at v6.18 59 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22#include <linux/types.h> 23#include <linux/bitmap.h> 24 25#include <asm/mmu.h> 26 27#ifndef AT_VECTOR_SIZE_ARCH 28#define AT_VECTOR_SIZE_ARCH 0 29#endif 30#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 31 32 33struct address_space; 34struct futex_private_hash; 35struct mem_cgroup; 36 37typedef struct { 38 unsigned long f; 39} memdesc_flags_t; 40 41/* 42 * Each physical page in the system has a struct page associated with 43 * it to keep track of whatever it is we are using the page for at the 44 * moment. Note that we have no way to track which tasks are using 45 * a page, though if it is a pagecache page, rmap structures can tell us 46 * who is mapping it. 47 * 48 * If you allocate the page using alloc_pages(), you can use some of the 49 * space in struct page for your own purposes. The five words in the main 50 * union are available, except for bit 0 of the first word which must be 51 * kept clear. Many users use this word to store a pointer to an object 52 * which is guaranteed to be aligned. If you use the same storage as 53 * page->mapping, you must restore it to NULL before freeing the page. 54 * 55 * The mapcount field must not be used for own purposes. 56 * 57 * If you want to use the refcount field, it must be used in such a way 58 * that other CPUs temporarily incrementing and then decrementing the 59 * refcount does not cause problems. On receiving the page from 60 * alloc_pages(), the refcount will be positive. 61 * 62 * If you allocate pages of order > 0, you can use some of the fields 63 * in each subpage, but you may need to restore some of their values 64 * afterwards. 65 * 66 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 67 * That requires that freelist & counters in struct slab be adjacent and 68 * double-word aligned. Because struct slab currently just reinterprets the 69 * bits of struct page, we align all struct pages to double-word boundaries, 70 * and ensure that 'freelist' is aligned within struct slab. 71 */ 72#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 73#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 74#else 75#define _struct_page_alignment __aligned(sizeof(unsigned long)) 76#endif 77 78struct page { 79 memdesc_flags_t flags; /* Atomic flags, some possibly 80 * updated asynchronously */ 81 /* 82 * Five words (20/40 bytes) are available in this union. 83 * WARNING: bit 0 of the first word is used for PageTail(). That 84 * means the other users of this union MUST NOT use the bit to 85 * avoid collision and false-positive PageTail(). 86 */ 87 union { 88 struct { /* Page cache and anonymous pages */ 89 /** 90 * @lru: Pageout list, eg. active_list protected by 91 * lruvec->lru_lock. Sometimes used as a generic list 92 * by the page owner. 93 */ 94 union { 95 struct list_head lru; 96 97 /* Or, free page */ 98 struct list_head buddy_list; 99 struct list_head pcp_list; 100 struct llist_node pcp_llist; 101 }; 102 struct address_space *mapping; 103 union { 104 pgoff_t __folio_index; /* Our offset within mapping. */ 105 unsigned long share; /* share count for fsdax */ 106 }; 107 /** 108 * @private: Mapping-private opaque data. 109 * Usually used for buffer_heads if PagePrivate. 110 * Used for swp_entry_t if swapcache flag set. 111 * Indicates order in the buddy system if PageBuddy 112 * or on pcp_llist. 113 */ 114 unsigned long private; 115 }; 116 struct { /* page_pool used by netstack */ 117 /** 118 * @pp_magic: magic value to avoid recycling non 119 * page_pool allocated pages. 120 */ 121 unsigned long pp_magic; 122 struct page_pool *pp; 123 unsigned long _pp_mapping_pad; 124 unsigned long dma_addr; 125 atomic_long_t pp_ref_count; 126 }; 127 struct { /* Tail pages of compound page */ 128 unsigned long compound_head; /* Bit zero is set */ 129 }; 130 struct { /* ZONE_DEVICE pages */ 131 /* 132 * The first word is used for compound_head or folio 133 * pgmap 134 */ 135 void *_unused_pgmap_compound_head; 136 void *zone_device_data; 137 /* 138 * ZONE_DEVICE private pages are counted as being 139 * mapped so the next 3 words hold the mapping, index, 140 * and private fields from the source anonymous or 141 * page cache page while the page is migrated to device 142 * private memory. 143 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 144 * use the mapping, index, and private fields when 145 * pmem backed DAX files are mapped. 146 */ 147 }; 148 149 /** @rcu_head: You can use this to free a page by RCU. */ 150 struct rcu_head rcu_head; 151 }; 152 153 union { /* This union is 4 bytes in size. */ 154 /* 155 * For head pages of typed folios, the value stored here 156 * allows for determining what this page is used for. The 157 * tail pages of typed folios will not store a type 158 * (page_type == _mapcount == -1). 159 * 160 * See page-flags.h for a list of page types which are currently 161 * stored here. 162 * 163 * Owners of typed folios may reuse the lower 16 bit of the 164 * head page page_type field after setting the page type, 165 * but must reset these 16 bit to -1 before clearing the 166 * page type. 167 */ 168 unsigned int page_type; 169 170 /* 171 * For pages that are part of non-typed folios for which mappings 172 * are tracked via the RMAP, encodes the number of times this page 173 * is directly referenced by a page table. 174 * 175 * Note that the mapcount is always initialized to -1, so that 176 * transitions both from it and to it can be tracked, using 177 * atomic_inc_and_test() and atomic_add_negative(-1). 178 */ 179 atomic_t _mapcount; 180 }; 181 182 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 183 atomic_t _refcount; 184 185#ifdef CONFIG_MEMCG 186 unsigned long memcg_data; 187#elif defined(CONFIG_SLAB_OBJ_EXT) 188 unsigned long _unused_slab_obj_exts; 189#endif 190 191 /* 192 * On machines where all RAM is mapped into kernel address space, 193 * we can simply calculate the virtual address. On machines with 194 * highmem some memory is mapped into kernel virtual memory 195 * dynamically, so we need a place to store that address. 196 * Note that this field could be 16 bits on x86 ... ;) 197 * 198 * Architectures with slow multiplication can define 199 * WANT_PAGE_VIRTUAL in asm/page.h 200 */ 201#if defined(WANT_PAGE_VIRTUAL) 202 void *virtual; /* Kernel virtual address (NULL if 203 not kmapped, ie. highmem) */ 204#endif /* WANT_PAGE_VIRTUAL */ 205 206#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 207 int _last_cpupid; 208#endif 209 210#ifdef CONFIG_KMSAN 211 /* 212 * KMSAN metadata for this page: 213 * - shadow page: every bit indicates whether the corresponding 214 * bit of the original page is initialized (0) or not (1); 215 * - origin page: every 4 bytes contain an id of the stack trace 216 * where the uninitialized value was created. 217 */ 218 struct page *kmsan_shadow; 219 struct page *kmsan_origin; 220#endif 221} _struct_page_alignment; 222 223/* 224 * struct encoded_page - a nonexistent type marking this pointer 225 * 226 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 227 * with the low bits of the pointer indicating extra context-dependent 228 * information. Only used in mmu_gather handling, and this acts as a type 229 * system check on that use. 230 * 231 * We only really have two guaranteed bits in general, although you could 232 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 233 * for more. 234 * 235 * Use the supplied helper functions to endcode/decode the pointer and bits. 236 */ 237struct encoded_page; 238 239#define ENCODED_PAGE_BITS 3ul 240 241/* Perform rmap removal after we have flushed the TLB. */ 242#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 243 244/* 245 * The next item in an encoded_page array is the "nr_pages" argument, specifying 246 * the number of consecutive pages starting from this page, that all belong to 247 * the same folio. For example, "nr_pages" corresponds to the number of folio 248 * references that must be dropped. If this bit is not set, "nr_pages" is 249 * implicitly 1. 250 */ 251#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 252 253static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 254{ 255 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 256 return (struct encoded_page *)(flags | (unsigned long)page); 257} 258 259static inline unsigned long encoded_page_flags(struct encoded_page *page) 260{ 261 return ENCODED_PAGE_BITS & (unsigned long)page; 262} 263 264static inline struct page *encoded_page_ptr(struct encoded_page *page) 265{ 266 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 267} 268 269static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 270{ 271 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 272 return (struct encoded_page *)(nr << 2); 273} 274 275static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 276{ 277 return ((unsigned long)page) >> 2; 278} 279 280/* 281 * A swap entry has to fit into a "unsigned long", as the entry is hidden 282 * in the "index" field of the swapper address space. 283 */ 284typedef struct { 285 unsigned long val; 286} swp_entry_t; 287 288#if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT) 289/* We have some extra room after the refcount in tail pages. */ 290#define NR_PAGES_IN_LARGE_FOLIO 291#endif 292 293/* 294 * On 32bit, we can cut the required metadata in half, because: 295 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have, 296 * so we can limit MM IDs to 15 bit (32767). 297 * (b) We don't expect folios where even a single complete PTE mapping by 298 * one MM would exceed 15 bits (order-15). 299 */ 300#ifdef CONFIG_64BIT 301typedef int mm_id_mapcount_t; 302#define MM_ID_MAPCOUNT_MAX INT_MAX 303typedef unsigned int mm_id_t; 304#else /* !CONFIG_64BIT */ 305typedef short mm_id_mapcount_t; 306#define MM_ID_MAPCOUNT_MAX SHRT_MAX 307typedef unsigned short mm_id_t; 308#endif /* CONFIG_64BIT */ 309 310/* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */ 311#define MM_ID_DUMMY 0 312#define MM_ID_MIN (MM_ID_DUMMY + 1) 313 314/* 315 * We leave the highest bit of each MM id unused, so we can store a flag 316 * in the highest bit of each folio->_mm_id[]. 317 */ 318#define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1) 319#define MM_ID_MASK ((1U << MM_ID_BITS) - 1) 320#define MM_ID_MAX MM_ID_MASK 321 322/* 323 * In order to use bit_spin_lock(), which requires an unsigned long, we 324 * operate on folio->_mm_ids when working on flags. 325 */ 326#define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS 327#define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM) 328#define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1) 329#define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM) 330 331/** 332 * struct folio - Represents a contiguous set of bytes. 333 * @flags: Identical to the page flags. 334 * @lru: Least Recently Used list; tracks how recently this folio was used. 335 * @mlock_count: Number of times this folio has been pinned by mlock(). 336 * @mapping: The file this page belongs to, or refers to the anon_vma for 337 * anonymous memory. 338 * @index: Offset within the file, in units of pages. For anonymous memory, 339 * this is the index from the beginning of the mmap. 340 * @share: number of DAX mappings that reference this folio. See 341 * dax_associate_entry. 342 * @private: Filesystem per-folio data (see folio_attach_private()). 343 * @swap: Used for swp_entry_t if folio_test_swapcache(). 344 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 345 * find out how many times this folio is mapped by userspace. 346 * @_refcount: Do not access this member directly. Use folio_ref_count() 347 * to find how many references there are to this folio. 348 * @memcg_data: Memory Control Group data. 349 * @pgmap: Metadata for ZONE_DEVICE mappings 350 * @virtual: Virtual address in the kernel direct map. 351 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 352 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 353 * @_large_mapcount: Do not use directly, call folio_mapcount(). 354 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 355 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 356 * @_nr_pages: Do not use directly, call folio_nr_pages(). 357 * @_mm_id: Do not use outside of rmap code. 358 * @_mm_ids: Do not use outside of rmap code. 359 * @_mm_id_mapcount: Do not use outside of rmap code. 360 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 361 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 362 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 363 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 364 * @_deferred_list: Folios to be split under memory pressure. 365 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 366 * 367 * A folio is a physically, virtually and logically contiguous set 368 * of bytes. It is a power-of-two in size, and it is aligned to that 369 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 370 * in the page cache, it is at a file offset which is a multiple of that 371 * power-of-two. It may be mapped into userspace at an address which is 372 * at an arbitrary page offset, but its kernel virtual address is aligned 373 * to its size. 374 */ 375struct folio { 376 /* private: don't document the anon union */ 377 union { 378 struct { 379 /* public: */ 380 memdesc_flags_t flags; 381 union { 382 struct list_head lru; 383 /* private: avoid cluttering the output */ 384 /* For the Unevictable "LRU list" slot */ 385 struct { 386 /* Avoid compound_head */ 387 void *__filler; 388 /* public: */ 389 unsigned int mlock_count; 390 /* private: */ 391 }; 392 /* public: */ 393 struct dev_pagemap *pgmap; 394 }; 395 struct address_space *mapping; 396 union { 397 pgoff_t index; 398 unsigned long share; 399 }; 400 union { 401 void *private; 402 swp_entry_t swap; 403 }; 404 atomic_t _mapcount; 405 atomic_t _refcount; 406#ifdef CONFIG_MEMCG 407 unsigned long memcg_data; 408#elif defined(CONFIG_SLAB_OBJ_EXT) 409 unsigned long _unused_slab_obj_exts; 410#endif 411#if defined(WANT_PAGE_VIRTUAL) 412 void *virtual; 413#endif 414#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 415 int _last_cpupid; 416#endif 417 /* private: the union with struct page is transitional */ 418 }; 419 struct page page; 420 }; 421 union { 422 struct { 423 unsigned long _flags_1; 424 unsigned long _head_1; 425 union { 426 struct { 427 /* public: */ 428 atomic_t _large_mapcount; 429 atomic_t _nr_pages_mapped; 430#ifdef CONFIG_64BIT 431 atomic_t _entire_mapcount; 432 atomic_t _pincount; 433#endif /* CONFIG_64BIT */ 434 mm_id_mapcount_t _mm_id_mapcount[2]; 435 union { 436 mm_id_t _mm_id[2]; 437 unsigned long _mm_ids; 438 }; 439 /* private: the union with struct page is transitional */ 440 }; 441 unsigned long _usable_1[4]; 442 }; 443 atomic_t _mapcount_1; 444 atomic_t _refcount_1; 445 /* public: */ 446#ifdef NR_PAGES_IN_LARGE_FOLIO 447 unsigned int _nr_pages; 448#endif /* NR_PAGES_IN_LARGE_FOLIO */ 449 /* private: the union with struct page is transitional */ 450 }; 451 struct page __page_1; 452 }; 453 union { 454 struct { 455 unsigned long _flags_2; 456 unsigned long _head_2; 457 /* public: */ 458 struct list_head _deferred_list; 459#ifndef CONFIG_64BIT 460 atomic_t _entire_mapcount; 461 atomic_t _pincount; 462#endif /* !CONFIG_64BIT */ 463 /* private: the union with struct page is transitional */ 464 }; 465 struct page __page_2; 466 }; 467 union { 468 struct { 469 unsigned long _flags_3; 470 unsigned long _head_3; 471 /* public: */ 472 void *_hugetlb_subpool; 473 void *_hugetlb_cgroup; 474 void *_hugetlb_cgroup_rsvd; 475 void *_hugetlb_hwpoison; 476 /* private: the union with struct page is transitional */ 477 }; 478 struct page __page_3; 479 }; 480}; 481 482#define FOLIO_MATCH(pg, fl) \ 483 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 484FOLIO_MATCH(flags, flags); 485FOLIO_MATCH(lru, lru); 486FOLIO_MATCH(mapping, mapping); 487FOLIO_MATCH(compound_head, lru); 488FOLIO_MATCH(__folio_index, index); 489FOLIO_MATCH(private, private); 490FOLIO_MATCH(_mapcount, _mapcount); 491FOLIO_MATCH(_refcount, _refcount); 492#ifdef CONFIG_MEMCG 493FOLIO_MATCH(memcg_data, memcg_data); 494#endif 495#if defined(WANT_PAGE_VIRTUAL) 496FOLIO_MATCH(virtual, virtual); 497#endif 498#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 499FOLIO_MATCH(_last_cpupid, _last_cpupid); 500#endif 501#undef FOLIO_MATCH 502#define FOLIO_MATCH(pg, fl) \ 503 static_assert(offsetof(struct folio, fl) == \ 504 offsetof(struct page, pg) + sizeof(struct page)) 505FOLIO_MATCH(flags, _flags_1); 506FOLIO_MATCH(compound_head, _head_1); 507FOLIO_MATCH(_mapcount, _mapcount_1); 508FOLIO_MATCH(_refcount, _refcount_1); 509#undef FOLIO_MATCH 510#define FOLIO_MATCH(pg, fl) \ 511 static_assert(offsetof(struct folio, fl) == \ 512 offsetof(struct page, pg) + 2 * sizeof(struct page)) 513FOLIO_MATCH(flags, _flags_2); 514FOLIO_MATCH(compound_head, _head_2); 515#undef FOLIO_MATCH 516#define FOLIO_MATCH(pg, fl) \ 517 static_assert(offsetof(struct folio, fl) == \ 518 offsetof(struct page, pg) + 3 * sizeof(struct page)) 519FOLIO_MATCH(flags, _flags_3); 520FOLIO_MATCH(compound_head, _head_3); 521#undef FOLIO_MATCH 522 523/** 524 * struct ptdesc - Memory descriptor for page tables. 525 * @pt_flags: enum pt_flags plus zone/node/section. 526 * @pt_rcu_head: For freeing page table pages. 527 * @pt_list: List of used page tables. Used for s390 gmap shadow pages 528 * (which are not linked into the user page tables) and x86 529 * pgds. 530 * @_pt_pad_1: Padding that aliases with page's compound head. 531 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 532 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 533 * @pt_index: Used for s390 gmap. 534 * @pt_mm: Used for x86 pgds. 535 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 536 * @pt_share_count: Used for HugeTLB PMD page table share count. 537 * @_pt_pad_2: Padding to ensure proper alignment. 538 * @ptl: Lock for the page table. 539 * @__page_type: Same as page->page_type. Unused for page tables. 540 * @__page_refcount: Same as page refcount. 541 * @pt_memcg_data: Memcg data. Tracked for page tables here. 542 * 543 * This struct overlays struct page for now. Do not modify without a good 544 * understanding of the issues. 545 */ 546struct ptdesc { 547 memdesc_flags_t pt_flags; 548 549 union { 550 struct rcu_head pt_rcu_head; 551 struct list_head pt_list; 552 struct { 553 unsigned long _pt_pad_1; 554 pgtable_t pmd_huge_pte; 555 }; 556 }; 557 unsigned long __page_mapping; 558 559 union { 560 pgoff_t pt_index; 561 struct mm_struct *pt_mm; 562 atomic_t pt_frag_refcount; 563#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 564 atomic_t pt_share_count; 565#endif 566 }; 567 568 union { 569 unsigned long _pt_pad_2; 570#if ALLOC_SPLIT_PTLOCKS 571 spinlock_t *ptl; 572#else 573 spinlock_t ptl; 574#endif 575 }; 576 unsigned int __page_type; 577 atomic_t __page_refcount; 578#ifdef CONFIG_MEMCG 579 unsigned long pt_memcg_data; 580#endif 581}; 582 583#define TABLE_MATCH(pg, pt) \ 584 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 585TABLE_MATCH(flags, pt_flags); 586TABLE_MATCH(compound_head, pt_list); 587TABLE_MATCH(compound_head, _pt_pad_1); 588TABLE_MATCH(mapping, __page_mapping); 589TABLE_MATCH(__folio_index, pt_index); 590TABLE_MATCH(rcu_head, pt_rcu_head); 591TABLE_MATCH(page_type, __page_type); 592TABLE_MATCH(_refcount, __page_refcount); 593#ifdef CONFIG_MEMCG 594TABLE_MATCH(memcg_data, pt_memcg_data); 595#endif 596#undef TABLE_MATCH 597static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 598 599#define ptdesc_page(pt) (_Generic((pt), \ 600 const struct ptdesc *: (const struct page *)(pt), \ 601 struct ptdesc *: (struct page *)(pt))) 602 603#define ptdesc_folio(pt) (_Generic((pt), \ 604 const struct ptdesc *: (const struct folio *)(pt), \ 605 struct ptdesc *: (struct folio *)(pt))) 606 607#define page_ptdesc(p) (_Generic((p), \ 608 const struct page *: (const struct ptdesc *)(p), \ 609 struct page *: (struct ptdesc *)(p))) 610 611#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 612static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 613{ 614 atomic_set(&ptdesc->pt_share_count, 0); 615} 616 617static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc) 618{ 619 atomic_inc(&ptdesc->pt_share_count); 620} 621 622static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc) 623{ 624 atomic_dec(&ptdesc->pt_share_count); 625} 626 627static inline int ptdesc_pmd_pts_count(const struct ptdesc *ptdesc) 628{ 629 return atomic_read(&ptdesc->pt_share_count); 630} 631 632static inline bool ptdesc_pmd_is_shared(struct ptdesc *ptdesc) 633{ 634 return !!ptdesc_pmd_pts_count(ptdesc); 635} 636#else 637static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 638{ 639} 640#endif 641 642/* 643 * Used for sizing the vmemmap region on some architectures 644 */ 645#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 646 647/* 648 * page_private can be used on tail pages. However, PagePrivate is only 649 * checked by the VM on the head page. So page_private on the tail pages 650 * should be used for data that's ancillary to the head page (eg attaching 651 * buffer heads to tail pages after attaching buffer heads to the head page) 652 */ 653#define page_private(page) ((page)->private) 654 655static inline void set_page_private(struct page *page, unsigned long private) 656{ 657 page->private = private; 658} 659 660static inline void *folio_get_private(const struct folio *folio) 661{ 662 return folio->private; 663} 664 665typedef unsigned long vm_flags_t; 666 667/* 668 * freeptr_t represents a SLUB freelist pointer, which might be encoded 669 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 670 */ 671typedef struct { unsigned long v; } freeptr_t; 672 673/* 674 * A region containing a mapping of a non-memory backed file under NOMMU 675 * conditions. These are held in a global tree and are pinned by the VMAs that 676 * map parts of them. 677 */ 678struct vm_region { 679 struct rb_node vm_rb; /* link in global region tree */ 680 vm_flags_t vm_flags; /* VMA vm_flags */ 681 unsigned long vm_start; /* start address of region */ 682 unsigned long vm_end; /* region initialised to here */ 683 unsigned long vm_top; /* region allocated to here */ 684 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 685 struct file *vm_file; /* the backing file or NULL */ 686 687 int vm_usage; /* region usage count (access under nommu_region_sem) */ 688 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 689 * this region */ 690}; 691 692#ifdef CONFIG_USERFAULTFD 693#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 694struct vm_userfaultfd_ctx { 695 struct userfaultfd_ctx *ctx; 696}; 697#else /* CONFIG_USERFAULTFD */ 698#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 699struct vm_userfaultfd_ctx {}; 700#endif /* CONFIG_USERFAULTFD */ 701 702struct anon_vma_name { 703 struct kref kref; 704 /* The name needs to be at the end because it is dynamically sized. */ 705 char name[]; 706}; 707 708#ifdef CONFIG_ANON_VMA_NAME 709/* 710 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 711 * either keep holding the lock while using the returned pointer or it should 712 * raise anon_vma_name refcount before releasing the lock. 713 */ 714struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 715struct anon_vma_name *anon_vma_name_alloc(const char *name); 716void anon_vma_name_free(struct kref *kref); 717#else /* CONFIG_ANON_VMA_NAME */ 718static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 719{ 720 return NULL; 721} 722 723static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 724{ 725 return NULL; 726} 727#endif 728 729#define VMA_LOCK_OFFSET 0x40000000 730#define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1) 731 732struct vma_numab_state { 733 /* 734 * Initialised as time in 'jiffies' after which VMA 735 * should be scanned. Delays first scan of new VMA by at 736 * least sysctl_numa_balancing_scan_delay: 737 */ 738 unsigned long next_scan; 739 740 /* 741 * Time in jiffies when pids_active[] is reset to 742 * detect phase change behaviour: 743 */ 744 unsigned long pids_active_reset; 745 746 /* 747 * Approximate tracking of PIDs that trapped a NUMA hinting 748 * fault. May produce false positives due to hash collisions. 749 * 750 * [0] Previous PID tracking 751 * [1] Current PID tracking 752 * 753 * Window moves after next_pid_reset has expired approximately 754 * every VMA_PID_RESET_PERIOD jiffies: 755 */ 756 unsigned long pids_active[2]; 757 758 /* MM scan sequence ID when scan first started after VMA creation */ 759 int start_scan_seq; 760 761 /* 762 * MM scan sequence ID when the VMA was last completely scanned. 763 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 764 */ 765 int prev_scan_seq; 766}; 767 768#ifdef __HAVE_PFNMAP_TRACKING 769struct pfnmap_track_ctx { 770 struct kref kref; 771 unsigned long pfn; 772 unsigned long size; /* in bytes */ 773}; 774#endif 775 776/* 777 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to 778 * manipulate mutable fields which will cause those fields to be updated in the 779 * resultant VMA. 780 * 781 * Helper functions are not required for manipulating any field. 782 */ 783struct vm_area_desc { 784 /* Immutable state. */ 785 const struct mm_struct *const mm; 786 struct file *const file; /* May vary from vm_file in stacked callers. */ 787 unsigned long start; 788 unsigned long end; 789 790 /* Mutable fields. Populated with initial state. */ 791 pgoff_t pgoff; 792 struct file *vm_file; 793 vm_flags_t vm_flags; 794 pgprot_t page_prot; 795 796 /* Write-only fields. */ 797 const struct vm_operations_struct *vm_ops; 798 void *private_data; 799}; 800 801/* 802 * This struct describes a virtual memory area. There is one of these 803 * per VM-area/task. A VM area is any part of the process virtual memory 804 * space that has a special rule for the page-fault handlers (ie a shared 805 * library, the executable area etc). 806 * 807 * Only explicitly marked struct members may be accessed by RCU readers before 808 * getting a stable reference. 809 * 810 * WARNING: when adding new members, please update vm_area_init_from() to copy 811 * them during vm_area_struct content duplication. 812 */ 813struct vm_area_struct { 814 /* The first cache line has the info for VMA tree walking. */ 815 816 union { 817 struct { 818 /* VMA covers [vm_start; vm_end) addresses within mm */ 819 unsigned long vm_start; 820 unsigned long vm_end; 821 }; 822 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 823 }; 824 825 /* 826 * The address space we belong to. 827 * Unstable RCU readers are allowed to read this. 828 */ 829 struct mm_struct *vm_mm; 830 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 831 832 /* 833 * Flags, see mm.h. 834 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 835 */ 836 union { 837 const vm_flags_t vm_flags; 838 vm_flags_t __private __vm_flags; 839 }; 840 841#ifdef CONFIG_PER_VMA_LOCK 842 /* 843 * Can only be written (using WRITE_ONCE()) while holding both: 844 * - mmap_lock (in write mode) 845 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 846 * Can be read reliably while holding one of: 847 * - mmap_lock (in read or write mode) 848 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 849 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 850 * while holding nothing (except RCU to keep the VMA struct allocated). 851 * 852 * This sequence counter is explicitly allowed to overflow; sequence 853 * counter reuse can only lead to occasional unnecessary use of the 854 * slowpath. 855 */ 856 unsigned int vm_lock_seq; 857#endif 858 /* 859 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 860 * list, after a COW of one of the file pages. A MAP_SHARED vma 861 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 862 * or brk vma (with NULL file) can only be in an anon_vma list. 863 */ 864 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 865 * page_table_lock */ 866 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 867 868 /* Function pointers to deal with this struct. */ 869 const struct vm_operations_struct *vm_ops; 870 871 /* Information about our backing store: */ 872 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 873 units */ 874 struct file * vm_file; /* File we map to (can be NULL). */ 875 void * vm_private_data; /* was vm_pte (shared mem) */ 876 877#ifdef CONFIG_SWAP 878 atomic_long_t swap_readahead_info; 879#endif 880#ifndef CONFIG_MMU 881 struct vm_region *vm_region; /* NOMMU mapping region */ 882#endif 883#ifdef CONFIG_NUMA 884 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 885#endif 886#ifdef CONFIG_NUMA_BALANCING 887 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 888#endif 889#ifdef CONFIG_PER_VMA_LOCK 890 /* Unstable RCU readers are allowed to read this. */ 891 refcount_t vm_refcnt ____cacheline_aligned_in_smp; 892#ifdef CONFIG_DEBUG_LOCK_ALLOC 893 struct lockdep_map vmlock_dep_map; 894#endif 895#endif 896 /* 897 * For areas with an address space and backing store, 898 * linkage into the address_space->i_mmap interval tree. 899 * 900 */ 901 struct { 902 struct rb_node rb; 903 unsigned long rb_subtree_last; 904 } shared; 905#ifdef CONFIG_ANON_VMA_NAME 906 /* 907 * For private and shared anonymous mappings, a pointer to a null 908 * terminated string containing the name given to the vma, or NULL if 909 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 910 */ 911 struct anon_vma_name *anon_name; 912#endif 913 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 914#ifdef __HAVE_PFNMAP_TRACKING 915 struct pfnmap_track_ctx *pfnmap_track_ctx; 916#endif 917} __randomize_layout; 918 919#ifdef CONFIG_NUMA 920#define vma_policy(vma) ((vma)->vm_policy) 921#else 922#define vma_policy(vma) NULL 923#endif 924 925#ifdef CONFIG_SCHED_MM_CID 926struct mm_cid { 927 u64 time; 928 int cid; 929 int recent_cid; 930}; 931#endif 932 933/* 934 * Opaque type representing current mm_struct flag state. Must be accessed via 935 * mm_flags_xxx() helper functions. 936 */ 937#define NUM_MM_FLAG_BITS (64) 938typedef struct { 939 DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS); 940} __private mm_flags_t; 941 942struct kioctx_table; 943struct iommu_mm_data; 944struct mm_struct { 945 struct { 946 /* 947 * Fields which are often written to are placed in a separate 948 * cache line. 949 */ 950 struct { 951 /** 952 * @mm_count: The number of references to &struct 953 * mm_struct (@mm_users count as 1). 954 * 955 * Use mmgrab()/mmdrop() to modify. When this drops to 956 * 0, the &struct mm_struct is freed. 957 */ 958 atomic_t mm_count; 959 } ____cacheline_aligned_in_smp; 960 961 struct maple_tree mm_mt; 962 963 unsigned long mmap_base; /* base of mmap area */ 964 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 965#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 966 /* Base addresses for compatible mmap() */ 967 unsigned long mmap_compat_base; 968 unsigned long mmap_compat_legacy_base; 969#endif 970 unsigned long task_size; /* size of task vm space */ 971 pgd_t * pgd; 972 973#ifdef CONFIG_MEMBARRIER 974 /** 975 * @membarrier_state: Flags controlling membarrier behavior. 976 * 977 * This field is close to @pgd to hopefully fit in the same 978 * cache-line, which needs to be touched by switch_mm(). 979 */ 980 atomic_t membarrier_state; 981#endif 982 983 /** 984 * @mm_users: The number of users including userspace. 985 * 986 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 987 * drops to 0 (i.e. when the task exits and there are no other 988 * temporary reference holders), we also release a reference on 989 * @mm_count (which may then free the &struct mm_struct if 990 * @mm_count also drops to 0). 991 */ 992 atomic_t mm_users; 993 994#ifdef CONFIG_SCHED_MM_CID 995 /** 996 * @pcpu_cid: Per-cpu current cid. 997 * 998 * Keep track of the currently allocated mm_cid for each cpu. 999 * The per-cpu mm_cid values are serialized by their respective 1000 * runqueue locks. 1001 */ 1002 struct mm_cid __percpu *pcpu_cid; 1003 /* 1004 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 1005 * 1006 * When the next mm_cid scan is due (in jiffies). 1007 */ 1008 unsigned long mm_cid_next_scan; 1009 /** 1010 * @nr_cpus_allowed: Number of CPUs allowed for mm. 1011 * 1012 * Number of CPUs allowed in the union of all mm's 1013 * threads allowed CPUs. 1014 */ 1015 unsigned int nr_cpus_allowed; 1016 /** 1017 * @max_nr_cid: Maximum number of allowed concurrency 1018 * IDs allocated. 1019 * 1020 * Track the highest number of allowed concurrency IDs 1021 * allocated for the mm. 1022 */ 1023 atomic_t max_nr_cid; 1024 /** 1025 * @cpus_allowed_lock: Lock protecting mm cpus_allowed. 1026 * 1027 * Provide mutual exclusion for mm cpus_allowed and 1028 * mm nr_cpus_allowed updates. 1029 */ 1030 raw_spinlock_t cpus_allowed_lock; 1031#endif 1032#ifdef CONFIG_MMU 1033 atomic_long_t pgtables_bytes; /* size of all page tables */ 1034#endif 1035 int map_count; /* number of VMAs */ 1036 1037 spinlock_t page_table_lock; /* Protects page tables and some 1038 * counters 1039 */ 1040 /* 1041 * Typically the current mmap_lock's offset is 56 bytes from 1042 * the last cacheline boundary, which is very optimal, as 1043 * its two hot fields 'count' and 'owner' sit in 2 different 1044 * cachelines, and when mmap_lock is highly contended, both 1045 * of the 2 fields will be accessed frequently, current layout 1046 * will help to reduce cache bouncing. 1047 * 1048 * So please be careful with adding new fields before 1049 * mmap_lock, which can easily push the 2 fields into one 1050 * cacheline. 1051 */ 1052 struct rw_semaphore mmap_lock; 1053 1054 struct list_head mmlist; /* List of maybe swapped mm's. These 1055 * are globally strung together off 1056 * init_mm.mmlist, and are protected 1057 * by mmlist_lock 1058 */ 1059#ifdef CONFIG_PER_VMA_LOCK 1060 struct rcuwait vma_writer_wait; 1061 /* 1062 * This field has lock-like semantics, meaning it is sometimes 1063 * accessed with ACQUIRE/RELEASE semantics. 1064 * Roughly speaking, incrementing the sequence number is 1065 * equivalent to releasing locks on VMAs; reading the sequence 1066 * number can be part of taking a read lock on a VMA. 1067 * Incremented every time mmap_lock is write-locked/unlocked. 1068 * Initialized to 0, therefore odd values indicate mmap_lock 1069 * is write-locked and even values that it's released. 1070 * 1071 * Can be modified under write mmap_lock using RELEASE 1072 * semantics. 1073 * Can be read with no other protection when holding write 1074 * mmap_lock. 1075 * Can be read with ACQUIRE semantics if not holding write 1076 * mmap_lock. 1077 */ 1078 seqcount_t mm_lock_seq; 1079#endif 1080#ifdef CONFIG_FUTEX_PRIVATE_HASH 1081 struct mutex futex_hash_lock; 1082 struct futex_private_hash __rcu *futex_phash; 1083 struct futex_private_hash *futex_phash_new; 1084 /* futex-ref */ 1085 unsigned long futex_batches; 1086 struct rcu_head futex_rcu; 1087 atomic_long_t futex_atomic; 1088 unsigned int __percpu *futex_ref; 1089#endif 1090 1091 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 1092 unsigned long hiwater_vm; /* High-water virtual memory usage */ 1093 1094 unsigned long total_vm; /* Total pages mapped */ 1095 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 1096 atomic64_t pinned_vm; /* Refcount permanently increased */ 1097 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 1098 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 1099 unsigned long stack_vm; /* VM_STACK */ 1100 vm_flags_t def_flags; 1101 1102 /** 1103 * @write_protect_seq: Locked when any thread is write 1104 * protecting pages mapped by this mm to enforce a later COW, 1105 * for instance during page table copying for fork(). 1106 */ 1107 seqcount_t write_protect_seq; 1108 1109 spinlock_t arg_lock; /* protect the below fields */ 1110 1111 unsigned long start_code, end_code, start_data, end_data; 1112 unsigned long start_brk, brk, start_stack; 1113 unsigned long arg_start, arg_end, env_start, env_end; 1114 1115 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 1116 1117#ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS 1118 /* the ABI-related flags from the ELF header. Used for core dump */ 1119 unsigned long saved_e_flags; 1120#endif 1121 1122 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 1123 1124 struct linux_binfmt *binfmt; 1125 1126 /* Architecture-specific MM context */ 1127 mm_context_t context; 1128 1129 mm_flags_t flags; /* Must use mm_flags_* hlpers to access */ 1130 1131#ifdef CONFIG_AIO 1132 spinlock_t ioctx_lock; 1133 struct kioctx_table __rcu *ioctx_table; 1134#endif 1135#ifdef CONFIG_MEMCG 1136 /* 1137 * "owner" points to a task that is regarded as the canonical 1138 * user/owner of this mm. All of the following must be true in 1139 * order for it to be changed: 1140 * 1141 * current == mm->owner 1142 * current->mm != mm 1143 * new_owner->mm == mm 1144 * new_owner->alloc_lock is held 1145 */ 1146 struct task_struct __rcu *owner; 1147#endif 1148 struct user_namespace *user_ns; 1149 1150 /* store ref to file /proc/<pid>/exe symlink points to */ 1151 struct file __rcu *exe_file; 1152#ifdef CONFIG_MMU_NOTIFIER 1153 struct mmu_notifier_subscriptions *notifier_subscriptions; 1154#endif 1155#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1156 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 1157#endif 1158#ifdef CONFIG_NUMA_BALANCING 1159 /* 1160 * numa_next_scan is the next time that PTEs will be remapped 1161 * PROT_NONE to trigger NUMA hinting faults; such faults gather 1162 * statistics and migrate pages to new nodes if necessary. 1163 */ 1164 unsigned long numa_next_scan; 1165 1166 /* Restart point for scanning and remapping PTEs. */ 1167 unsigned long numa_scan_offset; 1168 1169 /* numa_scan_seq prevents two threads remapping PTEs. */ 1170 int numa_scan_seq; 1171#endif 1172 /* 1173 * An operation with batched TLB flushing is going on. Anything 1174 * that can move process memory needs to flush the TLB when 1175 * moving a PROT_NONE mapped page. 1176 */ 1177 atomic_t tlb_flush_pending; 1178#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1179 /* See flush_tlb_batched_pending() */ 1180 atomic_t tlb_flush_batched; 1181#endif 1182 struct uprobes_state uprobes_state; 1183#ifdef CONFIG_PREEMPT_RT 1184 struct rcu_head delayed_drop; 1185#endif 1186#ifdef CONFIG_HUGETLB_PAGE 1187 atomic_long_t hugetlb_usage; 1188#endif 1189 struct work_struct async_put_work; 1190 1191#ifdef CONFIG_IOMMU_MM_DATA 1192 struct iommu_mm_data *iommu_mm; 1193#endif 1194#ifdef CONFIG_KSM 1195 /* 1196 * Represent how many pages of this process are involved in KSM 1197 * merging (not including ksm_zero_pages). 1198 */ 1199 unsigned long ksm_merging_pages; 1200 /* 1201 * Represent how many pages are checked for ksm merging 1202 * including merged and not merged. 1203 */ 1204 unsigned long ksm_rmap_items; 1205 /* 1206 * Represent how many empty pages are merged with kernel zero 1207 * pages when enabling KSM use_zero_pages. 1208 */ 1209 atomic_long_t ksm_zero_pages; 1210#endif /* CONFIG_KSM */ 1211#ifdef CONFIG_LRU_GEN_WALKS_MMU 1212 struct { 1213 /* this mm_struct is on lru_gen_mm_list */ 1214 struct list_head list; 1215 /* 1216 * Set when switching to this mm_struct, as a hint of 1217 * whether it has been used since the last time per-node 1218 * page table walkers cleared the corresponding bits. 1219 */ 1220 unsigned long bitmap; 1221#ifdef CONFIG_MEMCG 1222 /* points to the memcg of "owner" above */ 1223 struct mem_cgroup *memcg; 1224#endif 1225 } lru_gen; 1226#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1227#ifdef CONFIG_MM_ID 1228 mm_id_t mm_id; 1229#endif /* CONFIG_MM_ID */ 1230 } __randomize_layout; 1231 1232 /* 1233 * The mm_cpumask needs to be at the end of mm_struct, because it 1234 * is dynamically sized based on nr_cpu_ids. 1235 */ 1236 unsigned long cpu_bitmap[]; 1237}; 1238 1239/* Set the first system word of mm flags, non-atomically. */ 1240static inline void __mm_flags_set_word(struct mm_struct *mm, unsigned long value) 1241{ 1242 unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags); 1243 1244 bitmap_copy(bitmap, &value, BITS_PER_LONG); 1245} 1246 1247/* Obtain a read-only view of the bitmap. */ 1248static inline const unsigned long *__mm_flags_get_bitmap(const struct mm_struct *mm) 1249{ 1250 return (const unsigned long *)ACCESS_PRIVATE(&mm->flags, __mm_flags); 1251} 1252 1253/* Read the first system word of mm flags, non-atomically. */ 1254static inline unsigned long __mm_flags_get_word(const struct mm_struct *mm) 1255{ 1256 const unsigned long *bitmap = __mm_flags_get_bitmap(mm); 1257 1258 return bitmap_read(bitmap, 0, BITS_PER_LONG); 1259} 1260 1261/* 1262 * Update the first system word of mm flags ONLY, applying the specified mask to 1263 * it, then setting all flags specified by bits. 1264 */ 1265static inline void __mm_flags_set_mask_bits_word(struct mm_struct *mm, 1266 unsigned long mask, unsigned long bits) 1267{ 1268 unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags); 1269 1270 set_mask_bits(bitmap, mask, bits); 1271} 1272 1273#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1274 MT_FLAGS_USE_RCU) 1275extern struct mm_struct init_mm; 1276 1277/* Pointer magic because the dynamic array size confuses some compilers. */ 1278static inline void mm_init_cpumask(struct mm_struct *mm) 1279{ 1280 unsigned long cpu_bitmap = (unsigned long)mm; 1281 1282 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1283 cpumask_clear((struct cpumask *)cpu_bitmap); 1284} 1285 1286/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1287static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1288{ 1289 return (struct cpumask *)&mm->cpu_bitmap; 1290} 1291 1292#ifdef CONFIG_LRU_GEN 1293 1294struct lru_gen_mm_list { 1295 /* mm_struct list for page table walkers */ 1296 struct list_head fifo; 1297 /* protects the list above */ 1298 spinlock_t lock; 1299}; 1300 1301#endif /* CONFIG_LRU_GEN */ 1302 1303#ifdef CONFIG_LRU_GEN_WALKS_MMU 1304 1305void lru_gen_add_mm(struct mm_struct *mm); 1306void lru_gen_del_mm(struct mm_struct *mm); 1307void lru_gen_migrate_mm(struct mm_struct *mm); 1308 1309static inline void lru_gen_init_mm(struct mm_struct *mm) 1310{ 1311 INIT_LIST_HEAD(&mm->lru_gen.list); 1312 mm->lru_gen.bitmap = 0; 1313#ifdef CONFIG_MEMCG 1314 mm->lru_gen.memcg = NULL; 1315#endif 1316} 1317 1318static inline void lru_gen_use_mm(struct mm_struct *mm) 1319{ 1320 /* 1321 * When the bitmap is set, page reclaim knows this mm_struct has been 1322 * used since the last time it cleared the bitmap. So it might be worth 1323 * walking the page tables of this mm_struct to clear the accessed bit. 1324 */ 1325 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1326} 1327 1328#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1329 1330static inline void lru_gen_add_mm(struct mm_struct *mm) 1331{ 1332} 1333 1334static inline void lru_gen_del_mm(struct mm_struct *mm) 1335{ 1336} 1337 1338static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1339{ 1340} 1341 1342static inline void lru_gen_init_mm(struct mm_struct *mm) 1343{ 1344} 1345 1346static inline void lru_gen_use_mm(struct mm_struct *mm) 1347{ 1348} 1349 1350#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1351 1352struct vma_iterator { 1353 struct ma_state mas; 1354}; 1355 1356#define VMA_ITERATOR(name, __mm, __addr) \ 1357 struct vma_iterator name = { \ 1358 .mas = { \ 1359 .tree = &(__mm)->mm_mt, \ 1360 .index = __addr, \ 1361 .node = NULL, \ 1362 .status = ma_start, \ 1363 }, \ 1364 } 1365 1366static inline void vma_iter_init(struct vma_iterator *vmi, 1367 struct mm_struct *mm, unsigned long addr) 1368{ 1369 mas_init(&vmi->mas, &mm->mm_mt, addr); 1370} 1371 1372#ifdef CONFIG_SCHED_MM_CID 1373 1374enum mm_cid_state { 1375 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1376 MM_CID_LAZY_PUT = (1U << 31), 1377}; 1378 1379static inline bool mm_cid_is_unset(int cid) 1380{ 1381 return cid == MM_CID_UNSET; 1382} 1383 1384static inline bool mm_cid_is_lazy_put(int cid) 1385{ 1386 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1387} 1388 1389static inline bool mm_cid_is_valid(int cid) 1390{ 1391 return !(cid & MM_CID_LAZY_PUT); 1392} 1393 1394static inline int mm_cid_set_lazy_put(int cid) 1395{ 1396 return cid | MM_CID_LAZY_PUT; 1397} 1398 1399static inline int mm_cid_clear_lazy_put(int cid) 1400{ 1401 return cid & ~MM_CID_LAZY_PUT; 1402} 1403 1404/* 1405 * mm_cpus_allowed: Union of all mm's threads allowed CPUs. 1406 */ 1407static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) 1408{ 1409 unsigned long bitmap = (unsigned long)mm; 1410 1411 bitmap += offsetof(struct mm_struct, cpu_bitmap); 1412 /* Skip cpu_bitmap */ 1413 bitmap += cpumask_size(); 1414 return (struct cpumask *)bitmap; 1415} 1416 1417/* Accessor for struct mm_struct's cidmask. */ 1418static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1419{ 1420 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); 1421 1422 /* Skip mm_cpus_allowed */ 1423 cid_bitmap += cpumask_size(); 1424 return (struct cpumask *)cid_bitmap; 1425} 1426 1427static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 1428{ 1429 int i; 1430 1431 for_each_possible_cpu(i) { 1432 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1433 1434 pcpu_cid->cid = MM_CID_UNSET; 1435 pcpu_cid->recent_cid = MM_CID_UNSET; 1436 pcpu_cid->time = 0; 1437 } 1438 mm->nr_cpus_allowed = p->nr_cpus_allowed; 1439 atomic_set(&mm->max_nr_cid, 0); 1440 raw_spin_lock_init(&mm->cpus_allowed_lock); 1441 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 1442 cpumask_clear(mm_cidmask(mm)); 1443} 1444 1445static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) 1446{ 1447 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); 1448 if (!mm->pcpu_cid) 1449 return -ENOMEM; 1450 mm_init_cid(mm, p); 1451 return 0; 1452} 1453#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1454 1455static inline void mm_destroy_cid(struct mm_struct *mm) 1456{ 1457 free_percpu(mm->pcpu_cid); 1458 mm->pcpu_cid = NULL; 1459} 1460 1461static inline unsigned int mm_cid_size(void) 1462{ 1463 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */ 1464} 1465 1466static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) 1467{ 1468 struct cpumask *mm_allowed = mm_cpus_allowed(mm); 1469 1470 if (!mm) 1471 return; 1472 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */ 1473 raw_spin_lock(&mm->cpus_allowed_lock); 1474 cpumask_or(mm_allowed, mm_allowed, cpumask); 1475 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed)); 1476 raw_spin_unlock(&mm->cpus_allowed_lock); 1477} 1478#else /* CONFIG_SCHED_MM_CID */ 1479static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } 1480static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } 1481static inline void mm_destroy_cid(struct mm_struct *mm) { } 1482 1483static inline unsigned int mm_cid_size(void) 1484{ 1485 return 0; 1486} 1487static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { } 1488#endif /* CONFIG_SCHED_MM_CID */ 1489 1490struct mmu_gather; 1491extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1492extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1493extern void tlb_finish_mmu(struct mmu_gather *tlb); 1494 1495struct vm_fault; 1496 1497/** 1498 * typedef vm_fault_t - Return type for page fault handlers. 1499 * 1500 * Page fault handlers return a bitmask of %VM_FAULT values. 1501 */ 1502typedef __bitwise unsigned int vm_fault_t; 1503 1504/** 1505 * enum vm_fault_reason - Page fault handlers return a bitmask of 1506 * these values to tell the core VM what happened when handling the 1507 * fault. Used to decide whether a process gets delivered SIGBUS or 1508 * just gets major/minor fault counters bumped up. 1509 * 1510 * @VM_FAULT_OOM: Out Of Memory 1511 * @VM_FAULT_SIGBUS: Bad access 1512 * @VM_FAULT_MAJOR: Page read from storage 1513 * @VM_FAULT_HWPOISON: Hit poisoned small page 1514 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1515 * in upper bits 1516 * @VM_FAULT_SIGSEGV: segmentation fault 1517 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1518 * @VM_FAULT_LOCKED: ->fault locked the returned page 1519 * @VM_FAULT_RETRY: ->fault blocked, must retry 1520 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1521 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1522 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1523 * fsync() to complete (for synchronous page faults 1524 * in DAX) 1525 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1526 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1527 * 1528 */ 1529enum vm_fault_reason { 1530 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1531 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1532 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1533 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1534 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1535 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1536 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1537 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1538 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1539 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1540 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1541 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1542 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1543 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1544}; 1545 1546/* Encode hstate index for a hwpoisoned large page */ 1547#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1548#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1549 1550#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1551 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1552 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1553 1554#define VM_FAULT_RESULT_TRACE \ 1555 { VM_FAULT_OOM, "OOM" }, \ 1556 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1557 { VM_FAULT_MAJOR, "MAJOR" }, \ 1558 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1559 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1560 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1561 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1562 { VM_FAULT_LOCKED, "LOCKED" }, \ 1563 { VM_FAULT_RETRY, "RETRY" }, \ 1564 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1565 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1566 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1567 { VM_FAULT_COMPLETED, "COMPLETED" } 1568 1569struct vm_special_mapping { 1570 const char *name; /* The name, e.g. "[vdso]". */ 1571 1572 /* 1573 * If .fault is not provided, this points to a 1574 * NULL-terminated array of pages that back the special mapping. 1575 * 1576 * This must not be NULL unless .fault is provided. 1577 */ 1578 struct page **pages; 1579 1580 /* 1581 * If non-NULL, then this is called to resolve page faults 1582 * on the special mapping. If used, .pages is not checked. 1583 */ 1584 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1585 struct vm_area_struct *vma, 1586 struct vm_fault *vmf); 1587 1588 int (*mremap)(const struct vm_special_mapping *sm, 1589 struct vm_area_struct *new_vma); 1590 1591 void (*close)(const struct vm_special_mapping *sm, 1592 struct vm_area_struct *vma); 1593}; 1594 1595enum tlb_flush_reason { 1596 TLB_FLUSH_ON_TASK_SWITCH, 1597 TLB_REMOTE_SHOOTDOWN, 1598 TLB_LOCAL_SHOOTDOWN, 1599 TLB_LOCAL_MM_SHOOTDOWN, 1600 TLB_REMOTE_SEND_IPI, 1601 TLB_REMOTE_WRONG_CPU, 1602 NR_TLB_FLUSH_REASONS, 1603}; 1604 1605/** 1606 * enum fault_flag - Fault flag definitions. 1607 * @FAULT_FLAG_WRITE: Fault was a write fault. 1608 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1609 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1610 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1611 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1612 * @FAULT_FLAG_TRIED: The fault has been tried once. 1613 * @FAULT_FLAG_USER: The fault originated in userspace. 1614 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1615 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1616 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1617 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1618 * COW mapping, making sure that an exclusive anon page is 1619 * mapped after the fault. 1620 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1621 * We should only access orig_pte if this flag set. 1622 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1623 * 1624 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1625 * whether we would allow page faults to retry by specifying these two 1626 * fault flags correctly. Currently there can be three legal combinations: 1627 * 1628 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1629 * this is the first try 1630 * 1631 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1632 * we've already tried at least once 1633 * 1634 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1635 * 1636 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1637 * be used. Note that page faults can be allowed to retry for multiple times, 1638 * in which case we'll have an initial fault with flags (a) then later on 1639 * continuous faults with flags (b). We should always try to detect pending 1640 * signals before a retry to make sure the continuous page faults can still be 1641 * interrupted if necessary. 1642 * 1643 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1644 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1645 * applied to mappings that are not COW mappings. 1646 */ 1647enum fault_flag { 1648 FAULT_FLAG_WRITE = 1 << 0, 1649 FAULT_FLAG_MKWRITE = 1 << 1, 1650 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1651 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1652 FAULT_FLAG_KILLABLE = 1 << 4, 1653 FAULT_FLAG_TRIED = 1 << 5, 1654 FAULT_FLAG_USER = 1 << 6, 1655 FAULT_FLAG_REMOTE = 1 << 7, 1656 FAULT_FLAG_INSTRUCTION = 1 << 8, 1657 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1658 FAULT_FLAG_UNSHARE = 1 << 10, 1659 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1660 FAULT_FLAG_VMA_LOCK = 1 << 12, 1661}; 1662 1663typedef unsigned int __bitwise zap_flags_t; 1664 1665/* Flags for clear_young_dirty_ptes(). */ 1666typedef int __bitwise cydp_t; 1667 1668/* Clear the access bit */ 1669#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1670 1671/* Clear the dirty bit */ 1672#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1673 1674/* 1675 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1676 * other. Here is what they mean, and how to use them: 1677 * 1678 * 1679 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1680 * lifetime enforced by the filesystem and we need guarantees that longterm 1681 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1682 * the filesystem. Ideas for this coordination include revoking the longterm 1683 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1684 * added after the problem with filesystems was found FS DAX VMAs are 1685 * specifically failed. Filesystem pages are still subject to bugs and use of 1686 * FOLL_LONGTERM should be avoided on those pages. 1687 * 1688 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1689 * that region. And so, CMA attempts to migrate the page before pinning, when 1690 * FOLL_LONGTERM is specified. 1691 * 1692 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1693 * but an additional pin counting system) will be invoked. This is intended for 1694 * anything that gets a page reference and then touches page data (for example, 1695 * Direct IO). This lets the filesystem know that some non-file-system entity is 1696 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1697 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1698 * a call to unpin_user_page(). 1699 * 1700 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1701 * and separate refcounting mechanisms, however, and that means that each has 1702 * its own acquire and release mechanisms: 1703 * 1704 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1705 * 1706 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1707 * 1708 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1709 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1710 * calls applied to them, and that's perfectly OK. This is a constraint on the 1711 * callers, not on the pages.) 1712 * 1713 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1714 * directly by the caller. That's in order to help avoid mismatches when 1715 * releasing pages: get_user_pages*() pages must be released via put_page(), 1716 * while pin_user_pages*() pages must be released via unpin_user_page(). 1717 * 1718 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1719 */ 1720 1721enum { 1722 /* check pte is writable */ 1723 FOLL_WRITE = 1 << 0, 1724 /* do get_page on page */ 1725 FOLL_GET = 1 << 1, 1726 /* give error on hole if it would be zero */ 1727 FOLL_DUMP = 1 << 2, 1728 /* get_user_pages read/write w/o permission */ 1729 FOLL_FORCE = 1 << 3, 1730 /* 1731 * if a disk transfer is needed, start the IO and return without waiting 1732 * upon it 1733 */ 1734 FOLL_NOWAIT = 1 << 4, 1735 /* do not fault in pages */ 1736 FOLL_NOFAULT = 1 << 5, 1737 /* check page is hwpoisoned */ 1738 FOLL_HWPOISON = 1 << 6, 1739 /* don't do file mappings */ 1740 FOLL_ANON = 1 << 7, 1741 /* 1742 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1743 * time period _often_ under userspace control. This is in contrast to 1744 * iov_iter_get_pages(), whose usages are transient. 1745 */ 1746 FOLL_LONGTERM = 1 << 8, 1747 /* split huge pmd before returning */ 1748 FOLL_SPLIT_PMD = 1 << 9, 1749 /* allow returning PCI P2PDMA pages */ 1750 FOLL_PCI_P2PDMA = 1 << 10, 1751 /* allow interrupts from generic signals */ 1752 FOLL_INTERRUPTIBLE = 1 << 11, 1753 /* 1754 * Always honor (trigger) NUMA hinting faults. 1755 * 1756 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1757 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1758 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1759 * hinting faults. 1760 */ 1761 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1762 1763 /* See also internal only FOLL flags in mm/internal.h */ 1764}; 1765 1766/* mm flags */ 1767 1768/* 1769 * The first two bits represent core dump modes for set-user-ID, 1770 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h 1771 */ 1772#define MMF_DUMPABLE_BITS 2 1773#define MMF_DUMPABLE_MASK (BIT(MMF_DUMPABLE_BITS) - 1) 1774/* coredump filter bits */ 1775#define MMF_DUMP_ANON_PRIVATE 2 1776#define MMF_DUMP_ANON_SHARED 3 1777#define MMF_DUMP_MAPPED_PRIVATE 4 1778#define MMF_DUMP_MAPPED_SHARED 5 1779#define MMF_DUMP_ELF_HEADERS 6 1780#define MMF_DUMP_HUGETLB_PRIVATE 7 1781#define MMF_DUMP_HUGETLB_SHARED 8 1782#define MMF_DUMP_DAX_PRIVATE 9 1783#define MMF_DUMP_DAX_SHARED 10 1784 1785#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 1786#define MMF_DUMP_FILTER_BITS 9 1787#define MMF_DUMP_FILTER_MASK \ 1788 ((BIT(MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 1789#define MMF_DUMP_FILTER_DEFAULT \ 1790 (BIT(MMF_DUMP_ANON_PRIVATE) | BIT(MMF_DUMP_ANON_SHARED) | \ 1791 BIT(MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 1792 1793#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 1794# define MMF_DUMP_MASK_DEFAULT_ELF BIT(MMF_DUMP_ELF_HEADERS) 1795#else 1796# define MMF_DUMP_MASK_DEFAULT_ELF 0 1797#endif 1798 /* leave room for more dump flags */ 1799#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 1800#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */ 1801 1802#define MMF_HUGE_ZERO_FOLIO 18 /* mm has ever used the global huge zero folio */ 1803 1804#define MMF_HAS_UPROBES 19 /* has uprobes */ 1805#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 1806#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 1807#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 1808#define MMF_DISABLE_THP_EXCEPT_ADVISED 23 /* no THP except when advised (e.g., VM_HUGEPAGE) */ 1809#define MMF_DISABLE_THP_COMPLETELY 24 /* no THP for all VMAs */ 1810#define MMF_DISABLE_THP_MASK (BIT(MMF_DISABLE_THP_COMPLETELY) | \ 1811 BIT(MMF_DISABLE_THP_EXCEPT_ADVISED)) 1812#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */ 1813#define MMF_MULTIPROCESS 26 /* mm is shared between processes */ 1814/* 1815 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either 1816 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into 1817 * a counter on its own. We're aggresive on this bit for now: even if the 1818 * pinned pages were unpinned later on, we'll still keep this bit set for the 1819 * lifecycle of this mm, just for simplicity. 1820 */ 1821#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */ 1822 1823#define MMF_HAS_MDWE 28 1824#define MMF_HAS_MDWE_MASK BIT(MMF_HAS_MDWE) 1825 1826#define MMF_HAS_MDWE_NO_INHERIT 29 1827 1828#define MMF_VM_MERGE_ANY 30 1829#define MMF_VM_MERGE_ANY_MASK BIT(MMF_VM_MERGE_ANY) 1830 1831#define MMF_TOPDOWN 31 /* mm searches top down by default */ 1832#define MMF_TOPDOWN_MASK BIT(MMF_TOPDOWN) 1833 1834#define MMF_INIT_LEGACY_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ 1835 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\ 1836 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK) 1837 1838/* Legacy flags must fit within 32 bits. */ 1839static_assert((u64)MMF_INIT_LEGACY_MASK <= (u64)UINT_MAX); 1840 1841/* 1842 * Initialise legacy flags according to masks, propagating selected flags on 1843 * fork. Further flag manipulation can be performed by the caller. 1844 */ 1845static inline unsigned long mmf_init_legacy_flags(unsigned long flags) 1846{ 1847 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT)) 1848 flags &= ~((1UL << MMF_HAS_MDWE) | 1849 (1UL << MMF_HAS_MDWE_NO_INHERIT)); 1850 return flags & MMF_INIT_LEGACY_MASK; 1851} 1852 1853#endif /* _LINUX_MM_TYPES_H */