at v6.18 758 lines 22 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HUGE_MM_H 3#define _LINUX_HUGE_MM_H 4 5#include <linux/mm_types.h> 6 7#include <linux/fs.h> /* only for vma_is_dax() */ 8#include <linux/kobject.h> 9 10vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); 11int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 14void huge_pmd_set_accessed(struct vm_fault *vmf); 15int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 17 struct vm_area_struct *vma); 18 19#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 20void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); 21#else 22static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 23{ 24} 25#endif 26 27vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf); 28bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 29 pmd_t *pmd, unsigned long addr, unsigned long next); 30int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, 31 unsigned long addr); 32int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, 33 unsigned long addr); 34bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); 36int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 37 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 38 unsigned long cp_flags); 39 40vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn, 41 bool write); 42vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn, 43 bool write); 44vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 45 bool write); 46vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 47 bool write); 48 49enum transparent_hugepage_flag { 50 TRANSPARENT_HUGEPAGE_UNSUPPORTED, 51 TRANSPARENT_HUGEPAGE_FLAG, 52 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 53 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 54 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 55 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 56 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 57 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, 58 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, 59}; 60 61struct kobject; 62struct kobj_attribute; 63 64ssize_t single_hugepage_flag_store(struct kobject *kobj, 65 struct kobj_attribute *attr, 66 const char *buf, size_t count, 67 enum transparent_hugepage_flag flag); 68ssize_t single_hugepage_flag_show(struct kobject *kobj, 69 struct kobj_attribute *attr, char *buf, 70 enum transparent_hugepage_flag flag); 71extern struct kobj_attribute shmem_enabled_attr; 72extern struct kobj_attribute thpsize_shmem_enabled_attr; 73 74/* 75 * Mask of all large folio orders supported for anonymous THP; all orders up to 76 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1 77 * (which is a limitation of the THP implementation). 78 */ 79#define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1))) 80 81/* 82 * Mask of all large folio orders supported for file THP. Folios in a DAX 83 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to 84 * it. Same to PFNMAPs where there's neither page* nor pagecache. 85 */ 86#define THP_ORDERS_ALL_SPECIAL \ 87 (BIT(PMD_ORDER) | BIT(PUD_ORDER)) 88#define THP_ORDERS_ALL_FILE_DEFAULT \ 89 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0)) 90 91/* 92 * Mask of all large folio orders supported for THP. 93 */ 94#define THP_ORDERS_ALL \ 95 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT) 96 97enum tva_type { 98 TVA_SMAPS, /* Exposing "THPeligible:" in smaps. */ 99 TVA_PAGEFAULT, /* Serving a page fault. */ 100 TVA_KHUGEPAGED, /* Khugepaged collapse. */ 101 TVA_FORCED_COLLAPSE, /* Forced collapse (e.g. MADV_COLLAPSE). */ 102}; 103 104#define thp_vma_allowable_order(vma, vm_flags, type, order) \ 105 (!!thp_vma_allowable_orders(vma, vm_flags, type, BIT(order))) 106 107#define split_folio(f) split_folio_to_list(f, NULL) 108 109#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 110#define HPAGE_PMD_SHIFT PMD_SHIFT 111#define HPAGE_PUD_SHIFT PUD_SHIFT 112#else 113#define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) 114#define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) 115#endif 116 117#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) 118#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) 119#define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) 120#define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) 121 122#define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT) 123#define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER) 124#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) 125#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) 126 127enum mthp_stat_item { 128 MTHP_STAT_ANON_FAULT_ALLOC, 129 MTHP_STAT_ANON_FAULT_FALLBACK, 130 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE, 131 MTHP_STAT_ZSWPOUT, 132 MTHP_STAT_SWPIN, 133 MTHP_STAT_SWPIN_FALLBACK, 134 MTHP_STAT_SWPIN_FALLBACK_CHARGE, 135 MTHP_STAT_SWPOUT, 136 MTHP_STAT_SWPOUT_FALLBACK, 137 MTHP_STAT_SHMEM_ALLOC, 138 MTHP_STAT_SHMEM_FALLBACK, 139 MTHP_STAT_SHMEM_FALLBACK_CHARGE, 140 MTHP_STAT_SPLIT, 141 MTHP_STAT_SPLIT_FAILED, 142 MTHP_STAT_SPLIT_DEFERRED, 143 MTHP_STAT_NR_ANON, 144 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 145 __MTHP_STAT_COUNT 146}; 147 148#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 149struct mthp_stat { 150 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT]; 151}; 152 153DECLARE_PER_CPU(struct mthp_stat, mthp_stats); 154 155static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 156{ 157 if (order <= 0 || order > PMD_ORDER) 158 return; 159 160 this_cpu_add(mthp_stats.stats[order][item], delta); 161} 162 163static inline void count_mthp_stat(int order, enum mthp_stat_item item) 164{ 165 mod_mthp_stat(order, item, 1); 166} 167 168#else 169static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 170{ 171} 172 173static inline void count_mthp_stat(int order, enum mthp_stat_item item) 174{ 175} 176#endif 177 178#ifdef CONFIG_TRANSPARENT_HUGEPAGE 179 180extern unsigned long transparent_hugepage_flags; 181extern unsigned long huge_anon_orders_always; 182extern unsigned long huge_anon_orders_madvise; 183extern unsigned long huge_anon_orders_inherit; 184 185static inline bool hugepage_global_enabled(void) 186{ 187 return transparent_hugepage_flags & 188 ((1<<TRANSPARENT_HUGEPAGE_FLAG) | 189 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)); 190} 191 192static inline bool hugepage_global_always(void) 193{ 194 return transparent_hugepage_flags & 195 (1<<TRANSPARENT_HUGEPAGE_FLAG); 196} 197 198static inline int highest_order(unsigned long orders) 199{ 200 return fls_long(orders) - 1; 201} 202 203static inline int next_order(unsigned long *orders, int prev) 204{ 205 *orders &= ~BIT(prev); 206 return highest_order(*orders); 207} 208 209/* 210 * Do the below checks: 211 * - For file vma, check if the linear page offset of vma is 212 * order-aligned within the file. The hugepage is 213 * guaranteed to be order-aligned within the file, but we must 214 * check that the order-aligned addresses in the VMA map to 215 * order-aligned offsets within the file, else the hugepage will 216 * not be mappable. 217 * - For all vmas, check if the haddr is in an aligned hugepage 218 * area. 219 */ 220static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 221 unsigned long addr, int order) 222{ 223 unsigned long hpage_size = PAGE_SIZE << order; 224 unsigned long haddr; 225 226 /* Don't have to check pgoff for anonymous vma */ 227 if (!vma_is_anonymous(vma)) { 228 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 229 hpage_size >> PAGE_SHIFT)) 230 return false; 231 } 232 233 haddr = ALIGN_DOWN(addr, hpage_size); 234 235 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end) 236 return false; 237 return true; 238} 239 240/* 241 * Filter the bitfield of input orders to the ones suitable for use in the vma. 242 * See thp_vma_suitable_order(). 243 * All orders that pass the checks are returned as a bitfield. 244 */ 245static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 246 unsigned long addr, unsigned long orders) 247{ 248 int order; 249 250 /* 251 * Iterate over orders, highest to lowest, removing orders that don't 252 * meet alignment requirements from the set. Exit loop at first order 253 * that meets requirements, since all lower orders must also meet 254 * requirements. 255 */ 256 257 order = highest_order(orders); 258 259 while (orders) { 260 if (thp_vma_suitable_order(vma, addr, order)) 261 break; 262 order = next_order(&orders, order); 263 } 264 265 return orders; 266} 267 268unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 269 vm_flags_t vm_flags, 270 enum tva_type type, 271 unsigned long orders); 272 273/** 274 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma 275 * @vma: the vm area to check 276 * @vm_flags: use these vm_flags instead of vma->vm_flags 277 * @type: TVA type 278 * @orders: bitfield of all orders to consider 279 * 280 * Calculates the intersection of the requested hugepage orders and the allowed 281 * hugepage orders for the provided vma. Permitted orders are encoded as a set 282 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3 283 * corresponds to order-3, etc). Order-0 is never considered a hugepage order. 284 * 285 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage 286 * orders are allowed. 287 */ 288static inline 289unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 290 vm_flags_t vm_flags, 291 enum tva_type type, 292 unsigned long orders) 293{ 294 /* 295 * Optimization to check if required orders are enabled early. Only 296 * forced collapse ignores sysfs configs. 297 */ 298 if (type != TVA_FORCED_COLLAPSE && vma_is_anonymous(vma)) { 299 unsigned long mask = READ_ONCE(huge_anon_orders_always); 300 301 if (vm_flags & VM_HUGEPAGE) 302 mask |= READ_ONCE(huge_anon_orders_madvise); 303 if (hugepage_global_always() || 304 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled())) 305 mask |= READ_ONCE(huge_anon_orders_inherit); 306 307 orders &= mask; 308 if (!orders) 309 return 0; 310 } 311 312 return __thp_vma_allowable_orders(vma, vm_flags, type, orders); 313} 314 315struct thpsize { 316 struct kobject kobj; 317 struct list_head node; 318 int order; 319}; 320 321#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 322 323#define transparent_hugepage_use_zero_page() \ 324 (transparent_hugepage_flags & \ 325 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) 326 327/* 328 * Check whether THPs are explicitly disabled for this VMA, for example, 329 * through madvise or prctl. 330 */ 331static inline bool vma_thp_disabled(struct vm_area_struct *vma, 332 vm_flags_t vm_flags, bool forced_collapse) 333{ 334 /* Are THPs disabled for this VMA? */ 335 if (vm_flags & VM_NOHUGEPAGE) 336 return true; 337 /* Are THPs disabled for all VMAs in the whole process? */ 338 if (mm_flags_test(MMF_DISABLE_THP_COMPLETELY, vma->vm_mm)) 339 return true; 340 /* 341 * Are THPs disabled only for VMAs where we didn't get an explicit 342 * advise to use them? 343 */ 344 if (vm_flags & VM_HUGEPAGE) 345 return false; 346 /* 347 * Forcing a collapse (e.g., madv_collapse), is a clear advice to 348 * use THPs. 349 */ 350 if (forced_collapse) 351 return false; 352 return mm_flags_test(MMF_DISABLE_THP_EXCEPT_ADVISED, vma->vm_mm); 353} 354 355static inline bool thp_disabled_by_hw(void) 356{ 357 /* If the hardware/firmware marked hugepage support disabled. */ 358 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED); 359} 360 361unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 362 unsigned long len, unsigned long pgoff, unsigned long flags); 363unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 364 unsigned long len, unsigned long pgoff, unsigned long flags, 365 vm_flags_t vm_flags); 366 367bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins); 368int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 369 unsigned int new_order); 370int min_order_for_split(struct folio *folio); 371int split_folio_to_list(struct folio *folio, struct list_head *list); 372bool uniform_split_supported(struct folio *folio, unsigned int new_order, 373 bool warns); 374bool non_uniform_split_supported(struct folio *folio, unsigned int new_order, 375 bool warns); 376int folio_split(struct folio *folio, unsigned int new_order, struct page *page, 377 struct list_head *list); 378/* 379 * try_folio_split_to_order - try to split a @folio at @page to @new_order using 380 * non uniform split. 381 * @folio: folio to be split 382 * @page: split to @new_order at the given page 383 * @new_order: the target split order 384 * 385 * Try to split a @folio at @page using non uniform split to @new_order, if 386 * non uniform split is not supported, fall back to uniform split. After-split 387 * folios are put back to LRU list. Use min_order_for_split() to get the lower 388 * bound of @new_order. 389 * 390 * Return: 0: split is successful, otherwise split failed. 391 */ 392static inline int try_folio_split_to_order(struct folio *folio, 393 struct page *page, unsigned int new_order) 394{ 395 if (!non_uniform_split_supported(folio, new_order, /* warns= */ false)) 396 return split_huge_page_to_list_to_order(&folio->page, NULL, 397 new_order); 398 return folio_split(folio, new_order, page, NULL); 399} 400static inline int split_huge_page(struct page *page) 401{ 402 return split_huge_page_to_list_to_order(page, NULL, 0); 403} 404void deferred_split_folio(struct folio *folio, bool partially_mapped); 405 406void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 407 unsigned long address, bool freeze); 408 409#define split_huge_pmd(__vma, __pmd, __address) \ 410 do { \ 411 pmd_t *____pmd = (__pmd); \ 412 if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd)) \ 413 __split_huge_pmd(__vma, __pmd, __address, \ 414 false); \ 415 } while (0) 416 417void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 418 bool freeze); 419 420void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 421 unsigned long address); 422 423#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 424int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 425 pud_t *pudp, unsigned long addr, pgprot_t newprot, 426 unsigned long cp_flags); 427#else 428static inline int 429change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 430 pud_t *pudp, unsigned long addr, pgprot_t newprot, 431 unsigned long cp_flags) { return 0; } 432#endif 433 434#define split_huge_pud(__vma, __pud, __address) \ 435 do { \ 436 pud_t *____pud = (__pud); \ 437 if (pud_trans_huge(*____pud)) \ 438 __split_huge_pud(__vma, __pud, __address); \ 439 } while (0) 440 441int hugepage_madvise(struct vm_area_struct *vma, vm_flags_t *vm_flags, 442 int advice); 443int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 444 unsigned long end, bool *lock_dropped); 445void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, 446 unsigned long end, struct vm_area_struct *next); 447spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); 448spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); 449 450static inline int is_swap_pmd(pmd_t pmd) 451{ 452 return !pmd_none(pmd) && !pmd_present(pmd); 453} 454 455/* mmap_lock must be held on entry */ 456static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 457 struct vm_area_struct *vma) 458{ 459 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) 460 return __pmd_trans_huge_lock(pmd, vma); 461 else 462 return NULL; 463} 464static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 465 struct vm_area_struct *vma) 466{ 467 if (pud_trans_huge(*pud)) 468 return __pud_trans_huge_lock(pud, vma); 469 else 470 return NULL; 471} 472 473/** 474 * folio_test_pmd_mappable - Can we map this folio with a PMD? 475 * @folio: The folio to test 476 */ 477static inline bool folio_test_pmd_mappable(struct folio *folio) 478{ 479 return folio_order(folio) >= HPAGE_PMD_ORDER; 480} 481 482vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf); 483 484extern struct folio *huge_zero_folio; 485extern unsigned long huge_zero_pfn; 486 487static inline bool is_huge_zero_folio(const struct folio *folio) 488{ 489 VM_WARN_ON_ONCE(!folio); 490 491 return READ_ONCE(huge_zero_folio) == folio; 492} 493 494static inline bool is_huge_zero_pfn(unsigned long pfn) 495{ 496 return READ_ONCE(huge_zero_pfn) == (pfn & ~(HPAGE_PMD_NR - 1)); 497} 498 499static inline bool is_huge_zero_pmd(pmd_t pmd) 500{ 501 return pmd_present(pmd) && is_huge_zero_pfn(pmd_pfn(pmd)); 502} 503 504struct folio *mm_get_huge_zero_folio(struct mm_struct *mm); 505void mm_put_huge_zero_folio(struct mm_struct *mm); 506 507static inline struct folio *get_persistent_huge_zero_folio(void) 508{ 509 if (!IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 510 return NULL; 511 512 if (unlikely(!huge_zero_folio)) 513 return NULL; 514 515 return huge_zero_folio; 516} 517 518static inline bool thp_migration_supported(void) 519{ 520 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); 521} 522 523void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 524 pmd_t *pmd, bool freeze); 525bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 526 pmd_t *pmdp, struct folio *folio); 527 528#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 529 530static inline bool folio_test_pmd_mappable(struct folio *folio) 531{ 532 return false; 533} 534 535static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 536 unsigned long addr, int order) 537{ 538 return false; 539} 540 541static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 542 unsigned long addr, unsigned long orders) 543{ 544 return 0; 545} 546 547static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 548 vm_flags_t vm_flags, 549 enum tva_type type, 550 unsigned long orders) 551{ 552 return 0; 553} 554 555#define transparent_hugepage_flags 0UL 556 557#define thp_get_unmapped_area NULL 558 559static inline unsigned long 560thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 561 unsigned long len, unsigned long pgoff, 562 unsigned long flags, vm_flags_t vm_flags) 563{ 564 return 0; 565} 566 567static inline bool 568can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 569{ 570 return false; 571} 572static inline int 573split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 574 unsigned int new_order) 575{ 576 VM_WARN_ON_ONCE_PAGE(1, page); 577 return -EINVAL; 578} 579static inline int split_huge_page(struct page *page) 580{ 581 VM_WARN_ON_ONCE_PAGE(1, page); 582 return -EINVAL; 583} 584 585static inline int min_order_for_split(struct folio *folio) 586{ 587 VM_WARN_ON_ONCE_FOLIO(1, folio); 588 return -EINVAL; 589} 590 591static inline int split_folio_to_list(struct folio *folio, struct list_head *list) 592{ 593 VM_WARN_ON_ONCE_FOLIO(1, folio); 594 return -EINVAL; 595} 596 597static inline int try_folio_split_to_order(struct folio *folio, 598 struct page *page, unsigned int new_order) 599{ 600 VM_WARN_ON_ONCE_FOLIO(1, folio); 601 return -EINVAL; 602} 603 604static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {} 605#define split_huge_pmd(__vma, __pmd, __address) \ 606 do { } while (0) 607 608static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 609 unsigned long address, bool freeze) {} 610static inline void split_huge_pmd_address(struct vm_area_struct *vma, 611 unsigned long address, bool freeze) {} 612static inline void split_huge_pmd_locked(struct vm_area_struct *vma, 613 unsigned long address, pmd_t *pmd, 614 bool freeze) {} 615 616static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma, 617 unsigned long addr, pmd_t *pmdp, 618 struct folio *folio) 619{ 620 return false; 621} 622 623#define split_huge_pud(__vma, __pmd, __address) \ 624 do { } while (0) 625 626static inline int hugepage_madvise(struct vm_area_struct *vma, 627 vm_flags_t *vm_flags, int advice) 628{ 629 return -EINVAL; 630} 631 632static inline int madvise_collapse(struct vm_area_struct *vma, 633 unsigned long start, 634 unsigned long end, bool *lock_dropped) 635{ 636 return -EINVAL; 637} 638 639static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 640 unsigned long start, 641 unsigned long end, 642 struct vm_area_struct *next) 643{ 644} 645static inline int is_swap_pmd(pmd_t pmd) 646{ 647 return 0; 648} 649static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 650 struct vm_area_struct *vma) 651{ 652 return NULL; 653} 654static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 655 struct vm_area_struct *vma) 656{ 657 return NULL; 658} 659 660static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 661{ 662 return 0; 663} 664 665static inline bool is_huge_zero_folio(const struct folio *folio) 666{ 667 return false; 668} 669 670static inline bool is_huge_zero_pfn(unsigned long pfn) 671{ 672 return false; 673} 674 675static inline bool is_huge_zero_pmd(pmd_t pmd) 676{ 677 return false; 678} 679 680static inline void mm_put_huge_zero_folio(struct mm_struct *mm) 681{ 682 return; 683} 684 685static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, 686 unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 687{ 688 return NULL; 689} 690 691static inline bool thp_migration_supported(void) 692{ 693 return false; 694} 695 696static inline int highest_order(unsigned long orders) 697{ 698 return 0; 699} 700 701static inline int next_order(unsigned long *orders, int prev) 702{ 703 return 0; 704} 705 706static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 707 unsigned long address) 708{ 709} 710 711static inline int change_huge_pud(struct mmu_gather *tlb, 712 struct vm_area_struct *vma, pud_t *pudp, 713 unsigned long addr, pgprot_t newprot, 714 unsigned long cp_flags) 715{ 716 return 0; 717} 718 719static inline struct folio *get_persistent_huge_zero_folio(void) 720{ 721 return NULL; 722} 723#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 724 725static inline int split_folio_to_list_to_order(struct folio *folio, 726 struct list_head *list, int new_order) 727{ 728 return split_huge_page_to_list_to_order(&folio->page, list, new_order); 729} 730 731static inline int split_folio_to_order(struct folio *folio, int new_order) 732{ 733 return split_folio_to_list_to_order(folio, NULL, new_order); 734} 735 736/** 737 * largest_zero_folio - Get the largest zero size folio available 738 * 739 * This function shall be used when mm_get_huge_zero_folio() cannot be 740 * used as there is no appropriate mm lifetime to tie the huge zero folio 741 * from the caller. 742 * 743 * Deduce the size of the folio with folio_size instead of assuming the 744 * folio size. 745 * 746 * Return: pointer to PMD sized zero folio if CONFIG_PERSISTENT_HUGE_ZERO_FOLIO 747 * is enabled or a single page sized zero folio 748 */ 749static inline struct folio *largest_zero_folio(void) 750{ 751 struct folio *folio = get_persistent_huge_zero_folio(); 752 753 if (folio) 754 return folio; 755 756 return page_folio(ZERO_PAGE(0)); 757} 758#endif /* _LINUX_HUGE_MM_H */