at v6.18 1395 lines 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/cleanup.h> 11#include <linux/kernel.h> 12#include <linux/bitmap.h> 13#include <linux/cpumask_types.h> 14#include <linux/atomic.h> 15#include <linux/bug.h> 16#include <linux/gfp_types.h> 17#include <linux/numa.h> 18 19/** 20 * cpumask_pr_args - printf args to output a cpumask 21 * @maskp: cpumask to be printed 22 * 23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 24 */ 25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 26 27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 28#define nr_cpu_ids ((unsigned int)NR_CPUS) 29#else 30extern unsigned int nr_cpu_ids; 31#endif 32 33static __always_inline void set_nr_cpu_ids(unsigned int nr) 34{ 35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 36 WARN_ON(nr != nr_cpu_ids); 37#else 38 nr_cpu_ids = nr; 39#endif 40} 41 42/* 43 * We have several different "preferred sizes" for the cpumask 44 * operations, depending on operation. 45 * 46 * For example, the bitmap scanning and operating operations have 47 * optimized routines that work for the single-word case, but only when 48 * the size is constant. So if NR_CPUS fits in one single word, we are 49 * better off using that small constant, in order to trigger the 50 * optimized bit finding. That is 'small_cpumask_size'. 51 * 52 * The clearing and copying operations will similarly perform better 53 * with a constant size, but we limit that size arbitrarily to four 54 * words. We call this 'large_cpumask_size'. 55 * 56 * Finally, some operations just want the exact limit, either because 57 * they set bits or just don't have any faster fixed-sized versions. We 58 * call this just 'nr_cpumask_bits'. 59 * 60 * Note that these optional constants are always guaranteed to be at 61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 62 * allocations are at least that size (see cpumask_size()). The 63 * optimization comes from being able to potentially use a compile-time 64 * constant instead of a run-time generated exact number of CPUs. 65 */ 66#if NR_CPUS <= BITS_PER_LONG 67 #define small_cpumask_bits ((unsigned int)NR_CPUS) 68 #define large_cpumask_bits ((unsigned int)NR_CPUS) 69#elif NR_CPUS <= 4*BITS_PER_LONG 70 #define small_cpumask_bits nr_cpu_ids 71 #define large_cpumask_bits ((unsigned int)NR_CPUS) 72#else 73 #define small_cpumask_bits nr_cpu_ids 74 #define large_cpumask_bits nr_cpu_ids 75#endif 76#define nr_cpumask_bits nr_cpu_ids 77 78/* 79 * The following particular system cpumasks and operations manage 80 * possible, present, active and online cpus. 81 * 82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online 85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 87 * 88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 89 * 90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 91 * that it is possible might ever be plugged in at anytime during the 92 * life of that system boot. The cpu_present_mask is dynamic(*), 93 * representing which CPUs are currently plugged in. And 94 * cpu_online_mask is the dynamic subset of cpu_present_mask, 95 * indicating those CPUs available for scheduling. 96 * 97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 98 * depending on what ACPI reports as currently plugged in, otherwise 99 * cpu_present_mask is just a copy of cpu_possible_mask. 100 * 101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 103 * 104 * Subtleties: 105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 106 * assumption that their single CPU is online. The UP 107 * cpu_{online,possible,present}_masks are placebos. Changing them 108 * will have no useful affect on the following num_*_cpus() 109 * and cpu_*() macros in the UP case. This ugliness is a UP 110 * optimization - don't waste any instructions or memory references 111 * asking if you're online or how many CPUs there are if there is 112 * only one CPU. 113 */ 114 115extern struct cpumask __cpu_possible_mask; 116extern struct cpumask __cpu_online_mask; 117extern struct cpumask __cpu_enabled_mask; 118extern struct cpumask __cpu_present_mask; 119extern struct cpumask __cpu_active_mask; 120extern struct cpumask __cpu_dying_mask; 121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) 124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 127 128extern atomic_t __num_online_cpus; 129 130extern cpumask_t cpus_booted_once_mask; 131 132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 133{ 134#ifdef CONFIG_DEBUG_PER_CPU_MAPS 135 WARN_ON_ONCE(cpu >= bits); 136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 137} 138 139/* verify cpu argument to cpumask_* operators */ 140static __always_inline unsigned int cpumask_check(unsigned int cpu) 141{ 142 cpu_max_bits_warn(cpu, small_cpumask_bits); 143 return cpu; 144} 145 146/** 147 * cpumask_first - get the first cpu in a cpumask 148 * @srcp: the cpumask pointer 149 * 150 * Return: >= nr_cpu_ids if no cpus set. 151 */ 152static __always_inline unsigned int cpumask_first(const struct cpumask *srcp) 153{ 154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 155} 156 157/** 158 * cpumask_first_zero - get the first unset cpu in a cpumask 159 * @srcp: the cpumask pointer 160 * 161 * Return: >= nr_cpu_ids if all cpus are set. 162 */ 163static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 164{ 165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 166} 167 168/** 169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 170 * @srcp1: the first input 171 * @srcp2: the second input 172 * 173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 174 */ 175static __always_inline 176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 177{ 178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 179} 180 181/** 182 * cpumask_first_andnot - return the first cpu from *srcp1 & ~*srcp2 183 * @srcp1: the first input 184 * @srcp2: the second input 185 * 186 * Return: >= nr_cpu_ids if no such cpu found. 187 */ 188static __always_inline 189unsigned int cpumask_first_andnot(const struct cpumask *srcp1, const struct cpumask *srcp2) 190{ 191 return find_first_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 192} 193 194/** 195 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 196 * @srcp1: the first input 197 * @srcp2: the second input 198 * @srcp3: the third input 199 * 200 * Return: >= nr_cpu_ids if no cpus set in all. 201 */ 202static __always_inline 203unsigned int cpumask_first_and_and(const struct cpumask *srcp1, 204 const struct cpumask *srcp2, 205 const struct cpumask *srcp3) 206{ 207 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 208 cpumask_bits(srcp3), small_cpumask_bits); 209} 210 211/** 212 * cpumask_last - get the last CPU in a cpumask 213 * @srcp: - the cpumask pointer 214 * 215 * Return: >= nr_cpumask_bits if no CPUs set. 216 */ 217static __always_inline unsigned int cpumask_last(const struct cpumask *srcp) 218{ 219 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 220} 221 222/** 223 * cpumask_next - get the next cpu in a cpumask 224 * @n: the cpu prior to the place to search (i.e. return will be > @n) 225 * @srcp: the cpumask pointer 226 * 227 * Return: >= nr_cpu_ids if no further cpus set. 228 */ 229static __always_inline 230unsigned int cpumask_next(int n, const struct cpumask *srcp) 231{ 232 /* -1 is a legal arg here. */ 233 if (n != -1) 234 cpumask_check(n); 235 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 236} 237 238/** 239 * cpumask_next_zero - get the next unset cpu in a cpumask 240 * @n: the cpu prior to the place to search (i.e. return will be > @n) 241 * @srcp: the cpumask pointer 242 * 243 * Return: >= nr_cpu_ids if no further cpus unset. 244 */ 245static __always_inline 246unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 247{ 248 /* -1 is a legal arg here. */ 249 if (n != -1) 250 cpumask_check(n); 251 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 252} 253 254#if NR_CPUS == 1 255/* Uniprocessor: there is only one valid CPU */ 256static __always_inline 257unsigned int cpumask_local_spread(unsigned int i, int node) 258{ 259 return 0; 260} 261 262static __always_inline 263unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 264 const struct cpumask *src2p) 265{ 266 return cpumask_first_and(src1p, src2p); 267} 268 269static __always_inline 270unsigned int cpumask_any_distribute(const struct cpumask *srcp) 271{ 272 return cpumask_first(srcp); 273} 274#else 275unsigned int cpumask_local_spread(unsigned int i, int node); 276unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 277 const struct cpumask *src2p); 278unsigned int cpumask_any_distribute(const struct cpumask *srcp); 279#endif /* NR_CPUS */ 280 281/** 282 * cpumask_next_and - get the next cpu in *src1p & *src2p 283 * @n: the cpu prior to the place to search (i.e. return will be > @n) 284 * @src1p: the first cpumask pointer 285 * @src2p: the second cpumask pointer 286 * 287 * Return: >= nr_cpu_ids if no further cpus set in both. 288 */ 289static __always_inline 290unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 291 const struct cpumask *src2p) 292{ 293 /* -1 is a legal arg here. */ 294 if (n != -1) 295 cpumask_check(n); 296 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 297 small_cpumask_bits, n + 1); 298} 299 300/** 301 * cpumask_next_andnot - get the next cpu in *src1p & ~*src2p 302 * @n: the cpu prior to the place to search (i.e. return will be > @n) 303 * @src1p: the first cpumask pointer 304 * @src2p: the second cpumask pointer 305 * 306 * Return: >= nr_cpu_ids if no further cpus set in both. 307 */ 308static __always_inline 309unsigned int cpumask_next_andnot(int n, const struct cpumask *src1p, 310 const struct cpumask *src2p) 311{ 312 /* -1 is a legal arg here. */ 313 if (n != -1) 314 cpumask_check(n); 315 return find_next_andnot_bit(cpumask_bits(src1p), cpumask_bits(src2p), 316 small_cpumask_bits, n + 1); 317} 318 319/** 320 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from 321 * @n+1. If nothing found, wrap around and start from 322 * the beginning 323 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 324 * @src1p: the first cpumask pointer 325 * @src2p: the second cpumask pointer 326 * 327 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty. 328 */ 329static __always_inline 330unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p, 331 const struct cpumask *src2p) 332{ 333 /* -1 is a legal arg here. */ 334 if (n != -1) 335 cpumask_check(n); 336 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p), 337 small_cpumask_bits, n + 1); 338} 339 340/** 341 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing 342 * found, wrap around and start from the beginning 343 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 344 * @src: cpumask pointer 345 * 346 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty. 347 */ 348static __always_inline 349unsigned int cpumask_next_wrap(int n, const struct cpumask *src) 350{ 351 /* -1 is a legal arg here. */ 352 if (n != -1) 353 cpumask_check(n); 354 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1); 355} 356 357/** 358 * cpumask_random - get random cpu in *src. 359 * @src: cpumask pointer 360 * 361 * Return: random set bit, or >= nr_cpu_ids if @src is empty. 362 */ 363static __always_inline 364unsigned int cpumask_random(const struct cpumask *src) 365{ 366 return find_random_bit(cpumask_bits(src), nr_cpu_ids); 367} 368 369/** 370 * for_each_cpu - iterate over every cpu in a mask 371 * @cpu: the (optionally unsigned) integer iterator 372 * @mask: the cpumask pointer 373 * 374 * After the loop, cpu is >= nr_cpu_ids. 375 */ 376#define for_each_cpu(cpu, mask) \ 377 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 378 379/** 380 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 381 * @cpu: the (optionally unsigned) integer iterator 382 * @mask: the cpumask pointer 383 * @start: the start location 384 * 385 * The implementation does not assume any bit in @mask is set (including @start). 386 * 387 * After the loop, cpu is >= nr_cpu_ids. 388 */ 389#define for_each_cpu_wrap(cpu, mask, start) \ 390 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 391 392/** 393 * for_each_cpu_and - iterate over every cpu in both masks 394 * @cpu: the (optionally unsigned) integer iterator 395 * @mask1: the first cpumask pointer 396 * @mask2: the second cpumask pointer 397 * 398 * This saves a temporary CPU mask in many places. It is equivalent to: 399 * struct cpumask tmp; 400 * cpumask_and(&tmp, &mask1, &mask2); 401 * for_each_cpu(cpu, &tmp) 402 * ... 403 * 404 * After the loop, cpu is >= nr_cpu_ids. 405 */ 406#define for_each_cpu_and(cpu, mask1, mask2) \ 407 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 408 409/** 410 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 411 * those present in another. 412 * @cpu: the (optionally unsigned) integer iterator 413 * @mask1: the first cpumask pointer 414 * @mask2: the second cpumask pointer 415 * 416 * This saves a temporary CPU mask in many places. It is equivalent to: 417 * struct cpumask tmp; 418 * cpumask_andnot(&tmp, &mask1, &mask2); 419 * for_each_cpu(cpu, &tmp) 420 * ... 421 * 422 * After the loop, cpu is >= nr_cpu_ids. 423 */ 424#define for_each_cpu_andnot(cpu, mask1, mask2) \ 425 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 426 427/** 428 * for_each_cpu_or - iterate over every cpu present in either mask 429 * @cpu: the (optionally unsigned) integer iterator 430 * @mask1: the first cpumask pointer 431 * @mask2: the second cpumask pointer 432 * 433 * This saves a temporary CPU mask in many places. It is equivalent to: 434 * struct cpumask tmp; 435 * cpumask_or(&tmp, &mask1, &mask2); 436 * for_each_cpu(cpu, &tmp) 437 * ... 438 * 439 * After the loop, cpu is >= nr_cpu_ids. 440 */ 441#define for_each_cpu_or(cpu, mask1, mask2) \ 442 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 443 444/** 445 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. 446 * @cpu: the (optionally unsigned) integer iterator 447 * @mask: the cpumask pointer 448 * 449 * After the loop, cpu is >= nr_cpu_ids. 450 */ 451#define for_each_cpu_from(cpu, mask) \ 452 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) 453 454/** 455 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one. 456 * @mask: the cpumask to search 457 * @cpu: the cpu to ignore. 458 * 459 * Often used to find any cpu but smp_processor_id() in a mask. 460 * If @cpu == -1, the function is equivalent to cpumask_any(). 461 * Return: >= nr_cpu_ids if no cpus set. 462 */ 463static __always_inline 464unsigned int cpumask_any_but(const struct cpumask *mask, int cpu) 465{ 466 unsigned int i; 467 468 /* -1 is a legal arg here. */ 469 if (cpu != -1) 470 cpumask_check(cpu); 471 472 for_each_cpu(i, mask) 473 if (i != cpu) 474 break; 475 return i; 476} 477 478/** 479 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one. 480 * @mask1: the first input cpumask 481 * @mask2: the second input cpumask 482 * @cpu: the cpu to ignore 483 * 484 * If @cpu == -1, the function is equivalent to cpumask_any_and(). 485 * Returns >= nr_cpu_ids if no cpus set. 486 */ 487static __always_inline 488unsigned int cpumask_any_and_but(const struct cpumask *mask1, 489 const struct cpumask *mask2, 490 int cpu) 491{ 492 unsigned int i; 493 494 /* -1 is a legal arg here. */ 495 if (cpu != -1) 496 cpumask_check(cpu); 497 498 i = cpumask_first_and(mask1, mask2); 499 if (i != cpu) 500 return i; 501 502 return cpumask_next_and(cpu, mask1, mask2); 503} 504 505/** 506 * cpumask_any_andnot_but - pick an arbitrary cpu from *mask1 & ~*mask2, but not this one. 507 * @mask1: the first input cpumask 508 * @mask2: the second input cpumask 509 * @cpu: the cpu to ignore 510 * 511 * If @cpu == -1, the function returns the first matching cpu. 512 * Returns >= nr_cpu_ids if no cpus set. 513 */ 514static __always_inline 515unsigned int cpumask_any_andnot_but(const struct cpumask *mask1, 516 const struct cpumask *mask2, 517 int cpu) 518{ 519 unsigned int i; 520 521 /* -1 is a legal arg here. */ 522 if (cpu != -1) 523 cpumask_check(cpu); 524 525 i = cpumask_first_andnot(mask1, mask2); 526 if (i != cpu) 527 return i; 528 529 return cpumask_next_andnot(cpu, mask1, mask2); 530} 531 532/** 533 * cpumask_nth - get the Nth cpu in a cpumask 534 * @srcp: the cpumask pointer 535 * @cpu: the Nth cpu to find, starting from 0 536 * 537 * Return: >= nr_cpu_ids if such cpu doesn't exist. 538 */ 539static __always_inline 540unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 541{ 542 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 543} 544 545/** 546 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 547 * @srcp1: the cpumask pointer 548 * @srcp2: the cpumask pointer 549 * @cpu: the Nth cpu to find, starting from 0 550 * 551 * Return: >= nr_cpu_ids if such cpu doesn't exist. 552 */ 553static __always_inline 554unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 555 const struct cpumask *srcp2) 556{ 557 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 558 small_cpumask_bits, cpumask_check(cpu)); 559} 560 561/** 562 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 563 * @srcp1: the cpumask pointer 564 * @srcp2: the cpumask pointer 565 * @srcp3: the cpumask pointer 566 * @cpu: the Nth cpu to find, starting from 0 567 * 568 * Return: >= nr_cpu_ids if such cpu doesn't exist. 569 */ 570static __always_inline 571unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 572 const struct cpumask *srcp2, 573 const struct cpumask *srcp3) 574{ 575 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 576 cpumask_bits(srcp2), 577 cpumask_bits(srcp3), 578 small_cpumask_bits, cpumask_check(cpu)); 579} 580 581#define CPU_BITS_NONE \ 582{ \ 583 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 584} 585 586#define CPU_BITS_CPU0 \ 587{ \ 588 [0] = 1UL \ 589} 590 591/** 592 * cpumask_set_cpu - set a cpu in a cpumask 593 * @cpu: cpu number (< nr_cpu_ids) 594 * @dstp: the cpumask pointer 595 */ 596static __always_inline 597void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 598{ 599 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 600} 601 602static __always_inline 603void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 604{ 605 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 606} 607 608/** 609 * cpumask_clear_cpus - clear cpus in a cpumask 610 * @dstp: the cpumask pointer 611 * @cpu: cpu number (< nr_cpu_ids) 612 * @ncpus: number of cpus to clear (< nr_cpu_ids) 613 */ 614static __always_inline void cpumask_clear_cpus(struct cpumask *dstp, 615 unsigned int cpu, unsigned int ncpus) 616{ 617 cpumask_check(cpu + ncpus - 1); 618 bitmap_clear(cpumask_bits(dstp), cpumask_check(cpu), ncpus); 619} 620 621/** 622 * cpumask_clear_cpu - clear a cpu in a cpumask 623 * @cpu: cpu number (< nr_cpu_ids) 624 * @dstp: the cpumask pointer 625 */ 626static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 627{ 628 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 629} 630 631static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 632{ 633 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 634} 635 636/** 637 * cpumask_test_cpu - test for a cpu in a cpumask 638 * @cpu: cpu number (< nr_cpu_ids) 639 * @cpumask: the cpumask pointer 640 * 641 * Return: true if @cpu is set in @cpumask, else returns false 642 */ 643static __always_inline 644bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 645{ 646 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 647} 648 649/** 650 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 651 * @cpu: cpu number (< nr_cpu_ids) 652 * @cpumask: the cpumask pointer 653 * 654 * test_and_set_bit wrapper for cpumasks. 655 * 656 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 657 */ 658static __always_inline 659bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 660{ 661 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 662} 663 664/** 665 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 666 * @cpu: cpu number (< nr_cpu_ids) 667 * @cpumask: the cpumask pointer 668 * 669 * test_and_clear_bit wrapper for cpumasks. 670 * 671 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 672 */ 673static __always_inline 674bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 675{ 676 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 677} 678 679/** 680 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 681 * @dstp: the cpumask pointer 682 */ 683static __always_inline void cpumask_setall(struct cpumask *dstp) 684{ 685 if (small_const_nbits(small_cpumask_bits)) { 686 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 687 return; 688 } 689 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 690} 691 692/** 693 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 694 * @dstp: the cpumask pointer 695 */ 696static __always_inline void cpumask_clear(struct cpumask *dstp) 697{ 698 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 699} 700 701/** 702 * cpumask_and - *dstp = *src1p & *src2p 703 * @dstp: the cpumask result 704 * @src1p: the first input 705 * @src2p: the second input 706 * 707 * Return: false if *@dstp is empty, else returns true 708 */ 709static __always_inline 710bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, 711 const struct cpumask *src2p) 712{ 713 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 714 cpumask_bits(src2p), small_cpumask_bits); 715} 716 717/** 718 * cpumask_or - *dstp = *src1p | *src2p 719 * @dstp: the cpumask result 720 * @src1p: the first input 721 * @src2p: the second input 722 */ 723static __always_inline 724void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 725 const struct cpumask *src2p) 726{ 727 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 728 cpumask_bits(src2p), small_cpumask_bits); 729} 730 731/** 732 * cpumask_xor - *dstp = *src1p ^ *src2p 733 * @dstp: the cpumask result 734 * @src1p: the first input 735 * @src2p: the second input 736 */ 737static __always_inline 738void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, 739 const struct cpumask *src2p) 740{ 741 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 742 cpumask_bits(src2p), small_cpumask_bits); 743} 744 745/** 746 * cpumask_andnot - *dstp = *src1p & ~*src2p 747 * @dstp: the cpumask result 748 * @src1p: the first input 749 * @src2p: the second input 750 * 751 * Return: false if *@dstp is empty, else returns true 752 */ 753static __always_inline 754bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, 755 const struct cpumask *src2p) 756{ 757 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 758 cpumask_bits(src2p), small_cpumask_bits); 759} 760 761/** 762 * cpumask_equal - *src1p == *src2p 763 * @src1p: the first input 764 * @src2p: the second input 765 * 766 * Return: true if the cpumasks are equal, false if not 767 */ 768static __always_inline 769bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) 770{ 771 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 772 small_cpumask_bits); 773} 774 775/** 776 * cpumask_or_equal - *src1p | *src2p == *src3p 777 * @src1p: the first input 778 * @src2p: the second input 779 * @src3p: the third input 780 * 781 * Return: true if first cpumask ORed with second cpumask == third cpumask, 782 * otherwise false 783 */ 784static __always_inline 785bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, 786 const struct cpumask *src3p) 787{ 788 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 789 cpumask_bits(src3p), small_cpumask_bits); 790} 791 792/** 793 * cpumask_intersects - (*src1p & *src2p) != 0 794 * @src1p: the first input 795 * @src2p: the second input 796 * 797 * Return: true if first cpumask ANDed with second cpumask is non-empty, 798 * otherwise false 799 */ 800static __always_inline 801bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) 802{ 803 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 804 small_cpumask_bits); 805} 806 807/** 808 * cpumask_subset - (*src1p & ~*src2p) == 0 809 * @src1p: the first input 810 * @src2p: the second input 811 * 812 * Return: true if *@src1p is a subset of *@src2p, else returns false 813 */ 814static __always_inline 815bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) 816{ 817 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 818 small_cpumask_bits); 819} 820 821/** 822 * cpumask_empty - *srcp == 0 823 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 824 * 825 * Return: true if srcp is empty (has no bits set), else false 826 */ 827static __always_inline bool cpumask_empty(const struct cpumask *srcp) 828{ 829 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 830} 831 832/** 833 * cpumask_full - *srcp == 0xFFFFFFFF... 834 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 835 * 836 * Return: true if srcp is full (has all bits set), else false 837 */ 838static __always_inline bool cpumask_full(const struct cpumask *srcp) 839{ 840 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 841} 842 843/** 844 * cpumask_weight - Count of bits in *srcp 845 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 846 * 847 * Return: count of bits set in *srcp 848 */ 849static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp) 850{ 851 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 852} 853 854/** 855 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 856 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 857 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 858 * 859 * Return: count of bits set in both *srcp1 and *srcp2 860 */ 861static __always_inline 862unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 863{ 864 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 865} 866 867/** 868 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) 869 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 870 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 871 * 872 * Return: count of bits set in both *srcp1 and *srcp2 873 */ 874static __always_inline 875unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, 876 const struct cpumask *srcp2) 877{ 878 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 879} 880 881/** 882 * cpumask_shift_right - *dstp = *srcp >> n 883 * @dstp: the cpumask result 884 * @srcp: the input to shift 885 * @n: the number of bits to shift by 886 */ 887static __always_inline 888void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) 889{ 890 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 891 small_cpumask_bits); 892} 893 894/** 895 * cpumask_shift_left - *dstp = *srcp << n 896 * @dstp: the cpumask result 897 * @srcp: the input to shift 898 * @n: the number of bits to shift by 899 */ 900static __always_inline 901void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) 902{ 903 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 904 nr_cpumask_bits); 905} 906 907/** 908 * cpumask_copy - *dstp = *srcp 909 * @dstp: the result 910 * @srcp: the input cpumask 911 */ 912static __always_inline 913void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) 914{ 915 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 916} 917 918/** 919 * cpumask_any - pick an arbitrary cpu from *srcp 920 * @srcp: the input cpumask 921 * 922 * Return: >= nr_cpu_ids if no cpus set. 923 */ 924#define cpumask_any(srcp) cpumask_first(srcp) 925 926/** 927 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2 928 * @mask1: the first input cpumask 929 * @mask2: the second input cpumask 930 * 931 * Return: >= nr_cpu_ids if no cpus set. 932 */ 933#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 934 935/** 936 * cpumask_of - the cpumask containing just a given cpu 937 * @cpu: the cpu (<= nr_cpu_ids) 938 */ 939#define cpumask_of(cpu) (get_cpu_mask(cpu)) 940 941/** 942 * cpumask_parse_user - extract a cpumask from a user string 943 * @buf: the buffer to extract from 944 * @len: the length of the buffer 945 * @dstp: the cpumask to set. 946 * 947 * Return: -errno, or 0 for success. 948 */ 949static __always_inline 950int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) 951{ 952 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 953} 954 955/** 956 * cpumask_parselist_user - extract a cpumask from a user string 957 * @buf: the buffer to extract from 958 * @len: the length of the buffer 959 * @dstp: the cpumask to set. 960 * 961 * Return: -errno, or 0 for success. 962 */ 963static __always_inline 964int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) 965{ 966 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 967 nr_cpumask_bits); 968} 969 970/** 971 * cpumask_parse - extract a cpumask from a string 972 * @buf: the buffer to extract from 973 * @dstp: the cpumask to set. 974 * 975 * Return: -errno, or 0 for success. 976 */ 977static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp) 978{ 979 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 980} 981 982/** 983 * cpulist_parse - extract a cpumask from a user string of ranges 984 * @buf: the buffer to extract from 985 * @dstp: the cpumask to set. 986 * 987 * Return: -errno, or 0 for success. 988 */ 989static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp) 990{ 991 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 992} 993 994/** 995 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 996 * 997 * Return: size to allocate for a &struct cpumask in bytes 998 */ 999static __always_inline unsigned int cpumask_size(void) 1000{ 1001 return bitmap_size(large_cpumask_bits); 1002} 1003 1004#ifdef CONFIG_CPUMASK_OFFSTACK 1005 1006#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 1007#define __cpumask_var_read_mostly __read_mostly 1008 1009bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 1010 1011static __always_inline 1012bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 1013{ 1014 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 1015} 1016 1017/** 1018 * alloc_cpumask_var - allocate a struct cpumask 1019 * @mask: pointer to cpumask_var_t where the cpumask is returned 1020 * @flags: GFP_ flags 1021 * 1022 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 1023 * a nop returning a constant 1 (in <linux/cpumask.h>). 1024 * 1025 * See alloc_cpumask_var_node. 1026 * 1027 * Return: %true if allocation succeeded, %false if not 1028 */ 1029static __always_inline 1030bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1031{ 1032 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 1033} 1034 1035static __always_inline 1036bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1037{ 1038 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 1039} 1040 1041void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 1042void free_cpumask_var(cpumask_var_t mask); 1043void free_bootmem_cpumask_var(cpumask_var_t mask); 1044 1045static __always_inline bool cpumask_available(cpumask_var_t mask) 1046{ 1047 return mask != NULL; 1048} 1049 1050#else 1051 1052#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 1053#define __cpumask_var_read_mostly 1054 1055static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1056{ 1057 return true; 1058} 1059 1060static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1061 int node) 1062{ 1063 return true; 1064} 1065 1066static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1067{ 1068 cpumask_clear(*mask); 1069 return true; 1070} 1071 1072static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1073 int node) 1074{ 1075 cpumask_clear(*mask); 1076 return true; 1077} 1078 1079static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 1080{ 1081} 1082 1083static __always_inline void free_cpumask_var(cpumask_var_t mask) 1084{ 1085} 1086 1087static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1088{ 1089} 1090 1091static __always_inline bool cpumask_available(cpumask_var_t mask) 1092{ 1093 return true; 1094} 1095#endif /* CONFIG_CPUMASK_OFFSTACK */ 1096 1097DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); 1098 1099/* It's common to want to use cpu_all_mask in struct member initializers, 1100 * so it has to refer to an address rather than a pointer. */ 1101extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1102#define cpu_all_mask to_cpumask(cpu_all_bits) 1103 1104/* First bits of cpu_bit_bitmap are in fact unset. */ 1105#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1106 1107#if NR_CPUS == 1 1108/* Uniprocessor: the possible/online/present masks are always "1" */ 1109#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1110#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1111#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1112 1113#define for_each_possible_cpu_wrap(cpu, start) \ 1114 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1115#define for_each_online_cpu_wrap(cpu, start) \ 1116 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1117#else 1118#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1119#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1120#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) 1121#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1122 1123#define for_each_possible_cpu_wrap(cpu, start) \ 1124 for_each_cpu_wrap((cpu), cpu_possible_mask, (start)) 1125#define for_each_online_cpu_wrap(cpu, start) \ 1126 for_each_cpu_wrap((cpu), cpu_online_mask, (start)) 1127#endif 1128 1129/* Wrappers for arch boot code to manipulate normally-constant masks */ 1130void init_cpu_present(const struct cpumask *src); 1131void init_cpu_possible(const struct cpumask *src); 1132 1133#define assign_cpu(cpu, mask, val) \ 1134 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1135 1136#define __assign_cpu(cpu, mask, val) \ 1137 __assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1138 1139#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) 1140#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) 1141#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) 1142#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) 1143#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) 1144 1145void set_cpu_online(unsigned int cpu, bool online); 1146 1147/** 1148 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1149 * @bitmap: the bitmap 1150 * 1151 * There are a few places where cpumask_var_t isn't appropriate and 1152 * static cpumasks must be used (eg. very early boot), yet we don't 1153 * expose the definition of 'struct cpumask'. 1154 * 1155 * This does the conversion, and can be used as a constant initializer. 1156 */ 1157#define to_cpumask(bitmap) \ 1158 ((struct cpumask *)(1 ? (bitmap) \ 1159 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1160 1161static __always_inline int __check_is_bitmap(const unsigned long *bitmap) 1162{ 1163 return 1; 1164} 1165 1166/* 1167 * Special-case data structure for "single bit set only" constant CPU masks. 1168 * 1169 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1170 * padding to the left and the right, and return the constant pointer 1171 * appropriately offset. 1172 */ 1173extern const unsigned long 1174 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1175 1176static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1177{ 1178 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1179 p -= cpu / BITS_PER_LONG; 1180 return to_cpumask(p); 1181} 1182 1183#if NR_CPUS > 1 1184/** 1185 * num_online_cpus() - Read the number of online CPUs 1186 * 1187 * Despite the fact that __num_online_cpus is of type atomic_t, this 1188 * interface gives only a momentary snapshot and is not protected against 1189 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1190 * region. 1191 * 1192 * Return: momentary snapshot of the number of online CPUs 1193 */ 1194static __always_inline unsigned int num_online_cpus(void) 1195{ 1196 return raw_atomic_read(&__num_online_cpus); 1197} 1198#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1199#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) 1200#define num_present_cpus() cpumask_weight(cpu_present_mask) 1201#define num_active_cpus() cpumask_weight(cpu_active_mask) 1202 1203static __always_inline bool cpu_online(unsigned int cpu) 1204{ 1205 return cpumask_test_cpu(cpu, cpu_online_mask); 1206} 1207 1208static __always_inline bool cpu_enabled(unsigned int cpu) 1209{ 1210 return cpumask_test_cpu(cpu, cpu_enabled_mask); 1211} 1212 1213static __always_inline bool cpu_possible(unsigned int cpu) 1214{ 1215 return cpumask_test_cpu(cpu, cpu_possible_mask); 1216} 1217 1218static __always_inline bool cpu_present(unsigned int cpu) 1219{ 1220 return cpumask_test_cpu(cpu, cpu_present_mask); 1221} 1222 1223static __always_inline bool cpu_active(unsigned int cpu) 1224{ 1225 return cpumask_test_cpu(cpu, cpu_active_mask); 1226} 1227 1228static __always_inline bool cpu_dying(unsigned int cpu) 1229{ 1230 return cpumask_test_cpu(cpu, cpu_dying_mask); 1231} 1232 1233#else 1234 1235#define num_online_cpus() 1U 1236#define num_possible_cpus() 1U 1237#define num_enabled_cpus() 1U 1238#define num_present_cpus() 1U 1239#define num_active_cpus() 1U 1240 1241static __always_inline bool cpu_online(unsigned int cpu) 1242{ 1243 return cpu == 0; 1244} 1245 1246static __always_inline bool cpu_possible(unsigned int cpu) 1247{ 1248 return cpu == 0; 1249} 1250 1251static __always_inline bool cpu_enabled(unsigned int cpu) 1252{ 1253 return cpu == 0; 1254} 1255 1256static __always_inline bool cpu_present(unsigned int cpu) 1257{ 1258 return cpu == 0; 1259} 1260 1261static __always_inline bool cpu_active(unsigned int cpu) 1262{ 1263 return cpu == 0; 1264} 1265 1266static __always_inline bool cpu_dying(unsigned int cpu) 1267{ 1268 return false; 1269} 1270 1271#endif /* NR_CPUS > 1 */ 1272 1273#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1274 1275#if NR_CPUS <= BITS_PER_LONG 1276#define CPU_BITS_ALL \ 1277{ \ 1278 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1279} 1280 1281#else /* NR_CPUS > BITS_PER_LONG */ 1282 1283#define CPU_BITS_ALL \ 1284{ \ 1285 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1286 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1287} 1288#endif /* NR_CPUS > BITS_PER_LONG */ 1289 1290/** 1291 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1292 * as comma-separated list of cpus or hex values of cpumask 1293 * @list: indicates whether the cpumap must be list 1294 * @mask: the cpumask to copy 1295 * @buf: the buffer to copy into 1296 * 1297 * Return: the length of the (null-terminated) @buf string, zero if 1298 * nothing is copied. 1299 */ 1300static __always_inline ssize_t 1301cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1302{ 1303 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1304 nr_cpu_ids); 1305} 1306 1307/** 1308 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1309 * hex values of cpumask 1310 * 1311 * @buf: the buffer to copy into 1312 * @mask: the cpumask to copy 1313 * @off: in the string from which we are copying, we copy to @buf 1314 * @count: the maximum number of bytes to print 1315 * 1316 * The function prints the cpumask into the buffer as hex values of 1317 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1318 * ABI. 1319 * 1320 * Return: the length of how many bytes have been copied, excluding 1321 * terminating '\0'. 1322 */ 1323static __always_inline 1324ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1325 loff_t off, size_t count) 1326{ 1327 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1328 nr_cpu_ids, off, count) - 1; 1329} 1330 1331/** 1332 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1333 * comma-separated list of cpus 1334 * @buf: the buffer to copy into 1335 * @mask: the cpumask to copy 1336 * @off: in the string from which we are copying, we copy to @buf 1337 * @count: the maximum number of bytes to print 1338 * 1339 * Everything is same with the above cpumap_print_bitmask_to_buf() 1340 * except the print format. 1341 * 1342 * Return: the length of how many bytes have been copied, excluding 1343 * terminating '\0'. 1344 */ 1345static __always_inline 1346ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1347 loff_t off, size_t count) 1348{ 1349 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1350 nr_cpu_ids, off, count) - 1; 1351} 1352 1353#if NR_CPUS <= BITS_PER_LONG 1354#define CPU_MASK_ALL \ 1355(cpumask_t) { { \ 1356 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1357} } 1358#else 1359#define CPU_MASK_ALL \ 1360(cpumask_t) { { \ 1361 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1362 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1363} } 1364#endif /* NR_CPUS > BITS_PER_LONG */ 1365 1366#define CPU_MASK_NONE \ 1367(cpumask_t) { { \ 1368 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1369} } 1370 1371#define CPU_MASK_CPU0 \ 1372(cpumask_t) { { \ 1373 [0] = 1UL \ 1374} } 1375 1376/* 1377 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1378 * to avoid breaking userspace which may allocate a buffer based on the size 1379 * reported by e.g. fstat. 1380 * 1381 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1382 * 1383 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1384 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1385 * cover a worst-case of every other cpu being on one of two nodes for a 1386 * very large NR_CPUS. 1387 * 1388 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1389 * unsigned comparison to -1. 1390 */ 1391#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1392 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1393#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1394 1395#endif /* __LINUX_CPUMASK_H */