Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_FIREWIRE_H
3#define _LINUX_FIREWIRE_H
4
5#include <linux/completion.h>
6#include <linux/device.h>
7#include <linux/dma-mapping.h>
8#include <linux/kernel.h>
9#include <linux/kref.h>
10#include <linux/list.h>
11#include <linux/mutex.h>
12#include <linux/spinlock.h>
13#include <linux/sysfs.h>
14#include <linux/timer.h>
15#include <linux/types.h>
16#include <linux/workqueue.h>
17
18#include <linux/atomic.h>
19#include <asm/byteorder.h>
20
21#define CSR_REGISTER_BASE 0xfffff0000000ULL
22
23/* register offsets are relative to CSR_REGISTER_BASE */
24#define CSR_STATE_CLEAR 0x0
25#define CSR_STATE_SET 0x4
26#define CSR_NODE_IDS 0x8
27#define CSR_RESET_START 0xc
28#define CSR_SPLIT_TIMEOUT_HI 0x18
29#define CSR_SPLIT_TIMEOUT_LO 0x1c
30#define CSR_CYCLE_TIME 0x200
31#define CSR_BUS_TIME 0x204
32#define CSR_BUSY_TIMEOUT 0x210
33#define CSR_PRIORITY_BUDGET 0x218
34#define CSR_BUS_MANAGER_ID 0x21c
35#define CSR_BANDWIDTH_AVAILABLE 0x220
36#define CSR_CHANNELS_AVAILABLE 0x224
37#define CSR_CHANNELS_AVAILABLE_HI 0x224
38#define CSR_CHANNELS_AVAILABLE_LO 0x228
39#define CSR_MAINT_UTILITY 0x230
40#define CSR_BROADCAST_CHANNEL 0x234
41#define CSR_CONFIG_ROM 0x400
42#define CSR_CONFIG_ROM_END 0x800
43#define CSR_OMPR 0x900
44#define CSR_OPCR(i) (0x904 + (i) * 4)
45#define CSR_IMPR 0x980
46#define CSR_IPCR(i) (0x984 + (i) * 4)
47#define CSR_FCP_COMMAND 0xB00
48#define CSR_FCP_RESPONSE 0xD00
49#define CSR_FCP_END 0xF00
50#define CSR_TOPOLOGY_MAP 0x1000
51#define CSR_TOPOLOGY_MAP_END 0x1400
52#define CSR_SPEED_MAP 0x2000
53#define CSR_SPEED_MAP_END 0x3000
54
55#define CSR_OFFSET 0x40
56#define CSR_LEAF 0x80
57#define CSR_DIRECTORY 0xc0
58
59#define CSR_DESCRIPTOR 0x01
60#define CSR_VENDOR 0x03
61#define CSR_HARDWARE_VERSION 0x04
62#define CSR_UNIT 0x11
63#define CSR_SPECIFIER_ID 0x12
64#define CSR_VERSION 0x13
65#define CSR_DEPENDENT_INFO 0x14
66#define CSR_MODEL 0x17
67#define CSR_DIRECTORY_ID 0x20
68
69struct fw_csr_iterator {
70 const u32 *p;
71 const u32 *end;
72};
73
74void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
75int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
76int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
77
78extern const struct bus_type fw_bus_type;
79
80struct fw_card_driver;
81struct fw_node;
82
83struct fw_card {
84 const struct fw_card_driver *driver;
85 struct device *device;
86 struct kref kref;
87 struct completion done;
88
89 int node_id;
90 int generation;
91 u64 reset_jiffies;
92
93 struct {
94 int current_tlabel;
95 u64 tlabel_mask;
96 struct list_head list;
97 spinlock_t lock;
98 } transactions;
99
100 struct {
101 u32 hi;
102 u32 lo;
103 unsigned int cycles;
104 unsigned int jiffies;
105 spinlock_t lock;
106 } split_timeout;
107
108 unsigned long long guid;
109 unsigned max_receive;
110 int link_speed;
111 int config_rom_generation;
112
113 spinlock_t lock;
114
115 struct fw_node *local_node;
116 struct fw_node *root_node;
117 struct fw_node *irm_node;
118 u8 color; /* must be u8 to match the definition in struct fw_node */
119 int gap_count;
120 bool beta_repeaters_present;
121
122 int index;
123 struct list_head link;
124
125 struct delayed_work br_work; /* bus reset job */
126 bool br_short;
127
128 struct delayed_work bm_work; /* bus manager job */
129 int bm_retries;
130 int bm_generation;
131 int bm_node_id;
132 bool bm_abdicate;
133
134 bool priority_budget_implemented; /* controller feature */
135 bool broadcast_channel_auto_allocated; /* controller feature */
136
137 bool broadcast_channel_allocated;
138 u32 broadcast_channel;
139
140 struct {
141 __be32 buffer[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
142 spinlock_t lock;
143 } topology_map;
144
145 __be32 maint_utility_register;
146
147 struct workqueue_struct *isoc_wq;
148 struct workqueue_struct *async_wq;
149};
150
151static inline struct fw_card *fw_card_get(struct fw_card *card)
152{
153 kref_get(&card->kref);
154
155 return card;
156}
157
158void fw_card_release(struct kref *kref);
159
160static inline void fw_card_put(struct fw_card *card)
161{
162 kref_put(&card->kref, fw_card_release);
163}
164
165int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time);
166
167struct fw_attribute_group {
168 struct attribute_group *groups[2];
169 struct attribute_group group;
170 struct attribute *attrs[13];
171};
172
173enum fw_device_state {
174 FW_DEVICE_INITIALIZING,
175 FW_DEVICE_RUNNING,
176 FW_DEVICE_GONE,
177 FW_DEVICE_SHUTDOWN,
178};
179
180/*
181 * Note, fw_device.generation always has to be read before fw_device.node_id.
182 * Use SMP memory barriers to ensure this. Otherwise requests will be sent
183 * to an outdated node_id if the generation was updated in the meantime due
184 * to a bus reset.
185 *
186 * Likewise, fw-core will take care to update .node_id before .generation so
187 * that whenever fw_device.generation is current WRT the actual bus generation,
188 * fw_device.node_id is guaranteed to be current too.
189 *
190 * The same applies to fw_device.card->node_id vs. fw_device.generation.
191 *
192 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
193 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
194 * was called on the last fw_unit. Alternatively, they may be accessed while
195 * holding fw_device_rwsem.
196 */
197struct fw_device {
198 atomic_t state;
199 struct fw_node *node;
200 int node_id;
201 int generation;
202 unsigned max_speed;
203 struct fw_card *card;
204 struct device device;
205
206 struct mutex client_list_mutex;
207 struct list_head client_list;
208
209 const u32 *config_rom;
210 size_t config_rom_length;
211 int config_rom_retries;
212 unsigned is_local:1;
213 unsigned max_rec:4;
214 unsigned cmc:1;
215 unsigned irmc:1;
216 unsigned bc_implemented:2;
217
218 work_func_t workfn;
219 struct delayed_work work;
220 struct fw_attribute_group attribute_group;
221};
222
223#define fw_device(dev) container_of_const(dev, struct fw_device, device)
224
225static inline int fw_device_is_shutdown(struct fw_device *device)
226{
227 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
228}
229
230int fw_device_enable_phys_dma(struct fw_device *device);
231
232/*
233 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
234 */
235struct fw_unit {
236 struct device device;
237 const u32 *directory;
238 struct fw_attribute_group attribute_group;
239};
240
241#define fw_unit(dev) container_of_const(dev, struct fw_unit, device)
242
243static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
244{
245 get_device(&unit->device);
246
247 return unit;
248}
249
250static inline void fw_unit_put(struct fw_unit *unit)
251{
252 put_device(&unit->device);
253}
254
255#define fw_parent_device(unit) fw_device(unit->device.parent)
256
257struct ieee1394_device_id;
258
259struct fw_driver {
260 struct device_driver driver;
261 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
262 /* Called when the parent device sits through a bus reset. */
263 void (*update)(struct fw_unit *unit);
264 void (*remove)(struct fw_unit *unit);
265 const struct ieee1394_device_id *id_table;
266};
267
268struct fw_packet;
269struct fw_request;
270
271typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
272 struct fw_card *card, int status);
273typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
274 void *data, size_t length,
275 void *callback_data);
276typedef void (*fw_transaction_callback_with_tstamp_t)(struct fw_card *card, int rcode,
277 u32 request_tstamp, u32 response_tstamp, void *data,
278 size_t length, void *callback_data);
279
280union fw_transaction_callback {
281 fw_transaction_callback_t without_tstamp;
282 fw_transaction_callback_with_tstamp_t with_tstamp;
283};
284
285/*
286 * This callback handles an inbound request subaction. It is called in
287 * RCU read-side context, therefore must not sleep.
288 *
289 * The callback should not initiate outbound request subactions directly.
290 * Otherwise there is a danger of recursion of inbound and outbound
291 * transactions from and to the local node.
292 *
293 * The callback is responsible that fw_send_response() is called on the @request, except for FCP
294 * registers for which the core takes care of that.
295 */
296typedef void (*fw_address_callback_t)(struct fw_card *card,
297 struct fw_request *request,
298 int tcode, int destination, int source,
299 int generation,
300 unsigned long long offset,
301 void *data, size_t length,
302 void *callback_data);
303
304struct fw_packet {
305 int speed;
306 int generation;
307 u32 header[4];
308 size_t header_length;
309 void *payload;
310 size_t payload_length;
311 dma_addr_t payload_bus;
312 bool payload_mapped;
313 u32 timestamp;
314
315 /*
316 * This callback is called when the packet transmission has completed.
317 * For successful transmission, the status code is the ack received
318 * from the destination. Otherwise it is one of the juju-specific
319 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
320 * The callback can be called from workqueue and thus must never block.
321 */
322 fw_packet_callback_t callback;
323 int ack;
324 struct list_head link;
325 void *driver_data;
326};
327
328struct fw_transaction {
329 int node_id; /* The generation is implied; it is always the current. */
330 int tlabel;
331 struct list_head link;
332 struct fw_card *card;
333 bool is_split_transaction;
334 struct timer_list split_timeout_timer;
335 u32 split_timeout_cycle;
336
337 struct fw_packet packet;
338
339 /*
340 * The data passed to the callback is valid only during the
341 * callback.
342 */
343 union fw_transaction_callback callback;
344 bool with_tstamp;
345 void *callback_data;
346};
347
348struct fw_address_handler {
349 u64 offset;
350 u64 length;
351 fw_address_callback_t address_callback;
352 void *callback_data;
353
354 // Only for core functions.
355 struct list_head link;
356 struct kref kref;
357 struct completion done;
358};
359
360struct fw_address_region {
361 u64 start;
362 u64 end;
363};
364
365extern const struct fw_address_region fw_high_memory_region;
366
367int fw_core_add_address_handler(struct fw_address_handler *handler,
368 const struct fw_address_region *region);
369void fw_core_remove_address_handler(struct fw_address_handler *handler);
370void fw_send_response(struct fw_card *card,
371 struct fw_request *request, int rcode);
372int fw_get_request_speed(struct fw_request *request);
373u32 fw_request_get_timestamp(const struct fw_request *request);
374
375void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
376 int destination_id, int generation, int speed, unsigned long long offset,
377 void *payload, size_t length, union fw_transaction_callback callback,
378 bool with_tstamp, void *callback_data);
379
380/**
381 * fw_send_request() - submit a request packet for transmission to generate callback for response
382 * subaction without time stamp.
383 * @card: interface to send the request at
384 * @t: transaction instance to which the request belongs
385 * @tcode: transaction code
386 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
387 * @generation: bus generation in which request and response are valid
388 * @speed: transmission speed
389 * @offset: 48bit wide offset into destination's address space
390 * @payload: data payload for the request subaction
391 * @length: length of the payload, in bytes
392 * @callback: function to be called when the transaction is completed
393 * @callback_data: data to be passed to the transaction completion callback
394 *
395 * A variation of __fw_send_request() to generate callback for response subaction without time
396 * stamp.
397 *
398 * The callback is invoked in the workqueue context in most cases. However, if an error is detected
399 * before queueing or the destination address refers to the local node, it is invoked in the
400 * current context instead.
401 */
402static inline void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
403 int destination_id, int generation, int speed,
404 unsigned long long offset, void *payload, size_t length,
405 fw_transaction_callback_t callback, void *callback_data)
406{
407 union fw_transaction_callback cb = {
408 .without_tstamp = callback,
409 };
410 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload,
411 length, cb, false, callback_data);
412}
413
414/**
415 * fw_send_request_with_tstamp() - submit a request packet for transmission to generate callback for
416 * response with time stamp.
417 * @card: interface to send the request at
418 * @t: transaction instance to which the request belongs
419 * @tcode: transaction code
420 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
421 * @generation: bus generation in which request and response are valid
422 * @speed: transmission speed
423 * @offset: 48bit wide offset into destination's address space
424 * @payload: data payload for the request subaction
425 * @length: length of the payload, in bytes
426 * @callback: function to be called when the transaction is completed
427 * @callback_data: data to be passed to the transaction completion callback
428 *
429 * A variation of __fw_send_request() to generate callback for response subaction with time stamp.
430 *
431 * The callback is invoked in the workqueue context in most cases. However, if an error is detected
432 * before queueing or the destination address refers to the local node, it is invoked in the current
433 * context instead.
434 */
435static inline void fw_send_request_with_tstamp(struct fw_card *card, struct fw_transaction *t,
436 int tcode, int destination_id, int generation, int speed, unsigned long long offset,
437 void *payload, size_t length, fw_transaction_callback_with_tstamp_t callback,
438 void *callback_data)
439{
440 union fw_transaction_callback cb = {
441 .with_tstamp = callback,
442 };
443 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload,
444 length, cb, true, callback_data);
445}
446
447int fw_cancel_transaction(struct fw_card *card,
448 struct fw_transaction *transaction);
449int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
450 int generation, int speed, unsigned long long offset,
451 void *payload, size_t length);
452const char *fw_rcode_string(int rcode);
453
454static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
455{
456 return tag << 14 | channel << 8 | sy;
457}
458
459void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
460 bool short_reset);
461
462struct fw_descriptor {
463 struct list_head link;
464 size_t length;
465 u32 immediate;
466 u32 key;
467 const u32 *data;
468};
469
470int fw_core_add_descriptor(struct fw_descriptor *desc);
471void fw_core_remove_descriptor(struct fw_descriptor *desc);
472
473/*
474 * The iso packet format allows for an immediate header/payload part
475 * stored in 'header' immediately after the packet info plus an
476 * indirect payload part that is pointer to by the 'payload' field.
477 * Applications can use one or the other or both to implement simple
478 * low-bandwidth streaming (e.g. audio) or more advanced
479 * scatter-gather streaming (e.g. assembling video frame automatically).
480 */
481struct fw_iso_packet {
482 u16 payload_length; /* Length of indirect payload */
483 u32 interrupt:1; /* Generate interrupt on this packet */
484 u32 skip:1; /* tx: Set to not send packet at all */
485 /* rx: Sync bit, wait for matching sy */
486 u32 tag:2; /* tx: Tag in packet header */
487 u32 sy:4; /* tx: Sy in packet header */
488 u32 header_length:8; /* Size of immediate header */
489 u32 header[]; /* tx: Top of 1394 isoch. data_block */
490};
491
492#define FW_ISO_CONTEXT_TRANSMIT 0
493#define FW_ISO_CONTEXT_RECEIVE 1
494#define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2
495
496#define FW_ISO_CONTEXT_MATCH_TAG0 1
497#define FW_ISO_CONTEXT_MATCH_TAG1 2
498#define FW_ISO_CONTEXT_MATCH_TAG2 4
499#define FW_ISO_CONTEXT_MATCH_TAG3 8
500#define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
501
502/*
503 * An iso buffer is just a set of pages mapped for DMA in the
504 * specified direction. Since the pages are to be used for DMA, they
505 * are not mapped into the kernel virtual address space. We store the
506 * DMA address in the page private. The helper function
507 * fw_iso_buffer_map() will map the pages into a given vma.
508 */
509struct fw_iso_buffer {
510 enum dma_data_direction direction;
511 struct page **pages;
512 int page_count;
513 int page_count_mapped;
514};
515
516int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
517 int page_count, enum dma_data_direction direction);
518void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
519size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
520
521struct fw_iso_context;
522typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
523 u32 cycle, size_t header_length,
524 void *header, void *data);
525typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
526 dma_addr_t completed, void *data);
527
528union fw_iso_callback {
529 fw_iso_callback_t sc;
530 fw_iso_mc_callback_t mc;
531};
532
533struct fw_iso_context {
534 struct fw_card *card;
535 struct work_struct work;
536 int type;
537 int channel;
538 int speed;
539 bool drop_overflow_headers;
540 size_t header_size;
541 union fw_iso_callback callback;
542 void *callback_data;
543};
544
545struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
546 int type, int channel, int speed, size_t header_size,
547 fw_iso_callback_t callback, void *callback_data);
548int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
549int fw_iso_context_queue(struct fw_iso_context *ctx,
550 struct fw_iso_packet *packet,
551 struct fw_iso_buffer *buffer,
552 unsigned long payload);
553void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
554int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
555
556/**
557 * fw_iso_context_schedule_flush_completions() - schedule work item to process isochronous context.
558 * @ctx: the isochronous context
559 *
560 * Schedule a work item on workqueue to process the isochronous context. The registered callback
561 * function is called by the worker when a queued packet buffer with the interrupt flag is
562 * completed, either after transmission in the IT context or after being filled in the IR context.
563 * The callback function is also called when the header buffer in the context becomes full, If it
564 * is required to process the context in the current context, fw_iso_context_flush_completions() is
565 * available instead.
566 *
567 * Context: Any context.
568 */
569static inline void fw_iso_context_schedule_flush_completions(struct fw_iso_context *ctx)
570{
571 queue_work(ctx->card->isoc_wq, &ctx->work);
572}
573
574int fw_iso_context_start(struct fw_iso_context *ctx,
575 int cycle, int sync, int tags);
576int fw_iso_context_stop(struct fw_iso_context *ctx);
577void fw_iso_context_destroy(struct fw_iso_context *ctx);
578void fw_iso_resource_manage(struct fw_card *card, int generation,
579 u64 channels_mask, int *channel, int *bandwidth,
580 bool allocate);
581
582extern struct workqueue_struct *fw_workqueue;
583
584#endif /* _LINUX_FIREWIRE_H */