at v6.18 42 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78/* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113 PG_dropbehind, /* drop pages on IO completion */ 114#ifdef CONFIG_MMU 115 PG_mlocked, /* Page is vma mlocked */ 116#endif 117#ifdef CONFIG_MEMORY_FAILURE 118 PG_hwpoison, /* hardware poisoned page. Don't touch */ 119#endif 120#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 121 PG_young, 122 PG_idle, 123#endif 124#ifdef CONFIG_ARCH_USES_PG_ARCH_2 125 PG_arch_2, 126#endif 127#ifdef CONFIG_ARCH_USES_PG_ARCH_3 128 PG_arch_3, 129#endif 130 __NR_PAGEFLAGS, 131 132 PG_readahead = PG_reclaim, 133 134 /* Anonymous memory (and shmem) */ 135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 136 /* Some filesystems */ 137 PG_checked = PG_owner_priv_1, 138 139 /* 140 * Depending on the way an anonymous folio can be mapped into a page 141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 142 * THP), PG_anon_exclusive may be set only for the head page or for 143 * tail pages of an anonymous folio. For now, we only expect it to be 144 * set on tail pages for PTE-mapped THP. 145 */ 146 PG_anon_exclusive = PG_owner_2, 147 148 /* 149 * Set if all buffer heads in the folio are mapped. 150 * Filesystems which do not use BHs can use it for their own purpose. 151 */ 152 PG_mappedtodisk = PG_owner_2, 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170#ifdef CONFIG_MIGRATION 171 /* movable_ops page that is isolated for migration */ 172 PG_movable_ops_isolated = PG_reclaim, 173 /* this is a movable_ops page (for selected typed pages only) */ 174 PG_movable_ops = PG_uptodate, 175#endif 176 177 /* Only valid for buddy pages. Used to track pages that are reported */ 178 PG_reported = PG_uptodate, 179 180#ifdef CONFIG_MEMORY_HOTPLUG 181 /* For self-hosted memmap pages */ 182 PG_vmemmap_self_hosted = PG_owner_priv_1, 183#endif 184 185 /* 186 * Flags only valid for compound pages. Stored in first tail page's 187 * flags word. Cannot use the first 8 flags or any flag marked as 188 * PF_ANY. 189 */ 190 191 /* At least one page in this folio has the hwpoison flag set */ 192 PG_has_hwpoisoned = PG_active, 193 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 194 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 195}; 196 197#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 198 199#ifndef __GENERATING_BOUNDS_H 200 201#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 202DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 203 204/* 205 * Return the real head page struct iff the @page is a fake head page, otherwise 206 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 207 */ 208static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 209{ 210 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 211 return page; 212 213 /* 214 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 215 * struct page. The alignment check aims to avoid access the fields ( 216 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 217 * cold cacheline in some cases. 218 */ 219 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 220 test_bit(PG_head, &page->flags.f)) { 221 /* 222 * We can safely access the field of the @page[1] with PG_head 223 * because the @page is a compound page composed with at least 224 * two contiguous pages. 225 */ 226 unsigned long head = READ_ONCE(page[1].compound_head); 227 228 if (likely(head & 1)) 229 return (const struct page *)(head - 1); 230 } 231 return page; 232} 233 234static __always_inline bool page_count_writable(const struct page *page, int u) 235{ 236 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 237 return true; 238 239 /* 240 * The refcount check is ordered before the fake-head check to prevent 241 * the following race: 242 * CPU 1 (HVO) CPU 2 (speculative PFN walker) 243 * 244 * page_ref_freeze() 245 * synchronize_rcu() 246 * rcu_read_lock() 247 * page_is_fake_head() is false 248 * vmemmap_remap_pte() 249 * XXX: struct page[] becomes r/o 250 * 251 * page_ref_unfreeze() 252 * page_ref_count() is not zero 253 * 254 * atomic_add_unless(&page->_refcount) 255 * XXX: try to modify r/o struct page[] 256 * 257 * The refcount check also prevents modification attempts to other (r/o) 258 * tail pages that are not fake heads. 259 */ 260 if (atomic_read_acquire(&page->_refcount) == u) 261 return false; 262 263 return page_fixed_fake_head(page) == page; 264} 265#else 266static inline const struct page *page_fixed_fake_head(const struct page *page) 267{ 268 return page; 269} 270 271static inline bool page_count_writable(const struct page *page, int u) 272{ 273 return true; 274} 275#endif 276 277static __always_inline int page_is_fake_head(const struct page *page) 278{ 279 return page_fixed_fake_head(page) != page; 280} 281 282static __always_inline unsigned long _compound_head(const struct page *page) 283{ 284 unsigned long head = READ_ONCE(page->compound_head); 285 286 if (unlikely(head & 1)) 287 return head - 1; 288 return (unsigned long)page_fixed_fake_head(page); 289} 290 291#define compound_head(page) ((typeof(page))_compound_head(page)) 292 293/** 294 * page_folio - Converts from page to folio. 295 * @p: The page. 296 * 297 * Every page is part of a folio. This function cannot be called on a 298 * NULL pointer. 299 * 300 * Context: No reference, nor lock is required on @page. If the caller 301 * does not hold a reference, this call may race with a folio split, so 302 * it should re-check the folio still contains this page after gaining 303 * a reference on the folio. 304 * Return: The folio which contains this page. 305 */ 306#define page_folio(p) (_Generic((p), \ 307 const struct page *: (const struct folio *)_compound_head(p), \ 308 struct page *: (struct folio *)_compound_head(p))) 309 310/** 311 * folio_page - Return a page from a folio. 312 * @folio: The folio. 313 * @n: The page number to return. 314 * 315 * @n is relative to the start of the folio. This function does not 316 * check that the page number lies within @folio; the caller is presumed 317 * to have a reference to the page. 318 */ 319#define folio_page(folio, n) (&(folio)->page + (n)) 320 321static __always_inline int PageTail(const struct page *page) 322{ 323 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 324} 325 326static __always_inline int PageCompound(const struct page *page) 327{ 328 return test_bit(PG_head, &page->flags.f) || 329 READ_ONCE(page->compound_head) & 1; 330} 331 332#define PAGE_POISON_PATTERN -1l 333static inline int PagePoisoned(const struct page *page) 334{ 335 return READ_ONCE(page->flags.f) == PAGE_POISON_PATTERN; 336} 337 338#ifdef CONFIG_DEBUG_VM 339void page_init_poison(struct page *page, size_t size); 340#else 341static inline void page_init_poison(struct page *page, size_t size) 342{ 343} 344#endif 345 346static const unsigned long *const_folio_flags(const struct folio *folio, 347 unsigned n) 348{ 349 const struct page *page = &folio->page; 350 351 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 352 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags.f), page); 353 return &page[n].flags.f; 354} 355 356static unsigned long *folio_flags(struct folio *folio, unsigned n) 357{ 358 struct page *page = &folio->page; 359 360 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 361 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags.f), page); 362 return &page[n].flags.f; 363} 364 365/* 366 * Page flags policies wrt compound pages 367 * 368 * PF_POISONED_CHECK 369 * check if this struct page poisoned/uninitialized 370 * 371 * PF_ANY: 372 * the page flag is relevant for small, head and tail pages. 373 * 374 * PF_HEAD: 375 * for compound page all operations related to the page flag applied to 376 * head page. 377 * 378 * PF_NO_TAIL: 379 * modifications of the page flag must be done on small or head pages, 380 * checks can be done on tail pages too. 381 * 382 * PF_NO_COMPOUND: 383 * the page flag is not relevant for compound pages. 384 * 385 * PF_SECOND: 386 * the page flag is stored in the first tail page. 387 */ 388#define PF_POISONED_CHECK(page) ({ \ 389 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 390 page; }) 391#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 392#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 393#define PF_NO_TAIL(page, enforce) ({ \ 394 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 395 PF_POISONED_CHECK(compound_head(page)); }) 396#define PF_NO_COMPOUND(page, enforce) ({ \ 397 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 398 PF_POISONED_CHECK(page); }) 399#define PF_SECOND(page, enforce) ({ \ 400 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 401 PF_POISONED_CHECK(&page[1]); }) 402 403/* Which page is the flag stored in */ 404#define FOLIO_PF_ANY 0 405#define FOLIO_PF_HEAD 0 406#define FOLIO_PF_NO_TAIL 0 407#define FOLIO_PF_NO_COMPOUND 0 408#define FOLIO_PF_SECOND 1 409 410#define FOLIO_HEAD_PAGE 0 411#define FOLIO_SECOND_PAGE 1 412 413/* 414 * Macros to create function definitions for page flags 415 */ 416#define FOLIO_TEST_FLAG(name, page) \ 417static __always_inline bool folio_test_##name(const struct folio *folio) \ 418{ return test_bit(PG_##name, const_folio_flags(folio, page)); } 419 420#define FOLIO_SET_FLAG(name, page) \ 421static __always_inline void folio_set_##name(struct folio *folio) \ 422{ set_bit(PG_##name, folio_flags(folio, page)); } 423 424#define FOLIO_CLEAR_FLAG(name, page) \ 425static __always_inline void folio_clear_##name(struct folio *folio) \ 426{ clear_bit(PG_##name, folio_flags(folio, page)); } 427 428#define __FOLIO_SET_FLAG(name, page) \ 429static __always_inline void __folio_set_##name(struct folio *folio) \ 430{ __set_bit(PG_##name, folio_flags(folio, page)); } 431 432#define __FOLIO_CLEAR_FLAG(name, page) \ 433static __always_inline void __folio_clear_##name(struct folio *folio) \ 434{ __clear_bit(PG_##name, folio_flags(folio, page)); } 435 436#define FOLIO_TEST_SET_FLAG(name, page) \ 437static __always_inline bool folio_test_set_##name(struct folio *folio) \ 438{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 439 440#define FOLIO_TEST_CLEAR_FLAG(name, page) \ 441static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 442{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 443 444#define FOLIO_FLAG(name, page) \ 445FOLIO_TEST_FLAG(name, page) \ 446FOLIO_SET_FLAG(name, page) \ 447FOLIO_CLEAR_FLAG(name, page) 448 449#define TESTPAGEFLAG(uname, lname, policy) \ 450FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 451static __always_inline int Page##uname(const struct page *page) \ 452{ return test_bit(PG_##lname, &policy(page, 0)->flags.f); } 453 454#define SETPAGEFLAG(uname, lname, policy) \ 455FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 456static __always_inline void SetPage##uname(struct page *page) \ 457{ set_bit(PG_##lname, &policy(page, 1)->flags.f); } 458 459#define CLEARPAGEFLAG(uname, lname, policy) \ 460FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 461static __always_inline void ClearPage##uname(struct page *page) \ 462{ clear_bit(PG_##lname, &policy(page, 1)->flags.f); } 463 464#define __SETPAGEFLAG(uname, lname, policy) \ 465__FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 466static __always_inline void __SetPage##uname(struct page *page) \ 467{ __set_bit(PG_##lname, &policy(page, 1)->flags.f); } 468 469#define __CLEARPAGEFLAG(uname, lname, policy) \ 470__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 471static __always_inline void __ClearPage##uname(struct page *page) \ 472{ __clear_bit(PG_##lname, &policy(page, 1)->flags.f); } 473 474#define TESTSETFLAG(uname, lname, policy) \ 475FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 476static __always_inline int TestSetPage##uname(struct page *page) \ 477{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags.f); } 478 479#define TESTCLEARFLAG(uname, lname, policy) \ 480FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 481static __always_inline int TestClearPage##uname(struct page *page) \ 482{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags.f); } 483 484#define PAGEFLAG(uname, lname, policy) \ 485 TESTPAGEFLAG(uname, lname, policy) \ 486 SETPAGEFLAG(uname, lname, policy) \ 487 CLEARPAGEFLAG(uname, lname, policy) 488 489#define __PAGEFLAG(uname, lname, policy) \ 490 TESTPAGEFLAG(uname, lname, policy) \ 491 __SETPAGEFLAG(uname, lname, policy) \ 492 __CLEARPAGEFLAG(uname, lname, policy) 493 494#define TESTSCFLAG(uname, lname, policy) \ 495 TESTSETFLAG(uname, lname, policy) \ 496 TESTCLEARFLAG(uname, lname, policy) 497 498#define FOLIO_TEST_FLAG_FALSE(name) \ 499static inline bool folio_test_##name(const struct folio *folio) \ 500{ return false; } 501#define FOLIO_SET_FLAG_NOOP(name) \ 502static inline void folio_set_##name(struct folio *folio) { } 503#define FOLIO_CLEAR_FLAG_NOOP(name) \ 504static inline void folio_clear_##name(struct folio *folio) { } 505#define __FOLIO_SET_FLAG_NOOP(name) \ 506static inline void __folio_set_##name(struct folio *folio) { } 507#define __FOLIO_CLEAR_FLAG_NOOP(name) \ 508static inline void __folio_clear_##name(struct folio *folio) { } 509#define FOLIO_TEST_SET_FLAG_FALSE(name) \ 510static inline bool folio_test_set_##name(struct folio *folio) \ 511{ return false; } 512#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 513static inline bool folio_test_clear_##name(struct folio *folio) \ 514{ return false; } 515 516#define FOLIO_FLAG_FALSE(name) \ 517FOLIO_TEST_FLAG_FALSE(name) \ 518FOLIO_SET_FLAG_NOOP(name) \ 519FOLIO_CLEAR_FLAG_NOOP(name) 520 521#define TESTPAGEFLAG_FALSE(uname, lname) \ 522FOLIO_TEST_FLAG_FALSE(lname) \ 523static inline int Page##uname(const struct page *page) { return 0; } 524 525#define SETPAGEFLAG_NOOP(uname, lname) \ 526FOLIO_SET_FLAG_NOOP(lname) \ 527static inline void SetPage##uname(struct page *page) { } 528 529#define CLEARPAGEFLAG_NOOP(uname, lname) \ 530FOLIO_CLEAR_FLAG_NOOP(lname) \ 531static inline void ClearPage##uname(struct page *page) { } 532 533#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 534__FOLIO_CLEAR_FLAG_NOOP(lname) \ 535static inline void __ClearPage##uname(struct page *page) { } 536 537#define TESTSETFLAG_FALSE(uname, lname) \ 538FOLIO_TEST_SET_FLAG_FALSE(lname) \ 539static inline int TestSetPage##uname(struct page *page) { return 0; } 540 541#define TESTCLEARFLAG_FALSE(uname, lname) \ 542FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 543static inline int TestClearPage##uname(struct page *page) { return 0; } 544 545#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 546 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 547 548#define TESTSCFLAG_FALSE(uname, lname) \ 549 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 550 551__PAGEFLAG(Locked, locked, PF_NO_TAIL) 552FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 553FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 554 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 555 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 556PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 557 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 558PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 559 TESTCLEARFLAG(LRU, lru, PF_HEAD) 560FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 561 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 562 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 563PAGEFLAG(Workingset, workingset, PF_HEAD) 564 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 565PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 566 567/* Xen */ 568PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 569 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 570PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 571PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 572PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 573 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 574 575PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 576 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 577 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 578FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 579 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 580 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 581 582/* 583 * Private page markings that may be used by the filesystem that owns the page 584 * for its own purposes. 585 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 586 */ 587PAGEFLAG(Private, private, PF_ANY) 588FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE) 589 590/* owner_2 can be set on tail pages for anon memory */ 591FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 592 593/* 594 * Only test-and-set exist for PG_writeback. The unconditional operators are 595 * risky: they bypass page accounting. 596 */ 597TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 598 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 599FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE) 600 601/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 602PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 603 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 604FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 605 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 606 607FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE) 608 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE) 609 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE) 610 611#ifdef CONFIG_HIGHMEM 612/* 613 * Must use a macro here due to header dependency issues. page_zone() is not 614 * available at this point. 615 */ 616#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 617#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 618#else 619PAGEFLAG_FALSE(HighMem, highmem) 620#endif 621#define PhysHighMem(__p) (PageHighMem(phys_to_page(__p))) 622 623/* Does kmap_local_folio() only allow access to one page of the folio? */ 624#ifdef CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP 625#define folio_test_partial_kmap(f) true 626#else 627#define folio_test_partial_kmap(f) folio_test_highmem(f) 628#endif 629 630#ifdef CONFIG_SWAP 631static __always_inline bool folio_test_swapcache(const struct folio *folio) 632{ 633 return folio_test_swapbacked(folio) && 634 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 635} 636 637FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 638FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 639#else 640FOLIO_FLAG_FALSE(swapcache) 641#endif 642 643FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 644 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 645 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 646 647#ifdef CONFIG_MMU 648FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 649 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 650 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 651 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 652#else 653FOLIO_FLAG_FALSE(mlocked) 654 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 655 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 656 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 657#endif 658 659#ifdef CONFIG_MEMORY_FAILURE 660PAGEFLAG(HWPoison, hwpoison, PF_ANY) 661TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 662#define __PG_HWPOISON (1UL << PG_hwpoison) 663#else 664PAGEFLAG_FALSE(HWPoison, hwpoison) 665#define __PG_HWPOISON 0 666#endif 667 668#ifdef CONFIG_PAGE_IDLE_FLAG 669#ifdef CONFIG_64BIT 670FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 671FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 672FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 673FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 674#endif 675/* See page_idle.h for !64BIT workaround */ 676#else /* !CONFIG_PAGE_IDLE_FLAG */ 677FOLIO_FLAG_FALSE(young) 678FOLIO_TEST_CLEAR_FLAG_FALSE(young) 679FOLIO_FLAG_FALSE(idle) 680#endif 681 682/* 683 * PageReported() is used to track reported free pages within the Buddy 684 * allocator. We can use the non-atomic version of the test and set 685 * operations as both should be shielded with the zone lock to prevent 686 * any possible races on the setting or clearing of the bit. 687 */ 688__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 689 690#ifdef CONFIG_MEMORY_HOTPLUG 691PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 692#else 693PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 694#endif 695 696/* 697 * On an anonymous folio mapped into a user virtual memory area, 698 * folio->mapping points to its anon_vma, not to a struct address_space; 699 * with the FOLIO_MAPPING_ANON bit set to distinguish it. See rmap.h. 700 * 701 * On an anonymous folio in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 702 * the FOLIO_MAPPING_ANON_KSM bit may be set along with the FOLIO_MAPPING_ANON 703 * bit; and then folio->mapping points, not to an anon_vma, but to a private 704 * structure which KSM associates with that merged folio. See ksm.h. 705 * 706 * Please note that, confusingly, "folio_mapping" refers to the inode 707 * address_space which maps the folio from disk; whereas "folio_mapped" 708 * refers to user virtual address space into which the folio is mapped. 709 * 710 * For slab pages, since slab reuses the bits in struct page to store its 711 * internal states, the folio->mapping does not exist as such, nor do 712 * these flags below. So in order to avoid testing non-existent bits, 713 * please make sure that folio_test_slab(folio) actually evaluates to 714 * false before calling the following functions (e.g., folio_test_anon). 715 * See mm/slab.h. 716 */ 717#define FOLIO_MAPPING_ANON 0x1 718#define FOLIO_MAPPING_ANON_KSM 0x2 719#define FOLIO_MAPPING_KSM (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM) 720#define FOLIO_MAPPING_FLAGS (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM) 721 722static __always_inline bool folio_test_anon(const struct folio *folio) 723{ 724 return ((unsigned long)folio->mapping & FOLIO_MAPPING_ANON) != 0; 725} 726 727static __always_inline bool PageAnonNotKsm(const struct page *page) 728{ 729 unsigned long flags = (unsigned long)page_folio(page)->mapping; 730 731 return (flags & FOLIO_MAPPING_FLAGS) == FOLIO_MAPPING_ANON; 732} 733 734static __always_inline bool PageAnon(const struct page *page) 735{ 736 return folio_test_anon(page_folio(page)); 737} 738#ifdef CONFIG_KSM 739/* 740 * A KSM page is one of those write-protected "shared pages" or "merged pages" 741 * which KSM maps into multiple mms, wherever identical anonymous page content 742 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 743 * anon_vma, but to that page's node of the stable tree. 744 */ 745static __always_inline bool folio_test_ksm(const struct folio *folio) 746{ 747 return ((unsigned long)folio->mapping & FOLIO_MAPPING_FLAGS) == 748 FOLIO_MAPPING_KSM; 749} 750#else 751FOLIO_TEST_FLAG_FALSE(ksm) 752#endif 753 754u64 stable_page_flags(const struct page *page); 755 756/** 757 * folio_xor_flags_has_waiters - Change some folio flags. 758 * @folio: The folio. 759 * @mask: Bits set in this word will be changed. 760 * 761 * This must only be used for flags which are changed with the folio 762 * lock held. For example, it is unsafe to use for PG_dirty as that 763 * can be set without the folio lock held. It can also only be used 764 * on flags which are in the range 0-6 as some of the implementations 765 * only affect those bits. 766 * 767 * Return: Whether there are tasks waiting on the folio. 768 */ 769static inline bool folio_xor_flags_has_waiters(struct folio *folio, 770 unsigned long mask) 771{ 772 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 773} 774 775/** 776 * folio_test_uptodate - Is this folio up to date? 777 * @folio: The folio. 778 * 779 * The uptodate flag is set on a folio when every byte in the folio is 780 * at least as new as the corresponding bytes on storage. Anonymous 781 * and CoW folios are always uptodate. If the folio is not uptodate, 782 * some of the bytes in it may be; see the is_partially_uptodate() 783 * address_space operation. 784 */ 785static inline bool folio_test_uptodate(const struct folio *folio) 786{ 787 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 788 /* 789 * Must ensure that the data we read out of the folio is loaded 790 * _after_ we've loaded folio->flags to check the uptodate bit. 791 * We can skip the barrier if the folio is not uptodate, because 792 * we wouldn't be reading anything from it. 793 * 794 * See folio_mark_uptodate() for the other side of the story. 795 */ 796 if (ret) 797 smp_rmb(); 798 799 return ret; 800} 801 802static inline bool PageUptodate(const struct page *page) 803{ 804 return folio_test_uptodate(page_folio(page)); 805} 806 807static __always_inline void __folio_mark_uptodate(struct folio *folio) 808{ 809 smp_wmb(); 810 __set_bit(PG_uptodate, folio_flags(folio, 0)); 811} 812 813static __always_inline void folio_mark_uptodate(struct folio *folio) 814{ 815 /* 816 * Memory barrier must be issued before setting the PG_uptodate bit, 817 * so that all previous stores issued in order to bring the folio 818 * uptodate are actually visible before folio_test_uptodate becomes true. 819 */ 820 smp_wmb(); 821 set_bit(PG_uptodate, folio_flags(folio, 0)); 822} 823 824static __always_inline void __SetPageUptodate(struct page *page) 825{ 826 __folio_mark_uptodate((struct folio *)page); 827} 828 829static __always_inline void SetPageUptodate(struct page *page) 830{ 831 folio_mark_uptodate((struct folio *)page); 832} 833 834CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 835 836void __folio_start_writeback(struct folio *folio, bool keep_write); 837void set_page_writeback(struct page *page); 838 839#define folio_start_writeback(folio) \ 840 __folio_start_writeback(folio, false) 841 842static __always_inline bool folio_test_head(const struct folio *folio) 843{ 844 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 845} 846 847static __always_inline int PageHead(const struct page *page) 848{ 849 PF_POISONED_CHECK(page); 850 return test_bit(PG_head, &page->flags.f) && !page_is_fake_head(page); 851} 852 853__SETPAGEFLAG(Head, head, PF_ANY) 854__CLEARPAGEFLAG(Head, head, PF_ANY) 855CLEARPAGEFLAG(Head, head, PF_ANY) 856 857/** 858 * folio_test_large() - Does this folio contain more than one page? 859 * @folio: The folio to test. 860 * 861 * Return: True if the folio is larger than one page. 862 */ 863static inline bool folio_test_large(const struct folio *folio) 864{ 865 return folio_test_head(folio); 866} 867 868static __always_inline void set_compound_head(struct page *page, struct page *head) 869{ 870 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 871} 872 873static __always_inline void clear_compound_head(struct page *page) 874{ 875 WRITE_ONCE(page->compound_head, 0); 876} 877 878#ifdef CONFIG_TRANSPARENT_HUGEPAGE 879static inline void ClearPageCompound(struct page *page) 880{ 881 BUG_ON(!PageHead(page)); 882 ClearPageHead(page); 883} 884FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 885FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 886#else 887FOLIO_FLAG_FALSE(large_rmappable) 888FOLIO_FLAG_FALSE(partially_mapped) 889#endif 890 891#define PG_head_mask ((1UL << PG_head)) 892 893#ifdef CONFIG_TRANSPARENT_HUGEPAGE 894/* 895 * PageTransCompound returns true for both transparent huge pages 896 * and hugetlbfs pages, so it should only be called when it's known 897 * that hugetlbfs pages aren't involved. 898 */ 899static inline int PageTransCompound(const struct page *page) 900{ 901 return PageCompound(page); 902} 903#else 904TESTPAGEFLAG_FALSE(TransCompound, transcompound) 905#endif 906 907#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 908/* 909 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 910 * compound page. 911 * 912 * This flag is set by hwpoison handler. Cleared by THP split or free page. 913 */ 914FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE) 915#else 916FOLIO_FLAG_FALSE(has_hwpoisoned) 917#endif 918 919/* 920 * For pages that do not use mapcount, page_type may be used. 921 * The low 24 bits of pagetype may be used for your own purposes, as long 922 * as you are careful to not affect the top 8 bits. The low bits of 923 * pagetype will be overwritten when you clear the page_type from the page. 924 */ 925enum pagetype { 926 /* 0x00-0x7f are positive numbers, ie mapcount */ 927 /* Reserve 0x80-0xef for mapcount overflow. */ 928 PGTY_buddy = 0xf0, 929 PGTY_offline = 0xf1, 930 PGTY_table = 0xf2, 931 PGTY_guard = 0xf3, 932 PGTY_hugetlb = 0xf4, 933 PGTY_slab = 0xf5, 934 PGTY_zsmalloc = 0xf6, 935 PGTY_unaccepted = 0xf7, 936 PGTY_large_kmalloc = 0xf8, 937 938 PGTY_mapcount_underflow = 0xff 939}; 940 941static inline bool page_type_has_type(int page_type) 942{ 943 return page_type < (PGTY_mapcount_underflow << 24); 944} 945 946/* This takes a mapcount which is one more than page->_mapcount */ 947static inline bool page_mapcount_is_type(unsigned int mapcount) 948{ 949 return page_type_has_type(mapcount - 1); 950} 951 952static inline bool page_has_type(const struct page *page) 953{ 954 return page_type_has_type(data_race(page->page_type)); 955} 956 957#define FOLIO_TYPE_OPS(lname, fname) \ 958static __always_inline bool folio_test_##fname(const struct folio *folio) \ 959{ \ 960 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 961} \ 962static __always_inline void __folio_set_##fname(struct folio *folio) \ 963{ \ 964 if (folio_test_##fname(folio)) \ 965 return; \ 966 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 967 folio); \ 968 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 969} \ 970static __always_inline void __folio_clear_##fname(struct folio *folio) \ 971{ \ 972 if (folio->page.page_type == UINT_MAX) \ 973 return; \ 974 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 975 folio->page.page_type = UINT_MAX; \ 976} 977 978#define PAGE_TYPE_OPS(uname, lname, fname) \ 979FOLIO_TYPE_OPS(lname, fname) \ 980static __always_inline int Page##uname(const struct page *page) \ 981{ \ 982 return data_race(page->page_type >> 24) == PGTY_##lname; \ 983} \ 984static __always_inline void __SetPage##uname(struct page *page) \ 985{ \ 986 if (Page##uname(page)) \ 987 return; \ 988 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 989 page->page_type = (unsigned int)PGTY_##lname << 24; \ 990} \ 991static __always_inline void __ClearPage##uname(struct page *page) \ 992{ \ 993 if (page->page_type == UINT_MAX) \ 994 return; \ 995 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 996 page->page_type = UINT_MAX; \ 997} 998 999/* 1000 * PageBuddy() indicates that the page is free and in the buddy system 1001 * (see mm/page_alloc.c). 1002 */ 1003PAGE_TYPE_OPS(Buddy, buddy, buddy) 1004 1005/* 1006 * PageOffline() indicates that the page is logically offline although the 1007 * containing section is online. (e.g. inflated in a balloon driver or 1008 * not onlined when onlining the section). 1009 * The content of these pages is effectively stale. Such pages should not 1010 * be touched (read/write/dump/save) except by their owner. 1011 * 1012 * When a memory block gets onlined, all pages are initialized with a 1013 * refcount of 1 and PageOffline(). generic_online_page() will 1014 * take care of clearing PageOffline(). 1015 * 1016 * If a driver wants to allow to offline unmovable PageOffline() pages without 1017 * putting them back to the buddy, it can do so via the memory notifier by 1018 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1019 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1020 * pages (now with a reference count of zero) are treated like free (unmanaged) 1021 * pages, allowing the containing memory block to get offlined. A driver that 1022 * relies on this feature is aware that re-onlining the memory block will 1023 * require not giving them to the buddy via generic_online_page(). 1024 * 1025 * Memory offlining code will not adjust the managed page count for any 1026 * PageOffline() pages, treating them like they were never exposed to the 1027 * buddy using generic_online_page(). 1028 * 1029 * There are drivers that mark a page PageOffline() and expect there won't be 1030 * any further access to page content. PFN walkers that read content of random 1031 * pages should check PageOffline() and synchronize with such drivers using 1032 * page_offline_freeze()/page_offline_thaw(). 1033 */ 1034PAGE_TYPE_OPS(Offline, offline, offline) 1035 1036extern void page_offline_freeze(void); 1037extern void page_offline_thaw(void); 1038extern void page_offline_begin(void); 1039extern void page_offline_end(void); 1040 1041/* 1042 * Marks pages in use as page tables. 1043 */ 1044PAGE_TYPE_OPS(Table, table, pgtable) 1045 1046/* 1047 * Marks guardpages used with debug_pagealloc. 1048 */ 1049PAGE_TYPE_OPS(Guard, guard, guard) 1050 1051FOLIO_TYPE_OPS(slab, slab) 1052 1053/** 1054 * PageSlab - Determine if the page belongs to the slab allocator 1055 * @page: The page to test. 1056 * 1057 * Context: Any context. 1058 * Return: True for slab pages, false for any other kind of page. 1059 */ 1060static inline bool PageSlab(const struct page *page) 1061{ 1062 return folio_test_slab(page_folio(page)); 1063} 1064 1065#ifdef CONFIG_HUGETLB_PAGE 1066FOLIO_TYPE_OPS(hugetlb, hugetlb) 1067#else 1068FOLIO_TEST_FLAG_FALSE(hugetlb) 1069#endif 1070 1071PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1072 1073/* 1074 * Mark pages that has to be accepted before touched for the first time. 1075 * 1076 * Serialized with zone lock. 1077 */ 1078PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1079FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc) 1080 1081/** 1082 * PageHuge - Determine if the page belongs to hugetlbfs 1083 * @page: The page to test. 1084 * 1085 * Context: Any context. 1086 * Return: True for hugetlbfs pages, false for anon pages or pages 1087 * belonging to other filesystems. 1088 */ 1089static inline bool PageHuge(const struct page *page) 1090{ 1091 return folio_test_hugetlb(page_folio(page)); 1092} 1093 1094/* 1095 * Check if a page is currently marked HWPoisoned. Note that this check is 1096 * best effort only and inherently racy: there is no way to synchronize with 1097 * failing hardware. 1098 */ 1099static inline bool is_page_hwpoison(const struct page *page) 1100{ 1101 const struct folio *folio; 1102 1103 if (PageHWPoison(page)) 1104 return true; 1105 folio = page_folio(page); 1106 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1107} 1108 1109static inline bool folio_contain_hwpoisoned_page(struct folio *folio) 1110{ 1111 return folio_test_hwpoison(folio) || 1112 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio)); 1113} 1114 1115bool is_free_buddy_page(const struct page *page); 1116 1117#ifdef CONFIG_MIGRATION 1118/* 1119 * This page is migratable through movable_ops (for selected typed pages 1120 * only). 1121 * 1122 * Page migration of such pages might fail, for example, if the page is 1123 * already isolated by somebody else, or if the page is about to get freed. 1124 * 1125 * While a subsystem might set selected typed pages that support page migration 1126 * as being movable through movable_ops, it must never clear this flag. 1127 * 1128 * This flag is only cleared when the page is freed back to the buddy. 1129 * 1130 * Only selected page types support this flag (see page_movable_ops()) and 1131 * the flag might be used in other context for other pages. Always use 1132 * page_has_movable_ops() instead. 1133 */ 1134TESTPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL); 1135SETPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL); 1136/* 1137 * A movable_ops page has this flag set while it is isolated for migration. 1138 * This flag primarily protects against concurrent migration attempts. 1139 * 1140 * Once migration ended (success or failure), the flag is cleared. The 1141 * flag is managed by the migration core. 1142 */ 1143PAGEFLAG(MovableOpsIsolated, movable_ops_isolated, PF_NO_TAIL); 1144#else /* !CONFIG_MIGRATION */ 1145TESTPAGEFLAG_FALSE(MovableOps, movable_ops); 1146SETPAGEFLAG_NOOP(MovableOps, movable_ops); 1147PAGEFLAG_FALSE(MovableOpsIsolated, movable_ops_isolated); 1148#endif /* CONFIG_MIGRATION */ 1149 1150/** 1151 * page_has_movable_ops - test for a movable_ops page 1152 * @page: The page to test. 1153 * 1154 * Test whether this is a movable_ops page. Such pages will stay that 1155 * way until freed. 1156 * 1157 * Returns true if this is a movable_ops page, otherwise false. 1158 */ 1159static inline bool page_has_movable_ops(const struct page *page) 1160{ 1161 return PageMovableOps(page) && 1162 (PageOffline(page) || PageZsmalloc(page)); 1163} 1164 1165static __always_inline int PageAnonExclusive(const struct page *page) 1166{ 1167 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1168 /* 1169 * HugeTLB stores this information on the head page; THP keeps it per 1170 * page 1171 */ 1172 if (PageHuge(page)) 1173 page = compound_head(page); 1174 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f); 1175} 1176 1177static __always_inline void SetPageAnonExclusive(struct page *page) 1178{ 1179 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1180 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1181 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f); 1182} 1183 1184static __always_inline void ClearPageAnonExclusive(struct page *page) 1185{ 1186 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1187 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1188 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f); 1189} 1190 1191static __always_inline void __ClearPageAnonExclusive(struct page *page) 1192{ 1193 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1194 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1195 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f); 1196} 1197 1198#ifdef CONFIG_MMU 1199#define __PG_MLOCKED (1UL << PG_mlocked) 1200#else 1201#define __PG_MLOCKED 0 1202#endif 1203 1204/* 1205 * Flags checked when a page is freed. Pages being freed should not have 1206 * these flags set. If they are, there is a problem. 1207 */ 1208#define PAGE_FLAGS_CHECK_AT_FREE \ 1209 (1UL << PG_lru | 1UL << PG_locked | \ 1210 1UL << PG_private | 1UL << PG_private_2 | \ 1211 1UL << PG_writeback | 1UL << PG_reserved | \ 1212 1UL << PG_active | \ 1213 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1214 1215/* 1216 * Flags checked when a page is prepped for return by the page allocator. 1217 * Pages being prepped should not have these flags set. If they are set, 1218 * there has been a kernel bug or struct page corruption. 1219 * 1220 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1221 * alloc-free cycle to prevent from reusing the page. 1222 */ 1223#define PAGE_FLAGS_CHECK_AT_PREP \ 1224 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1225 1226/* 1227 * Flags stored in the second page of a compound page. They may overlap 1228 * the CHECK_AT_FREE flags above, so need to be cleared. 1229 */ 1230#define PAGE_FLAGS_SECOND \ 1231 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1232 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1233 1234#define PAGE_FLAGS_PRIVATE \ 1235 (1UL << PG_private | 1UL << PG_private_2) 1236/** 1237 * folio_has_private - Determine if folio has private stuff 1238 * @folio: The folio to be checked 1239 * 1240 * Determine if a folio has private stuff, indicating that release routines 1241 * should be invoked upon it. 1242 */ 1243static inline int folio_has_private(const struct folio *folio) 1244{ 1245 return !!(folio->flags.f & PAGE_FLAGS_PRIVATE); 1246} 1247 1248#undef PF_ANY 1249#undef PF_HEAD 1250#undef PF_NO_TAIL 1251#undef PF_NO_COMPOUND 1252#undef PF_SECOND 1253#endif /* !__GENERATING_BOUNDS_H */ 1254 1255#endif /* PAGE_FLAGS_H */