at v6.18 81 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5#include <linux/entry-virt.h> 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/uapi/linux/kvm.h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58#define KVM_MEMSLOT_GMEM_ONLY (1UL << 17) 59 60/* 61 * Bit 63 of the memslot generation number is an "update in-progress flag", 62 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 63 * This flag effectively creates a unique generation number that is used to 64 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 65 * i.e. may (or may not) have come from the previous memslots generation. 66 * 67 * This is necessary because the actual memslots update is not atomic with 68 * respect to the generation number update. Updating the generation number 69 * first would allow a vCPU to cache a spte from the old memslots using the 70 * new generation number, and updating the generation number after switching 71 * to the new memslots would allow cache hits using the old generation number 72 * to reference the defunct memslots. 73 * 74 * This mechanism is used to prevent getting hits in KVM's caches while a 75 * memslot update is in-progress, and to prevent cache hits *after* updating 76 * the actual generation number against accesses that were inserted into the 77 * cache *before* the memslots were updated. 78 */ 79#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 80 81/* Two fragments for cross MMIO pages. */ 82#define KVM_MAX_MMIO_FRAGMENTS 2 83 84#ifndef KVM_MAX_NR_ADDRESS_SPACES 85#define KVM_MAX_NR_ADDRESS_SPACES 1 86#endif 87 88/* 89 * For the normal pfn, the highest 12 bits should be zero, 90 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 91 * mask bit 63 to indicate the noslot pfn. 92 */ 93#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 94#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 95#define KVM_PFN_NOSLOT (0x1ULL << 63) 96 97#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 98#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 99#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 100#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 101#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 102 103/* 104 * error pfns indicate that the gfn is in slot but faild to 105 * translate it to pfn on host. 106 */ 107static inline bool is_error_pfn(kvm_pfn_t pfn) 108{ 109 return !!(pfn & KVM_PFN_ERR_MASK); 110} 111 112/* 113 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 114 * by a pending signal. Note, the signal may or may not be fatal. 115 */ 116static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 117{ 118 return pfn == KVM_PFN_ERR_SIGPENDING; 119} 120 121/* 122 * error_noslot pfns indicate that the gfn can not be 123 * translated to pfn - it is not in slot or failed to 124 * translate it to pfn. 125 */ 126static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 127{ 128 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 129} 130 131/* noslot pfn indicates that the gfn is not in slot. */ 132static inline bool is_noslot_pfn(kvm_pfn_t pfn) 133{ 134 return pfn == KVM_PFN_NOSLOT; 135} 136 137/* 138 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 139 * provide own defines and kvm_is_error_hva 140 */ 141#ifndef KVM_HVA_ERR_BAD 142 143#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 144#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 145 146static inline bool kvm_is_error_hva(unsigned long addr) 147{ 148 return addr >= PAGE_OFFSET; 149} 150 151#endif 152 153static inline bool kvm_is_error_gpa(gpa_t gpa) 154{ 155 return gpa == INVALID_GPA; 156} 157 158#define KVM_REQUEST_MASK GENMASK(7,0) 159#define KVM_REQUEST_NO_WAKEUP BIT(8) 160#define KVM_REQUEST_WAIT BIT(9) 161#define KVM_REQUEST_NO_ACTION BIT(10) 162/* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168#define KVM_REQ_UNBLOCK 2 169#define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170#define KVM_REQUEST_ARCH_BASE 8 171 172/* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185}) 186#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 192#define KVM_USERSPACE_IRQ_SOURCE_ID 0 193#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 194#define KVM_PIT_IRQ_SOURCE_ID 2 195 196extern struct mutex kvm_lock; 197extern struct list_head vm_list; 198 199struct kvm_io_range { 200 gpa_t addr; 201 int len; 202 struct kvm_io_device *dev; 203}; 204 205#define NR_IOBUS_DEVS 1000 206 207struct kvm_io_bus { 208 int dev_count; 209 int ioeventfd_count; 210 struct rcu_head rcu; 211 struct kvm_io_range range[]; 212}; 213 214enum kvm_bus { 215 KVM_MMIO_BUS, 216 KVM_PIO_BUS, 217 KVM_VIRTIO_CCW_NOTIFY_BUS, 218 KVM_FAST_MMIO_BUS, 219 KVM_IOCSR_BUS, 220 KVM_NR_BUSES 221}; 222 223int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 224 int len, const void *val); 225int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 226 gpa_t addr, int len, const void *val, long cookie); 227int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 228 int len, void *val); 229int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 230 int len, struct kvm_io_device *dev); 231int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 232 struct kvm_io_device *dev); 233struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 gpa_t addr); 235 236#ifdef CONFIG_KVM_ASYNC_PF 237struct kvm_async_pf { 238 struct work_struct work; 239 struct list_head link; 240 struct list_head queue; 241 struct kvm_vcpu *vcpu; 242 gpa_t cr2_or_gpa; 243 unsigned long addr; 244 struct kvm_arch_async_pf arch; 245 bool wakeup_all; 246 bool notpresent_injected; 247}; 248 249void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 250void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 251bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 252 unsigned long hva, struct kvm_arch_async_pf *arch); 253int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 254#endif 255 256#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 257union kvm_mmu_notifier_arg { 258 unsigned long attributes; 259}; 260 261enum kvm_gfn_range_filter { 262 KVM_FILTER_SHARED = BIT(0), 263 KVM_FILTER_PRIVATE = BIT(1), 264}; 265 266struct kvm_gfn_range { 267 struct kvm_memory_slot *slot; 268 gfn_t start; 269 gfn_t end; 270 union kvm_mmu_notifier_arg arg; 271 enum kvm_gfn_range_filter attr_filter; 272 bool may_block; 273 bool lockless; 274}; 275bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 276bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 277bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 278#endif 279 280enum { 281 OUTSIDE_GUEST_MODE, 282 IN_GUEST_MODE, 283 EXITING_GUEST_MODE, 284 READING_SHADOW_PAGE_TABLES, 285}; 286 287struct kvm_host_map { 288 /* 289 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 290 * a 'struct page' for it. When using mem= kernel parameter some memory 291 * can be used as guest memory but they are not managed by host 292 * kernel). 293 */ 294 struct page *pinned_page; 295 struct page *page; 296 void *hva; 297 kvm_pfn_t pfn; 298 kvm_pfn_t gfn; 299 bool writable; 300}; 301 302/* 303 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 304 * directly to check for that. 305 */ 306static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 307{ 308 return !!map->hva; 309} 310 311static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 312{ 313 return single_task_running() && !need_resched() && ktime_before(cur, stop); 314} 315 316/* 317 * Sometimes a large or cross-page mmio needs to be broken up into separate 318 * exits for userspace servicing. 319 */ 320struct kvm_mmio_fragment { 321 gpa_t gpa; 322 void *data; 323 unsigned len; 324}; 325 326struct kvm_vcpu { 327 struct kvm *kvm; 328#ifdef CONFIG_PREEMPT_NOTIFIERS 329 struct preempt_notifier preempt_notifier; 330#endif 331 int cpu; 332 int vcpu_id; /* id given by userspace at creation */ 333 int vcpu_idx; /* index into kvm->vcpu_array */ 334 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 335#ifdef CONFIG_PROVE_RCU 336 int srcu_depth; 337#endif 338 int mode; 339 u64 requests; 340 unsigned long guest_debug; 341 342 struct mutex mutex; 343 struct kvm_run *run; 344 345#ifndef __KVM_HAVE_ARCH_WQP 346 struct rcuwait wait; 347#endif 348 struct pid *pid; 349 rwlock_t pid_lock; 350 int sigset_active; 351 sigset_t sigset; 352 unsigned int halt_poll_ns; 353 bool valid_wakeup; 354 355#ifdef CONFIG_HAS_IOMEM 356 int mmio_needed; 357 int mmio_read_completed; 358 int mmio_is_write; 359 int mmio_cur_fragment; 360 int mmio_nr_fragments; 361 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 362#endif 363 364#ifdef CONFIG_KVM_ASYNC_PF 365 struct { 366 u32 queued; 367 struct list_head queue; 368 struct list_head done; 369 spinlock_t lock; 370 } async_pf; 371#endif 372 373#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 374 /* 375 * Cpu relax intercept or pause loop exit optimization 376 * in_spin_loop: set when a vcpu does a pause loop exit 377 * or cpu relax intercepted. 378 * dy_eligible: indicates whether vcpu is eligible for directed yield. 379 */ 380 struct { 381 bool in_spin_loop; 382 bool dy_eligible; 383 } spin_loop; 384#endif 385 bool wants_to_run; 386 bool preempted; 387 bool ready; 388 bool scheduled_out; 389 struct kvm_vcpu_arch arch; 390 struct kvm_vcpu_stat stat; 391 char stats_id[KVM_STATS_NAME_SIZE]; 392 struct kvm_dirty_ring dirty_ring; 393 394 /* 395 * The most recently used memslot by this vCPU and the slots generation 396 * for which it is valid. 397 * No wraparound protection is needed since generations won't overflow in 398 * thousands of years, even assuming 1M memslot operations per second. 399 */ 400 struct kvm_memory_slot *last_used_slot; 401 u64 last_used_slot_gen; 402}; 403 404/* 405 * Start accounting time towards a guest. 406 * Must be called before entering guest context. 407 */ 408static __always_inline void guest_timing_enter_irqoff(void) 409{ 410 /* 411 * This is running in ioctl context so its safe to assume that it's the 412 * stime pending cputime to flush. 413 */ 414 instrumentation_begin(); 415 vtime_account_guest_enter(); 416 instrumentation_end(); 417} 418 419/* 420 * Enter guest context and enter an RCU extended quiescent state. 421 * 422 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 423 * unsafe to use any code which may directly or indirectly use RCU, tracing 424 * (including IRQ flag tracing), or lockdep. All code in this period must be 425 * non-instrumentable. 426 */ 427static __always_inline void guest_context_enter_irqoff(void) 428{ 429 /* 430 * KVM does not hold any references to rcu protected data when it 431 * switches CPU into a guest mode. In fact switching to a guest mode 432 * is very similar to exiting to userspace from rcu point of view. In 433 * addition CPU may stay in a guest mode for quite a long time (up to 434 * one time slice). Lets treat guest mode as quiescent state, just like 435 * we do with user-mode execution. 436 */ 437 if (!context_tracking_guest_enter()) { 438 instrumentation_begin(); 439 rcu_virt_note_context_switch(); 440 instrumentation_end(); 441 } 442} 443 444/* 445 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 446 * guest_state_enter_irqoff(). 447 */ 448static __always_inline void guest_enter_irqoff(void) 449{ 450 guest_timing_enter_irqoff(); 451 guest_context_enter_irqoff(); 452} 453 454/** 455 * guest_state_enter_irqoff - Fixup state when entering a guest 456 * 457 * Entry to a guest will enable interrupts, but the kernel state is interrupts 458 * disabled when this is invoked. Also tell RCU about it. 459 * 460 * 1) Trace interrupts on state 461 * 2) Invoke context tracking if enabled to adjust RCU state 462 * 3) Tell lockdep that interrupts are enabled 463 * 464 * Invoked from architecture specific code before entering a guest. 465 * Must be called with interrupts disabled and the caller must be 466 * non-instrumentable. 467 * The caller has to invoke guest_timing_enter_irqoff() before this. 468 * 469 * Note: this is analogous to exit_to_user_mode(). 470 */ 471static __always_inline void guest_state_enter_irqoff(void) 472{ 473 instrumentation_begin(); 474 trace_hardirqs_on_prepare(); 475 lockdep_hardirqs_on_prepare(); 476 instrumentation_end(); 477 478 guest_context_enter_irqoff(); 479 lockdep_hardirqs_on(CALLER_ADDR0); 480} 481 482/* 483 * Exit guest context and exit an RCU extended quiescent state. 484 * 485 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 486 * unsafe to use any code which may directly or indirectly use RCU, tracing 487 * (including IRQ flag tracing), or lockdep. All code in this period must be 488 * non-instrumentable. 489 */ 490static __always_inline void guest_context_exit_irqoff(void) 491{ 492 /* 493 * Guest mode is treated as a quiescent state, see 494 * guest_context_enter_irqoff() for more details. 495 */ 496 if (!context_tracking_guest_exit()) { 497 instrumentation_begin(); 498 rcu_virt_note_context_switch(); 499 instrumentation_end(); 500 } 501} 502 503/* 504 * Stop accounting time towards a guest. 505 * Must be called after exiting guest context. 506 */ 507static __always_inline void guest_timing_exit_irqoff(void) 508{ 509 instrumentation_begin(); 510 /* Flush the guest cputime we spent on the guest */ 511 vtime_account_guest_exit(); 512 instrumentation_end(); 513} 514 515/* 516 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 517 * guest_timing_exit_irqoff(). 518 */ 519static __always_inline void guest_exit_irqoff(void) 520{ 521 guest_context_exit_irqoff(); 522 guest_timing_exit_irqoff(); 523} 524 525static inline void guest_exit(void) 526{ 527 unsigned long flags; 528 529 local_irq_save(flags); 530 guest_exit_irqoff(); 531 local_irq_restore(flags); 532} 533 534/** 535 * guest_state_exit_irqoff - Establish state when returning from guest mode 536 * 537 * Entry from a guest disables interrupts, but guest mode is traced as 538 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 539 * 540 * 1) Tell lockdep that interrupts are disabled 541 * 2) Invoke context tracking if enabled to reactivate RCU 542 * 3) Trace interrupts off state 543 * 544 * Invoked from architecture specific code after exiting a guest. 545 * Must be invoked with interrupts disabled and the caller must be 546 * non-instrumentable. 547 * The caller has to invoke guest_timing_exit_irqoff() after this. 548 * 549 * Note: this is analogous to enter_from_user_mode(). 550 */ 551static __always_inline void guest_state_exit_irqoff(void) 552{ 553 lockdep_hardirqs_off(CALLER_ADDR0); 554 guest_context_exit_irqoff(); 555 556 instrumentation_begin(); 557 trace_hardirqs_off_finish(); 558 instrumentation_end(); 559} 560 561static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 562{ 563 /* 564 * The memory barrier ensures a previous write to vcpu->requests cannot 565 * be reordered with the read of vcpu->mode. It pairs with the general 566 * memory barrier following the write of vcpu->mode in VCPU RUN. 567 */ 568 smp_mb__before_atomic(); 569 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 570} 571 572/* 573 * Some of the bitops functions do not support too long bitmaps. 574 * This number must be determined not to exceed such limits. 575 */ 576#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 577 578/* 579 * Since at idle each memslot belongs to two memslot sets it has to contain 580 * two embedded nodes for each data structure that it forms a part of. 581 * 582 * Two memslot sets (one active and one inactive) are necessary so the VM 583 * continues to run on one memslot set while the other is being modified. 584 * 585 * These two memslot sets normally point to the same set of memslots. 586 * They can, however, be desynchronized when performing a memslot management 587 * operation by replacing the memslot to be modified by its copy. 588 * After the operation is complete, both memslot sets once again point to 589 * the same, common set of memslot data. 590 * 591 * The memslots themselves are independent of each other so they can be 592 * individually added or deleted. 593 */ 594struct kvm_memory_slot { 595 struct hlist_node id_node[2]; 596 struct interval_tree_node hva_node[2]; 597 struct rb_node gfn_node[2]; 598 gfn_t base_gfn; 599 unsigned long npages; 600 unsigned long *dirty_bitmap; 601 struct kvm_arch_memory_slot arch; 602 unsigned long userspace_addr; 603 u32 flags; 604 short id; 605 u16 as_id; 606 607#ifdef CONFIG_KVM_GUEST_MEMFD 608 struct { 609 /* 610 * Writes protected by kvm->slots_lock. Acquiring a 611 * reference via kvm_gmem_get_file() is protected by 612 * either kvm->slots_lock or kvm->srcu. 613 */ 614 struct file *file; 615 pgoff_t pgoff; 616 } gmem; 617#endif 618}; 619 620static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot) 621{ 622 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 623} 624 625static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 626{ 627 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 628} 629 630static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 631{ 632 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 633} 634 635static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 636{ 637 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 638 639 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 640} 641 642#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 643#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 644#endif 645 646struct kvm_s390_adapter_int { 647 u64 ind_addr; 648 u64 summary_addr; 649 u64 ind_offset; 650 u32 summary_offset; 651 u32 adapter_id; 652}; 653 654struct kvm_hv_sint { 655 u32 vcpu; 656 u32 sint; 657}; 658 659struct kvm_xen_evtchn { 660 u32 port; 661 u32 vcpu_id; 662 int vcpu_idx; 663 u32 priority; 664}; 665 666struct kvm_kernel_irq_routing_entry { 667 u32 gsi; 668 u32 type; 669 int (*set)(struct kvm_kernel_irq_routing_entry *e, 670 struct kvm *kvm, int irq_source_id, int level, 671 bool line_status); 672 union { 673 struct { 674 unsigned irqchip; 675 unsigned pin; 676 } irqchip; 677 struct { 678 u32 address_lo; 679 u32 address_hi; 680 u32 data; 681 u32 flags; 682 u32 devid; 683 } msi; 684 struct kvm_s390_adapter_int adapter; 685 struct kvm_hv_sint hv_sint; 686 struct kvm_xen_evtchn xen_evtchn; 687 }; 688 struct hlist_node link; 689}; 690 691#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 692struct kvm_irq_routing_table { 693 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 694 u32 nr_rt_entries; 695 /* 696 * Array indexed by gsi. Each entry contains list of irq chips 697 * the gsi is connected to. 698 */ 699 struct hlist_head map[] __counted_by(nr_rt_entries); 700}; 701#endif 702 703bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 704 705#ifndef KVM_INTERNAL_MEM_SLOTS 706#define KVM_INTERNAL_MEM_SLOTS 0 707#endif 708 709#define KVM_MEM_SLOTS_NUM SHRT_MAX 710#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 711 712#if KVM_MAX_NR_ADDRESS_SPACES == 1 713static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 714{ 715 return KVM_MAX_NR_ADDRESS_SPACES; 716} 717 718static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 719{ 720 return 0; 721} 722#endif 723 724#ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 725static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 726{ 727 return false; 728} 729#endif 730 731#ifdef CONFIG_KVM_GUEST_MEMFD 732bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm); 733 734static inline u64 kvm_gmem_get_supported_flags(struct kvm *kvm) 735{ 736 u64 flags = GUEST_MEMFD_FLAG_MMAP; 737 738 if (!kvm || kvm_arch_supports_gmem_init_shared(kvm)) 739 flags |= GUEST_MEMFD_FLAG_INIT_SHARED; 740 741 return flags; 742} 743#endif 744 745#ifndef kvm_arch_has_readonly_mem 746static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 747{ 748 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 749} 750#endif 751 752struct kvm_memslots { 753 u64 generation; 754 atomic_long_t last_used_slot; 755 struct rb_root_cached hva_tree; 756 struct rb_root gfn_tree; 757 /* 758 * The mapping table from slot id to memslot. 759 * 760 * 7-bit bucket count matches the size of the old id to index array for 761 * 512 slots, while giving good performance with this slot count. 762 * Higher bucket counts bring only small performance improvements but 763 * always result in higher memory usage (even for lower memslot counts). 764 */ 765 DECLARE_HASHTABLE(id_hash, 7); 766 int node_idx; 767}; 768 769struct kvm { 770#ifdef KVM_HAVE_MMU_RWLOCK 771 rwlock_t mmu_lock; 772#else 773 spinlock_t mmu_lock; 774#endif /* KVM_HAVE_MMU_RWLOCK */ 775 776 struct mutex slots_lock; 777 778 /* 779 * Protects the arch-specific fields of struct kvm_memory_slots in 780 * use by the VM. To be used under the slots_lock (above) or in a 781 * kvm->srcu critical section where acquiring the slots_lock would 782 * lead to deadlock with the synchronize_srcu in 783 * kvm_swap_active_memslots(). 784 */ 785 struct mutex slots_arch_lock; 786 struct mm_struct *mm; /* userspace tied to this vm */ 787 unsigned long nr_memslot_pages; 788 /* The two memslot sets - active and inactive (per address space) */ 789 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 790 /* The current active memslot set for each address space */ 791 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 792 struct xarray vcpu_array; 793 /* 794 * Protected by slots_lock, but can be read outside if an 795 * incorrect answer is acceptable. 796 */ 797 atomic_t nr_memslots_dirty_logging; 798 799 /* Used to wait for completion of MMU notifiers. */ 800 spinlock_t mn_invalidate_lock; 801 unsigned long mn_active_invalidate_count; 802 struct rcuwait mn_memslots_update_rcuwait; 803 804 /* For management / invalidation of gfn_to_pfn_caches */ 805 spinlock_t gpc_lock; 806 struct list_head gpc_list; 807 808 /* 809 * created_vcpus is protected by kvm->lock, and is incremented 810 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 811 * incremented after storing the kvm_vcpu pointer in vcpus, 812 * and is accessed atomically. 813 */ 814 atomic_t online_vcpus; 815 int max_vcpus; 816 int created_vcpus; 817 int last_boosted_vcpu; 818 struct list_head vm_list; 819 struct mutex lock; 820 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 821#ifdef CONFIG_HAVE_KVM_IRQCHIP 822 struct { 823 spinlock_t lock; 824 struct list_head items; 825 /* resampler_list update side is protected by resampler_lock. */ 826 struct list_head resampler_list; 827 struct mutex resampler_lock; 828 } irqfds; 829#endif 830 struct list_head ioeventfds; 831 struct kvm_vm_stat stat; 832 struct kvm_arch arch; 833 refcount_t users_count; 834#ifdef CONFIG_KVM_MMIO 835 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 836 spinlock_t ring_lock; 837 struct list_head coalesced_zones; 838#endif 839 840 struct mutex irq_lock; 841#ifdef CONFIG_HAVE_KVM_IRQCHIP 842 /* 843 * Update side is protected by irq_lock. 844 */ 845 struct kvm_irq_routing_table __rcu *irq_routing; 846 847 struct hlist_head irq_ack_notifier_list; 848#endif 849 850#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 851 struct mmu_notifier mmu_notifier; 852 unsigned long mmu_invalidate_seq; 853 long mmu_invalidate_in_progress; 854 gfn_t mmu_invalidate_range_start; 855 gfn_t mmu_invalidate_range_end; 856#endif 857 struct list_head devices; 858 u64 manual_dirty_log_protect; 859 struct dentry *debugfs_dentry; 860 struct kvm_stat_data **debugfs_stat_data; 861 struct srcu_struct srcu; 862 struct srcu_struct irq_srcu; 863 pid_t userspace_pid; 864 bool override_halt_poll_ns; 865 unsigned int max_halt_poll_ns; 866 u32 dirty_ring_size; 867 bool dirty_ring_with_bitmap; 868 bool vm_bugged; 869 bool vm_dead; 870 871#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 872 struct notifier_block pm_notifier; 873#endif 874#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 875 /* Protected by slots_lock (for writes) and RCU (for reads) */ 876 struct xarray mem_attr_array; 877#endif 878 char stats_id[KVM_STATS_NAME_SIZE]; 879}; 880 881#define kvm_err(fmt, ...) \ 882 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 883#define kvm_info(fmt, ...) \ 884 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 885#define kvm_debug(fmt, ...) \ 886 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 887#define kvm_debug_ratelimited(fmt, ...) \ 888 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 889 ## __VA_ARGS__) 890#define kvm_pr_unimpl(fmt, ...) \ 891 pr_err_ratelimited("kvm [%i]: " fmt, \ 892 task_tgid_nr(current), ## __VA_ARGS__) 893 894/* The guest did something we don't support. */ 895#define vcpu_unimpl(vcpu, fmt, ...) \ 896 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 897 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 898 899#define vcpu_debug(vcpu, fmt, ...) \ 900 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 901#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 902 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 903 ## __VA_ARGS__) 904#define vcpu_err(vcpu, fmt, ...) \ 905 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 906 907static inline void kvm_vm_dead(struct kvm *kvm) 908{ 909 kvm->vm_dead = true; 910 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 911} 912 913static inline void kvm_vm_bugged(struct kvm *kvm) 914{ 915 kvm->vm_bugged = true; 916 kvm_vm_dead(kvm); 917} 918 919 920#define KVM_BUG(cond, kvm, fmt...) \ 921({ \ 922 bool __ret = !!(cond); \ 923 \ 924 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 925 kvm_vm_bugged(kvm); \ 926 unlikely(__ret); \ 927}) 928 929#define KVM_BUG_ON(cond, kvm) \ 930({ \ 931 bool __ret = !!(cond); \ 932 \ 933 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 934 kvm_vm_bugged(kvm); \ 935 unlikely(__ret); \ 936}) 937 938/* 939 * Note, "data corruption" refers to corruption of host kernel data structures, 940 * not guest data. Guest data corruption, suspected or confirmed, that is tied 941 * and contained to a single VM should *never* BUG() and potentially panic the 942 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 943 * is corrupted and that corruption can have a cascading effect to other parts 944 * of the hosts and/or to other VMs. 945 */ 946#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 947({ \ 948 bool __ret = !!(cond); \ 949 \ 950 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 951 BUG_ON(__ret); \ 952 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 953 kvm_vm_bugged(kvm); \ 954 unlikely(__ret); \ 955}) 956 957static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 958{ 959#ifdef CONFIG_PROVE_RCU 960 WARN_ONCE(vcpu->srcu_depth++, 961 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 962#endif 963 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 964} 965 966static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 967{ 968 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 969 970#ifdef CONFIG_PROVE_RCU 971 WARN_ONCE(--vcpu->srcu_depth, 972 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 973#endif 974} 975 976static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 977{ 978 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 979} 980 981/* 982 * Get a bus reference under the update-side lock. No long-term SRCU reader 983 * references are permitted, to avoid stale reads vs concurrent IO 984 * registrations. 985 */ 986static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 987{ 988 return rcu_dereference_protected(kvm->buses[idx], 989 lockdep_is_held(&kvm->slots_lock)); 990} 991 992static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 993{ 994 int num_vcpus = atomic_read(&kvm->online_vcpus); 995 996 /* 997 * Explicitly verify the target vCPU is online, as the anti-speculation 998 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 999 * index, clamping the index to 0 would return vCPU0, not NULL. 1000 */ 1001 if (i >= num_vcpus) 1002 return NULL; 1003 1004 i = array_index_nospec(i, num_vcpus); 1005 1006 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 1007 smp_rmb(); 1008 return xa_load(&kvm->vcpu_array, i); 1009} 1010 1011#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 1012 if (atomic_read(&kvm->online_vcpus)) \ 1013 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 1014 (atomic_read(&kvm->online_vcpus) - 1)) 1015 1016static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 1017{ 1018 struct kvm_vcpu *vcpu = NULL; 1019 unsigned long i; 1020 1021 if (id < 0) 1022 return NULL; 1023 if (id < KVM_MAX_VCPUS) 1024 vcpu = kvm_get_vcpu(kvm, id); 1025 if (vcpu && vcpu->vcpu_id == id) 1026 return vcpu; 1027 kvm_for_each_vcpu(i, vcpu, kvm) 1028 if (vcpu->vcpu_id == id) 1029 return vcpu; 1030 return NULL; 1031} 1032 1033void kvm_destroy_vcpus(struct kvm *kvm); 1034 1035int kvm_trylock_all_vcpus(struct kvm *kvm); 1036int kvm_lock_all_vcpus(struct kvm *kvm); 1037void kvm_unlock_all_vcpus(struct kvm *kvm); 1038 1039void vcpu_load(struct kvm_vcpu *vcpu); 1040void vcpu_put(struct kvm_vcpu *vcpu); 1041 1042#ifdef CONFIG_KVM_IOAPIC 1043void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1044#else 1045static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1046{ 1047} 1048#endif 1049 1050#ifdef CONFIG_HAVE_KVM_IRQCHIP 1051int kvm_irqfd_init(void); 1052void kvm_irqfd_exit(void); 1053#else 1054static inline int kvm_irqfd_init(void) 1055{ 1056 return 0; 1057} 1058 1059static inline void kvm_irqfd_exit(void) 1060{ 1061} 1062#endif 1063int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1064void kvm_exit(void); 1065 1066void kvm_get_kvm(struct kvm *kvm); 1067bool kvm_get_kvm_safe(struct kvm *kvm); 1068void kvm_put_kvm(struct kvm *kvm); 1069bool file_is_kvm(struct file *file); 1070void kvm_put_kvm_no_destroy(struct kvm *kvm); 1071 1072static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1073{ 1074 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1075 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1076 lockdep_is_held(&kvm->slots_lock) || 1077 !refcount_read(&kvm->users_count)); 1078} 1079 1080static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1081{ 1082 return __kvm_memslots(kvm, 0); 1083} 1084 1085static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1086{ 1087 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1088 1089 return __kvm_memslots(vcpu->kvm, as_id); 1090} 1091 1092static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1093{ 1094 return RB_EMPTY_ROOT(&slots->gfn_tree); 1095} 1096 1097bool kvm_are_all_memslots_empty(struct kvm *kvm); 1098 1099#define kvm_for_each_memslot(memslot, bkt, slots) \ 1100 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1101 if (WARN_ON_ONCE(!memslot->npages)) { \ 1102 } else 1103 1104static inline 1105struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1106{ 1107 struct kvm_memory_slot *slot; 1108 int idx = slots->node_idx; 1109 1110 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1111 if (slot->id == id) 1112 return slot; 1113 } 1114 1115 return NULL; 1116} 1117 1118/* Iterator used for walking memslots that overlap a gfn range. */ 1119struct kvm_memslot_iter { 1120 struct kvm_memslots *slots; 1121 struct rb_node *node; 1122 struct kvm_memory_slot *slot; 1123}; 1124 1125static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1126{ 1127 iter->node = rb_next(iter->node); 1128 if (!iter->node) 1129 return; 1130 1131 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1132} 1133 1134static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1135 struct kvm_memslots *slots, 1136 gfn_t start) 1137{ 1138 int idx = slots->node_idx; 1139 struct rb_node *tmp; 1140 struct kvm_memory_slot *slot; 1141 1142 iter->slots = slots; 1143 1144 /* 1145 * Find the so called "upper bound" of a key - the first node that has 1146 * its key strictly greater than the searched one (the start gfn in our case). 1147 */ 1148 iter->node = NULL; 1149 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1150 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1151 if (start < slot->base_gfn) { 1152 iter->node = tmp; 1153 tmp = tmp->rb_left; 1154 } else { 1155 tmp = tmp->rb_right; 1156 } 1157 } 1158 1159 /* 1160 * Find the slot with the lowest gfn that can possibly intersect with 1161 * the range, so we'll ideally have slot start <= range start 1162 */ 1163 if (iter->node) { 1164 /* 1165 * A NULL previous node means that the very first slot 1166 * already has a higher start gfn. 1167 * In this case slot start > range start. 1168 */ 1169 tmp = rb_prev(iter->node); 1170 if (tmp) 1171 iter->node = tmp; 1172 } else { 1173 /* a NULL node below means no slots */ 1174 iter->node = rb_last(&slots->gfn_tree); 1175 } 1176 1177 if (iter->node) { 1178 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1179 1180 /* 1181 * It is possible in the slot start < range start case that the 1182 * found slot ends before or at range start (slot end <= range start) 1183 * and so it does not overlap the requested range. 1184 * 1185 * In such non-overlapping case the next slot (if it exists) will 1186 * already have slot start > range start, otherwise the logic above 1187 * would have found it instead of the current slot. 1188 */ 1189 if (iter->slot->base_gfn + iter->slot->npages <= start) 1190 kvm_memslot_iter_next(iter); 1191 } 1192} 1193 1194static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1195{ 1196 if (!iter->node) 1197 return false; 1198 1199 /* 1200 * If this slot starts beyond or at the end of the range so does 1201 * every next one 1202 */ 1203 return iter->slot->base_gfn < end; 1204} 1205 1206/* Iterate over each memslot at least partially intersecting [start, end) range */ 1207#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1208 for (kvm_memslot_iter_start(iter, slots, start); \ 1209 kvm_memslot_iter_is_valid(iter, end); \ 1210 kvm_memslot_iter_next(iter)) 1211 1212struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1213struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1214struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1215 1216/* 1217 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1218 * - create a new memory slot 1219 * - delete an existing memory slot 1220 * - modify an existing memory slot 1221 * -- move it in the guest physical memory space 1222 * -- just change its flags 1223 * 1224 * Since flags can be changed by some of these operations, the following 1225 * differentiation is the best we can do for kvm_set_memory_region(): 1226 */ 1227enum kvm_mr_change { 1228 KVM_MR_CREATE, 1229 KVM_MR_DELETE, 1230 KVM_MR_MOVE, 1231 KVM_MR_FLAGS_ONLY, 1232}; 1233 1234int kvm_set_internal_memslot(struct kvm *kvm, 1235 const struct kvm_userspace_memory_region2 *mem); 1236void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1237void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1238int kvm_arch_prepare_memory_region(struct kvm *kvm, 1239 const struct kvm_memory_slot *old, 1240 struct kvm_memory_slot *new, 1241 enum kvm_mr_change change); 1242void kvm_arch_commit_memory_region(struct kvm *kvm, 1243 struct kvm_memory_slot *old, 1244 const struct kvm_memory_slot *new, 1245 enum kvm_mr_change change); 1246/* flush all memory translations */ 1247void kvm_arch_flush_shadow_all(struct kvm *kvm); 1248/* flush memory translations pointing to 'slot' */ 1249void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1250 struct kvm_memory_slot *slot); 1251 1252int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1253 struct page **pages, int nr_pages); 1254 1255struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1256static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1257{ 1258 return __gfn_to_page(kvm, gfn, true); 1259} 1260 1261unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1262unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1263unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1264unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1265 bool *writable); 1266 1267static inline void kvm_release_page_unused(struct page *page) 1268{ 1269 if (!page) 1270 return; 1271 1272 put_page(page); 1273} 1274 1275void kvm_release_page_clean(struct page *page); 1276void kvm_release_page_dirty(struct page *page); 1277 1278static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1279 bool unused, bool dirty) 1280{ 1281 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1282 1283 if (!page) 1284 return; 1285 1286 /* 1287 * If the page that KVM got from the *primary MMU* is writable, and KVM 1288 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1289 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1290 * the GFN is write-protected. Folios can't be safely marked dirty 1291 * outside of mmu_lock as doing so could race with writeback on the 1292 * folio. As a result, KVM can't mark folios dirty in the fast page 1293 * fault handler, and so KVM must (somewhat) speculatively mark the 1294 * folio dirty if KVM could locklessly make the SPTE writable. 1295 */ 1296 if (unused) 1297 kvm_release_page_unused(page); 1298 else if (dirty) 1299 kvm_release_page_dirty(page); 1300 else 1301 kvm_release_page_clean(page); 1302} 1303 1304kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1305 unsigned int foll, bool *writable, 1306 struct page **refcounted_page); 1307 1308static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1309 bool write, bool *writable, 1310 struct page **refcounted_page) 1311{ 1312 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1313 write ? FOLL_WRITE : 0, writable, refcounted_page); 1314} 1315 1316int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1317 int len); 1318int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1319int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1320 void *data, unsigned long len); 1321int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1322 void *data, unsigned int offset, 1323 unsigned long len); 1324int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1325 int offset, int len); 1326int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1327 unsigned long len); 1328int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1329 void *data, unsigned long len); 1330int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1331 void *data, unsigned int offset, 1332 unsigned long len); 1333int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1334 gpa_t gpa, unsigned long len); 1335 1336#define __kvm_get_guest(kvm, gfn, offset, v) \ 1337({ \ 1338 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1339 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1340 int __ret = -EFAULT; \ 1341 \ 1342 if (!kvm_is_error_hva(__addr)) \ 1343 __ret = get_user(v, __uaddr); \ 1344 __ret; \ 1345}) 1346 1347#define kvm_get_guest(kvm, gpa, v) \ 1348({ \ 1349 gpa_t __gpa = gpa; \ 1350 struct kvm *__kvm = kvm; \ 1351 \ 1352 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1353 offset_in_page(__gpa), v); \ 1354}) 1355 1356#define __kvm_put_guest(kvm, gfn, offset, v) \ 1357({ \ 1358 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1359 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1360 int __ret = -EFAULT; \ 1361 \ 1362 if (!kvm_is_error_hva(__addr)) \ 1363 __ret = put_user(v, __uaddr); \ 1364 if (!__ret) \ 1365 mark_page_dirty(kvm, gfn); \ 1366 __ret; \ 1367}) 1368 1369#define kvm_put_guest(kvm, gpa, v) \ 1370({ \ 1371 gpa_t __gpa = gpa; \ 1372 struct kvm *__kvm = kvm; \ 1373 \ 1374 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1375 offset_in_page(__gpa), v); \ 1376}) 1377 1378int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1379bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1380bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1381unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1382void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1383void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1384 1385int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1386 bool writable); 1387void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1388 1389static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1390 struct kvm_host_map *map) 1391{ 1392 return __kvm_vcpu_map(vcpu, gpa, map, true); 1393} 1394 1395static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1396 struct kvm_host_map *map) 1397{ 1398 return __kvm_vcpu_map(vcpu, gpa, map, false); 1399} 1400 1401unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1402unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1403int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1404 int len); 1405int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1406 unsigned long len); 1407int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1408 unsigned long len); 1409int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1410 int offset, int len); 1411int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1412 unsigned long len); 1413void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1414 1415/** 1416 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1417 * 1418 * @gpc: struct gfn_to_pfn_cache object. 1419 * @kvm: pointer to kvm instance. 1420 * 1421 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1422 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1423 * the caller before init). 1424 */ 1425void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1426 1427/** 1428 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1429 * physical address. 1430 * 1431 * @gpc: struct gfn_to_pfn_cache object. 1432 * @gpa: guest physical address to map. 1433 * @len: sanity check; the range being access must fit a single page. 1434 * 1435 * @return: 0 for success. 1436 * -EINVAL for a mapping which would cross a page boundary. 1437 * -EFAULT for an untranslatable guest physical address. 1438 * 1439 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1440 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1441 * to ensure that the cache is valid before accessing the target page. 1442 */ 1443int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1444 1445/** 1446 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1447 * 1448 * @gpc: struct gfn_to_pfn_cache object. 1449 * @hva: userspace virtual address to map. 1450 * @len: sanity check; the range being access must fit a single page. 1451 * 1452 * @return: 0 for success. 1453 * -EINVAL for a mapping which would cross a page boundary. 1454 * -EFAULT for an untranslatable guest physical address. 1455 * 1456 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1457 * merely bypasses a layer of address translation. 1458 */ 1459int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1460 1461/** 1462 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1463 * 1464 * @gpc: struct gfn_to_pfn_cache object. 1465 * @len: sanity check; the range being access must fit a single page. 1466 * 1467 * @return: %true if the cache is still valid and the address matches. 1468 * %false if the cache is not valid. 1469 * 1470 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1471 * while calling this function, and then continue to hold the lock until the 1472 * access is complete. 1473 * 1474 * Callers in IN_GUEST_MODE may do so without locking, although they should 1475 * still hold a read lock on kvm->scru for the memslot checks. 1476 */ 1477bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1478 1479/** 1480 * kvm_gpc_refresh - update a previously initialized cache. 1481 * 1482 * @gpc: struct gfn_to_pfn_cache object. 1483 * @len: sanity check; the range being access must fit a single page. 1484 * 1485 * @return: 0 for success. 1486 * -EINVAL for a mapping which would cross a page boundary. 1487 * -EFAULT for an untranslatable guest physical address. 1488 * 1489 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1490 * return from this function does not mean the page can be immediately 1491 * accessed because it may have raced with an invalidation. Callers must 1492 * still lock and check the cache status, as this function does not return 1493 * with the lock still held to permit access. 1494 */ 1495int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1496 1497/** 1498 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1499 * 1500 * @gpc: struct gfn_to_pfn_cache object. 1501 * 1502 * This removes a cache from the VM's list to be processed on MMU notifier 1503 * invocation. 1504 */ 1505void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1506 1507static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1508{ 1509 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1510} 1511 1512static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1513{ 1514 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1515} 1516 1517void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1518void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1519 1520void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1521bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1522void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1523void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1524bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1525 1526#ifndef CONFIG_S390 1527void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait); 1528 1529static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1530{ 1531 __kvm_vcpu_kick(vcpu, false); 1532} 1533#endif 1534 1535int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1536void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1537 1538void kvm_flush_remote_tlbs(struct kvm *kvm); 1539void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1540void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1541 const struct kvm_memory_slot *memslot); 1542 1543#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1544int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1545int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1546int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1547void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1548void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1549#endif 1550 1551void kvm_mmu_invalidate_begin(struct kvm *kvm); 1552void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1553void kvm_mmu_invalidate_end(struct kvm *kvm); 1554bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1555 1556long kvm_arch_dev_ioctl(struct file *filp, 1557 unsigned int ioctl, unsigned long arg); 1558long kvm_arch_vcpu_ioctl(struct file *filp, 1559 unsigned int ioctl, unsigned long arg); 1560vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1561 1562int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1563 1564void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1565 struct kvm_memory_slot *slot, 1566 gfn_t gfn_offset, 1567 unsigned long mask); 1568void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1569 1570#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1571int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1572int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1573 int *is_dirty, struct kvm_memory_slot **memslot); 1574#endif 1575 1576int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1577 bool line_status); 1578int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1579 struct kvm_enable_cap *cap); 1580int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1581long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1582 unsigned long arg); 1583 1584int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1585int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1586 1587int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1588 struct kvm_translation *tr); 1589 1590int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1591int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1592int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1593 struct kvm_sregs *sregs); 1594int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1595 struct kvm_sregs *sregs); 1596int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1597 struct kvm_mp_state *mp_state); 1598int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1599 struct kvm_mp_state *mp_state); 1600int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1601 struct kvm_guest_debug *dbg); 1602int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1603 1604void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1605void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1606int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1607int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1608void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1609void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1610 1611#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1612int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1613#endif 1614 1615#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1616void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1617#else 1618static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1619#endif 1620 1621#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1622/* 1623 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1624 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1625 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1626 * sequence, and at the end of the generic hardware disabling sequence. 1627 */ 1628void kvm_arch_enable_virtualization(void); 1629void kvm_arch_disable_virtualization(void); 1630/* 1631 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1632 * do the actual twiddling of hardware bits. The hooks are called on all 1633 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1634 * when that CPU is onlined/offlined (including for Resume/Suspend). 1635 */ 1636int kvm_arch_enable_virtualization_cpu(void); 1637void kvm_arch_disable_virtualization_cpu(void); 1638#endif 1639bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu); 1640int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1641bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1642int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1643bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1644bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1645bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1646void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1647void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1648 1649#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1650/* 1651 * All architectures that want to use vzalloc currently also 1652 * need their own kvm_arch_alloc_vm implementation. 1653 */ 1654static inline struct kvm *kvm_arch_alloc_vm(void) 1655{ 1656 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1657} 1658#endif 1659 1660static inline void __kvm_arch_free_vm(struct kvm *kvm) 1661{ 1662 kvfree(kvm); 1663} 1664 1665#ifndef __KVM_HAVE_ARCH_VM_FREE 1666static inline void kvm_arch_free_vm(struct kvm *kvm) 1667{ 1668 __kvm_arch_free_vm(kvm); 1669} 1670#endif 1671 1672#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1673static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1674{ 1675 return -ENOTSUPP; 1676} 1677#else 1678int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1679#endif 1680 1681#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1682static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1683 gfn_t gfn, u64 nr_pages) 1684{ 1685 return -EOPNOTSUPP; 1686} 1687#else 1688int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1689#endif 1690 1691#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1692void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1693void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1694bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1695#else 1696static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1697{ 1698} 1699 1700static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1701{ 1702} 1703 1704static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1705{ 1706 return false; 1707} 1708#endif 1709 1710static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1711{ 1712#ifdef __KVM_HAVE_ARCH_WQP 1713 return vcpu->arch.waitp; 1714#else 1715 return &vcpu->wait; 1716#endif 1717} 1718 1719/* 1720 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1721 * true if the vCPU was blocking and was awakened, false otherwise. 1722 */ 1723static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1724{ 1725 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1726} 1727 1728static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1729{ 1730 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1731} 1732 1733#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1734/* 1735 * returns true if the virtual interrupt controller is initialized and 1736 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1737 * controller is dynamically instantiated and this is not always true. 1738 */ 1739bool kvm_arch_intc_initialized(struct kvm *kvm); 1740#else 1741static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1742{ 1743 return true; 1744} 1745#endif 1746 1747#ifdef CONFIG_GUEST_PERF_EVENTS 1748unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1749 1750void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1751void kvm_unregister_perf_callbacks(void); 1752#else 1753static inline void kvm_register_perf_callbacks(void *ign) {} 1754static inline void kvm_unregister_perf_callbacks(void) {} 1755#endif /* CONFIG_GUEST_PERF_EVENTS */ 1756 1757int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1758void kvm_arch_destroy_vm(struct kvm *kvm); 1759 1760int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1761 1762struct kvm_irq_ack_notifier { 1763 struct hlist_node link; 1764 unsigned gsi; 1765 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1766}; 1767 1768int kvm_irq_map_gsi(struct kvm *kvm, 1769 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1770int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1771 1772int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1773 bool line_status); 1774int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1775 int irq_source_id, int level, bool line_status); 1776int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1777 struct kvm *kvm, int irq_source_id, 1778 int level, bool line_status); 1779bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1780void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1781void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1782void kvm_register_irq_ack_notifier(struct kvm *kvm, 1783 struct kvm_irq_ack_notifier *kian); 1784void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1785 struct kvm_irq_ack_notifier *kian); 1786bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1787 1788/* 1789 * Returns a pointer to the memslot if it contains gfn. 1790 * Otherwise returns NULL. 1791 */ 1792static inline struct kvm_memory_slot * 1793try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1794{ 1795 if (!slot) 1796 return NULL; 1797 1798 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1799 return slot; 1800 else 1801 return NULL; 1802} 1803 1804/* 1805 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1806 * 1807 * With "approx" set returns the memslot also when the address falls 1808 * in a hole. In that case one of the memslots bordering the hole is 1809 * returned. 1810 */ 1811static inline struct kvm_memory_slot * 1812search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1813{ 1814 struct kvm_memory_slot *slot; 1815 struct rb_node *node; 1816 int idx = slots->node_idx; 1817 1818 slot = NULL; 1819 for (node = slots->gfn_tree.rb_node; node; ) { 1820 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1821 if (gfn >= slot->base_gfn) { 1822 if (gfn < slot->base_gfn + slot->npages) 1823 return slot; 1824 node = node->rb_right; 1825 } else 1826 node = node->rb_left; 1827 } 1828 1829 return approx ? slot : NULL; 1830} 1831 1832static inline struct kvm_memory_slot * 1833____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1834{ 1835 struct kvm_memory_slot *slot; 1836 1837 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1838 slot = try_get_memslot(slot, gfn); 1839 if (slot) 1840 return slot; 1841 1842 slot = search_memslots(slots, gfn, approx); 1843 if (slot) { 1844 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1845 return slot; 1846 } 1847 1848 return NULL; 1849} 1850 1851/* 1852 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1853 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1854 * because that would bloat other code too much. 1855 */ 1856static inline struct kvm_memory_slot * 1857__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1858{ 1859 return ____gfn_to_memslot(slots, gfn, false); 1860} 1861 1862static inline unsigned long 1863__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1864{ 1865 /* 1866 * The index was checked originally in search_memslots. To avoid 1867 * that a malicious guest builds a Spectre gadget out of e.g. page 1868 * table walks, do not let the processor speculate loads outside 1869 * the guest's registered memslots. 1870 */ 1871 unsigned long offset = gfn - slot->base_gfn; 1872 offset = array_index_nospec(offset, slot->npages); 1873 return slot->userspace_addr + offset * PAGE_SIZE; 1874} 1875 1876static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1877{ 1878 return gfn_to_memslot(kvm, gfn)->id; 1879} 1880 1881static inline gfn_t 1882hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1883{ 1884 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1885 1886 return slot->base_gfn + gfn_offset; 1887} 1888 1889static inline gpa_t gfn_to_gpa(gfn_t gfn) 1890{ 1891 return (gpa_t)gfn << PAGE_SHIFT; 1892} 1893 1894static inline gfn_t gpa_to_gfn(gpa_t gpa) 1895{ 1896 return (gfn_t)(gpa >> PAGE_SHIFT); 1897} 1898 1899static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1900{ 1901 return (hpa_t)pfn << PAGE_SHIFT; 1902} 1903 1904static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1905{ 1906 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1907 1908 return !kvm_is_error_hva(hva); 1909} 1910 1911static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1912{ 1913 lockdep_assert_held(&gpc->lock); 1914 1915 if (!gpc->memslot) 1916 return; 1917 1918 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1919} 1920 1921enum kvm_stat_kind { 1922 KVM_STAT_VM, 1923 KVM_STAT_VCPU, 1924}; 1925 1926struct kvm_stat_data { 1927 struct kvm *kvm; 1928 const struct _kvm_stats_desc *desc; 1929 enum kvm_stat_kind kind; 1930}; 1931 1932struct _kvm_stats_desc { 1933 struct kvm_stats_desc desc; 1934 char name[KVM_STATS_NAME_SIZE]; 1935}; 1936 1937#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1938 .flags = type | unit | base | \ 1939 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1940 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1941 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1942 .exponent = exp, \ 1943 .size = sz, \ 1944 .bucket_size = bsz 1945 1946#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1947 { \ 1948 { \ 1949 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1950 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1951 }, \ 1952 .name = #stat, \ 1953 } 1954#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1955 { \ 1956 { \ 1957 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1958 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1959 }, \ 1960 .name = #stat, \ 1961 } 1962#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1963 { \ 1964 { \ 1965 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1966 .offset = offsetof(struct kvm_vm_stat, stat) \ 1967 }, \ 1968 .name = #stat, \ 1969 } 1970#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1971 { \ 1972 { \ 1973 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1974 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1975 }, \ 1976 .name = #stat, \ 1977 } 1978/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1979#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1980 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1981 1982#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1983 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1984 unit, base, exponent, 1, 0) 1985#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1986 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1987 unit, base, exponent, 1, 0) 1988#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1989 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1990 unit, base, exponent, 1, 0) 1991#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1992 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1993 unit, base, exponent, sz, bsz) 1994#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1995 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1996 unit, base, exponent, sz, 0) 1997 1998/* Cumulative counter, read/write */ 1999#define STATS_DESC_COUNTER(SCOPE, name) \ 2000 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2001 KVM_STATS_BASE_POW10, 0) 2002/* Instantaneous counter, read only */ 2003#define STATS_DESC_ICOUNTER(SCOPE, name) \ 2004 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2005 KVM_STATS_BASE_POW10, 0) 2006/* Peak counter, read/write */ 2007#define STATS_DESC_PCOUNTER(SCOPE, name) \ 2008 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2009 KVM_STATS_BASE_POW10, 0) 2010 2011/* Instantaneous boolean value, read only */ 2012#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2013 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2014 KVM_STATS_BASE_POW10, 0) 2015/* Peak (sticky) boolean value, read/write */ 2016#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2017 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2018 KVM_STATS_BASE_POW10, 0) 2019 2020/* Cumulative time in nanosecond */ 2021#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2022 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2023 KVM_STATS_BASE_POW10, -9) 2024/* Linear histogram for time in nanosecond */ 2025#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2026 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2027 KVM_STATS_BASE_POW10, -9, sz, bsz) 2028/* Logarithmic histogram for time in nanosecond */ 2029#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2030 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2031 KVM_STATS_BASE_POW10, -9, sz) 2032 2033#define KVM_GENERIC_VM_STATS() \ 2034 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2035 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2036 2037#define KVM_GENERIC_VCPU_STATS() \ 2038 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2039 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2040 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2041 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2042 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2043 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2044 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2045 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2046 HALT_POLL_HIST_COUNT), \ 2047 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2048 HALT_POLL_HIST_COUNT), \ 2049 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2050 HALT_POLL_HIST_COUNT), \ 2051 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2052 2053ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2054 const struct _kvm_stats_desc *desc, 2055 void *stats, size_t size_stats, 2056 char __user *user_buffer, size_t size, loff_t *offset); 2057 2058/** 2059 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2060 * statistics data. 2061 * 2062 * @data: start address of the stats data 2063 * @size: the number of bucket of the stats data 2064 * @value: the new value used to update the linear histogram's bucket 2065 * @bucket_size: the size (width) of a bucket 2066 */ 2067static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2068 u64 value, size_t bucket_size) 2069{ 2070 size_t index = div64_u64(value, bucket_size); 2071 2072 index = min(index, size - 1); 2073 ++data[index]; 2074} 2075 2076/** 2077 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2078 * statistics data. 2079 * 2080 * @data: start address of the stats data 2081 * @size: the number of bucket of the stats data 2082 * @value: the new value used to update the logarithmic histogram's bucket 2083 */ 2084static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2085{ 2086 size_t index = fls64(value); 2087 2088 index = min(index, size - 1); 2089 ++data[index]; 2090} 2091 2092#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2093 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2094#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2095 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2096 2097 2098extern const struct kvm_stats_header kvm_vm_stats_header; 2099extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2100extern const struct kvm_stats_header kvm_vcpu_stats_header; 2101extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2102 2103#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2104static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2105{ 2106 if (unlikely(kvm->mmu_invalidate_in_progress)) 2107 return 1; 2108 /* 2109 * Ensure the read of mmu_invalidate_in_progress happens before 2110 * the read of mmu_invalidate_seq. This interacts with the 2111 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2112 * that the caller either sees the old (non-zero) value of 2113 * mmu_invalidate_in_progress or the new (incremented) value of 2114 * mmu_invalidate_seq. 2115 * 2116 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2117 * than under kvm->mmu_lock, for scalability, so can't rely on 2118 * kvm->mmu_lock to keep things ordered. 2119 */ 2120 smp_rmb(); 2121 if (kvm->mmu_invalidate_seq != mmu_seq) 2122 return 1; 2123 return 0; 2124} 2125 2126static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2127 unsigned long mmu_seq, 2128 gfn_t gfn) 2129{ 2130 lockdep_assert_held(&kvm->mmu_lock); 2131 /* 2132 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2133 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2134 * that might be being invalidated. Note that it may include some false 2135 * positives, due to shortcuts when handing concurrent invalidations. 2136 */ 2137 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2138 /* 2139 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2140 * but before updating the range is a KVM bug. 2141 */ 2142 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2143 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2144 return 1; 2145 2146 if (gfn >= kvm->mmu_invalidate_range_start && 2147 gfn < kvm->mmu_invalidate_range_end) 2148 return 1; 2149 } 2150 2151 if (kvm->mmu_invalidate_seq != mmu_seq) 2152 return 1; 2153 return 0; 2154} 2155 2156/* 2157 * This lockless version of the range-based retry check *must* be paired with a 2158 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2159 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2160 * get false negatives and false positives. 2161 */ 2162static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2163 unsigned long mmu_seq, 2164 gfn_t gfn) 2165{ 2166 /* 2167 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2168 * are always read from memory, e.g. so that checking for retry in a 2169 * loop won't result in an infinite retry loop. Don't force loads for 2170 * start+end, as the key to avoiding infinite retry loops is observing 2171 * the 1=>0 transition of in-progress, i.e. getting false negatives 2172 * due to stale start+end values is acceptable. 2173 */ 2174 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2175 gfn >= kvm->mmu_invalidate_range_start && 2176 gfn < kvm->mmu_invalidate_range_end) 2177 return true; 2178 2179 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2180} 2181#endif 2182 2183#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2184 2185#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2186 2187bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2188int kvm_set_irq_routing(struct kvm *kvm, 2189 const struct kvm_irq_routing_entry *entries, 2190 unsigned nr, 2191 unsigned flags); 2192int kvm_init_irq_routing(struct kvm *kvm); 2193int kvm_set_routing_entry(struct kvm *kvm, 2194 struct kvm_kernel_irq_routing_entry *e, 2195 const struct kvm_irq_routing_entry *ue); 2196void kvm_free_irq_routing(struct kvm *kvm); 2197 2198#else 2199 2200static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2201 2202static inline int kvm_init_irq_routing(struct kvm *kvm) 2203{ 2204 return 0; 2205} 2206 2207#endif 2208 2209int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2210 2211void kvm_eventfd_init(struct kvm *kvm); 2212int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2213 2214#ifdef CONFIG_HAVE_KVM_IRQCHIP 2215int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2216void kvm_irqfd_release(struct kvm *kvm); 2217bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2218 unsigned int irqchip, 2219 unsigned int pin); 2220void kvm_irq_routing_update(struct kvm *); 2221#else 2222static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2223{ 2224 return -EINVAL; 2225} 2226 2227static inline void kvm_irqfd_release(struct kvm *kvm) {} 2228 2229static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2230 unsigned int irqchip, 2231 unsigned int pin) 2232{ 2233 return false; 2234} 2235#endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2236 2237void kvm_arch_irq_routing_update(struct kvm *kvm); 2238 2239static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2240{ 2241 /* 2242 * Ensure the rest of the request is published to kvm_check_request's 2243 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2244 */ 2245 smp_wmb(); 2246 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2247} 2248 2249static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2250{ 2251 /* 2252 * Request that don't require vCPU action should never be logged in 2253 * vcpu->requests. The vCPU won't clear the request, so it will stay 2254 * logged indefinitely and prevent the vCPU from entering the guest. 2255 */ 2256 BUILD_BUG_ON(!__builtin_constant_p(req) || 2257 (req & KVM_REQUEST_NO_ACTION)); 2258 2259 __kvm_make_request(req, vcpu); 2260} 2261 2262#ifndef CONFIG_S390 2263static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu) 2264{ 2265 kvm_make_request(req, vcpu); 2266 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT); 2267} 2268#endif 2269 2270static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2271{ 2272 return READ_ONCE(vcpu->requests); 2273} 2274 2275static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2276{ 2277 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2278} 2279 2280static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2281{ 2282 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2283} 2284 2285static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2286{ 2287 if (kvm_test_request(req, vcpu)) { 2288 kvm_clear_request(req, vcpu); 2289 2290 /* 2291 * Ensure the rest of the request is visible to kvm_check_request's 2292 * caller. Paired with the smp_wmb in kvm_make_request. 2293 */ 2294 smp_mb__after_atomic(); 2295 return true; 2296 } else { 2297 return false; 2298 } 2299} 2300 2301#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2302extern bool enable_virt_at_load; 2303extern bool kvm_rebooting; 2304#endif 2305 2306extern unsigned int halt_poll_ns; 2307extern unsigned int halt_poll_ns_grow; 2308extern unsigned int halt_poll_ns_grow_start; 2309extern unsigned int halt_poll_ns_shrink; 2310 2311struct kvm_device { 2312 const struct kvm_device_ops *ops; 2313 struct kvm *kvm; 2314 void *private; 2315 struct list_head vm_node; 2316}; 2317 2318/* create, destroy, and name are mandatory */ 2319struct kvm_device_ops { 2320 const char *name; 2321 2322 /* 2323 * create is called holding kvm->lock and any operations not suitable 2324 * to do while holding the lock should be deferred to init (see 2325 * below). 2326 */ 2327 int (*create)(struct kvm_device *dev, u32 type); 2328 2329 /* 2330 * init is called after create if create is successful and is called 2331 * outside of holding kvm->lock. 2332 */ 2333 void (*init)(struct kvm_device *dev); 2334 2335 /* 2336 * Destroy is responsible for freeing dev. 2337 * 2338 * Destroy may be called before or after destructors are called 2339 * on emulated I/O regions, depending on whether a reference is 2340 * held by a vcpu or other kvm component that gets destroyed 2341 * after the emulated I/O. 2342 */ 2343 void (*destroy)(struct kvm_device *dev); 2344 2345 /* 2346 * Release is an alternative method to free the device. It is 2347 * called when the device file descriptor is closed. Once 2348 * release is called, the destroy method will not be called 2349 * anymore as the device is removed from the device list of 2350 * the VM. kvm->lock is held. 2351 */ 2352 void (*release)(struct kvm_device *dev); 2353 2354 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2355 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2356 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2357 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2358 unsigned long arg); 2359 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2360}; 2361 2362struct kvm_device *kvm_device_from_filp(struct file *filp); 2363int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2364void kvm_unregister_device_ops(u32 type); 2365 2366extern struct kvm_device_ops kvm_mpic_ops; 2367extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2368extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2369 2370#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2371 2372static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2373{ 2374 vcpu->spin_loop.in_spin_loop = val; 2375} 2376static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2377{ 2378 vcpu->spin_loop.dy_eligible = val; 2379} 2380 2381#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2382 2383static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2384{ 2385} 2386 2387static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2388{ 2389} 2390#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2391 2392static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2393{ 2394 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2395 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2396} 2397 2398struct kvm_vcpu *kvm_get_running_vcpu(void); 2399struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2400 2401#if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) 2402struct kvm_kernel_irqfd; 2403 2404bool kvm_arch_has_irq_bypass(void); 2405int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2406 struct irq_bypass_producer *); 2407void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2408 struct irq_bypass_producer *); 2409void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2410void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2411void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2412 struct kvm_kernel_irq_routing_entry *old, 2413 struct kvm_kernel_irq_routing_entry *new); 2414#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2415 2416#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2417/* If we wakeup during the poll time, was it a sucessful poll? */ 2418static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2419{ 2420 return vcpu->valid_wakeup; 2421} 2422 2423#else 2424static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2425{ 2426 return true; 2427} 2428#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2429 2430#ifdef CONFIG_HAVE_KVM_NO_POLL 2431/* Callback that tells if we must not poll */ 2432bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2433#else 2434static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2435{ 2436 return false; 2437} 2438#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2439 2440#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2441long kvm_arch_vcpu_async_ioctl(struct file *filp, 2442 unsigned int ioctl, unsigned long arg); 2443#else 2444static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2445 unsigned int ioctl, 2446 unsigned long arg) 2447{ 2448 return -ENOIOCTLCMD; 2449} 2450#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2451 2452void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2453 2454#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2455int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2456#else 2457static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2458{ 2459 return 0; 2460} 2461#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2462 2463#ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK 2464static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2465{ 2466 vcpu->run->exit_reason = KVM_EXIT_INTR; 2467 vcpu->stat.signal_exits++; 2468} 2469 2470static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu) 2471{ 2472 int r = xfer_to_guest_mode_handle_work(); 2473 2474 if (r) { 2475 WARN_ON_ONCE(r != -EINTR); 2476 kvm_handle_signal_exit(vcpu); 2477 } 2478 return r; 2479} 2480#endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */ 2481 2482/* 2483 * If more than one page is being (un)accounted, @virt must be the address of 2484 * the first page of a block of pages what were allocated together (i.e 2485 * accounted together). 2486 * 2487 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2488 * is thread-safe. 2489 */ 2490static inline void kvm_account_pgtable_pages(void *virt, int nr) 2491{ 2492 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2493} 2494 2495/* 2496 * This defines how many reserved entries we want to keep before we 2497 * kick the vcpu to the userspace to avoid dirty ring full. This 2498 * value can be tuned to higher if e.g. PML is enabled on the host. 2499 */ 2500#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2501 2502/* Max number of entries allowed for each kvm dirty ring */ 2503#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2504 2505static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2506 gpa_t gpa, gpa_t size, 2507 bool is_write, bool is_exec, 2508 bool is_private) 2509{ 2510 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2511 vcpu->run->memory_fault.gpa = gpa; 2512 vcpu->run->memory_fault.size = size; 2513 2514 /* RWX flags are not (yet) defined or communicated to userspace. */ 2515 vcpu->run->memory_fault.flags = 0; 2516 if (is_private) 2517 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2518} 2519 2520static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot) 2521{ 2522 if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) 2523 return false; 2524 2525 return slot->flags & KVM_MEMSLOT_GMEM_ONLY; 2526} 2527 2528#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2529static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2530{ 2531 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2532} 2533 2534bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2535 unsigned long mask, unsigned long attrs); 2536bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2537 struct kvm_gfn_range *range); 2538bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2539 struct kvm_gfn_range *range); 2540 2541static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2542{ 2543 return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2544} 2545#else 2546static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2547{ 2548 return false; 2549} 2550#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2551 2552#ifdef CONFIG_KVM_GUEST_MEMFD 2553int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2554 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2555 int *max_order); 2556#else 2557static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2558 struct kvm_memory_slot *slot, gfn_t gfn, 2559 kvm_pfn_t *pfn, struct page **page, 2560 int *max_order) 2561{ 2562 KVM_BUG_ON(1, kvm); 2563 return -EIO; 2564} 2565#endif /* CONFIG_KVM_GUEST_MEMFD */ 2566 2567#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2568int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2569#endif 2570 2571#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE 2572/** 2573 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2574 * 2575 * @kvm: KVM instance 2576 * @gfn: starting GFN to be populated 2577 * @src: userspace-provided buffer containing data to copy into GFN range 2578 * (passed to @post_populate, and incremented on each iteration 2579 * if not NULL) 2580 * @npages: number of pages to copy from userspace-buffer 2581 * @post_populate: callback to issue for each gmem page that backs the GPA 2582 * range 2583 * @opaque: opaque data to pass to @post_populate callback 2584 * 2585 * This is primarily intended for cases where a gmem-backed GPA range needs 2586 * to be initialized with userspace-provided data prior to being mapped into 2587 * the guest as a private page. This should be called with the slots->lock 2588 * held so that caller-enforced invariants regarding the expected memory 2589 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2590 * 2591 * Returns the number of pages that were populated. 2592 */ 2593typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2594 void __user *src, int order, void *opaque); 2595 2596long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2597 kvm_gmem_populate_cb post_populate, void *opaque); 2598#endif 2599 2600#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2601void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2602#endif 2603 2604#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2605long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2606 struct kvm_pre_fault_memory *range); 2607#endif 2608 2609#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2610int kvm_enable_virtualization(void); 2611void kvm_disable_virtualization(void); 2612#else 2613static inline int kvm_enable_virtualization(void) { return 0; } 2614static inline void kvm_disable_virtualization(void) { } 2615#endif 2616 2617#endif