Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/jiffies.h>
16#include <linux/kobject.h>
17#include <linux/list.h>
18#include <linux/mod_devicetable.h>
19#include <linux/module.h>
20#include <linux/mutex.h>
21#include <linux/random.h>
22#include <linux/rwsem.h>
23#include <linux/slab.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/workqueue.h>
27
28#include <linux/atomic.h>
29#include <asm/byteorder.h>
30
31#include "core.h"
32
33#define ROOT_DIR_OFFSET 5
34
35void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36{
37 ci->p = p + 1;
38 ci->end = ci->p + (p[0] >> 16);
39}
40EXPORT_SYMBOL(fw_csr_iterator_init);
41
42int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43{
44 *key = *ci->p >> 24;
45 *value = *ci->p & 0xffffff;
46
47 return ci->p++ < ci->end;
48}
49EXPORT_SYMBOL(fw_csr_iterator_next);
50
51static const u32 *search_directory(const u32 *directory, int search_key)
52{
53 struct fw_csr_iterator ci;
54 int key, value;
55
56 search_key |= CSR_DIRECTORY;
57
58 fw_csr_iterator_init(&ci, directory);
59 while (fw_csr_iterator_next(&ci, &key, &value)) {
60 if (key == search_key)
61 return ci.p - 1 + value;
62 }
63
64 return NULL;
65}
66
67static const u32 *search_leaf(const u32 *directory, int search_key)
68{
69 struct fw_csr_iterator ci;
70 int last_key = 0, key, value;
71
72 fw_csr_iterator_init(&ci, directory);
73 while (fw_csr_iterator_next(&ci, &key, &value)) {
74 if (last_key == search_key &&
75 key == (CSR_DESCRIPTOR | CSR_LEAF))
76 return ci.p - 1 + value;
77
78 last_key = key;
79 }
80
81 return NULL;
82}
83
84static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85{
86 unsigned int quadlets, i;
87 char c;
88
89 if (!size || !buf)
90 return -EINVAL;
91
92 quadlets = min(block[0] >> 16, 256U);
93 if (quadlets < 2)
94 return -ENODATA;
95
96 if (block[1] != 0 || block[2] != 0)
97 /* unknown language/character set */
98 return -ENODATA;
99
100 block += 3;
101 quadlets -= 2;
102 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103 c = block[i / 4] >> (24 - 8 * (i % 4));
104 if (c == '\0')
105 break;
106 buf[i] = c;
107 }
108 buf[i] = '\0';
109
110 return i;
111}
112
113/**
114 * fw_csr_string() - reads a string from the configuration ROM
115 * @directory: e.g. root directory or unit directory
116 * @key: the key of the preceding directory entry
117 * @buf: where to put the string
118 * @size: size of @buf, in bytes
119 *
120 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
122 * and the zero byte fit into @size.
123 *
124 * Returns strlen(buf) or a negative error code.
125 */
126int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127{
128 const u32 *leaf = search_leaf(directory, key);
129 if (!leaf)
130 return -ENOENT;
131
132 return textual_leaf_to_string(leaf, buf, size);
133}
134EXPORT_SYMBOL(fw_csr_string);
135
136static void get_ids(const u32 *directory, int *id)
137{
138 struct fw_csr_iterator ci;
139 int key, value;
140
141 fw_csr_iterator_init(&ci, directory);
142 while (fw_csr_iterator_next(&ci, &key, &value)) {
143 switch (key) {
144 case CSR_VENDOR: id[0] = value; break;
145 case CSR_MODEL: id[1] = value; break;
146 case CSR_SPECIFIER_ID: id[2] = value; break;
147 case CSR_VERSION: id[3] = value; break;
148 }
149 }
150}
151
152static void get_modalias_ids(const struct fw_unit *unit, int *id)
153{
154 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155 const u32 *directories[] = {NULL, NULL, NULL};
156 const u32 *vendor_directory;
157 int i;
158
159 directories[0] = root_directory;
160
161 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163 vendor_directory = search_directory(root_directory, CSR_VENDOR);
164 if (!vendor_directory) {
165 directories[1] = unit->directory;
166 } else {
167 directories[1] = vendor_directory;
168 directories[2] = unit->directory;
169 }
170
171 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172 get_ids(directories[i], id);
173}
174
175static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176{
177 int match = 0;
178
179 if (id[0] == id_table->vendor_id)
180 match |= IEEE1394_MATCH_VENDOR_ID;
181 if (id[1] == id_table->model_id)
182 match |= IEEE1394_MATCH_MODEL_ID;
183 if (id[2] == id_table->specifier_id)
184 match |= IEEE1394_MATCH_SPECIFIER_ID;
185 if (id[3] == id_table->version)
186 match |= IEEE1394_MATCH_VERSION;
187
188 return (match & id_table->match_flags) == id_table->match_flags;
189}
190
191static const struct ieee1394_device_id *unit_match(struct device *dev,
192 const struct device_driver *drv)
193{
194 const struct ieee1394_device_id *id_table =
195 container_of_const(drv, struct fw_driver, driver)->id_table;
196 int id[] = {0, 0, 0, 0};
197
198 get_modalias_ids(fw_unit(dev), id);
199
200 for (; id_table->match_flags != 0; id_table++)
201 if (match_ids(id_table, id))
202 return id_table;
203
204 return NULL;
205}
206
207static bool is_fw_unit(const struct device *dev);
208
209static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210{
211 /* We only allow binding to fw_units. */
212 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213}
214
215static int fw_unit_probe(struct device *dev)
216{
217 struct fw_driver *driver =
218 container_of(dev->driver, struct fw_driver, driver);
219
220 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221}
222
223static void fw_unit_remove(struct device *dev)
224{
225 struct fw_driver *driver =
226 container_of(dev->driver, struct fw_driver, driver);
227
228 driver->remove(fw_unit(dev));
229}
230
231static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232{
233 int id[] = {0, 0, 0, 0};
234
235 get_modalias_ids(unit, id);
236
237 return snprintf(buffer, buffer_size,
238 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239 id[0], id[1], id[2], id[3]);
240}
241
242static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243{
244 const struct fw_unit *unit = fw_unit(dev);
245 char modalias[64];
246
247 get_modalias(unit, modalias, sizeof(modalias));
248
249 if (add_uevent_var(env, "MODALIAS=%s", modalias))
250 return -ENOMEM;
251
252 return 0;
253}
254
255const struct bus_type fw_bus_type = {
256 .name = "firewire",
257 .match = fw_unit_match,
258 .probe = fw_unit_probe,
259 .remove = fw_unit_remove,
260};
261EXPORT_SYMBOL(fw_bus_type);
262
263int fw_device_enable_phys_dma(struct fw_device *device)
264{
265 int generation = device->generation;
266
267 /* device->node_id, accessed below, must not be older than generation */
268 smp_rmb();
269
270 return device->card->driver->enable_phys_dma(device->card,
271 device->node_id,
272 generation);
273}
274EXPORT_SYMBOL(fw_device_enable_phys_dma);
275
276struct config_rom_attribute {
277 struct device_attribute attr;
278 u32 key;
279};
280
281static ssize_t show_immediate(struct device *dev,
282 struct device_attribute *dattr, char *buf)
283{
284 struct config_rom_attribute *attr =
285 container_of(dattr, struct config_rom_attribute, attr);
286 struct fw_csr_iterator ci;
287 const u32 *directories[] = {NULL, NULL};
288 int i, value = -1;
289
290 guard(rwsem_read)(&fw_device_rwsem);
291
292 if (is_fw_unit(dev)) {
293 directories[0] = fw_unit(dev)->directory;
294 } else {
295 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297
298 if (!vendor_directory) {
299 directories[0] = root_directory;
300 } else {
301 // Legacy layout of configuration ROM described in Annex 1 of
302 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303 // Association, TA Document 1999027)'.
304 directories[0] = vendor_directory;
305 directories[1] = root_directory;
306 }
307 }
308
309 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310 int key, val;
311
312 fw_csr_iterator_init(&ci, directories[i]);
313 while (fw_csr_iterator_next(&ci, &key, &val)) {
314 if (attr->key == key)
315 value = val;
316 }
317 }
318
319 if (value < 0)
320 return -ENOENT;
321
322 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324}
325
326#define IMMEDIATE_ATTR(name, key) \
327 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328
329static ssize_t show_text_leaf(struct device *dev,
330 struct device_attribute *dattr, char *buf)
331{
332 struct config_rom_attribute *attr =
333 container_of(dattr, struct config_rom_attribute, attr);
334 const u32 *directories[] = {NULL, NULL};
335 size_t bufsize;
336 char dummy_buf[2];
337 int i, ret = -ENOENT;
338
339 guard(rwsem_read)(&fw_device_rwsem);
340
341 if (is_fw_unit(dev)) {
342 directories[0] = fw_unit(dev)->directory;
343 } else {
344 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346
347 if (!vendor_directory) {
348 directories[0] = root_directory;
349 } else {
350 // Legacy layout of configuration ROM described in Annex 1 of
351 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352 // Trading Association, TA Document 1999027)'.
353 directories[0] = root_directory;
354 directories[1] = vendor_directory;
355 }
356 }
357
358 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359 if (buf) {
360 bufsize = PAGE_SIZE - 1;
361 } else {
362 buf = dummy_buf;
363 bufsize = 1;
364 }
365
366 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367 int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368 // Detected.
369 if (result >= 0) {
370 ret = result;
371 } else if (i == 0 && attr->key == CSR_VENDOR) {
372 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373 // in the root directory follows to the directory entry for vendor ID
374 // instead of the immediate value for vendor ID.
375 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376 bufsize);
377 if (result >= 0)
378 ret = result;
379 }
380 }
381
382 if (ret < 0)
383 return ret;
384
385 // Strip trailing whitespace and add newline.
386 while (ret > 0 && isspace(buf[ret - 1]))
387 ret--;
388 strcpy(buf + ret, "\n");
389 ret++;
390
391 return ret;
392}
393
394#define TEXT_LEAF_ATTR(name, key) \
395 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396
397static struct config_rom_attribute config_rom_attributes[] = {
398 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401 IMMEDIATE_ATTR(version, CSR_VERSION),
402 IMMEDIATE_ATTR(model, CSR_MODEL),
403 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406};
407
408static void init_fw_attribute_group(struct device *dev,
409 struct device_attribute *attrs,
410 struct fw_attribute_group *group)
411{
412 struct device_attribute *attr;
413 int i, j;
414
415 for (j = 0; attrs[j].attr.name != NULL; j++)
416 group->attrs[j] = &attrs[j].attr;
417
418 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419 attr = &config_rom_attributes[i].attr;
420 if (attr->show(dev, attr, NULL) < 0)
421 continue;
422 group->attrs[j++] = &attr->attr;
423 }
424
425 group->attrs[j] = NULL;
426 group->groups[0] = &group->group;
427 group->groups[1] = NULL;
428 group->group.attrs = group->attrs;
429 dev->groups = (const struct attribute_group **) group->groups;
430}
431
432static ssize_t modalias_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434{
435 struct fw_unit *unit = fw_unit(dev);
436 int length;
437
438 length = get_modalias(unit, buf, PAGE_SIZE);
439 strcpy(buf + length, "\n");
440
441 return length + 1;
442}
443
444static ssize_t rom_index_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
446{
447 struct fw_device *device = fw_device(dev->parent);
448 struct fw_unit *unit = fw_unit(dev);
449
450 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451}
452
453static struct device_attribute fw_unit_attributes[] = {
454 __ATTR_RO(modalias),
455 __ATTR_RO(rom_index),
456 __ATTR_NULL,
457};
458
459static ssize_t config_rom_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461{
462 struct fw_device *device = fw_device(dev);
463 size_t length;
464
465 guard(rwsem_read)(&fw_device_rwsem);
466
467 length = device->config_rom_length * 4;
468 memcpy(buf, device->config_rom, length);
469
470 return length;
471}
472
473static ssize_t guid_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475{
476 struct fw_device *device = fw_device(dev);
477
478 guard(rwsem_read)(&fw_device_rwsem);
479
480 return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481}
482
483static ssize_t is_local_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485{
486 struct fw_device *device = fw_device(dev);
487
488 return sysfs_emit(buf, "%u\n", device->is_local);
489}
490
491static int units_sprintf(char *buf, const u32 *directory)
492{
493 struct fw_csr_iterator ci;
494 int key, value;
495 int specifier_id = 0;
496 int version = 0;
497
498 fw_csr_iterator_init(&ci, directory);
499 while (fw_csr_iterator_next(&ci, &key, &value)) {
500 switch (key) {
501 case CSR_SPECIFIER_ID:
502 specifier_id = value;
503 break;
504 case CSR_VERSION:
505 version = value;
506 break;
507 }
508 }
509
510 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511}
512
513static ssize_t units_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515{
516 struct fw_device *device = fw_device(dev);
517 struct fw_csr_iterator ci;
518 int key, value, i = 0;
519
520 guard(rwsem_read)(&fw_device_rwsem);
521
522 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523 while (fw_csr_iterator_next(&ci, &key, &value)) {
524 if (key != (CSR_UNIT | CSR_DIRECTORY))
525 continue;
526 i += units_sprintf(&buf[i], ci.p + value - 1);
527 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528 break;
529 }
530
531 if (i)
532 buf[i - 1] = '\n';
533
534 return i;
535}
536
537static struct device_attribute fw_device_attributes[] = {
538 __ATTR_RO(config_rom),
539 __ATTR_RO(guid),
540 __ATTR_RO(is_local),
541 __ATTR_RO(units),
542 __ATTR_NULL,
543};
544
545#define CANON_OUI 0x000085
546
547static int detect_quirks_by_bus_information_block(const u32 *bus_information_block)
548{
549 int quirks = 0;
550
551 if ((bus_information_block[2] & 0x000000f0) == 0)
552 quirks |= FW_DEVICE_QUIRK_IRM_IS_1394_1995_ONLY;
553
554 if ((bus_information_block[3] >> 8) == CANON_OUI)
555 quirks |= FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER;
556
557 return quirks;
558}
559
560struct entry_match {
561 unsigned int index;
562 u32 value;
563};
564
565static const struct entry_match motu_audio_express_matches[] = {
566 { 1, 0x030001f2 },
567 { 3, 0xd1000002 },
568 { 4, 0x8d000005 },
569 { 6, 0x120001f2 },
570 { 7, 0x13000033 },
571 { 8, 0x17104800 },
572};
573
574static const struct entry_match tascam_fw_series_matches[] = {
575 { 1, 0x0300022e },
576 { 3, 0x8d000006 },
577 { 4, 0xd1000001 },
578 { 6, 0x1200022e },
579 { 8, 0xd4000004 },
580};
581
582static int detect_quirks_by_root_directory(const u32 *root_directory, unsigned int length)
583{
584 static const struct {
585 enum fw_device_quirk quirk;
586 const struct entry_match *matches;
587 unsigned int match_count;
588 } *entry, entries[] = {
589 {
590 .quirk = FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE,
591 .matches = motu_audio_express_matches,
592 .match_count = ARRAY_SIZE(motu_audio_express_matches),
593 },
594 {
595 .quirk = FW_DEVICE_QUIRK_UNSTABLE_AT_S400,
596 .matches = tascam_fw_series_matches,
597 .match_count = ARRAY_SIZE(tascam_fw_series_matches),
598 },
599 };
600 int quirks = 0;
601 int i;
602
603 for (i = 0; i < ARRAY_SIZE(entries); ++i) {
604 int j;
605
606 entry = entries + i;
607 for (j = 0; j < entry->match_count; ++j) {
608 unsigned int index = entry->matches[j].index;
609 unsigned int value = entry->matches[j].value;
610
611 if ((length < index) || (root_directory[index] != value))
612 break;
613 }
614 if (j == entry->match_count)
615 quirks |= entry->quirk;
616 }
617
618 return quirks;
619}
620
621static int read_rom(struct fw_device *device, int generation, int speed, int index, u32 *data)
622{
623 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
624 int i, rcode;
625
626 /* device->node_id, accessed below, must not be older than generation */
627 smp_rmb();
628
629 for (i = 10; i < 100; i += 10) {
630 rcode = fw_run_transaction(device->card,
631 TCODE_READ_QUADLET_REQUEST, device->node_id,
632 generation, speed, offset, data, 4);
633 if (rcode != RCODE_BUSY)
634 break;
635 msleep(i);
636 }
637 be32_to_cpus(data);
638
639 return rcode;
640}
641
642// By quadlet unit.
643#define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
644
645/*
646 * Read the bus info block, perform a speed probe, and read all of the rest of
647 * the config ROM. We do all this with a cached bus generation. If the bus
648 * generation changes under us, read_config_rom will fail and get retried.
649 * It's better to start all over in this case because the node from which we
650 * are reading the ROM may have changed the ROM during the reset.
651 * Returns either a result code or a negative error code.
652 */
653static int read_config_rom(struct fw_device *device, int generation)
654{
655 struct fw_card *card = device->card;
656 const u32 *new_rom, *old_rom __free(kfree) = NULL;
657 u32 *stack, *rom __free(kfree) = NULL;
658 u32 sp, key;
659 int i, end, length, ret, speed;
660 int quirks;
661
662 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
663 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
664 if (rom == NULL)
665 return -ENOMEM;
666
667 stack = &rom[MAX_CONFIG_ROM_SIZE];
668 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
669
670 speed = SCODE_100;
671
672 /* First read the bus info block. */
673 for (i = 0; i < 5; i++) {
674 ret = read_rom(device, generation, speed, i, &rom[i]);
675 if (ret != RCODE_COMPLETE)
676 return ret;
677 /*
678 * As per IEEE1212 7.2, during initialization, devices can
679 * reply with a 0 for the first quadlet of the config
680 * rom to indicate that they are booting (for example,
681 * if the firmware is on the disk of a external
682 * harddisk). In that case we just fail, and the
683 * retry mechanism will try again later.
684 */
685 if (i == 0 && rom[i] == 0)
686 return RCODE_BUSY;
687 }
688
689 quirks = detect_quirks_by_bus_information_block(rom);
690
691 // Just prevent from torn writing/reading.
692 WRITE_ONCE(device->quirks, quirks);
693
694 /*
695 * Now parse the config rom. The config rom is a recursive
696 * directory structure so we parse it using a stack of
697 * references to the blocks that make up the structure. We
698 * push a reference to the root directory on the stack to
699 * start things off.
700 */
701 length = i;
702 sp = 0;
703 stack[sp++] = 0xc0000005;
704 while (sp > 0) {
705 /*
706 * Pop the next block reference of the stack. The
707 * lower 24 bits is the offset into the config rom,
708 * the upper 8 bits are the type of the reference the
709 * block.
710 */
711 key = stack[--sp];
712 i = key & 0xffffff;
713 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
714 return -ENXIO;
715
716 /* Read header quadlet for the block to get the length. */
717 ret = read_rom(device, generation, speed, i, &rom[i]);
718 if (ret != RCODE_COMPLETE)
719 return ret;
720 end = i + (rom[i] >> 16) + 1;
721 if (end > MAX_CONFIG_ROM_SIZE) {
722 /*
723 * This block extends outside the config ROM which is
724 * a firmware bug. Ignore this whole block, i.e.
725 * simply set a fake block length of 0.
726 */
727 fw_err(card, "skipped invalid ROM block %x at %llx\n",
728 rom[i],
729 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
730 rom[i] = 0;
731 end = i;
732 }
733 i++;
734
735 /*
736 * Now read in the block. If this is a directory
737 * block, check the entries as we read them to see if
738 * it references another block, and push it in that case.
739 */
740 for (; i < end; i++) {
741 ret = read_rom(device, generation, speed, i, &rom[i]);
742 if (ret != RCODE_COMPLETE)
743 return ret;
744
745 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
746 continue;
747 /*
748 * Offset points outside the ROM. May be a firmware
749 * bug or an Extended ROM entry (IEEE 1212-2001 clause
750 * 7.7.18). Simply overwrite this pointer here by a
751 * fake immediate entry so that later iterators over
752 * the ROM don't have to check offsets all the time.
753 */
754 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
755 fw_err(card,
756 "skipped unsupported ROM entry %x at %llx\n",
757 rom[i],
758 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
759 rom[i] = 0;
760 continue;
761 }
762 stack[sp++] = i + rom[i];
763 }
764 if (length < i)
765 length = i;
766 }
767
768 quirks |= detect_quirks_by_root_directory(rom + ROOT_DIR_OFFSET, length - ROOT_DIR_OFFSET);
769
770 // Just prevent from torn writing/reading.
771 WRITE_ONCE(device->quirks, quirks);
772
773 if (unlikely(quirks & FW_DEVICE_QUIRK_UNSTABLE_AT_S400))
774 speed = SCODE_200;
775 else
776 speed = device->node->max_speed;
777
778 // Determine the speed of
779 // - devices with link speed less than PHY speed,
780 // - devices with 1394b PHY (unless only connected to 1394a PHYs),
781 // - all devices if there are 1394b repeaters.
782 // Note, we cannot use the bus info block's link_spd as starting point because some buggy
783 // firmwares set it lower than necessary and because 1394-1995 nodes do not have the field.
784 if ((rom[2] & 0x7) < speed || speed == SCODE_BETA || card->beta_repeaters_present) {
785 u32 dummy;
786
787 // for S1600 and S3200.
788 if (speed == SCODE_BETA)
789 speed = card->link_speed;
790
791 while (speed > SCODE_100) {
792 if (read_rom(device, generation, speed, 0, &dummy) ==
793 RCODE_COMPLETE)
794 break;
795 --speed;
796 }
797 }
798
799 device->max_speed = speed;
800
801 old_rom = device->config_rom;
802 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
803 if (new_rom == NULL)
804 return -ENOMEM;
805
806 scoped_guard(rwsem_write, &fw_device_rwsem) {
807 device->config_rom = new_rom;
808 device->config_rom_length = length;
809 }
810
811 device->max_rec = rom[2] >> 12 & 0xf;
812 device->cmc = rom[2] >> 30 & 1;
813 device->irmc = rom[2] >> 31 & 1;
814
815 return RCODE_COMPLETE;
816}
817
818static void fw_unit_release(struct device *dev)
819{
820 struct fw_unit *unit = fw_unit(dev);
821
822 fw_device_put(fw_parent_device(unit));
823 kfree(unit);
824}
825
826static struct device_type fw_unit_type = {
827 .uevent = fw_unit_uevent,
828 .release = fw_unit_release,
829};
830
831static bool is_fw_unit(const struct device *dev)
832{
833 return dev->type == &fw_unit_type;
834}
835
836static void create_units(struct fw_device *device)
837{
838 struct fw_csr_iterator ci;
839 struct fw_unit *unit;
840 int key, value, i;
841
842 i = 0;
843 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
844 while (fw_csr_iterator_next(&ci, &key, &value)) {
845 if (key != (CSR_UNIT | CSR_DIRECTORY))
846 continue;
847
848 /*
849 * Get the address of the unit directory and try to
850 * match the drivers id_tables against it.
851 */
852 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
853 if (unit == NULL)
854 continue;
855
856 unit->directory = ci.p + value - 1;
857 unit->device.bus = &fw_bus_type;
858 unit->device.type = &fw_unit_type;
859 unit->device.parent = &device->device;
860 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
861
862 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
863 ARRAY_SIZE(fw_unit_attributes) +
864 ARRAY_SIZE(config_rom_attributes));
865 init_fw_attribute_group(&unit->device,
866 fw_unit_attributes,
867 &unit->attribute_group);
868
869 fw_device_get(device);
870 if (device_register(&unit->device) < 0) {
871 put_device(&unit->device);
872 continue;
873 }
874 }
875}
876
877static int shutdown_unit(struct device *device, void *data)
878{
879 device_unregister(device);
880
881 return 0;
882}
883
884/*
885 * fw_device_rwsem acts as dual purpose mutex:
886 * - serializes accesses to fw_device.config_rom/.config_rom_length and
887 * fw_unit.directory, unless those accesses happen at safe occasions
888 */
889DECLARE_RWSEM(fw_device_rwsem);
890
891DEFINE_XARRAY_ALLOC(fw_device_xa);
892int fw_cdev_major;
893
894struct fw_device *fw_device_get_by_devt(dev_t devt)
895{
896 struct fw_device *device;
897
898 device = xa_load(&fw_device_xa, MINOR(devt));
899 if (device)
900 fw_device_get(device);
901
902 return device;
903}
904
905struct workqueue_struct *fw_workqueue;
906EXPORT_SYMBOL(fw_workqueue);
907
908static void fw_schedule_device_work(struct fw_device *device,
909 unsigned long delay)
910{
911 queue_delayed_work(fw_workqueue, &device->work, delay);
912}
913
914/*
915 * These defines control the retry behavior for reading the config
916 * rom. It shouldn't be necessary to tweak these; if the device
917 * doesn't respond to a config rom read within 10 seconds, it's not
918 * going to respond at all. As for the initial delay, a lot of
919 * devices will be able to respond within half a second after bus
920 * reset. On the other hand, it's not really worth being more
921 * aggressive than that, since it scales pretty well; if 10 devices
922 * are plugged in, they're all getting read within one second.
923 */
924
925#define MAX_RETRIES 10
926#define RETRY_DELAY secs_to_jiffies(3)
927#define INITIAL_DELAY msecs_to_jiffies(500)
928#define SHUTDOWN_DELAY secs_to_jiffies(2)
929
930static void fw_device_shutdown(struct work_struct *work)
931{
932 struct fw_device *device = from_work(device, work, work.work);
933
934 if (time_is_after_jiffies64(device->card->reset_jiffies + SHUTDOWN_DELAY)
935 && !list_empty(&device->card->link)) {
936 fw_schedule_device_work(device, SHUTDOWN_DELAY);
937 return;
938 }
939
940 if (atomic_cmpxchg(&device->state,
941 FW_DEVICE_GONE,
942 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
943 return;
944
945 fw_device_cdev_remove(device);
946 device_for_each_child(&device->device, NULL, shutdown_unit);
947 device_unregister(&device->device);
948
949 xa_erase(&fw_device_xa, MINOR(device->device.devt));
950
951 fw_device_put(device);
952}
953
954static void fw_device_release(struct device *dev)
955{
956 struct fw_device *device = fw_device(dev);
957 struct fw_card *card = device->card;
958
959 /*
960 * Take the card lock so we don't set this to NULL while a
961 * FW_NODE_UPDATED callback is being handled or while the
962 * bus manager work looks at this node.
963 */
964 scoped_guard(spinlock_irqsave, &card->lock)
965 fw_node_set_device(device->node, NULL);
966
967 fw_node_put(device->node);
968 kfree(device->config_rom);
969 kfree(device);
970 fw_card_put(card);
971}
972
973static struct device_type fw_device_type = {
974 .release = fw_device_release,
975};
976
977static bool is_fw_device(const struct device *dev)
978{
979 return dev->type == &fw_device_type;
980}
981
982static int update_unit(struct device *dev, void *data)
983{
984 struct fw_unit *unit = fw_unit(dev);
985 struct fw_driver *driver = (struct fw_driver *)dev->driver;
986
987 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
988 device_lock(dev);
989 driver->update(unit);
990 device_unlock(dev);
991 }
992
993 return 0;
994}
995
996static void fw_device_update(struct work_struct *work)
997{
998 struct fw_device *device = from_work(device, work, work.work);
999
1000 fw_device_cdev_update(device);
1001 device_for_each_child(&device->device, NULL, update_unit);
1002}
1003
1004enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
1005
1006static void set_broadcast_channel(struct fw_device *device, int generation)
1007{
1008 struct fw_card *card = device->card;
1009 __be32 data;
1010 int rcode;
1011
1012 if (!card->broadcast_channel_allocated)
1013 return;
1014
1015 /*
1016 * The Broadcast_Channel Valid bit is required by nodes which want to
1017 * transmit on this channel. Such transmissions are practically
1018 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
1019 * to be IRM capable and have a max_rec of 8 or more. We use this fact
1020 * to narrow down to which nodes we send Broadcast_Channel updates.
1021 */
1022 if (!device->irmc || device->max_rec < 8)
1023 return;
1024
1025 /*
1026 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
1027 * Perform a read test first.
1028 */
1029 if (device->bc_implemented == BC_UNKNOWN) {
1030 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
1031 device->node_id, generation, device->max_speed,
1032 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1033 &data, 4);
1034 switch (rcode) {
1035 case RCODE_COMPLETE:
1036 if (data & cpu_to_be32(1 << 31)) {
1037 device->bc_implemented = BC_IMPLEMENTED;
1038 break;
1039 }
1040 fallthrough; /* to case address error */
1041 case RCODE_ADDRESS_ERROR:
1042 device->bc_implemented = BC_UNIMPLEMENTED;
1043 }
1044 }
1045
1046 if (device->bc_implemented == BC_IMPLEMENTED) {
1047 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
1048 BROADCAST_CHANNEL_VALID);
1049 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
1050 device->node_id, generation, device->max_speed,
1051 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1052 &data, 4);
1053 }
1054}
1055
1056int fw_device_set_broadcast_channel(struct device *dev, void *gen)
1057{
1058 if (is_fw_device(dev))
1059 set_broadcast_channel(fw_device(dev), (long)gen);
1060
1061 return 0;
1062}
1063
1064static int compare_configuration_rom(struct device *dev, const void *data)
1065{
1066 const struct fw_device *old = fw_device(dev);
1067 const u32 *config_rom = data;
1068
1069 if (!is_fw_device(dev))
1070 return 0;
1071
1072 // Compare the bus information block and root_length/root_crc.
1073 return !memcmp(old->config_rom, config_rom, 6 * 4);
1074}
1075
1076static void fw_device_init(struct work_struct *work)
1077{
1078 struct fw_device *device = from_work(device, work, work.work);
1079 struct fw_card *card = device->card;
1080 struct device *found;
1081 u32 minor;
1082 int ret;
1083
1084 /*
1085 * All failure paths here call fw_node_set_device(node, NULL), so that we
1086 * don't try to do device_for_each_child() on a kfree()'d
1087 * device.
1088 */
1089
1090 ret = read_config_rom(device, device->generation);
1091 if (ret != RCODE_COMPLETE) {
1092 if (device->config_rom_retries < MAX_RETRIES &&
1093 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1094 device->config_rom_retries++;
1095 fw_schedule_device_work(device, RETRY_DELAY);
1096 } else {
1097 if (device->node->link_on)
1098 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1099 device->node_id,
1100 fw_rcode_string(ret));
1101 if (device->node == card->root_node)
1102 fw_schedule_bm_work(card, 0);
1103 fw_device_release(&device->device);
1104 }
1105 return;
1106 }
1107
1108 // If a device was pending for deletion because its node went away but its bus info block
1109 // and root directory header matches that of a newly discovered device, revive the
1110 // existing fw_device. The newly allocated fw_device becomes obsolete instead.
1111 //
1112 // serialize config_rom access.
1113 scoped_guard(rwsem_read, &fw_device_rwsem) {
1114 found = device_find_child(card->device, device->config_rom,
1115 compare_configuration_rom);
1116 }
1117 if (found) {
1118 struct fw_device *reused = fw_device(found);
1119
1120 if (atomic_cmpxchg(&reused->state,
1121 FW_DEVICE_GONE,
1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1123 // serialize node access
1124 scoped_guard(spinlock_irq, &card->lock) {
1125 struct fw_node *current_node = device->node;
1126 struct fw_node *obsolete_node = reused->node;
1127
1128 device->node = obsolete_node;
1129 fw_node_set_device(device->node, device);
1130 reused->node = current_node;
1131 fw_node_set_device(reused->node, reused);
1132
1133 reused->max_speed = device->max_speed;
1134 reused->node_id = current_node->node_id;
1135 smp_wmb(); /* update node_id before generation */
1136 reused->generation = card->generation;
1137 reused->config_rom_retries = 0;
1138 fw_notice(card, "rediscovered device %s\n",
1139 dev_name(found));
1140
1141 reused->workfn = fw_device_update;
1142 fw_schedule_device_work(reused, 0);
1143
1144 if (current_node == card->root_node)
1145 fw_schedule_bm_work(card, 0);
1146 }
1147
1148 put_device(found);
1149 fw_device_release(&device->device);
1150
1151 return;
1152 }
1153
1154 put_device(found);
1155 }
1156
1157 device_initialize(&device->device);
1158
1159 fw_device_get(device);
1160
1161 // The index of allocated entry is used for minor identifier of device node.
1162 ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1163 if (ret < 0)
1164 goto error;
1165
1166 device->device.bus = &fw_bus_type;
1167 device->device.type = &fw_device_type;
1168 device->device.parent = card->device;
1169 device->device.devt = MKDEV(fw_cdev_major, minor);
1170 dev_set_name(&device->device, "fw%d", minor);
1171
1172 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1173 ARRAY_SIZE(fw_device_attributes) +
1174 ARRAY_SIZE(config_rom_attributes));
1175 init_fw_attribute_group(&device->device,
1176 fw_device_attributes,
1177 &device->attribute_group);
1178
1179 if (device_add(&device->device)) {
1180 fw_err(card, "failed to add device\n");
1181 goto error_with_cdev;
1182 }
1183
1184 create_units(device);
1185
1186 /*
1187 * Transition the device to running state. If it got pulled
1188 * out from under us while we did the initialization work, we
1189 * have to shut down the device again here. Normally, though,
1190 * fw_node_event will be responsible for shutting it down when
1191 * necessary. We have to use the atomic cmpxchg here to avoid
1192 * racing with the FW_NODE_DESTROYED case in
1193 * fw_node_event().
1194 */
1195 if (atomic_cmpxchg(&device->state,
1196 FW_DEVICE_INITIALIZING,
1197 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1198 device->workfn = fw_device_shutdown;
1199 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1200 } else {
1201 fw_notice(card, "created device %s: GUID %08x%08x, S%d00, quirks %08x\n",
1202 dev_name(&device->device),
1203 device->config_rom[3], device->config_rom[4],
1204 1 << device->max_speed, device->quirks);
1205 device->config_rom_retries = 0;
1206
1207 set_broadcast_channel(device, device->generation);
1208
1209 add_device_randomness(&device->config_rom[3], 8);
1210 }
1211
1212 /*
1213 * Reschedule the IRM work if we just finished reading the
1214 * root node config rom. If this races with a bus reset we
1215 * just end up running the IRM work a couple of extra times -
1216 * pretty harmless.
1217 */
1218 if (device->node == card->root_node)
1219 fw_schedule_bm_work(card, 0);
1220
1221 return;
1222
1223 error_with_cdev:
1224 xa_erase(&fw_device_xa, minor);
1225 error:
1226 fw_device_put(device); // fw_device_xa's reference.
1227
1228 put_device(&device->device); /* our reference */
1229}
1230
1231/* Reread and compare bus info block and header of root directory */
1232static int reread_config_rom(struct fw_device *device, int generation,
1233 bool *changed)
1234{
1235 u32 q;
1236 int i, rcode;
1237
1238 for (i = 0; i < 6; i++) {
1239 rcode = read_rom(device, generation, device->max_speed, i, &q);
1240 if (rcode != RCODE_COMPLETE)
1241 return rcode;
1242
1243 if (i == 0 && q == 0)
1244 /* inaccessible (see read_config_rom); retry later */
1245 return RCODE_BUSY;
1246
1247 if (q != device->config_rom[i]) {
1248 *changed = true;
1249 return RCODE_COMPLETE;
1250 }
1251 }
1252
1253 *changed = false;
1254 return RCODE_COMPLETE;
1255}
1256
1257static void fw_device_refresh(struct work_struct *work)
1258{
1259 struct fw_device *device = from_work(device, work, work.work);
1260 struct fw_card *card = device->card;
1261 int ret, node_id = device->node_id;
1262 bool changed;
1263
1264 ret = reread_config_rom(device, device->generation, &changed);
1265 if (ret != RCODE_COMPLETE)
1266 goto failed_config_rom;
1267
1268 if (!changed) {
1269 if (atomic_cmpxchg(&device->state,
1270 FW_DEVICE_INITIALIZING,
1271 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1272 goto gone;
1273
1274 fw_device_update(work);
1275 device->config_rom_retries = 0;
1276 goto out;
1277 }
1278
1279 /*
1280 * Something changed. We keep things simple and don't investigate
1281 * further. We just destroy all previous units and create new ones.
1282 */
1283 device_for_each_child(&device->device, NULL, shutdown_unit);
1284
1285 ret = read_config_rom(device, device->generation);
1286 if (ret != RCODE_COMPLETE)
1287 goto failed_config_rom;
1288
1289 fw_device_cdev_update(device);
1290 create_units(device);
1291
1292 /* Userspace may want to re-read attributes. */
1293 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1294
1295 if (atomic_cmpxchg(&device->state,
1296 FW_DEVICE_INITIALIZING,
1297 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1298 goto gone;
1299
1300 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1301 device->config_rom_retries = 0;
1302 goto out;
1303
1304 failed_config_rom:
1305 if (device->config_rom_retries < MAX_RETRIES &&
1306 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1307 device->config_rom_retries++;
1308 fw_schedule_device_work(device, RETRY_DELAY);
1309 return;
1310 }
1311
1312 fw_notice(card, "giving up on refresh of device %s: %s\n",
1313 dev_name(&device->device), fw_rcode_string(ret));
1314 gone:
1315 atomic_set(&device->state, FW_DEVICE_GONE);
1316 device->workfn = fw_device_shutdown;
1317 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1318 out:
1319 if (node_id == card->root_node->node_id)
1320 fw_schedule_bm_work(card, 0);
1321}
1322
1323static void fw_device_workfn(struct work_struct *work)
1324{
1325 struct fw_device *device = from_work(device, to_delayed_work(work), work);
1326 device->workfn(work);
1327}
1328
1329void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1330{
1331 struct fw_device *device;
1332
1333 switch (event) {
1334 case FW_NODE_CREATED:
1335 /*
1336 * Attempt to scan the node, regardless whether its self ID has
1337 * the L (link active) flag set or not. Some broken devices
1338 * send L=0 but have an up-and-running link; others send L=1
1339 * without actually having a link.
1340 */
1341 create:
1342 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1343 if (device == NULL)
1344 break;
1345
1346 /*
1347 * Do minimal initialization of the device here, the
1348 * rest will happen in fw_device_init().
1349 *
1350 * Attention: A lot of things, even fw_device_get(),
1351 * cannot be done before fw_device_init() finished!
1352 * You can basically just check device->state and
1353 * schedule work until then, but only while holding
1354 * card->lock.
1355 */
1356 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1357 device->card = fw_card_get(card);
1358 device->node = fw_node_get(node);
1359 device->node_id = node->node_id;
1360 device->generation = card->generation;
1361 device->is_local = node == card->local_node;
1362 mutex_init(&device->client_list_mutex);
1363 INIT_LIST_HEAD(&device->client_list);
1364
1365 /*
1366 * Set the node data to point back to this device so
1367 * FW_NODE_UPDATED callbacks can update the node_id
1368 * and generation for the device.
1369 */
1370 fw_node_set_device(node, device);
1371
1372 /*
1373 * Many devices are slow to respond after bus resets,
1374 * especially if they are bus powered and go through
1375 * power-up after getting plugged in. We schedule the
1376 * first config rom scan half a second after bus reset.
1377 */
1378 device->workfn = fw_device_init;
1379 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1380 fw_schedule_device_work(device, INITIAL_DELAY);
1381 break;
1382
1383 case FW_NODE_INITIATED_RESET:
1384 case FW_NODE_LINK_ON:
1385 device = fw_node_get_device(node);
1386 if (device == NULL)
1387 goto create;
1388
1389 device->node_id = node->node_id;
1390 smp_wmb(); /* update node_id before generation */
1391 device->generation = card->generation;
1392 if (atomic_cmpxchg(&device->state,
1393 FW_DEVICE_RUNNING,
1394 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1395 device->workfn = fw_device_refresh;
1396 fw_schedule_device_work(device,
1397 device->is_local ? 0 : INITIAL_DELAY);
1398 }
1399 break;
1400
1401 case FW_NODE_UPDATED:
1402 device = fw_node_get_device(node);
1403 if (device == NULL)
1404 break;
1405
1406 device->node_id = node->node_id;
1407 smp_wmb(); /* update node_id before generation */
1408 device->generation = card->generation;
1409 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1410 device->workfn = fw_device_update;
1411 fw_schedule_device_work(device, 0);
1412 }
1413 break;
1414
1415 case FW_NODE_DESTROYED:
1416 case FW_NODE_LINK_OFF:
1417 if (!fw_node_get_device(node))
1418 break;
1419
1420 /*
1421 * Destroy the device associated with the node. There
1422 * are two cases here: either the device is fully
1423 * initialized (FW_DEVICE_RUNNING) or we're in the
1424 * process of reading its config rom
1425 * (FW_DEVICE_INITIALIZING). If it is fully
1426 * initialized we can reuse device->work to schedule a
1427 * full fw_device_shutdown(). If not, there's work
1428 * scheduled to read it's config rom, and we just put
1429 * the device in shutdown state to have that code fail
1430 * to create the device.
1431 */
1432 device = fw_node_get_device(node);
1433 if (atomic_xchg(&device->state,
1434 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1435 device->workfn = fw_device_shutdown;
1436 fw_schedule_device_work(device,
1437 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1438 }
1439 break;
1440 }
1441}
1442
1443#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1444#include "device-attribute-test.c"
1445#endif