at v6.18 49 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/kernel.h> 18#include <linux/page_counter.h> 19#include <linux/vmpressure.h> 20#include <linux/eventfd.h> 21#include <linux/mm.h> 22#include <linux/vmstat.h> 23#include <linux/writeback.h> 24#include <linux/page-flags.h> 25#include <linux/shrinker.h> 26 27struct mem_cgroup; 28struct obj_cgroup; 29struct page; 30struct mm_struct; 31struct kmem_cache; 32 33/* Cgroup-specific page state, on top of universal node page state */ 34enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43}; 44 45enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56}; 57 58struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 int generation; 61}; 62 63#ifdef CONFIG_MEMCG 64 65#define MEM_CGROUP_ID_SHIFT 16 66 67struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70}; 71 72struct memcg_vmstats_percpu; 73struct memcg1_events_percpu; 74struct memcg_vmstats; 75struct lruvec_stats_percpu; 76struct lruvec_stats; 77 78struct mem_cgroup_reclaim_iter { 79 struct mem_cgroup *position; 80 /* scan generation, increased every round-trip */ 81 atomic_t generation; 82}; 83 84/* 85 * per-node information in memory controller. 86 */ 87struct mem_cgroup_per_node { 88 /* Keep the read-only fields at the start */ 89 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 90 /* use container_of */ 91 92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 93 struct lruvec_stats *lruvec_stats; 94 struct shrinker_info __rcu *shrinker_info; 95 96#ifdef CONFIG_MEMCG_V1 97 /* 98 * Memcg-v1 only stuff in middle as buffer between read mostly fields 99 * and update often fields to avoid false sharing. If v1 stuff is 100 * not present, an explicit padding is needed. 101 */ 102 103 struct rb_node tree_node; /* RB tree node */ 104 unsigned long usage_in_excess;/* Set to the value by which */ 105 /* the soft limit is exceeded*/ 106 bool on_tree; 107#else 108 CACHELINE_PADDING(_pad1_); 109#endif 110 111 /* Fields which get updated often at the end. */ 112 struct lruvec lruvec; 113 CACHELINE_PADDING(_pad2_); 114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 115 struct mem_cgroup_reclaim_iter iter; 116 117#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 118 /* slab stats for nmi context */ 119 atomic_t slab_reclaimable; 120 atomic_t slab_unreclaimable; 121#endif 122}; 123 124struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127}; 128 129/* For threshold */ 130struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[] __counted_by(size); 137}; 138 139struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148}; 149 150/* 151 * Remember four most recent foreign writebacks with dirty pages in this 152 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 153 * one in a given round, we're likely to catch it later if it keeps 154 * foreign-dirtying, so a fairly low count should be enough. 155 * 156 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 157 */ 158#define MEMCG_CGWB_FRN_CNT 4 159 160struct memcg_cgwb_frn { 161 u64 bdi_id; /* bdi->id of the foreign inode */ 162 int memcg_id; /* memcg->css.id of foreign inode */ 163 u64 at; /* jiffies_64 at the time of dirtying */ 164 struct wb_completion done; /* tracks in-flight foreign writebacks */ 165}; 166 167/* 168 * Bucket for arbitrarily byte-sized objects charged to a memory 169 * cgroup. The bucket can be reparented in one piece when the cgroup 170 * is destroyed, without having to round up the individual references 171 * of all live memory objects in the wild. 172 */ 173struct obj_cgroup { 174 struct percpu_ref refcnt; 175 struct mem_cgroup *memcg; 176 atomic_t nr_charged_bytes; 177 union { 178 struct list_head list; /* protected by objcg_lock */ 179 struct rcu_head rcu; 180 }; 181}; 182 183/* 184 * The memory controller data structure. The memory controller controls both 185 * page cache and RSS per cgroup. We would eventually like to provide 186 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 187 * to help the administrator determine what knobs to tune. 188 */ 189struct mem_cgroup { 190 struct cgroup_subsys_state css; 191 192 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 193 struct mem_cgroup_id id; 194 195 /* Accounted resources */ 196 struct page_counter memory; /* Both v1 & v2 */ 197 198 union { 199 struct page_counter swap; /* v2 only */ 200 struct page_counter memsw; /* v1 only */ 201 }; 202 203 /* registered local peak watchers */ 204 struct list_head memory_peaks; 205 struct list_head swap_peaks; 206 spinlock_t peaks_lock; 207 208 /* Range enforcement for interrupt charges */ 209 struct work_struct high_work; 210 211#ifdef CONFIG_ZSWAP 212 unsigned long zswap_max; 213 214 /* 215 * Prevent pages from this memcg from being written back from zswap to 216 * swap, and from being swapped out on zswap store failures. 217 */ 218 bool zswap_writeback; 219#endif 220 221 /* vmpressure notifications */ 222 struct vmpressure vmpressure; 223 224 /* 225 * Should the OOM killer kill all belonging tasks, had it kill one? 226 */ 227 bool oom_group; 228 229 int swappiness; 230 231 /* memory.events and memory.events.local */ 232 struct cgroup_file events_file; 233 struct cgroup_file events_local_file; 234 235 /* handle for "memory.swap.events" */ 236 struct cgroup_file swap_events_file; 237 238 /* memory.stat */ 239 struct memcg_vmstats *vmstats; 240 241 /* memory.events */ 242 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 243 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 244 245#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 246 /* MEMCG_KMEM for nmi context */ 247 atomic_t kmem_stat; 248#endif 249 /* 250 * Hint of reclaim pressure for socket memroy management. Note 251 * that this indicator should NOT be used in legacy cgroup mode 252 * where socket memory is accounted/charged separately. 253 */ 254 u64 socket_pressure; 255#if BITS_PER_LONG < 64 256 seqlock_t socket_pressure_seqlock; 257#endif 258 int kmemcg_id; 259 /* 260 * memcg->objcg is wiped out as a part of the objcg repaprenting 261 * process. memcg->orig_objcg preserves a pointer (and a reference) 262 * to the original objcg until the end of live of memcg. 263 */ 264 struct obj_cgroup __rcu *objcg; 265 struct obj_cgroup *orig_objcg; 266 /* list of inherited objcgs, protected by objcg_lock */ 267 struct list_head objcg_list; 268 269 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 270 271#ifdef CONFIG_CGROUP_WRITEBACK 272 struct list_head cgwb_list; 273 struct wb_domain cgwb_domain; 274 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 275#endif 276 277#ifdef CONFIG_TRANSPARENT_HUGEPAGE 278 struct deferred_split deferred_split_queue; 279#endif 280 281#ifdef CONFIG_LRU_GEN_WALKS_MMU 282 /* per-memcg mm_struct list */ 283 struct lru_gen_mm_list mm_list; 284#endif 285 286#ifdef CONFIG_MEMCG_V1 287 /* Legacy consumer-oriented counters */ 288 struct page_counter kmem; /* v1 only */ 289 struct page_counter tcpmem; /* v1 only */ 290 291 struct memcg1_events_percpu __percpu *events_percpu; 292 293 unsigned long soft_limit; 294 295 /* protected by memcg_oom_lock */ 296 bool oom_lock; 297 int under_oom; 298 299 /* OOM-Killer disable */ 300 int oom_kill_disable; 301 302 /* protect arrays of thresholds */ 303 struct mutex thresholds_lock; 304 305 /* thresholds for memory usage. RCU-protected */ 306 struct mem_cgroup_thresholds thresholds; 307 308 /* thresholds for mem+swap usage. RCU-protected */ 309 struct mem_cgroup_thresholds memsw_thresholds; 310 311 /* For oom notifier event fd */ 312 struct list_head oom_notify; 313 314 /* Legacy tcp memory accounting */ 315 bool tcpmem_active; 316 int tcpmem_pressure; 317 318 /* List of events which userspace want to receive */ 319 struct list_head event_list; 320 spinlock_t event_list_lock; 321#endif /* CONFIG_MEMCG_V1 */ 322 323 struct mem_cgroup_per_node *nodeinfo[]; 324}; 325 326/* 327 * size of first charge trial. 328 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 329 * workload. 330 */ 331#define MEMCG_CHARGE_BATCH 64U 332 333extern struct mem_cgroup *root_mem_cgroup; 334 335enum page_memcg_data_flags { 336 /* page->memcg_data is a pointer to an slabobj_ext vector */ 337 MEMCG_DATA_OBJEXTS = (1UL << 0), 338 /* page has been accounted as a non-slab kernel page */ 339 MEMCG_DATA_KMEM = (1UL << 1), 340 /* the next bit after the last actual flag */ 341 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 342}; 343 344#define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS 345#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 346 347#else /* CONFIG_MEMCG */ 348 349#define __OBJEXTS_ALLOC_FAIL (1UL << 0) 350#define __FIRST_OBJEXT_FLAG (1UL << 0) 351 352#endif /* CONFIG_MEMCG */ 353 354enum objext_flags { 355 /* 356 * Use bit 0 with zero other bits to signal that slabobj_ext vector 357 * failed to allocate. The same bit 0 with valid upper bits means 358 * MEMCG_DATA_OBJEXTS. 359 */ 360 OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL, 361 /* slabobj_ext vector allocated with kmalloc_nolock() */ 362 OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG, 363 /* the next bit after the last actual flag */ 364 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 365}; 366 367#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 368 369#ifdef CONFIG_MEMCG 370 371static inline bool folio_memcg_kmem(struct folio *folio); 372 373/* 374 * After the initialization objcg->memcg is always pointing at 375 * a valid memcg, but can be atomically swapped to the parent memcg. 376 * 377 * The caller must ensure that the returned memcg won't be released. 378 */ 379static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 380{ 381 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex)); 382 return READ_ONCE(objcg->memcg); 383} 384 385/* 386 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 387 * @folio: Pointer to the folio. 388 * 389 * Returns a pointer to the memory cgroup associated with the folio, 390 * or NULL. This function assumes that the folio is known to have a 391 * proper memory cgroup pointer. It's not safe to call this function 392 * against some type of folios, e.g. slab folios or ex-slab folios or 393 * kmem folios. 394 */ 395static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 396{ 397 unsigned long memcg_data = folio->memcg_data; 398 399 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 400 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 402 403 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 404} 405 406/* 407 * __folio_objcg - get the object cgroup associated with a kmem folio. 408 * @folio: Pointer to the folio. 409 * 410 * Returns a pointer to the object cgroup associated with the folio, 411 * or NULL. This function assumes that the folio is known to have a 412 * proper object cgroup pointer. It's not safe to call this function 413 * against some type of folios, e.g. slab folios or ex-slab folios or 414 * LRU folios. 415 */ 416static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 417{ 418 unsigned long memcg_data = folio->memcg_data; 419 420 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 421 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 422 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 423 424 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 425} 426 427/* 428 * folio_memcg - Get the memory cgroup associated with a folio. 429 * @folio: Pointer to the folio. 430 * 431 * Returns a pointer to the memory cgroup associated with the folio, 432 * or NULL. This function assumes that the folio is known to have a 433 * proper memory cgroup pointer. It's not safe to call this function 434 * against some type of folios, e.g. slab folios or ex-slab folios. 435 * 436 * For a non-kmem folio any of the following ensures folio and memcg binding 437 * stability: 438 * 439 * - the folio lock 440 * - LRU isolation 441 * - exclusive reference 442 * 443 * For a kmem folio a caller should hold an rcu read lock to protect memcg 444 * associated with a kmem folio from being released. 445 */ 446static inline struct mem_cgroup *folio_memcg(struct folio *folio) 447{ 448 if (folio_memcg_kmem(folio)) 449 return obj_cgroup_memcg(__folio_objcg(folio)); 450 return __folio_memcg(folio); 451} 452 453/* 454 * folio_memcg_charged - If a folio is charged to a memory cgroup. 455 * @folio: Pointer to the folio. 456 * 457 * Returns true if folio is charged to a memory cgroup, otherwise returns false. 458 */ 459static inline bool folio_memcg_charged(struct folio *folio) 460{ 461 return folio->memcg_data != 0; 462} 463 464/* 465 * folio_memcg_check - Get the memory cgroup associated with a folio. 466 * @folio: Pointer to the folio. 467 * 468 * Returns a pointer to the memory cgroup associated with the folio, 469 * or NULL. This function unlike folio_memcg() can take any folio 470 * as an argument. It has to be used in cases when it's not known if a folio 471 * has an associated memory cgroup pointer or an object cgroups vector or 472 * an object cgroup. 473 * 474 * For a non-kmem folio any of the following ensures folio and memcg binding 475 * stability: 476 * 477 * - the folio lock 478 * - LRU isolation 479 * - exclusive reference 480 * 481 * For a kmem folio a caller should hold an rcu read lock to protect memcg 482 * associated with a kmem folio from being released. 483 */ 484static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 485{ 486 /* 487 * Because folio->memcg_data might be changed asynchronously 488 * for slabs, READ_ONCE() should be used here. 489 */ 490 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 491 492 if (memcg_data & MEMCG_DATA_OBJEXTS) 493 return NULL; 494 495 if (memcg_data & MEMCG_DATA_KMEM) { 496 struct obj_cgroup *objcg; 497 498 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 499 return obj_cgroup_memcg(objcg); 500 } 501 502 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 503} 504 505static inline struct mem_cgroup *page_memcg_check(struct page *page) 506{ 507 if (PageTail(page)) 508 return NULL; 509 return folio_memcg_check((struct folio *)page); 510} 511 512static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 513{ 514 struct mem_cgroup *memcg; 515 516 rcu_read_lock(); 517retry: 518 memcg = obj_cgroup_memcg(objcg); 519 if (unlikely(!css_tryget(&memcg->css))) 520 goto retry; 521 rcu_read_unlock(); 522 523 return memcg; 524} 525 526/* 527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 528 * @folio: Pointer to the folio. 529 * 530 * Checks if the folio has MemcgKmem flag set. The caller must ensure 531 * that the folio has an associated memory cgroup. It's not safe to call 532 * this function against some types of folios, e.g. slab folios. 533 */ 534static inline bool folio_memcg_kmem(struct folio *folio) 535{ 536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 538 return folio->memcg_data & MEMCG_DATA_KMEM; 539} 540 541static inline bool PageMemcgKmem(struct page *page) 542{ 543 return folio_memcg_kmem(page_folio(page)); 544} 545 546static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 547{ 548 return (memcg == root_mem_cgroup); 549} 550 551static inline bool mem_cgroup_disabled(void) 552{ 553 return !cgroup_subsys_enabled(memory_cgrp_subsys); 554} 555 556static inline void mem_cgroup_protection(struct mem_cgroup *root, 557 struct mem_cgroup *memcg, 558 unsigned long *min, 559 unsigned long *low) 560{ 561 *min = *low = 0; 562 563 if (mem_cgroup_disabled()) 564 return; 565 566 /* 567 * There is no reclaim protection applied to a targeted reclaim. 568 * We are special casing this specific case here because 569 * mem_cgroup_calculate_protection is not robust enough to keep 570 * the protection invariant for calculated effective values for 571 * parallel reclaimers with different reclaim target. This is 572 * especially a problem for tail memcgs (as they have pages on LRU) 573 * which would want to have effective values 0 for targeted reclaim 574 * but a different value for external reclaim. 575 * 576 * Example 577 * Let's have global and A's reclaim in parallel: 578 * | 579 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 580 * |\ 581 * | C (low = 1G, usage = 2.5G) 582 * B (low = 1G, usage = 0.5G) 583 * 584 * For the global reclaim 585 * A.elow = A.low 586 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 587 * C.elow = min(C.usage, C.low) 588 * 589 * With the effective values resetting we have A reclaim 590 * A.elow = 0 591 * B.elow = B.low 592 * C.elow = C.low 593 * 594 * If the global reclaim races with A's reclaim then 595 * B.elow = C.elow = 0 because children_low_usage > A.elow) 596 * is possible and reclaiming B would be violating the protection. 597 * 598 */ 599 if (root == memcg) 600 return; 601 602 *min = READ_ONCE(memcg->memory.emin); 603 *low = READ_ONCE(memcg->memory.elow); 604} 605 606void mem_cgroup_calculate_protection(struct mem_cgroup *root, 607 struct mem_cgroup *memcg); 608 609static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 610 struct mem_cgroup *memcg) 611{ 612 /* 613 * The root memcg doesn't account charges, and doesn't support 614 * protection. The target memcg's protection is ignored, see 615 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 616 */ 617 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 618 memcg == target; 619} 620 621static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 622 struct mem_cgroup *memcg) 623{ 624 if (mem_cgroup_unprotected(target, memcg)) 625 return false; 626 627 return READ_ONCE(memcg->memory.elow) >= 628 page_counter_read(&memcg->memory); 629} 630 631static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 632 struct mem_cgroup *memcg) 633{ 634 if (mem_cgroup_unprotected(target, memcg)) 635 return false; 636 637 return READ_ONCE(memcg->memory.emin) >= 638 page_counter_read(&memcg->memory); 639} 640 641int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 642 643/** 644 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 645 * @folio: Folio to charge. 646 * @mm: mm context of the allocating task. 647 * @gfp: Reclaim mode. 648 * 649 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 650 * pages according to @gfp if necessary. If @mm is NULL, try to 651 * charge to the active memcg. 652 * 653 * Do not use this for folios allocated for swapin. 654 * 655 * Return: 0 on success. Otherwise, an error code is returned. 656 */ 657static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 658 gfp_t gfp) 659{ 660 if (mem_cgroup_disabled()) 661 return 0; 662 return __mem_cgroup_charge(folio, mm, gfp); 663} 664 665int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp); 666 667int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 668 gfp_t gfp, swp_entry_t entry); 669 670void __mem_cgroup_uncharge(struct folio *folio); 671 672/** 673 * mem_cgroup_uncharge - Uncharge a folio. 674 * @folio: Folio to uncharge. 675 * 676 * Uncharge a folio previously charged with mem_cgroup_charge(). 677 */ 678static inline void mem_cgroup_uncharge(struct folio *folio) 679{ 680 if (mem_cgroup_disabled()) 681 return; 682 __mem_cgroup_uncharge(folio); 683} 684 685void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 686static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 687{ 688 if (mem_cgroup_disabled()) 689 return; 690 __mem_cgroup_uncharge_folios(folios); 691} 692 693void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 694void mem_cgroup_migrate(struct folio *old, struct folio *new); 695 696/** 697 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 698 * @memcg: memcg of the wanted lruvec 699 * @pgdat: pglist_data 700 * 701 * Returns the lru list vector holding pages for a given @memcg & 702 * @pgdat combination. This can be the node lruvec, if the memory 703 * controller is disabled. 704 */ 705static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 706 struct pglist_data *pgdat) 707{ 708 struct mem_cgroup_per_node *mz; 709 struct lruvec *lruvec; 710 711 if (mem_cgroup_disabled()) { 712 lruvec = &pgdat->__lruvec; 713 goto out; 714 } 715 716 if (!memcg) 717 memcg = root_mem_cgroup; 718 719 mz = memcg->nodeinfo[pgdat->node_id]; 720 lruvec = &mz->lruvec; 721out: 722 /* 723 * Since a node can be onlined after the mem_cgroup was created, 724 * we have to be prepared to initialize lruvec->pgdat here; 725 * and if offlined then reonlined, we need to reinitialize it. 726 */ 727 if (unlikely(lruvec->pgdat != pgdat)) 728 lruvec->pgdat = pgdat; 729 return lruvec; 730} 731 732/** 733 * folio_lruvec - return lruvec for isolating/putting an LRU folio 734 * @folio: Pointer to the folio. 735 * 736 * This function relies on folio->mem_cgroup being stable. 737 */ 738static inline struct lruvec *folio_lruvec(struct folio *folio) 739{ 740 struct mem_cgroup *memcg = folio_memcg(folio); 741 742 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 743 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 744} 745 746struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 747 748struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 749 750struct mem_cgroup *get_mem_cgroup_from_current(void); 751 752struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio); 753 754struct lruvec *folio_lruvec_lock(struct folio *folio); 755struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 756struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 757 unsigned long *flags); 758 759#ifdef CONFIG_DEBUG_VM 760void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 761#else 762static inline 763void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 764{ 765} 766#endif 767 768static inline 769struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 770 return css ? container_of(css, struct mem_cgroup, css) : NULL; 771} 772 773static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 774{ 775 return percpu_ref_tryget(&objcg->refcnt); 776} 777 778static inline void obj_cgroup_get(struct obj_cgroup *objcg) 779{ 780 percpu_ref_get(&objcg->refcnt); 781} 782 783static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 784 unsigned long nr) 785{ 786 percpu_ref_get_many(&objcg->refcnt, nr); 787} 788 789static inline void obj_cgroup_put(struct obj_cgroup *objcg) 790{ 791 if (objcg) 792 percpu_ref_put(&objcg->refcnt); 793} 794 795static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 796{ 797 return !memcg || css_tryget(&memcg->css); 798} 799 800static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 801{ 802 return !memcg || css_tryget_online(&memcg->css); 803} 804 805static inline void mem_cgroup_put(struct mem_cgroup *memcg) 806{ 807 if (memcg) 808 css_put(&memcg->css); 809} 810 811#define mem_cgroup_from_counter(counter, member) \ 812 container_of(counter, struct mem_cgroup, member) 813 814struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 815 struct mem_cgroup *, 816 struct mem_cgroup_reclaim_cookie *); 817void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 818void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 819 int (*)(struct task_struct *, void *), void *arg); 820 821static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 822{ 823 if (mem_cgroup_disabled()) 824 return 0; 825 826 return memcg->id.id; 827} 828struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 829 830#ifdef CONFIG_SHRINKER_DEBUG 831static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 832{ 833 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 834} 835 836struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 837#endif 838 839static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 840{ 841 return mem_cgroup_from_css(seq_css(m)); 842} 843 844static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 845{ 846 struct mem_cgroup_per_node *mz; 847 848 if (mem_cgroup_disabled()) 849 return NULL; 850 851 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 852 return mz->memcg; 853} 854 855/** 856 * parent_mem_cgroup - find the accounting parent of a memcg 857 * @memcg: memcg whose parent to find 858 * 859 * Returns the parent memcg, or NULL if this is the root. 860 */ 861static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 862{ 863 return mem_cgroup_from_css(memcg->css.parent); 864} 865 866static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 867 struct mem_cgroup *root) 868{ 869 if (root == memcg) 870 return true; 871 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 872} 873 874static inline bool mm_match_cgroup(struct mm_struct *mm, 875 struct mem_cgroup *memcg) 876{ 877 struct mem_cgroup *task_memcg; 878 bool match = false; 879 880 rcu_read_lock(); 881 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 882 if (task_memcg) 883 match = mem_cgroup_is_descendant(task_memcg, memcg); 884 rcu_read_unlock(); 885 return match; 886} 887 888struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 889ino_t page_cgroup_ino(struct page *page); 890 891static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 892{ 893 if (mem_cgroup_disabled()) 894 return true; 895 return !!(memcg->css.flags & CSS_ONLINE); 896} 897 898void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 899 int zid, int nr_pages); 900 901static inline 902unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 903 enum lru_list lru, int zone_idx) 904{ 905 struct mem_cgroup_per_node *mz; 906 907 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 908 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 909} 910 911void __mem_cgroup_handle_over_high(gfp_t gfp_mask); 912 913static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 914{ 915 if (unlikely(current->memcg_nr_pages_over_high)) 916 __mem_cgroup_handle_over_high(gfp_mask); 917} 918 919unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 920 921unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 922 923void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 924 struct task_struct *p); 925 926void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 927 928struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 929 struct mem_cgroup *oom_domain); 930void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 931 932/* idx can be of type enum memcg_stat_item or node_stat_item */ 933void mod_memcg_state(struct mem_cgroup *memcg, 934 enum memcg_stat_item idx, int val); 935 936static inline void mod_memcg_page_state(struct page *page, 937 enum memcg_stat_item idx, int val) 938{ 939 struct mem_cgroup *memcg; 940 941 if (mem_cgroup_disabled()) 942 return; 943 944 rcu_read_lock(); 945 memcg = folio_memcg(page_folio(page)); 946 if (memcg) 947 mod_memcg_state(memcg, idx, val); 948 rcu_read_unlock(); 949} 950 951unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 952unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 953unsigned long lruvec_page_state_local(struct lruvec *lruvec, 954 enum node_stat_item idx); 955 956void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 957void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 958 959void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 960 961static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 962 int val) 963{ 964 unsigned long flags; 965 966 local_irq_save(flags); 967 __mod_lruvec_kmem_state(p, idx, val); 968 local_irq_restore(flags); 969} 970 971void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 972 unsigned long count); 973 974static inline void count_memcg_folio_events(struct folio *folio, 975 enum vm_event_item idx, unsigned long nr) 976{ 977 struct mem_cgroup *memcg = folio_memcg(folio); 978 979 if (memcg) 980 count_memcg_events(memcg, idx, nr); 981} 982 983static inline void count_memcg_events_mm(struct mm_struct *mm, 984 enum vm_event_item idx, unsigned long count) 985{ 986 struct mem_cgroup *memcg; 987 988 if (mem_cgroup_disabled()) 989 return; 990 991 rcu_read_lock(); 992 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 993 if (likely(memcg)) 994 count_memcg_events(memcg, idx, count); 995 rcu_read_unlock(); 996} 997 998static inline void count_memcg_event_mm(struct mm_struct *mm, 999 enum vm_event_item idx) 1000{ 1001 count_memcg_events_mm(mm, idx, 1); 1002} 1003 1004static inline void __memcg_memory_event(struct mem_cgroup *memcg, 1005 enum memcg_memory_event event, 1006 bool allow_spinning) 1007{ 1008 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1009 event == MEMCG_SWAP_FAIL; 1010 1011 /* For now only MEMCG_MAX can happen with !allow_spinning context. */ 1012 VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX); 1013 1014 atomic_long_inc(&memcg->memory_events_local[event]); 1015 if (!swap_event && allow_spinning) 1016 cgroup_file_notify(&memcg->events_local_file); 1017 1018 do { 1019 atomic_long_inc(&memcg->memory_events[event]); 1020 if (allow_spinning) { 1021 if (swap_event) 1022 cgroup_file_notify(&memcg->swap_events_file); 1023 else 1024 cgroup_file_notify(&memcg->events_file); 1025 } 1026 1027 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1028 break; 1029 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1030 break; 1031 } while ((memcg = parent_mem_cgroup(memcg)) && 1032 !mem_cgroup_is_root(memcg)); 1033} 1034 1035static inline void memcg_memory_event(struct mem_cgroup *memcg, 1036 enum memcg_memory_event event) 1037{ 1038 __memcg_memory_event(memcg, event, true); 1039} 1040 1041static inline void memcg_memory_event_mm(struct mm_struct *mm, 1042 enum memcg_memory_event event) 1043{ 1044 struct mem_cgroup *memcg; 1045 1046 if (mem_cgroup_disabled()) 1047 return; 1048 1049 rcu_read_lock(); 1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1051 if (likely(memcg)) 1052 memcg_memory_event(memcg, event); 1053 rcu_read_unlock(); 1054} 1055 1056void split_page_memcg(struct page *first, unsigned order); 1057void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 1058 unsigned new_order); 1059 1060static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1061{ 1062 struct mem_cgroup *memcg; 1063 u64 id; 1064 1065 if (mem_cgroup_disabled()) 1066 return 0; 1067 1068 rcu_read_lock(); 1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1070 if (!memcg) 1071 memcg = root_mem_cgroup; 1072 id = cgroup_id(memcg->css.cgroup); 1073 rcu_read_unlock(); 1074 return id; 1075} 1076 1077extern int mem_cgroup_init(void); 1078#else /* CONFIG_MEMCG */ 1079 1080#define MEM_CGROUP_ID_SHIFT 0 1081 1082#define root_mem_cgroup (NULL) 1083 1084static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1085{ 1086 return NULL; 1087} 1088 1089static inline bool folio_memcg_charged(struct folio *folio) 1090{ 1091 return false; 1092} 1093 1094static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1095{ 1096 return NULL; 1097} 1098 1099static inline struct mem_cgroup *page_memcg_check(struct page *page) 1100{ 1101 return NULL; 1102} 1103 1104static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1105{ 1106 return NULL; 1107} 1108 1109static inline bool folio_memcg_kmem(struct folio *folio) 1110{ 1111 return false; 1112} 1113 1114static inline bool PageMemcgKmem(struct page *page) 1115{ 1116 return false; 1117} 1118 1119static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1120{ 1121 return true; 1122} 1123 1124static inline bool mem_cgroup_disabled(void) 1125{ 1126 return true; 1127} 1128 1129static inline void memcg_memory_event(struct mem_cgroup *memcg, 1130 enum memcg_memory_event event) 1131{ 1132} 1133 1134static inline void memcg_memory_event_mm(struct mm_struct *mm, 1135 enum memcg_memory_event event) 1136{ 1137} 1138 1139static inline void mem_cgroup_protection(struct mem_cgroup *root, 1140 struct mem_cgroup *memcg, 1141 unsigned long *min, 1142 unsigned long *low) 1143{ 1144 *min = *low = 0; 1145} 1146 1147static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1148 struct mem_cgroup *memcg) 1149{ 1150} 1151 1152static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1153 struct mem_cgroup *memcg) 1154{ 1155 return true; 1156} 1157static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1158 struct mem_cgroup *memcg) 1159{ 1160 return false; 1161} 1162 1163static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1164 struct mem_cgroup *memcg) 1165{ 1166 return false; 1167} 1168 1169static inline int mem_cgroup_charge(struct folio *folio, 1170 struct mm_struct *mm, gfp_t gfp) 1171{ 1172 return 0; 1173} 1174 1175static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp) 1176{ 1177 return 0; 1178} 1179 1180static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1181 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1182{ 1183 return 0; 1184} 1185 1186static inline void mem_cgroup_uncharge(struct folio *folio) 1187{ 1188} 1189 1190static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1191{ 1192} 1193 1194static inline void mem_cgroup_replace_folio(struct folio *old, 1195 struct folio *new) 1196{ 1197} 1198 1199static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1200{ 1201} 1202 1203static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1204 struct pglist_data *pgdat) 1205{ 1206 return &pgdat->__lruvec; 1207} 1208 1209static inline struct lruvec *folio_lruvec(struct folio *folio) 1210{ 1211 struct pglist_data *pgdat = folio_pgdat(folio); 1212 return &pgdat->__lruvec; 1213} 1214 1215static inline 1216void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1217{ 1218} 1219 1220static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1221{ 1222 return NULL; 1223} 1224 1225static inline bool mm_match_cgroup(struct mm_struct *mm, 1226 struct mem_cgroup *memcg) 1227{ 1228 return true; 1229} 1230 1231static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1232{ 1233 return NULL; 1234} 1235 1236static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1237{ 1238 return NULL; 1239} 1240 1241static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1242{ 1243 return NULL; 1244} 1245 1246static inline 1247struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1248{ 1249 return NULL; 1250} 1251 1252static inline void obj_cgroup_get(struct obj_cgroup *objcg) 1253{ 1254} 1255 1256static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1257{ 1258} 1259 1260static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1261{ 1262 return true; 1263} 1264 1265static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1266{ 1267 return true; 1268} 1269 1270static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1271{ 1272} 1273 1274static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1275{ 1276 struct pglist_data *pgdat = folio_pgdat(folio); 1277 1278 spin_lock(&pgdat->__lruvec.lru_lock); 1279 return &pgdat->__lruvec; 1280} 1281 1282static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1283{ 1284 struct pglist_data *pgdat = folio_pgdat(folio); 1285 1286 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1287 return &pgdat->__lruvec; 1288} 1289 1290static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1291 unsigned long *flagsp) 1292{ 1293 struct pglist_data *pgdat = folio_pgdat(folio); 1294 1295 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1296 return &pgdat->__lruvec; 1297} 1298 1299static inline struct mem_cgroup * 1300mem_cgroup_iter(struct mem_cgroup *root, 1301 struct mem_cgroup *prev, 1302 struct mem_cgroup_reclaim_cookie *reclaim) 1303{ 1304 return NULL; 1305} 1306 1307static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1308 struct mem_cgroup *prev) 1309{ 1310} 1311 1312static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1313 int (*fn)(struct task_struct *, void *), void *arg) 1314{ 1315} 1316 1317static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1318{ 1319 return 0; 1320} 1321 1322static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1323{ 1324 WARN_ON_ONCE(id); 1325 /* XXX: This should always return root_mem_cgroup */ 1326 return NULL; 1327} 1328 1329#ifdef CONFIG_SHRINKER_DEBUG 1330static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1331{ 1332 return 0; 1333} 1334 1335static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1336{ 1337 return NULL; 1338} 1339#endif 1340 1341static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1342{ 1343 return NULL; 1344} 1345 1346static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1347{ 1348 return NULL; 1349} 1350 1351static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1352{ 1353 return true; 1354} 1355 1356static inline 1357unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1358 enum lru_list lru, int zone_idx) 1359{ 1360 return 0; 1361} 1362 1363static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1364{ 1365 return 0; 1366} 1367 1368static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1369{ 1370 return 0; 1371} 1372 1373static inline void 1374mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1375{ 1376} 1377 1378static inline void 1379mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1380{ 1381} 1382 1383static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1384{ 1385} 1386 1387static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1388 struct task_struct *victim, struct mem_cgroup *oom_domain) 1389{ 1390 return NULL; 1391} 1392 1393static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1394{ 1395} 1396 1397static inline void mod_memcg_state(struct mem_cgroup *memcg, 1398 enum memcg_stat_item idx, 1399 int nr) 1400{ 1401} 1402 1403static inline void mod_memcg_page_state(struct page *page, 1404 enum memcg_stat_item idx, int val) 1405{ 1406} 1407 1408static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1409{ 1410 return 0; 1411} 1412 1413static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1414 enum node_stat_item idx) 1415{ 1416 return node_page_state(lruvec_pgdat(lruvec), idx); 1417} 1418 1419static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1420 enum node_stat_item idx) 1421{ 1422 return node_page_state(lruvec_pgdat(lruvec), idx); 1423} 1424 1425static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1426{ 1427} 1428 1429static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1430{ 1431} 1432 1433static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1434 int val) 1435{ 1436 struct page *page = virt_to_head_page(p); 1437 1438 __mod_node_page_state(page_pgdat(page), idx, val); 1439} 1440 1441static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1442 int val) 1443{ 1444 struct page *page = virt_to_head_page(p); 1445 1446 mod_node_page_state(page_pgdat(page), idx, val); 1447} 1448 1449static inline void count_memcg_events(struct mem_cgroup *memcg, 1450 enum vm_event_item idx, 1451 unsigned long count) 1452{ 1453} 1454 1455static inline void count_memcg_folio_events(struct folio *folio, 1456 enum vm_event_item idx, unsigned long nr) 1457{ 1458} 1459 1460static inline void count_memcg_events_mm(struct mm_struct *mm, 1461 enum vm_event_item idx, unsigned long count) 1462{ 1463} 1464 1465static inline 1466void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1467{ 1468} 1469 1470static inline void split_page_memcg(struct page *first, unsigned order) 1471{ 1472} 1473 1474static inline void folio_split_memcg_refs(struct folio *folio, 1475 unsigned old_order, unsigned new_order) 1476{ 1477} 1478 1479static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1480{ 1481 return 0; 1482} 1483 1484static inline int mem_cgroup_init(void) { return 0; } 1485#endif /* CONFIG_MEMCG */ 1486 1487/* 1488 * Extended information for slab objects stored as an array in page->memcg_data 1489 * if MEMCG_DATA_OBJEXTS is set. 1490 */ 1491struct slabobj_ext { 1492#ifdef CONFIG_MEMCG 1493 struct obj_cgroup *objcg; 1494#endif 1495#ifdef CONFIG_MEM_ALLOC_PROFILING 1496 union codetag_ref ref; 1497#endif 1498} __aligned(8); 1499 1500static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1501{ 1502 __mod_lruvec_kmem_state(p, idx, 1); 1503} 1504 1505static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1506{ 1507 __mod_lruvec_kmem_state(p, idx, -1); 1508} 1509 1510static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1511{ 1512 struct mem_cgroup *memcg; 1513 1514 memcg = lruvec_memcg(lruvec); 1515 if (!memcg) 1516 return NULL; 1517 memcg = parent_mem_cgroup(memcg); 1518 if (!memcg) 1519 return NULL; 1520 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1521} 1522 1523static inline void unlock_page_lruvec(struct lruvec *lruvec) 1524{ 1525 spin_unlock(&lruvec->lru_lock); 1526} 1527 1528static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1529{ 1530 spin_unlock_irq(&lruvec->lru_lock); 1531} 1532 1533static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1534 unsigned long flags) 1535{ 1536 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1537} 1538 1539/* Test requires a stable folio->memcg binding, see folio_memcg() */ 1540static inline bool folio_matches_lruvec(struct folio *folio, 1541 struct lruvec *lruvec) 1542{ 1543 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1544 lruvec_memcg(lruvec) == folio_memcg(folio); 1545} 1546 1547/* Don't lock again iff page's lruvec locked */ 1548static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1549 struct lruvec *locked_lruvec) 1550{ 1551 if (locked_lruvec) { 1552 if (folio_matches_lruvec(folio, locked_lruvec)) 1553 return locked_lruvec; 1554 1555 unlock_page_lruvec_irq(locked_lruvec); 1556 } 1557 1558 return folio_lruvec_lock_irq(folio); 1559} 1560 1561/* Don't lock again iff folio's lruvec locked */ 1562static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1563 struct lruvec **lruvecp, unsigned long *flags) 1564{ 1565 if (*lruvecp) { 1566 if (folio_matches_lruvec(folio, *lruvecp)) 1567 return; 1568 1569 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1570 } 1571 1572 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1573} 1574 1575#ifdef CONFIG_CGROUP_WRITEBACK 1576 1577struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1578void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1579 unsigned long *pheadroom, unsigned long *pdirty, 1580 unsigned long *pwriteback); 1581 1582void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1583 struct bdi_writeback *wb); 1584 1585static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1586 struct bdi_writeback *wb) 1587{ 1588 struct mem_cgroup *memcg; 1589 1590 if (mem_cgroup_disabled()) 1591 return; 1592 1593 memcg = folio_memcg(folio); 1594 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1595 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1596} 1597 1598void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1599 1600#else /* CONFIG_CGROUP_WRITEBACK */ 1601 1602static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1603{ 1604 return NULL; 1605} 1606 1607static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1608 unsigned long *pfilepages, 1609 unsigned long *pheadroom, 1610 unsigned long *pdirty, 1611 unsigned long *pwriteback) 1612{ 1613} 1614 1615static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1616 struct bdi_writeback *wb) 1617{ 1618} 1619 1620static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1621{ 1622} 1623 1624#endif /* CONFIG_CGROUP_WRITEBACK */ 1625 1626struct sock; 1627#ifdef CONFIG_MEMCG 1628extern struct static_key_false memcg_sockets_enabled_key; 1629#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1630 1631void mem_cgroup_sk_alloc(struct sock *sk); 1632void mem_cgroup_sk_free(struct sock *sk); 1633void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk); 1634bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages, 1635 gfp_t gfp_mask); 1636void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages); 1637 1638#if BITS_PER_LONG < 64 1639static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1640{ 1641 u64 val = get_jiffies_64() + HZ; 1642 unsigned long flags; 1643 1644 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags); 1645 memcg->socket_pressure = val; 1646 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags); 1647} 1648 1649static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1650{ 1651 unsigned int seq; 1652 u64 val; 1653 1654 do { 1655 seq = read_seqbegin(&memcg->socket_pressure_seqlock); 1656 val = memcg->socket_pressure; 1657 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq)); 1658 1659 return val; 1660} 1661#else 1662static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1663{ 1664 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ); 1665} 1666 1667static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1668{ 1669 return READ_ONCE(memcg->socket_pressure); 1670} 1671#endif 1672 1673int alloc_shrinker_info(struct mem_cgroup *memcg); 1674void free_shrinker_info(struct mem_cgroup *memcg); 1675void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1676void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1677#else 1678#define mem_cgroup_sockets_enabled 0 1679 1680static inline void mem_cgroup_sk_alloc(struct sock *sk) 1681{ 1682} 1683 1684static inline void mem_cgroup_sk_free(struct sock *sk) 1685{ 1686} 1687 1688static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk) 1689{ 1690} 1691 1692static inline bool mem_cgroup_sk_charge(const struct sock *sk, 1693 unsigned int nr_pages, 1694 gfp_t gfp_mask) 1695{ 1696 return false; 1697} 1698 1699static inline void mem_cgroup_sk_uncharge(const struct sock *sk, 1700 unsigned int nr_pages) 1701{ 1702} 1703 1704static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1705 int nid, int shrinker_id) 1706{ 1707} 1708#endif 1709 1710#ifdef CONFIG_MEMCG 1711bool mem_cgroup_kmem_disabled(void); 1712int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1713void __memcg_kmem_uncharge_page(struct page *page, int order); 1714 1715/* 1716 * The returned objcg pointer is safe to use without additional 1717 * protection within a scope. The scope is defined either by 1718 * the current task (similar to the "current" global variable) 1719 * or by set_active_memcg() pair. 1720 * Please, use obj_cgroup_get() to get a reference if the pointer 1721 * needs to be used outside of the local scope. 1722 */ 1723struct obj_cgroup *current_obj_cgroup(void); 1724struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1725 1726static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1727{ 1728 struct obj_cgroup *objcg = current_obj_cgroup(); 1729 1730 if (objcg) 1731 obj_cgroup_get(objcg); 1732 1733 return objcg; 1734} 1735 1736int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1737void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1738 1739extern struct static_key_false memcg_bpf_enabled_key; 1740static inline bool memcg_bpf_enabled(void) 1741{ 1742 return static_branch_likely(&memcg_bpf_enabled_key); 1743} 1744 1745extern struct static_key_false memcg_kmem_online_key; 1746 1747static inline bool memcg_kmem_online(void) 1748{ 1749 return static_branch_likely(&memcg_kmem_online_key); 1750} 1751 1752static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1753 int order) 1754{ 1755 if (memcg_kmem_online()) 1756 return __memcg_kmem_charge_page(page, gfp, order); 1757 return 0; 1758} 1759 1760static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1761{ 1762 if (memcg_kmem_online()) 1763 __memcg_kmem_uncharge_page(page, order); 1764} 1765 1766/* 1767 * A helper for accessing memcg's kmem_id, used for getting 1768 * corresponding LRU lists. 1769 */ 1770static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1771{ 1772 return memcg ? memcg->kmemcg_id : -1; 1773} 1774 1775struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1776 1777static inline void count_objcg_events(struct obj_cgroup *objcg, 1778 enum vm_event_item idx, 1779 unsigned long count) 1780{ 1781 struct mem_cgroup *memcg; 1782 1783 if (!memcg_kmem_online()) 1784 return; 1785 1786 rcu_read_lock(); 1787 memcg = obj_cgroup_memcg(objcg); 1788 count_memcg_events(memcg, idx, count); 1789 rcu_read_unlock(); 1790} 1791 1792bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid); 1793 1794#else 1795static inline bool mem_cgroup_kmem_disabled(void) 1796{ 1797 return true; 1798} 1799 1800static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1801 int order) 1802{ 1803 return 0; 1804} 1805 1806static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1807{ 1808} 1809 1810static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1811 int order) 1812{ 1813 return 0; 1814} 1815 1816static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1817{ 1818} 1819 1820static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1821{ 1822 return NULL; 1823} 1824 1825static inline bool memcg_bpf_enabled(void) 1826{ 1827 return false; 1828} 1829 1830static inline bool memcg_kmem_online(void) 1831{ 1832 return false; 1833} 1834 1835static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1836{ 1837 return -1; 1838} 1839 1840static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1841{ 1842 return NULL; 1843} 1844 1845static inline void count_objcg_events(struct obj_cgroup *objcg, 1846 enum vm_event_item idx, 1847 unsigned long count) 1848{ 1849} 1850 1851static inline ino_t page_cgroup_ino(struct page *page) 1852{ 1853 return 0; 1854} 1855 1856static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 1857{ 1858 return true; 1859} 1860#endif /* CONFIG_MEMCG */ 1861 1862#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1863bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1864void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1865void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1866bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1867#else 1868static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1869{ 1870 return true; 1871} 1872static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1873 size_t size) 1874{ 1875} 1876static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1877 size_t size) 1878{ 1879} 1880static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1881{ 1882 /* if zswap is disabled, do not block pages going to the swapping device */ 1883 return true; 1884} 1885#endif 1886 1887 1888/* Cgroup v1-related declarations */ 1889 1890#ifdef CONFIG_MEMCG_V1 1891unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1892 gfp_t gfp_mask, 1893 unsigned long *total_scanned); 1894 1895bool mem_cgroup_oom_synchronize(bool wait); 1896 1897static inline bool task_in_memcg_oom(struct task_struct *p) 1898{ 1899 return p->memcg_in_oom; 1900} 1901 1902static inline void mem_cgroup_enter_user_fault(void) 1903{ 1904 WARN_ON(current->in_user_fault); 1905 current->in_user_fault = 1; 1906} 1907 1908static inline void mem_cgroup_exit_user_fault(void) 1909{ 1910 WARN_ON(!current->in_user_fault); 1911 current->in_user_fault = 0; 1912} 1913 1914void memcg1_swapout(struct folio *folio, swp_entry_t entry); 1915void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages); 1916 1917#else /* CONFIG_MEMCG_V1 */ 1918static inline 1919unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1920 gfp_t gfp_mask, 1921 unsigned long *total_scanned) 1922{ 1923 return 0; 1924} 1925 1926static inline bool task_in_memcg_oom(struct task_struct *p) 1927{ 1928 return false; 1929} 1930 1931static inline bool mem_cgroup_oom_synchronize(bool wait) 1932{ 1933 return false; 1934} 1935 1936static inline void mem_cgroup_enter_user_fault(void) 1937{ 1938} 1939 1940static inline void mem_cgroup_exit_user_fault(void) 1941{ 1942} 1943 1944static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry) 1945{ 1946} 1947 1948static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages) 1949{ 1950} 1951 1952#endif /* CONFIG_MEMCG_V1 */ 1953 1954#endif /* _LINUX_MEMCONTROL_H */