at v6.18 30 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2#ifndef _LINUX_MAPLE_TREE_H 3#define _LINUX_MAPLE_TREE_H 4/* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com> 8 * Matthew Wilcox <willy@infradead.org> 9 */ 10 11#include <linux/kernel.h> 12#include <linux/rcupdate.h> 13#include <linux/spinlock.h> 14/* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16/* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27#if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28/* 64bit sizes */ 29#define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30#define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31#define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33#else 34/* 32bit sizes */ 35#define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36#define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37#define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39#endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41#define MAPLE_NODE_MASK 255UL 42 43/* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a 56 * range type is done by examining the immutable tree flag for the 57 * MT_FLAGS_ALLOC_RANGE flag. 58 * 59 * Node types: 60 * 0b??1 = Root 61 * 0b?00 = 16 bit nodes 62 * 0b010 = 32 bit nodes 63 * 0b110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0b??1 : Root 68 * 0b?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0b010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0b110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73/* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77struct maple_metadata { 78 unsigned char end; /* end of data */ 79 unsigned char gap; /* offset of largest gap */ 80}; 81 82/* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113}; 114 115/* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130}; 131 132struct maple_alloc { 133 unsigned long total; 134 unsigned char node_count; 135 unsigned int request_count; 136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 137}; 138 139struct maple_topiary { 140 struct maple_pnode *parent; 141 struct maple_enode *next; /* Overlaps the pivot */ 142}; 143 144enum maple_type { 145 maple_dense, 146 maple_leaf_64, 147 maple_range_64, 148 maple_arange_64, 149}; 150 151enum store_type { 152 wr_invalid, 153 wr_new_root, 154 wr_store_root, 155 wr_exact_fit, 156 wr_spanning_store, 157 wr_split_store, 158 wr_rebalance, 159 wr_append, 160 wr_node_store, 161 wr_slot_store, 162}; 163 164/** 165 * DOC: Maple tree flags 166 * 167 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 168 * * MT_FLAGS_USE_RCU - Operate in RCU mode 169 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 170 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 171 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 172 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 173 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 174 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 175 * 176 * MAPLE_HEIGHT_MAX The largest height that can be stored 177 */ 178#define MT_FLAGS_ALLOC_RANGE 0x01 179#define MT_FLAGS_USE_RCU 0x02 180#define MT_FLAGS_HEIGHT_OFFSET 0x02 181#define MT_FLAGS_HEIGHT_MASK 0x7C 182#define MT_FLAGS_LOCK_MASK 0x300 183#define MT_FLAGS_LOCK_IRQ 0x100 184#define MT_FLAGS_LOCK_BH 0x200 185#define MT_FLAGS_LOCK_EXTERN 0x300 186#define MT_FLAGS_ALLOC_WRAPPED 0x0800 187 188#define MAPLE_HEIGHT_MAX 31 189 190 191#define MAPLE_NODE_TYPE_MASK 0x0F 192#define MAPLE_NODE_TYPE_SHIFT 0x03 193 194#define MAPLE_RESERVED_RANGE 4096 195 196#ifdef CONFIG_LOCKDEP 197#define mt_lock_is_held(mt) \ 198 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 199 200#define mt_write_lock_is_held(mt) \ 201 (!(mt)->ma_external_lock || \ 202 lock_is_held_type((mt)->ma_external_lock, 0)) 203 204#define mt_set_external_lock(mt, lock) \ 205 (mt)->ma_external_lock = &(lock)->dep_map 206 207#define mt_on_stack(mt) (mt).ma_external_lock = NULL 208#else 209#define mt_lock_is_held(mt) 1 210#define mt_write_lock_is_held(mt) 1 211#define mt_set_external_lock(mt, lock) do { } while (0) 212#define mt_on_stack(mt) do { } while (0) 213#endif 214 215/* 216 * If the tree contains a single entry at index 0, it is usually stored in 217 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 218 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 219 * stored in a node. Bits 3-6 are used to store enum maple_type. 220 * 221 * The flags are used both to store some immutable information about this tree 222 * (set at tree creation time) and dynamic information set under the spinlock. 223 * 224 * Another use of flags are to indicate global states of the tree. This is the 225 * case with the MT_FLAGS_USE_RCU flag, which indicates the tree is currently in 226 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 227 * re-allocating and RCU freeing nodes when there is a single user. 228 */ 229struct maple_tree { 230 union { 231 spinlock_t ma_lock; 232#ifdef CONFIG_LOCKDEP 233 struct lockdep_map *ma_external_lock; 234#endif 235 }; 236 unsigned int ma_flags; 237 void __rcu *ma_root; 238}; 239 240/** 241 * MTREE_INIT() - Initialize a maple tree 242 * @name: The maple tree name 243 * @__flags: The maple tree flags 244 * 245 */ 246#define MTREE_INIT(name, __flags) { \ 247 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 248 .ma_flags = __flags, \ 249 .ma_root = NULL, \ 250} 251 252/** 253 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 254 * @name: The tree name 255 * @__flags: The maple tree flags 256 * @__lock: The external lock 257 */ 258#ifdef CONFIG_LOCKDEP 259#define MTREE_INIT_EXT(name, __flags, __lock) { \ 260 .ma_external_lock = &(__lock).dep_map, \ 261 .ma_flags = (__flags), \ 262 .ma_root = NULL, \ 263} 264#else 265#define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 266#endif 267 268#define DEFINE_MTREE(name) \ 269 struct maple_tree name = MTREE_INIT(name, 0) 270 271#define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 272#define mtree_lock_nested(mas, subclass) \ 273 spin_lock_nested((&(mt)->ma_lock), subclass) 274#define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 275 276/* 277 * The Maple Tree squeezes various bits in at various points which aren't 278 * necessarily obvious. Usually, this is done by observing that pointers are 279 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 280 * don't use the high bits of pointers to store additional information because 281 * we don't know what bits are unused on any given architecture. 282 * 283 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 284 * low bits for our own purposes. Nodes are currently of 4 types: 285 * 1. Single pointer (Range is 0-0) 286 * 2. Non-leaf Allocation Range nodes 287 * 3. Non-leaf Range nodes 288 * 4. Leaf Range nodes All nodes consist of a number of node slots, 289 * pivots, and a parent pointer. 290 */ 291 292struct maple_node { 293 union { 294 struct { 295 struct maple_pnode *parent; 296 void __rcu *slot[MAPLE_NODE_SLOTS]; 297 }; 298 struct { 299 void *pad; 300 struct rcu_head rcu; 301 struct maple_enode *piv_parent; 302 unsigned char parent_slot; 303 enum maple_type type; 304 unsigned char slot_len; 305 unsigned int ma_flags; 306 }; 307 struct maple_range_64 mr64; 308 struct maple_arange_64 ma64; 309 struct maple_alloc alloc; 310 }; 311}; 312 313/* 314 * More complicated stores can cause two nodes to become one or three and 315 * potentially alter the height of the tree. Either half of the tree may need 316 * to be rebalanced against the other. The ma_topiary struct is used to track 317 * which nodes have been 'cut' from the tree so that the change can be done 318 * safely at a later date. This is done to support RCU. 319 */ 320struct ma_topiary { 321 struct maple_enode *head; 322 struct maple_enode *tail; 323 struct maple_tree *mtree; 324}; 325 326void *mtree_load(struct maple_tree *mt, unsigned long index); 327 328int mtree_insert(struct maple_tree *mt, unsigned long index, 329 void *entry, gfp_t gfp); 330int mtree_insert_range(struct maple_tree *mt, unsigned long first, 331 unsigned long last, void *entry, gfp_t gfp); 332int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 333 void *entry, unsigned long size, unsigned long min, 334 unsigned long max, gfp_t gfp); 335int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 336 void *entry, unsigned long range_lo, unsigned long range_hi, 337 unsigned long *next, gfp_t gfp); 338int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 339 void *entry, unsigned long size, unsigned long min, 340 unsigned long max, gfp_t gfp); 341 342int mtree_store_range(struct maple_tree *mt, unsigned long first, 343 unsigned long last, void *entry, gfp_t gfp); 344int mtree_store(struct maple_tree *mt, unsigned long index, 345 void *entry, gfp_t gfp); 346void *mtree_erase(struct maple_tree *mt, unsigned long index); 347 348int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 349int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 350 351void mtree_destroy(struct maple_tree *mt); 352void __mt_destroy(struct maple_tree *mt); 353 354/** 355 * mtree_empty() - Determine if a tree has any present entries. 356 * @mt: Maple Tree. 357 * 358 * Context: Any context. 359 * Return: %true if the tree contains only NULL pointers. 360 */ 361static inline bool mtree_empty(const struct maple_tree *mt) 362{ 363 return mt->ma_root == NULL; 364} 365 366/* Advanced API */ 367 368/* 369 * Maple State Status 370 * ma_active means the maple state is pointing to a node and offset and can 371 * continue operating on the tree. 372 * ma_start means we have not searched the tree. 373 * ma_root means we have searched the tree and the entry we found lives in 374 * the root of the tree (ie it has index 0, length 1 and is the only entry in 375 * the tree). 376 * ma_none means we have searched the tree and there is no node in the 377 * tree for this entry. For example, we searched for index 1 in an empty 378 * tree. Or we have a tree which points to a full leaf node and we 379 * searched for an entry which is larger than can be contained in that 380 * leaf node. 381 * ma_pause means the data within the maple state may be stale, restart the 382 * operation 383 * ma_overflow means the search has reached the upper limit of the search 384 * ma_underflow means the search has reached the lower limit of the search 385 * ma_error means there was an error, check the node for the error number. 386 */ 387enum maple_status { 388 ma_active, 389 ma_start, 390 ma_root, 391 ma_none, 392 ma_pause, 393 ma_overflow, 394 ma_underflow, 395 ma_error, 396}; 397 398/* 399 * The maple state is defined in the struct ma_state and is used to keep track 400 * of information during operations, and even between operations when using the 401 * advanced API. 402 * 403 * If state->node has bit 0 set then it references a tree location which is not 404 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 405 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 406 * node type. 407 * 408 * state->alloc either has a request number of nodes or an allocated node. If 409 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 410 * and the remaining bits are the value. If state->alloc is a node, then the 411 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 412 * storing more allocated nodes, a total number of nodes allocated, and the 413 * node_count in this node. node_count is the number of allocated nodes in this 414 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 415 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 416 * by removing a node from the state->alloc node until state->alloc->node_count 417 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 418 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 419 * state->alloc into the pushed node's slot[0]. 420 * 421 * The state also contains the implied min/max of the state->node, the depth of 422 * this search, and the offset. The implied min/max are either from the parent 423 * node or are 0-oo for the root node. The depth is incremented or decremented 424 * every time a node is walked down or up. The offset is the slot/pivot of 425 * interest in the node - either for reading or writing. 426 * 427 * When returning a value the maple state index and last respectively contain 428 * the start and end of the range for the entry. Ranges are inclusive in the 429 * Maple Tree. 430 * 431 * The status of the state is used to determine how the next action should treat 432 * the state. For instance, if the status is ma_start then the next action 433 * should start at the root of the tree and walk down. If the status is 434 * ma_pause then the node may be stale data and should be discarded. If the 435 * status is ma_overflow, then the last action hit the upper limit. 436 * 437 */ 438struct ma_state { 439 struct maple_tree *tree; /* The tree we're operating in */ 440 unsigned long index; /* The index we're operating on - range start */ 441 unsigned long last; /* The last index we're operating on - range end */ 442 struct maple_enode *node; /* The node containing this entry */ 443 unsigned long min; /* The minimum index of this node - implied pivot min */ 444 unsigned long max; /* The maximum index of this node - implied pivot max */ 445 struct slab_sheaf *sheaf; /* Allocated nodes for this operation */ 446 struct maple_node *alloc; /* A single allocated node for fast path writes */ 447 unsigned long node_request; /* The number of nodes to allocate for this operation */ 448 enum maple_status status; /* The status of the state (active, start, none, etc) */ 449 unsigned char depth; /* depth of tree descent during write */ 450 unsigned char offset; 451 unsigned char mas_flags; 452 unsigned char end; /* The end of the node */ 453 enum store_type store_type; /* The type of store needed for this operation */ 454}; 455 456struct ma_wr_state { 457 struct ma_state *mas; 458 struct maple_node *node; /* Decoded mas->node */ 459 unsigned long r_min; /* range min */ 460 unsigned long r_max; /* range max */ 461 enum maple_type type; /* mas->node type */ 462 unsigned char offset_end; /* The offset where the write ends */ 463 unsigned long *pivots; /* mas->node->pivots pointer */ 464 unsigned long end_piv; /* The pivot at the offset end */ 465 void __rcu **slots; /* mas->node->slots pointer */ 466 void *entry; /* The entry to write */ 467 void *content; /* The existing entry that is being overwritten */ 468 unsigned char vacant_height; /* Height of lowest node with free space */ 469 unsigned char sufficient_height;/* Height of lowest node with min sufficiency + 1 nodes */ 470}; 471 472#define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 473#define mas_lock_nested(mas, subclass) \ 474 spin_lock_nested(&((mas)->tree->ma_lock), subclass) 475#define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 476 477/* 478 * Special values for ma_state.node. 479 * MA_ERROR represents an errno. After dropping the lock and attempting 480 * to resolve the error, the walk would have to be restarted from the 481 * top of the tree as the tree may have been modified. 482 */ 483#define MA_ERROR(err) \ 484 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 485 486/* 487 * When changing MA_STATE, remember to also change rust/kernel/maple_tree.rs 488 */ 489#define MA_STATE(name, mt, first, end) \ 490 struct ma_state name = { \ 491 .tree = mt, \ 492 .index = first, \ 493 .last = end, \ 494 .node = NULL, \ 495 .status = ma_start, \ 496 .min = 0, \ 497 .max = ULONG_MAX, \ 498 .sheaf = NULL, \ 499 .alloc = NULL, \ 500 .node_request = 0, \ 501 .mas_flags = 0, \ 502 .store_type = wr_invalid, \ 503 } 504 505#define MA_WR_STATE(name, ma_state, wr_entry) \ 506 struct ma_wr_state name = { \ 507 .mas = ma_state, \ 508 .content = NULL, \ 509 .entry = wr_entry, \ 510 .vacant_height = 0, \ 511 .sufficient_height = 0 \ 512 } 513 514#define MA_TOPIARY(name, tree) \ 515 struct ma_topiary name = { \ 516 .head = NULL, \ 517 .tail = NULL, \ 518 .mtree = tree, \ 519 } 520 521void *mas_walk(struct ma_state *mas); 522void *mas_store(struct ma_state *mas, void *entry); 523void *mas_erase(struct ma_state *mas); 524int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 525void mas_store_prealloc(struct ma_state *mas, void *entry); 526void *mas_find(struct ma_state *mas, unsigned long max); 527void *mas_find_range(struct ma_state *mas, unsigned long max); 528void *mas_find_rev(struct ma_state *mas, unsigned long min); 529void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 530int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp); 531int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 532 void *entry, unsigned long range_lo, unsigned long range_hi, 533 unsigned long *next, gfp_t gfp); 534 535bool mas_nomem(struct ma_state *mas, gfp_t gfp); 536void mas_pause(struct ma_state *mas); 537void maple_tree_init(void); 538void mas_destroy(struct ma_state *mas); 539int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 540 541void *mas_prev(struct ma_state *mas, unsigned long min); 542void *mas_prev_range(struct ma_state *mas, unsigned long max); 543void *mas_next(struct ma_state *mas, unsigned long max); 544void *mas_next_range(struct ma_state *mas, unsigned long max); 545 546int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 547 unsigned long size); 548/* 549 * This finds an empty area from the highest address to the lowest. 550 * AKA "Topdown" version, 551 */ 552int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 553 unsigned long max, unsigned long size); 554 555static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 556 unsigned long addr) 557{ 558 memset(mas, 0, sizeof(struct ma_state)); 559 mas->tree = tree; 560 mas->index = mas->last = addr; 561 mas->max = ULONG_MAX; 562 mas->status = ma_start; 563 mas->node = NULL; 564} 565 566static inline bool mas_is_active(struct ma_state *mas) 567{ 568 return mas->status == ma_active; 569} 570 571static inline bool mas_is_err(struct ma_state *mas) 572{ 573 return mas->status == ma_error; 574} 575 576/** 577 * mas_reset() - Reset a Maple Tree operation state. 578 * @mas: Maple Tree operation state. 579 * 580 * Resets the error or walk state of the @mas so future walks of the 581 * array will start from the root. Use this if you have dropped the 582 * lock and want to reuse the ma_state. 583 * 584 * Context: Any context. 585 */ 586static __always_inline void mas_reset(struct ma_state *mas) 587{ 588 mas->status = ma_start; 589 mas->node = NULL; 590} 591 592/** 593 * mas_for_each() - Iterate over a range of the maple tree. 594 * @__mas: Maple Tree operation state (maple_state) 595 * @__entry: Entry retrieved from the tree 596 * @__max: maximum index to retrieve from the tree 597 * 598 * When returned, mas->index and mas->last will hold the entire range for the 599 * entry. 600 * 601 * Note: may return the zero entry. 602 */ 603#define mas_for_each(__mas, __entry, __max) \ 604 while (((__entry) = mas_find((__mas), (__max))) != NULL) 605 606/** 607 * mas_for_each_rev() - Iterate over a range of the maple tree in reverse order. 608 * @__mas: Maple Tree operation state (maple_state) 609 * @__entry: Entry retrieved from the tree 610 * @__min: minimum index to retrieve from the tree 611 * 612 * When returned, mas->index and mas->last will hold the entire range for the 613 * entry. 614 * 615 * Note: may return the zero entry. 616 */ 617#define mas_for_each_rev(__mas, __entry, __min) \ 618 while (((__entry) = mas_find_rev((__mas), (__min))) != NULL) 619 620#ifdef CONFIG_DEBUG_MAPLE_TREE 621enum mt_dump_format { 622 mt_dump_dec, 623 mt_dump_hex, 624}; 625 626extern atomic_t maple_tree_tests_run; 627extern atomic_t maple_tree_tests_passed; 628 629void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 630void mas_dump(const struct ma_state *mas); 631void mas_wr_dump(const struct ma_wr_state *wr_mas); 632void mt_validate(struct maple_tree *mt); 633void mt_cache_shrink(void); 634#define MT_BUG_ON(__tree, __x) do { \ 635 atomic_inc(&maple_tree_tests_run); \ 636 if (__x) { \ 637 pr_info("BUG at %s:%d (%u)\n", \ 638 __func__, __LINE__, __x); \ 639 mt_dump(__tree, mt_dump_hex); \ 640 pr_info("Pass: %u Run:%u\n", \ 641 atomic_read(&maple_tree_tests_passed), \ 642 atomic_read(&maple_tree_tests_run)); \ 643 dump_stack(); \ 644 } else { \ 645 atomic_inc(&maple_tree_tests_passed); \ 646 } \ 647} while (0) 648 649#define MAS_BUG_ON(__mas, __x) do { \ 650 atomic_inc(&maple_tree_tests_run); \ 651 if (__x) { \ 652 pr_info("BUG at %s:%d (%u)\n", \ 653 __func__, __LINE__, __x); \ 654 mas_dump(__mas); \ 655 mt_dump((__mas)->tree, mt_dump_hex); \ 656 pr_info("Pass: %u Run:%u\n", \ 657 atomic_read(&maple_tree_tests_passed), \ 658 atomic_read(&maple_tree_tests_run)); \ 659 dump_stack(); \ 660 } else { \ 661 atomic_inc(&maple_tree_tests_passed); \ 662 } \ 663} while (0) 664 665#define MAS_WR_BUG_ON(__wrmas, __x) do { \ 666 atomic_inc(&maple_tree_tests_run); \ 667 if (__x) { \ 668 pr_info("BUG at %s:%d (%u)\n", \ 669 __func__, __LINE__, __x); \ 670 mas_wr_dump(__wrmas); \ 671 mas_dump((__wrmas)->mas); \ 672 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 673 pr_info("Pass: %u Run:%u\n", \ 674 atomic_read(&maple_tree_tests_passed), \ 675 atomic_read(&maple_tree_tests_run)); \ 676 dump_stack(); \ 677 } else { \ 678 atomic_inc(&maple_tree_tests_passed); \ 679 } \ 680} while (0) 681 682#define MT_WARN_ON(__tree, __x) ({ \ 683 int ret = !!(__x); \ 684 atomic_inc(&maple_tree_tests_run); \ 685 if (ret) { \ 686 pr_info("WARN at %s:%d (%u)\n", \ 687 __func__, __LINE__, __x); \ 688 mt_dump(__tree, mt_dump_hex); \ 689 pr_info("Pass: %u Run:%u\n", \ 690 atomic_read(&maple_tree_tests_passed), \ 691 atomic_read(&maple_tree_tests_run)); \ 692 dump_stack(); \ 693 } else { \ 694 atomic_inc(&maple_tree_tests_passed); \ 695 } \ 696 unlikely(ret); \ 697}) 698 699#define MAS_WARN_ON(__mas, __x) ({ \ 700 int ret = !!(__x); \ 701 atomic_inc(&maple_tree_tests_run); \ 702 if (ret) { \ 703 pr_info("WARN at %s:%d (%u)\n", \ 704 __func__, __LINE__, __x); \ 705 mas_dump(__mas); \ 706 mt_dump((__mas)->tree, mt_dump_hex); \ 707 pr_info("Pass: %u Run:%u\n", \ 708 atomic_read(&maple_tree_tests_passed), \ 709 atomic_read(&maple_tree_tests_run)); \ 710 dump_stack(); \ 711 } else { \ 712 atomic_inc(&maple_tree_tests_passed); \ 713 } \ 714 unlikely(ret); \ 715}) 716 717#define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 718 int ret = !!(__x); \ 719 atomic_inc(&maple_tree_tests_run); \ 720 if (ret) { \ 721 pr_info("WARN at %s:%d (%u)\n", \ 722 __func__, __LINE__, __x); \ 723 mas_wr_dump(__wrmas); \ 724 mas_dump((__wrmas)->mas); \ 725 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 726 pr_info("Pass: %u Run:%u\n", \ 727 atomic_read(&maple_tree_tests_passed), \ 728 atomic_read(&maple_tree_tests_run)); \ 729 dump_stack(); \ 730 } else { \ 731 atomic_inc(&maple_tree_tests_passed); \ 732 } \ 733 unlikely(ret); \ 734}) 735#else 736#define MT_BUG_ON(__tree, __x) BUG_ON(__x) 737#define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 738#define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 739#define MT_WARN_ON(__tree, __x) WARN_ON(__x) 740#define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 741#define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 742#endif /* CONFIG_DEBUG_MAPLE_TREE */ 743 744/** 745 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the 746 * current location. 747 * @mas: Maple Tree operation state. 748 * @start: New start of range in the Maple Tree. 749 * @last: New end of range in the Maple Tree. 750 * 751 * set the internal maple state values to a sub-range. 752 * Please use mas_set_range() if you do not know where you are in the tree. 753 */ 754static inline void __mas_set_range(struct ma_state *mas, unsigned long start, 755 unsigned long last) 756{ 757 /* Ensure the range starts within the current slot */ 758 MAS_WARN_ON(mas, mas_is_active(mas) && 759 (mas->index > start || mas->last < start)); 760 mas->index = start; 761 mas->last = last; 762} 763 764/** 765 * mas_set_range() - Set up Maple Tree operation state for a different index. 766 * @mas: Maple Tree operation state. 767 * @start: New start of range in the Maple Tree. 768 * @last: New end of range in the Maple Tree. 769 * 770 * Move the operation state to refer to a different range. This will 771 * have the effect of starting a walk from the top; see mas_next() 772 * to move to an adjacent index. 773 */ 774static inline 775void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 776{ 777 mas_reset(mas); 778 __mas_set_range(mas, start, last); 779} 780 781/** 782 * mas_set() - Set up Maple Tree operation state for a different index. 783 * @mas: Maple Tree operation state. 784 * @index: New index into the Maple Tree. 785 * 786 * Move the operation state to refer to a different index. This will 787 * have the effect of starting a walk from the top; see mas_next() 788 * to move to an adjacent index. 789 */ 790static inline void mas_set(struct ma_state *mas, unsigned long index) 791{ 792 793 mas_set_range(mas, index, index); 794} 795 796static inline bool mt_external_lock(const struct maple_tree *mt) 797{ 798 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 799} 800 801/** 802 * mt_init_flags() - Initialise an empty maple tree with flags. 803 * @mt: Maple Tree 804 * @flags: maple tree flags. 805 * 806 * If you need to initialise a Maple Tree with special flags (eg, an 807 * allocation tree), use this function. 808 * 809 * Context: Any context. 810 */ 811static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 812{ 813 mt->ma_flags = flags; 814 if (!mt_external_lock(mt)) 815 spin_lock_init(&mt->ma_lock); 816 rcu_assign_pointer(mt->ma_root, NULL); 817} 818 819/** 820 * mt_init() - Initialise an empty maple tree. 821 * @mt: Maple Tree 822 * 823 * An empty Maple Tree. 824 * 825 * Context: Any context. 826 */ 827static inline void mt_init(struct maple_tree *mt) 828{ 829 mt_init_flags(mt, 0); 830} 831 832static inline bool mt_in_rcu(struct maple_tree *mt) 833{ 834#ifdef CONFIG_MAPLE_RCU_DISABLED 835 return false; 836#endif 837 return mt->ma_flags & MT_FLAGS_USE_RCU; 838} 839 840/** 841 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 842 * @mt: The Maple Tree 843 */ 844static inline void mt_clear_in_rcu(struct maple_tree *mt) 845{ 846 if (!mt_in_rcu(mt)) 847 return; 848 849 if (mt_external_lock(mt)) { 850 WARN_ON(!mt_lock_is_held(mt)); 851 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 852 } else { 853 mtree_lock(mt); 854 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 855 mtree_unlock(mt); 856 } 857} 858 859/** 860 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 861 * @mt: The Maple Tree 862 */ 863static inline void mt_set_in_rcu(struct maple_tree *mt) 864{ 865 if (mt_in_rcu(mt)) 866 return; 867 868 if (mt_external_lock(mt)) { 869 WARN_ON(!mt_lock_is_held(mt)); 870 mt->ma_flags |= MT_FLAGS_USE_RCU; 871 } else { 872 mtree_lock(mt); 873 mt->ma_flags |= MT_FLAGS_USE_RCU; 874 mtree_unlock(mt); 875 } 876} 877 878static inline unsigned int mt_height(const struct maple_tree *mt) 879{ 880 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 881} 882 883void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 884void *mt_find_after(struct maple_tree *mt, unsigned long *index, 885 unsigned long max); 886void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 887void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 888 889/** 890 * mt_for_each - Iterate over each entry starting at index until max. 891 * @__tree: The Maple Tree 892 * @__entry: The current entry 893 * @__index: The index to start the search from. Subsequently used as iterator. 894 * @__max: The maximum limit for @index 895 * 896 * This iterator skips all entries, which resolve to a NULL pointer, 897 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 898 */ 899#define mt_for_each(__tree, __entry, __index, __max) \ 900 for (__entry = mt_find(__tree, &(__index), __max); \ 901 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 902 903#endif /*_LINUX_MAPLE_TREE_H */