segment_size)
490 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
491 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
492 return -EINVAL;
493 }
494
495 /* setup max segment size for building new segment in fast path */
496 if (lim->seg_boundary_mask > lim->max_segment_size - 1)
497 seg_size = lim->max_segment_size;
498 else
499 seg_size = lim->seg_boundary_mask + 1;
500 lim->max_fast_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
501
502 /*
503 * We require drivers to at least do logical block aligned I/O, but
504 * historically could not check for that due to the separate calls
505 * to set the limits. Once the transition is finished the check
506 * below should be narrowed down to check the logical block size.
507 */
508 if (!lim->dma_alignment)
509 lim->dma_alignment = SECTOR_SIZE - 1;
510 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
511 return -EINVAL;
512
513 if (lim->alignment_offset) {
514 lim->alignment_offset &= (lim->physical_block_size - 1);
515 lim->flags &= ~BLK_FLAG_MISALIGNED;
516 }
517
518 if (!(lim->features & BLK_FEAT_WRITE_CACHE))
519 lim->features &= ~BLK_FEAT_FUA;
520
521 blk_validate_atomic_write_limits(lim);
522
523 err = blk_validate_integrity_limits(lim);
524 if (err)
525 return err;
526 return blk_validate_zoned_limits(lim);
527}
528EXPORT_SYMBOL_GPL(blk_validate_limits);
529
530/*
531 * Set the default limits for a newly allocated queue. @lim contains the
532 * initial limits set by the driver, which could be no limit in which case
533 * all fields are cleared to zero.
534 */
535int blk_set_default_limits(struct queue_limits *lim)
536{
537 /*
538 * Most defaults are set by capping the bounds in blk_validate_limits,
539 * but these limits are special and need an explicit initialization to
540 * the max value here.
541 */
542 lim->max_user_discard_sectors = UINT_MAX;
543 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
544 return blk_validate_limits(lim);
545}
546
547/**
548 * queue_limits_commit_update - commit an atomic update of queue limits
549 * @q: queue to update
550 * @lim: limits to apply
551 *
552 * Apply the limits in @lim that were obtained from queue_limits_start_update()
553 * and updated by the caller to @q. The caller must have frozen the queue or
554 * ensure that there are no outstanding I/Os by other means.
555 *
556 * Returns 0 if successful, else a negative error code.
557 */
558int queue_limits_commit_update(struct request_queue *q,
559 struct queue_limits *lim)
560{
561 int error;
562
563 lockdep_assert_held(&q->limits_lock);
564
565 error = blk_validate_limits(lim);
566 if (error)
567 goto out_unlock;
568
569#ifdef CONFIG_BLK_INLINE_ENCRYPTION
570 if (q->crypto_profile && lim->integrity.tag_size) {
571 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
572 error = -EINVAL;
573 goto out_unlock;
574 }
575#endif
576
577 q->limits = *lim;
578 if (q->disk)
579 blk_apply_bdi_limits(q->disk->bdi, lim);
580out_unlock:
581 mutex_unlock(&q->limits_lock);
582 return error;
583}
584EXPORT_SYMBOL_GPL(queue_limits_commit_update);
585
586/**
587 * queue_limits_commit_update_frozen - commit an atomic update of queue limits
588 * @q: queue to update
589 * @lim: limits to apply
590 *
591 * Apply the limits in @lim that were obtained from queue_limits_start_update()
592 * and updated with the new values by the caller to @q. Freezes the queue
593 * before the update and unfreezes it after.
594 *
595 * Returns 0 if successful, else a negative error code.
596 */
597int queue_limits_commit_update_frozen(struct request_queue *q,
598 struct queue_limits *lim)
599{
600 unsigned int memflags;
601 int ret;
602
603 memflags = blk_mq_freeze_queue(q);
604 ret = queue_limits_commit_update(q, lim);
605 blk_mq_unfreeze_queue(q, memflags);
606
607 return ret;
608}
609EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
610
611/**
612 * queue_limits_set - apply queue limits to queue
613 * @q: queue to update
614 * @lim: limits to apply
615 *
616 * Apply the limits in @lim that were freshly initialized to @q.
617 * To update existing limits use queue_limits_start_update() and
618 * queue_limits_commit_update() instead.
619 *
620 * Returns 0 if successful, else a negative error code.
621 */
622int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
623{
624 mutex_lock(&q->limits_lock);
625 return queue_limits_commit_update(q, lim);
626}
627EXPORT_SYMBOL_GPL(queue_limits_set);
628
629static int queue_limit_alignment_offset(const struct queue_limits *lim,
630 sector_t sector)
631{
632 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
633 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
634 << SECTOR_SHIFT;
635
636 return (granularity + lim->alignment_offset - alignment) % granularity;
637}
638
639static unsigned int queue_limit_discard_alignment(
640 const struct queue_limits *lim, sector_t sector)
641{
642 unsigned int alignment, granularity, offset;
643
644 if (!lim->max_discard_sectors)
645 return 0;
646
647 /* Why are these in bytes, not sectors? */
648 alignment = lim->discard_alignment >> SECTOR_SHIFT;
649 granularity = lim->discard_granularity >> SECTOR_SHIFT;
650
651 /* Offset of the partition start in 'granularity' sectors */
652 offset = sector_div(sector, granularity);
653
654 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
655 offset = (granularity + alignment - offset) % granularity;
656
657 /* Turn it back into bytes, gaah */
658 return offset << SECTOR_SHIFT;
659}
660
661static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
662{
663 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
664 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
665 sectors = PAGE_SIZE >> SECTOR_SHIFT;
666 return sectors;
667}
668
669/* Check if second and later bottom devices are compliant */
670static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
671 struct queue_limits *b)
672{
673 /* We're not going to support different boundary sizes.. yet */
674 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
675 return false;
676
677 /* Can't support this */
678 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
679 return false;
680
681 /* Or this */
682 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
683 return false;
684
685 t->atomic_write_hw_max = min(t->atomic_write_hw_max,
686 b->atomic_write_hw_max);
687 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
688 b->atomic_write_hw_unit_min);
689 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
690 b->atomic_write_hw_unit_max);
691 return true;
692}
693
694static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
695{
696 unsigned int chunk_bytes;
697
698 if (!t->chunk_sectors)
699 return;
700
701 /*
702 * If chunk sectors is so large that its value in bytes overflows
703 * UINT_MAX, then just shift it down so it definitely will fit.
704 * We don't support atomic writes of such a large size anyway.
705 */
706 if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
707 chunk_bytes = t->chunk_sectors;
708
709 /*
710 * Find values for limits which work for chunk size.
711 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
712 * size, as the chunk size is not restricted to a power-of-2.
713 * So we need to find highest power-of-2 which works for the chunk
714 * size.
715 * As an example scenario, we could have t->unit_max = 16K and
716 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
717 * value aligned with both limits, i.e. 8K in this example.
718 */
719 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
720 max_pow_of_two_factor(chunk_bytes));
721
722 t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
723 t->atomic_write_hw_unit_max);
724 t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
725}
726
727/* Check stacking of first bottom device */
728static bool blk_stack_atomic_writes_head(struct queue_limits *t,
729 struct queue_limits *b)
730{
731 if (!blk_valid_atomic_writes_boundary(t->chunk_sectors,
732 b->atomic_write_hw_boundary >> SECTOR_SHIFT))
733 return false;
734
735 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
736 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
737 t->atomic_write_hw_max = b->atomic_write_hw_max;
738 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
739 return true;
740}
741
742static void blk_stack_atomic_writes_limits(struct queue_limits *t,
743 struct queue_limits *b, sector_t start)
744{
745 if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
746 goto unsupported;
747
748 if (!b->atomic_write_hw_unit_min)
749 goto unsupported;
750
751 if (!blk_atomic_write_start_sect_aligned(start, b))
752 goto unsupported;
753
754 /* UINT_MAX indicates no stacking of bottom devices yet */
755 if (t->atomic_write_hw_max == UINT_MAX) {
756 if (!blk_stack_atomic_writes_head(t, b))
757 goto unsupported;
758 } else {
759 if (!blk_stack_atomic_writes_tail(t, b))
760 goto unsupported;
761 }
762 blk_stack_atomic_writes_chunk_sectors(t);
763 return;
764
765unsupported:
766 t->atomic_write_hw_max = 0;
767 t->atomic_write_hw_unit_max = 0;
768 t->atomic_write_hw_unit_min = 0;
769 t->atomic_write_hw_boundary = 0;
770}
771
772/**
773 * blk_stack_limits - adjust queue_limits for stacked devices
774 * @t: the stacking driver limits (top device)
775 * @b: the underlying queue limits (bottom, component device)
776 * @start: first data sector within component device
777 *
778 * Description:
779 * This function is used by stacking drivers like MD and DM to ensure
780 * that all component devices have compatible block sizes and
781 * alignments. The stacking driver must provide a queue_limits
782 * struct (top) and then iteratively call the stacking function for
783 * all component (bottom) devices. The stacking function will
784 * attempt to combine the values and ensure proper alignment.
785 *
786 * Returns 0 if the top and bottom queue_limits are compatible. The
787 * top device's block sizes and alignment offsets may be adjusted to
788 * ensure alignment with the bottom device. If no compatible sizes
789 * and alignments exist, -1 is returned and the resulting top
790 * queue_limits will have the misaligned flag set to indicate that
791 * the alignment_offset is undefined.
792 */
793int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
794 sector_t start)
795{
796 unsigned int top, bottom, alignment;
797 int ret = 0;
798
799 t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
800
801 /*
802 * Some feaures need to be supported both by the stacking driver and all
803 * underlying devices. The stacking driver sets these flags before
804 * stacking the limits, and this will clear the flags if any of the
805 * underlying devices does not support it.
806 */
807 if (!(b->features & BLK_FEAT_NOWAIT))
808 t->features &= ~BLK_FEAT_NOWAIT;
809 if (!(b->features & BLK_FEAT_POLL))
810 t->features &= ~BLK_FEAT_POLL;
811
812 t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
813
814 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
815 t->max_user_sectors = min_not_zero(t->max_user_sectors,
816 b->max_user_sectors);
817 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
818 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
819 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
820 b->max_write_zeroes_sectors);
821 t->max_user_wzeroes_unmap_sectors =
822 min(t->max_user_wzeroes_unmap_sectors,
823 b->max_user_wzeroes_unmap_sectors);
824 t->max_hw_wzeroes_unmap_sectors =
825 min(t->max_hw_wzeroes_unmap_sectors,
826 b->max_hw_wzeroes_unmap_sectors);
827
828 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
829 b->max_hw_zone_append_sectors);
830
831 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
832 b->seg_boundary_mask);
833 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
834 b->virt_boundary_mask);
835
836 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
837 t->max_discard_segments = min_not_zero(t->max_discard_segments,
838 b->max_discard_segments);
839 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
840 b->max_integrity_segments);
841
842 t->max_segment_size = min_not_zero(t->max_segment_size,
843 b->max_segment_size);
844
845 alignment = queue_limit_alignment_offset(b, start);
846
847 /* Bottom device has different alignment. Check that it is
848 * compatible with the current top alignment.
849 */
850 if (t->alignment_offset != alignment) {
851
852 top = max(t->physical_block_size, t->io_min)
853 + t->alignment_offset;
854 bottom = max(b->physical_block_size, b->io_min) + alignment;
855
856 /* Verify that top and bottom intervals line up */
857 if (max(top, bottom) % min(top, bottom)) {
858 t->flags |= BLK_FLAG_MISALIGNED;
859 ret = -1;
860 }
861 }
862
863 t->logical_block_size = max(t->logical_block_size,
864 b->logical_block_size);
865
866 t->physical_block_size = max(t->physical_block_size,
867 b->physical_block_size);
868
869 t->io_min = max(t->io_min, b->io_min);
870 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
871 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
872
873 /* Set non-power-of-2 compatible chunk_sectors boundary */
874 if (b->chunk_sectors)
875 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
876
877 /* Physical block size a multiple of the logical block size? */
878 if (t->physical_block_size & (t->logical_block_size - 1)) {
879 t->physical_block_size = t->logical_block_size;
880 t->flags |= BLK_FLAG_MISALIGNED;
881 ret = -1;
882 }
883
884 /* Minimum I/O a multiple of the physical block size? */
885 if (t->io_min & (t->physical_block_size - 1)) {
886 t->io_min = t->physical_block_size;
887 t->flags |= BLK_FLAG_MISALIGNED;
888 ret = -1;
889 }
890
891 /* Optimal I/O a multiple of the physical block size? */
892 if (t->io_opt & (t->physical_block_size - 1)) {
893 t->io_opt = 0;
894 t->flags |= BLK_FLAG_MISALIGNED;
895 ret = -1;
896 }
897
898 /* chunk_sectors a multiple of the physical block size? */
899 if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
900 t->chunk_sectors = 0;
901 t->flags |= BLK_FLAG_MISALIGNED;
902 ret = -1;
903 }
904
905 /* Find lowest common alignment_offset */
906 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
907 % max(t->physical_block_size, t->io_min);
908
909 /* Verify that new alignment_offset is on a logical block boundary */
910 if (t->alignment_offset & (t->logical_block_size - 1)) {
911 t->flags |= BLK_FLAG_MISALIGNED;
912 ret = -1;
913 }
914
915 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
916 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
917 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
918
919 /* Discard alignment and granularity */
920 if (b->discard_granularity) {
921 alignment = queue_limit_discard_alignment(b, start);
922
923 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
924 b->max_discard_sectors);
925 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
926 b->max_hw_discard_sectors);
927 t->discard_granularity = max(t->discard_granularity,
928 b->discard_granularity);
929 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
930 t->discard_granularity;
931 }
932 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
933 b->max_secure_erase_sectors);
934 t->zone_write_granularity = max(t->zone_write_granularity,
935 b->zone_write_granularity);
936 if (!(t->features & BLK_FEAT_ZONED)) {
937 t->zone_write_granularity = 0;
938 t->max_zone_append_sectors = 0;
939 }
940 blk_stack_atomic_writes_limits(t, b, start);
941
942 return ret;
943}
944EXPORT_SYMBOL(blk_stack_limits);
945
946/**
947 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
948 * @t: the stacking driver limits (top device)
949 * @bdev: the underlying block device (bottom)
950 * @offset: offset to beginning of data within component device
951 * @pfx: prefix to use for warnings logged
952 *
953 * Description:
954 * This function is used by stacking drivers like MD and DM to ensure
955 * that all component devices have compatible block sizes and
956 * alignments. The stacking driver must provide a queue_limits
957 * struct (top) and then iteratively call the stacking function for
958 * all component (bottom) devices. The stacking function will
959 * attempt to combine the values and ensure proper alignment.
960 */
961void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
962 sector_t offset, const char *pfx)
963{
964 if (blk_stack_limits(t, bdev_limits(bdev),
965 get_start_sect(bdev) + offset))
966 pr_notice("%s: Warning: Device %pg is misaligned\n",
967 pfx, bdev);
968}
969EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
970
971/**
972 * queue_limits_stack_integrity - stack integrity profile
973 * @t: target queue limits
974 * @b: base queue limits
975 *
976 * Check if the integrity profile in the @b can be stacked into the
977 * target @t. Stacking is possible if either:
978 *
979 * a) does not have any integrity information stacked into it yet
980 * b) the integrity profile in @b is identical to the one in @t
981 *
982 * If @b can be stacked into @t, return %true. Else return %false and clear the
983 * integrity information in @t.
984 */
985bool queue_limits_stack_integrity(struct queue_limits *t,
986 struct queue_limits *b)
987{
988 struct blk_integrity *ti = &t->integrity;
989 struct blk_integrity *bi = &b->integrity;
990
991 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
992 return true;
993
994 if (ti->flags & BLK_INTEGRITY_STACKED) {
995 if (ti->metadata_size != bi->metadata_size)
996 goto incompatible;
997 if (ti->interval_exp != bi->interval_exp)
998 goto incompatible;
999 if (ti->tag_size != bi->tag_size)
1000 goto incompatible;
1001 if (ti->csum_type != bi->csum_type)
1002 goto incompatible;
1003 if (ti->pi_tuple_size != bi->pi_tuple_size)
1004 goto incompatible;
1005 if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
1006 (bi->flags & BLK_INTEGRITY_REF_TAG))
1007 goto incompatible;
1008 } else {
1009 ti->flags = BLK_INTEGRITY_STACKED;
1010 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
1011 (bi->flags & BLK_INTEGRITY_REF_TAG);
1012 ti->csum_type = bi->csum_type;
1013 ti->pi_tuple_size = bi->pi_tuple_size;
1014 ti->metadata_size = bi->metadata_size;
1015 ti->pi_offset = bi->pi_offset;
1016 ti->interval_exp = bi->interval_exp;
1017 ti->tag_size = bi->tag_size;
1018 }
1019 return true;
1020
1021incompatible:
1022 memset(ti, 0, sizeof(*ti));
1023 return false;
1024}
1025EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
1026
1027/**
1028 * blk_set_queue_depth - tell the block layer about the device queue depth
1029 * @q: the request queue for the device
1030 * @depth: queue depth
1031 *
1032 */
1033void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1034{
1035 q->queue_depth = depth;
1036 rq_qos_queue_depth_changed(q);
1037}
1038EXPORT_SYMBOL(blk_set_queue_depth);
1039
1040int bdev_alignment_offset(struct block_device *bdev)
1041{
1042 struct request_queue *q = bdev_get_queue(bdev);
1043
1044 if (q->limits.flags & BLK_FLAG_MISALIGNED)
1045 return -1;
1046 if (bdev_is_partition(bdev))
1047 return queue_limit_alignment_offset(&q->limits,
1048 bdev->bd_start_sect);
1049 return q->limits.alignment_offset;
1050}
1051EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1052
1053unsigned int bdev_discard_alignment(struct block_device *bdev)
1054{
1055 struct request_queue *q = bdev_get_queue(bdev);
1056
1057 if (bdev_is_partition(bdev))
1058 return queue_limit_discard_alignment(&q->limits,
1059 bdev->bd_start_sect);
1060 return q->limits.discard_alignment;
1061}
1062EXPORT_SYMBOL_GPL(bdev_discard_alignment);