Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_BITMAP_H
3#define __LINUX_BITMAP_H
4
5#ifndef __ASSEMBLY__
6
7#include <linux/align.h>
8#include <linux/bitops.h>
9#include <linux/cleanup.h>
10#include <linux/errno.h>
11#include <linux/find.h>
12#include <linux/limits.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/bitmap-str.h>
16
17struct device;
18
19/*
20 * bitmaps provide bit arrays that consume one or more unsigned
21 * longs. The bitmap interface and available operations are listed
22 * here, in bitmap.h
23 *
24 * Function implementations generic to all architectures are in
25 * lib/bitmap.c. Functions implementations that are architecture
26 * specific are in various arch/<arch>/include/asm/bitops.h headers
27 * and other arch/<arch> specific files.
28 *
29 * See lib/bitmap.c for more details.
30 */
31
32/**
33 * DOC: bitmap overview
34 *
35 * The available bitmap operations and their rough meaning in the
36 * case that the bitmap is a single unsigned long are thus:
37 *
38 * The generated code is more efficient when nbits is known at
39 * compile-time and at most BITS_PER_LONG.
40 *
41 * ::
42 *
43 * bitmap_zero(dst, nbits) *dst = 0UL
44 * bitmap_fill(dst, nbits) *dst = ~0UL
45 * bitmap_copy(dst, src, nbits) *dst = *src
46 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
47 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
48 * bitmap_weighted_or(dst, src1, src2, nbits) *dst = *src1 | *src2. Returns Hamming Weight of dst
49 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
50 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
51 * bitmap_complement(dst, src, nbits) *dst = ~(*src)
52 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
53 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
54 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
55 * bitmap_empty(src, nbits) Are all bits zero in *src?
56 * bitmap_full(src, nbits) Are all bits set in *src?
57 * bitmap_weight(src, nbits) Hamming Weight: number set bits
58 * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap
59 * bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap
60 * bitmap_set(dst, pos, nbits) Set specified bit area
61 * bitmap_clear(dst, pos, nbits) Clear specified bit area
62 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
63 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
64 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
65 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
66 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
67 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
68 * bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src)
69 * bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src)
70 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
71 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
72 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
73 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
74 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
75 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
76 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
77 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
78 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
79 * bitmap_release_region(bitmap, pos, order) Free specified bit region
80 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
81 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
82 * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst
83 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
84 * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst
85 * bitmap_get_value8(map, start) Get 8bit value from map at start
86 * bitmap_set_value8(map, value, start) Set 8bit value to map at start
87 * bitmap_read(map, start, nbits) Read an nbits-sized value from
88 * map at start
89 * bitmap_write(map, value, start, nbits) Write an nbits-sized value to
90 * map at start
91 *
92 * Note, bitmap_zero() and bitmap_fill() operate over the region of
93 * unsigned longs, that is, bits behind bitmap till the unsigned long
94 * boundary will be zeroed or filled as well. Consider to use
95 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
96 * respectively.
97 */
98
99/**
100 * DOC: bitmap bitops
101 *
102 * Also the following operations in asm/bitops.h apply to bitmaps.::
103 *
104 * set_bit(bit, addr) *addr |= bit
105 * clear_bit(bit, addr) *addr &= ~bit
106 * change_bit(bit, addr) *addr ^= bit
107 * test_bit(bit, addr) Is bit set in *addr?
108 * test_and_set_bit(bit, addr) Set bit and return old value
109 * test_and_clear_bit(bit, addr) Clear bit and return old value
110 * test_and_change_bit(bit, addr) Change bit and return old value
111 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr
112 * find_first_bit(addr, nbits) Position first set bit in *addr
113 * find_next_zero_bit(addr, nbits, bit)
114 * Position next zero bit in *addr >= bit
115 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
116 * find_next_and_bit(addr1, addr2, nbits, bit)
117 * Same as find_next_bit, but in
118 * (*addr1 & *addr2)
119 *
120 */
121
122/**
123 * DOC: declare bitmap
124 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
125 * to declare an array named 'name' of just enough unsigned longs to
126 * contain all bit positions from 0 to 'bits' - 1.
127 */
128
129/*
130 * Allocation and deallocation of bitmap.
131 * Provided in lib/bitmap.c to avoid circular dependency.
132 */
133unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
134unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
135unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
136unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
137void bitmap_free(const unsigned long *bitmap);
138
139DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
140
141/* Managed variants of the above. */
142unsigned long *devm_bitmap_alloc(struct device *dev,
143 unsigned int nbits, gfp_t flags);
144unsigned long *devm_bitmap_zalloc(struct device *dev,
145 unsigned int nbits, gfp_t flags);
146
147/*
148 * lib/bitmap.c provides these functions:
149 */
150
151bool __bitmap_equal(const unsigned long *bitmap1,
152 const unsigned long *bitmap2, unsigned int nbits);
153bool __pure __bitmap_or_equal(const unsigned long *src1,
154 const unsigned long *src2,
155 const unsigned long *src3,
156 unsigned int nbits);
157void __bitmap_complement(unsigned long *dst, const unsigned long *src,
158 unsigned int nbits);
159void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
160 unsigned int shift, unsigned int nbits);
161void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
162 unsigned int shift, unsigned int nbits);
163void bitmap_cut(unsigned long *dst, const unsigned long *src,
164 unsigned int first, unsigned int cut, unsigned int nbits);
165bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
166 const unsigned long *bitmap2, unsigned int nbits);
167void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
168 const unsigned long *bitmap2, unsigned int nbits);
169unsigned int __bitmap_weighted_or(unsigned long *dst, const unsigned long *bitmap1,
170 const unsigned long *bitmap2, unsigned int nbits);
171void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
172 const unsigned long *bitmap2, unsigned int nbits);
173bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
174 const unsigned long *bitmap2, unsigned int nbits);
175void __bitmap_replace(unsigned long *dst,
176 const unsigned long *old, const unsigned long *new,
177 const unsigned long *mask, unsigned int nbits);
178bool __bitmap_intersects(const unsigned long *bitmap1,
179 const unsigned long *bitmap2, unsigned int nbits);
180bool __bitmap_subset(const unsigned long *bitmap1,
181 const unsigned long *bitmap2, unsigned int nbits);
182unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
183unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
184 const unsigned long *bitmap2, unsigned int nbits);
185unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
186 const unsigned long *bitmap2, unsigned int nbits);
187void __bitmap_set(unsigned long *map, unsigned int start, int len);
188void __bitmap_clear(unsigned long *map, unsigned int start, int len);
189
190unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
191 unsigned long size,
192 unsigned long start,
193 unsigned int nr,
194 unsigned long align_mask,
195 unsigned long align_offset);
196
197/**
198 * bitmap_find_next_zero_area - find a contiguous aligned zero area
199 * @map: The address to base the search on
200 * @size: The bitmap size in bits
201 * @start: The bitnumber to start searching at
202 * @nr: The number of zeroed bits we're looking for
203 * @align_mask: Alignment mask for zero area
204 *
205 * The @align_mask should be one less than a power of 2; the effect is that
206 * the bit offset of all zero areas this function finds is multiples of that
207 * power of 2. A @align_mask of 0 means no alignment is required.
208 */
209static __always_inline
210unsigned long bitmap_find_next_zero_area(unsigned long *map,
211 unsigned long size,
212 unsigned long start,
213 unsigned int nr,
214 unsigned long align_mask)
215{
216 return bitmap_find_next_zero_area_off(map, size, start, nr,
217 align_mask, 0);
218}
219
220void bitmap_remap(unsigned long *dst, const unsigned long *src,
221 const unsigned long *old, const unsigned long *new, unsigned int nbits);
222int bitmap_bitremap(int oldbit,
223 const unsigned long *old, const unsigned long *new, int bits);
224void bitmap_onto(unsigned long *dst, const unsigned long *orig,
225 const unsigned long *relmap, unsigned int bits);
226void bitmap_fold(unsigned long *dst, const unsigned long *orig,
227 unsigned int sz, unsigned int nbits);
228
229#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
230#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
231
232#define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
233
234static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
235{
236 unsigned int len = bitmap_size(nbits);
237
238 if (small_const_nbits(nbits))
239 *dst = 0;
240 else
241 memset(dst, 0, len);
242}
243
244static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
245{
246 unsigned int len = bitmap_size(nbits);
247
248 if (small_const_nbits(nbits))
249 *dst = ~0UL;
250 else
251 memset(dst, 0xff, len);
252}
253
254static __always_inline
255void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
256{
257 unsigned int len = bitmap_size(nbits);
258
259 if (small_const_nbits(nbits))
260 *dst = *src;
261 else
262 memcpy(dst, src, len);
263}
264
265/*
266 * Copy bitmap and clear tail bits in last word.
267 */
268static __always_inline
269void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
270{
271 bitmap_copy(dst, src, nbits);
272 if (nbits % BITS_PER_LONG)
273 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
274}
275
276static inline void bitmap_copy_and_extend(unsigned long *to,
277 const unsigned long *from,
278 unsigned int count, unsigned int size)
279{
280 unsigned int copy = BITS_TO_LONGS(count);
281
282 memcpy(to, from, copy * sizeof(long));
283 if (count % BITS_PER_LONG)
284 to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
285 memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
286}
287
288/*
289 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
290 * machines the order of hi and lo parts of numbers match the bitmap structure.
291 * In both cases conversion is not needed when copying data from/to arrays of
292 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
293 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
294 * architectures are not using bitmap_copy_clear_tail().
295 */
296#if BITS_PER_LONG == 64
297void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
298 unsigned int nbits);
299void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
300 unsigned int nbits);
301#else
302#define bitmap_from_arr32(bitmap, buf, nbits) \
303 bitmap_copy_clear_tail((unsigned long *) (bitmap), \
304 (const unsigned long *) (buf), (nbits))
305#define bitmap_to_arr32(buf, bitmap, nbits) \
306 bitmap_copy_clear_tail((unsigned long *) (buf), \
307 (const unsigned long *) (bitmap), (nbits))
308#endif
309
310/*
311 * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
312 * the conversion is not needed when copying data from/to arrays of u64.
313 */
314#if BITS_PER_LONG == 32
315void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
316void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
317#else
318#define bitmap_from_arr64(bitmap, buf, nbits) \
319 bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
320#define bitmap_to_arr64(buf, bitmap, nbits) \
321 bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
322#endif
323
324static __always_inline
325bool bitmap_and(unsigned long *dst, const unsigned long *src1,
326 const unsigned long *src2, unsigned int nbits)
327{
328 if (small_const_nbits(nbits))
329 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
330 return __bitmap_and(dst, src1, src2, nbits);
331}
332
333static __always_inline
334void bitmap_or(unsigned long *dst, const unsigned long *src1,
335 const unsigned long *src2, unsigned int nbits)
336{
337 if (small_const_nbits(nbits))
338 *dst = *src1 | *src2;
339 else
340 __bitmap_or(dst, src1, src2, nbits);
341}
342
343static __always_inline
344unsigned int bitmap_weighted_or(unsigned long *dst, const unsigned long *src1,
345 const unsigned long *src2, unsigned int nbits)
346{
347 if (small_const_nbits(nbits)) {
348 *dst = *src1 | *src2;
349 return hweight_long(*dst & BITMAP_LAST_WORD_MASK(nbits));
350 } else {
351 return __bitmap_weighted_or(dst, src1, src2, nbits);
352 }
353}
354
355static __always_inline
356void bitmap_xor(unsigned long *dst, const unsigned long *src1,
357 const unsigned long *src2, unsigned int nbits)
358{
359 if (small_const_nbits(nbits))
360 *dst = *src1 ^ *src2;
361 else
362 __bitmap_xor(dst, src1, src2, nbits);
363}
364
365static __always_inline
366bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
367 const unsigned long *src2, unsigned int nbits)
368{
369 if (small_const_nbits(nbits))
370 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
371 return __bitmap_andnot(dst, src1, src2, nbits);
372}
373
374static __always_inline
375void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
376{
377 if (small_const_nbits(nbits))
378 *dst = ~(*src);
379 else
380 __bitmap_complement(dst, src, nbits);
381}
382
383#ifdef __LITTLE_ENDIAN
384#define BITMAP_MEM_ALIGNMENT 8
385#else
386#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
387#endif
388#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
389
390static __always_inline
391bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
392{
393 if (small_const_nbits(nbits))
394 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
395 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
396 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
397 return !memcmp(src1, src2, nbits / 8);
398 return __bitmap_equal(src1, src2, nbits);
399}
400
401/**
402 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
403 * @src1: Pointer to bitmap 1
404 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
405 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
406 * @nbits: number of bits in each of these bitmaps
407 *
408 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
409 */
410static __always_inline
411bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
412 const unsigned long *src3, unsigned int nbits)
413{
414 if (!small_const_nbits(nbits))
415 return __bitmap_or_equal(src1, src2, src3, nbits);
416
417 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
418}
419
420static __always_inline
421bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
422{
423 if (small_const_nbits(nbits))
424 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
425 else
426 return __bitmap_intersects(src1, src2, nbits);
427}
428
429static __always_inline
430bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
431{
432 if (small_const_nbits(nbits))
433 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
434 else
435 return __bitmap_subset(src1, src2, nbits);
436}
437
438static __always_inline
439bool bitmap_empty(const unsigned long *src, unsigned nbits)
440{
441 if (small_const_nbits(nbits))
442 return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
443
444 return find_first_bit(src, nbits) == nbits;
445}
446
447static __always_inline
448bool bitmap_full(const unsigned long *src, unsigned int nbits)
449{
450 if (small_const_nbits(nbits))
451 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
452
453 return find_first_zero_bit(src, nbits) == nbits;
454}
455
456static __always_inline
457unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
458{
459 if (small_const_nbits(nbits))
460 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
461 return __bitmap_weight(src, nbits);
462}
463
464static __always_inline
465unsigned long bitmap_weight_and(const unsigned long *src1,
466 const unsigned long *src2, unsigned int nbits)
467{
468 if (small_const_nbits(nbits))
469 return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
470 return __bitmap_weight_and(src1, src2, nbits);
471}
472
473static __always_inline
474unsigned long bitmap_weight_andnot(const unsigned long *src1,
475 const unsigned long *src2, unsigned int nbits)
476{
477 if (small_const_nbits(nbits))
478 return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
479 return __bitmap_weight_andnot(src1, src2, nbits);
480}
481
482static __always_inline
483void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
484{
485 if (__builtin_constant_p(nbits) && nbits == 1)
486 __set_bit(start, map);
487 else if (small_const_nbits(start + nbits))
488 *map |= GENMASK(start + nbits - 1, start);
489 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
490 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
491 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
492 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
493 memset((char *)map + start / 8, 0xff, nbits / 8);
494 else
495 __bitmap_set(map, start, nbits);
496}
497
498static __always_inline
499void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
500{
501 if (__builtin_constant_p(nbits) && nbits == 1)
502 __clear_bit(start, map);
503 else if (small_const_nbits(start + nbits))
504 *map &= ~GENMASK(start + nbits - 1, start);
505 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
506 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
507 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
508 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
509 memset((char *)map + start / 8, 0, nbits / 8);
510 else
511 __bitmap_clear(map, start, nbits);
512}
513
514static __always_inline
515void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
516 unsigned int shift, unsigned int nbits)
517{
518 if (small_const_nbits(nbits))
519 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
520 else
521 __bitmap_shift_right(dst, src, shift, nbits);
522}
523
524static __always_inline
525void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
526 unsigned int shift, unsigned int nbits)
527{
528 if (small_const_nbits(nbits))
529 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
530 else
531 __bitmap_shift_left(dst, src, shift, nbits);
532}
533
534static __always_inline
535void bitmap_replace(unsigned long *dst,
536 const unsigned long *old,
537 const unsigned long *new,
538 const unsigned long *mask,
539 unsigned int nbits)
540{
541 if (small_const_nbits(nbits))
542 *dst = (*old & ~(*mask)) | (*new & *mask);
543 else
544 __bitmap_replace(dst, old, new, mask, nbits);
545}
546
547/**
548 * bitmap_scatter - Scatter a bitmap according to the given mask
549 * @dst: scattered bitmap
550 * @src: gathered bitmap
551 * @mask: mask representing bits to assign to in the scattered bitmap
552 * @nbits: number of bits in each of these bitmaps
553 *
554 * Scatters bitmap with sequential bits according to the given @mask.
555 *
556 * Example:
557 * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
558 *
559 * Or in binary form
560 * @src @mask @dst
561 * 0000000001011010 0001001100010011 0000001100000010
562 *
563 * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
564 *
565 * A more 'visual' description of the operation::
566 *
567 * src: 0000000001011010
568 * ||||||
569 * +------+|||||
570 * | +----+||||
571 * | |+----+|||
572 * | || +-+||
573 * | || | ||
574 * mask: ...v..vv...v..vv
575 * ...0..11...0..10
576 * dst: 0000001100000010
577 *
578 * A relationship exists between bitmap_scatter() and bitmap_gather(). See
579 * bitmap_gather() for the bitmap gather detailed operations. TL;DR:
580 * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
581 */
582static __always_inline
583void bitmap_scatter(unsigned long *dst, const unsigned long *src,
584 const unsigned long *mask, unsigned int nbits)
585{
586 unsigned int n = 0;
587 unsigned int bit;
588
589 bitmap_zero(dst, nbits);
590
591 for_each_set_bit(bit, mask, nbits)
592 __assign_bit(bit, dst, test_bit(n++, src));
593}
594
595/**
596 * bitmap_gather - Gather a bitmap according to given mask
597 * @dst: gathered bitmap
598 * @src: scattered bitmap
599 * @mask: mask representing bits to extract from in the scattered bitmap
600 * @nbits: number of bits in each of these bitmaps
601 *
602 * Gathers bitmap with sparse bits according to the given @mask.
603 *
604 * Example:
605 * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
606 *
607 * Or in binary form
608 * @src @mask @dst
609 * 0000001100000010 0001001100010011 0000000000011010
610 *
611 * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
612 *
613 * A more 'visual' description of the operation::
614 *
615 * mask: ...v..vv...v..vv
616 * src: 0000001100000010
617 * ^ ^^ ^ 0
618 * | || | 10
619 * | || > 010
620 * | |+--> 1010
621 * | +--> 11010
622 * +----> 011010
623 * dst: 0000000000011010
624 *
625 * A relationship exists between bitmap_gather() and bitmap_scatter(). See
626 * bitmap_scatter() for the bitmap scatter detailed operations. TL;DR:
627 * bitmap_scatter() can be seen as the 'reverse' bitmap_gather() operation.
628 *
629 * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
630 * The operation bitmap_gather(result, scattered, mask, n) leads to a result
631 * equal or equivalent to src.
632 *
633 * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
634 * are not bijective.
635 * The result and src values are equivalent in that sense that a call to
636 * bitmap_scatter(res, src, mask, n) and a call to
637 * bitmap_scatter(res, result, mask, n) will lead to the same res value.
638 */
639static __always_inline
640void bitmap_gather(unsigned long *dst, const unsigned long *src,
641 const unsigned long *mask, unsigned int nbits)
642{
643 unsigned int n = 0;
644 unsigned int bit;
645
646 bitmap_zero(dst, nbits);
647
648 for_each_set_bit(bit, mask, nbits)
649 __assign_bit(n++, dst, test_bit(bit, src));
650}
651
652static __always_inline
653void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
654 unsigned int *re, unsigned int end)
655{
656 *rs = find_next_bit(bitmap, end, *rs);
657 *re = find_next_zero_bit(bitmap, end, *rs + 1);
658}
659
660/**
661 * bitmap_release_region - release allocated bitmap region
662 * @bitmap: array of unsigned longs corresponding to the bitmap
663 * @pos: beginning of bit region to release
664 * @order: region size (log base 2 of number of bits) to release
665 *
666 * This is the complement to __bitmap_find_free_region() and releases
667 * the found region (by clearing it in the bitmap).
668 */
669static __always_inline
670void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
671{
672 bitmap_clear(bitmap, pos, BIT(order));
673}
674
675/**
676 * bitmap_allocate_region - allocate bitmap region
677 * @bitmap: array of unsigned longs corresponding to the bitmap
678 * @pos: beginning of bit region to allocate
679 * @order: region size (log base 2 of number of bits) to allocate
680 *
681 * Allocate (set bits in) a specified region of a bitmap.
682 *
683 * Returns: 0 on success, or %-EBUSY if specified region wasn't
684 * free (not all bits were zero).
685 */
686static __always_inline
687int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
688{
689 unsigned int len = BIT(order);
690
691 if (find_next_bit(bitmap, pos + len, pos) < pos + len)
692 return -EBUSY;
693 bitmap_set(bitmap, pos, len);
694 return 0;
695}
696
697/**
698 * bitmap_find_free_region - find a contiguous aligned mem region
699 * @bitmap: array of unsigned longs corresponding to the bitmap
700 * @bits: number of bits in the bitmap
701 * @order: region size (log base 2 of number of bits) to find
702 *
703 * Find a region of free (zero) bits in a @bitmap of @bits bits and
704 * allocate them (set them to one). Only consider regions of length
705 * a power (@order) of two, aligned to that power of two, which
706 * makes the search algorithm much faster.
707 *
708 * Returns: the bit offset in bitmap of the allocated region,
709 * or -errno on failure.
710 */
711static __always_inline
712int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
713{
714 unsigned int pos, end; /* scans bitmap by regions of size order */
715
716 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
717 if (!bitmap_allocate_region(bitmap, pos, order))
718 return pos;
719 }
720 return -ENOMEM;
721}
722
723/**
724 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
725 * @n: u64 value
726 *
727 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
728 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
729 *
730 * There are four combinations of endianness and length of the word in linux
731 * ABIs: LE64, BE64, LE32 and BE32.
732 *
733 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
734 * bitmaps and therefore don't require any special handling.
735 *
736 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
737 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
738 * other hand is represented as an array of 32-bit words and the position of
739 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
740 * word. For example, bit #42 is located at 10th position of 2nd word.
741 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
742 * values in memory as it usually does. But for BE we need to swap hi and lo
743 * words manually.
744 *
745 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
746 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
747 * hi and lo words, as is expected by bitmap.
748 */
749#if __BITS_PER_LONG == 64
750#define BITMAP_FROM_U64(n) (n)
751#else
752#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
753 ((unsigned long) ((u64)(n) >> 32))
754#endif
755
756/**
757 * bitmap_from_u64 - Check and swap words within u64.
758 * @mask: source bitmap
759 * @dst: destination bitmap
760 *
761 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
762 * to read u64 mask, we will get the wrong word.
763 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
764 * but we expect the lower 32-bits of u64.
765 */
766static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
767{
768 bitmap_from_arr64(dst, &mask, 64);
769}
770
771/**
772 * bitmap_read - read a value of n-bits from the memory region
773 * @map: address to the bitmap memory region
774 * @start: bit offset of the n-bit value
775 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
776 *
777 * Returns: value of @nbits bits located at the @start bit offset within the
778 * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
779 * value is undefined.
780 */
781static __always_inline
782unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
783{
784 size_t index = BIT_WORD(start);
785 unsigned long offset = start % BITS_PER_LONG;
786 unsigned long space = BITS_PER_LONG - offset;
787 unsigned long value_low, value_high;
788
789 if (unlikely(!nbits || nbits > BITS_PER_LONG))
790 return 0;
791
792 if (space >= nbits)
793 return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
794
795 value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
796 value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
797 return (value_low >> offset) | (value_high << space);
798}
799
800/**
801 * bitmap_write - write n-bit value within a memory region
802 * @map: address to the bitmap memory region
803 * @value: value to write, clamped to nbits
804 * @start: bit offset of the n-bit value
805 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
806 *
807 * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
808 * i.e. bits beyond @nbits are ignored:
809 *
810 * for (bit = 0; bit < nbits; bit++)
811 * __assign_bit(start + bit, bitmap, val & BIT(bit));
812 *
813 * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
814 */
815static __always_inline
816void bitmap_write(unsigned long *map, unsigned long value,
817 unsigned long start, unsigned long nbits)
818{
819 size_t index;
820 unsigned long offset;
821 unsigned long space;
822 unsigned long mask;
823 bool fit;
824
825 if (unlikely(!nbits || nbits > BITS_PER_LONG))
826 return;
827
828 mask = BITMAP_LAST_WORD_MASK(nbits);
829 value &= mask;
830 offset = start % BITS_PER_LONG;
831 space = BITS_PER_LONG - offset;
832 fit = space >= nbits;
833 index = BIT_WORD(start);
834
835 map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
836 map[index] |= value << offset;
837 if (fit)
838 return;
839
840 map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
841 map[index + 1] |= (value >> space);
842}
843
844#define bitmap_get_value8(map, start) \
845 bitmap_read(map, start, BITS_PER_BYTE)
846#define bitmap_set_value8(map, value, start) \
847 bitmap_write(map, value, start, BITS_PER_BYTE)
848
849#endif /* __ASSEMBLY__ */
850
851#endif /* __LINUX_BITMAP_H */